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The immune cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has

attracted rapidly evolving attention as a cancer treatment modality because of its

competence to selectively eliminate tumor cells without instigating toxicity in vivo. TRAIL

has revealed encouraging promise in preclinical reports in animal models as a cancer

treatment option; however, the foremost constraint of the TRAIL therapy is the

advancement of TRAIL resistance through a myriad of mechanisms in tumor cells.

Investigations have documented that improvement of the expression of anti-apoptotic

proteins and survival or proliferation involved signaling pathways concurrently suppressing

the expression of pro-apoptotic proteins along with down-regulation of expression of

TRAILR1 and TRAILR2, also known as death receptor 4 and 5 (DR4/5) are reliable for

tumor cells resistance to TRAIL. Therefore, it seems that the development of a therapeutic

approach for overcoming TRAIL resistance is of paramount importance. Studies currently

have shown that combined treatment with anti-tumor agents, ranging from synthetic

agents to natural products, and TRAIL could result in induction of apoptosis in TRAIL-

resistant cells. Also, human mesenchymal stem/stromal cells (MSCs) engineered to

generate and deliver TRAIL can provide both targeted and continued delivery of this

apoptosis-inducing cytokine. Similarly, nanoparticle (NPs)-based TRAIL delivery offers

novel platforms to defeat barricades to TRAIL therapeutic delivery. In the current review,
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we will focus on underlying mechanisms contributed to inducing resistance to TRAIL in

tumor cells, and also discuss recent findings concerning the therapeutic efficacy of

combined treatment of TRAIL with other antitumor compounds, and also TRAIL-delivery

using human MSCs and NPs to overcome tumor cells resistance to TRAIL.

Keywords: tumor necrosis factor-related apoptosis-inducing ligand, mesenchymal stem/stromal cells, resistance,

nanoparticles, combination therapy

INTRODUCTION

The tumor necrosis factor-related apoptosis-inducing ligand

(TRAIL) belongs to the group of chemotherapeutic ingredients,
which specifically affects various tumor cells without targeting

the normal cells (1). It has been evidenced that due to lower

expression of TRAIL receptors on the surface of normal cells,

theses cell are inherently resistant to TRAIL-induced apoptosis

(2). However, deregulation of various signaling molecules and

pathways, such as Janus kinase (JAK) and P53, results eventually
in up-regulation of TRAIL-receptors expression, leading to

tumor cells elimination (3–5). The well-known therapeutic

competence of TRAIL has robustly relied on the expression of

its receptors in a variety of cells and tissues, ranging from

lymphocytes to spleen, thymus, ovary, prostate, colon,

intestine, and placenta; while the expression of identified

receptors for other ligands of the TNF family are commonly
restricted and transient (6, 7). Though the Fas/FasL and TNFa/
TNFR1 are identified to stimulate the oncogenic NF-kB pathway,

TRAIL elicits a weak influence on NF-kB stimulation, reflecting

its superior safety as a therapeutic agent (8). Interestingly, TRAIL

also contributes to the natural killer (NK) cell-induced

immunosurveillance toward metastatic cancer cells, describing
TRAIL as a favorable and effective anticancer molecule for

clinical application. TRAIL as a cytokine is frequently

expressed by immune cells and plays a prominent role in T-

cell homeostasis and NK or T-cell mediated elimination of

malignant cells (9, 10). This cytokine is considered a type II

transmembrane protein containing an extracellular domain,

which generates its biologically active soluble form
upon cleavage.

In the present review, we will describe TRAIL signaling and

its regulation, as well as known mechanisms that contributed to

cancer cell resistance to TRAIL therapy, and more importantly,

will investigate the current approaches that resistance, ranging

from combination therapy (using TRAIL along with other anti-
tumor agents) to TRAIL targeted delivery by nanoparticles (NPs)

and stem cells (SCs).

TRAIL Signaling and Its Regulation
TRAIL interacts with two agonistic receptors, including TRAIL-

R1 (DR4) and TRAIL-R2 (DR5), and three antagonistic

receptors, encompassing TRAIL-R3 (DcR1), TRAIL-R4

(DcR2), and soluble receptor osteoprotegerin (OPG)
(Figure 1) (2). TRAIL-R1 and TRAIL-R2 expression is

typically adjusted through p53, and TRAIL-R2 gene promoter

includes a p53 receptive component.

In addition to the stimulation of apoptosis in TRAIL-sensitive

cells, TRAIL-R1 and TRAIL-R2 can elicit the survival involved

signaling axis in malignant cells, thus hindering cell death
following treatment with TRAIL (11). TRAIL interaction with

its receptors can result in the activation of either extrinsic or

intrinsic apoptosis pathways in tumor cells, in which the

interrelation between these pathways is attributed by the

truncation of the BH3-domain interacting protein (Bid).

Mechanistically, TRAIL connecting to its two death receptors,
DR4 and DR5, leads to the triggering of the extrinsic pathway,

which continues with trimerization of receptors and formation of

the death-inducing signaling complex (DISC) (12, 13). Fas-

associated death domain protein (FADD), but not Fas, are

recruited to the DISC, and interrelates with the death domains

(DD) in the cytoplasmic region of DR4 and DR5, enabling the

translocation and succeeding activation of procaspase-8/10 by
communication of their respective death effector domains (DED)

(14). In the intrinsic pathway, caspase-8 activation supports

cleavage of pro-apoptotic protein Bid, and then the truncated

Bid interrelates with other well-known pro-apoptotic proteins,

Bax and Bak. This interaction facilitates Bax and Bak

oligomerization in the mitochondrial membrane, supporting a
modification in mitochondrial membrane potential (DYm) and

eventually secretion of cytochrome (cyt) c and Smac/Diablo (15,

16) (Figure 2). The conventional suggested model for DISC

assembly and structure implies that FADD is substoichiometric

and procaspase-8 is recruited by both contacting with FADD and

also interrelating with itself.

This apoptotic pathway is tightly regulated. At the DISC,
caspase-8/10 stimulation can be suppressed by anti-apoptotic

protein cellular FLICE-like inhibitory protein (c-FLIP) (17). On

the other hand, anti-apoptotic proteins, X-linked inhibitor of

apoptosis protein (XIAP), and survivin can trigger straight

suppression of the effector caspases activity, whereas the

suppressive activity of XIAP on caspases is modified strongly
by at least two XIAP-interacting proteins, XAF1 and Smac/

Diablo (18, 19). Moreover, regardless of the two most

important members of the anti-apoptotic Bcl-2 family protein,

Bcl-2 or Bcl-xL (20), which their activities robustly inhibits Bax-

mediated apoptosis, Mcl-1 as another Bcl-2 family protein plays

a pivotal role in the regulation of apoptosis and also upholding
cell survival by interrupting some axis which supports the release

of cytochrome c from mitochondria (21, 22).

Pre-clinical investigations have revealed that the utility of the

soluble (s) and also full-length (FL) form of TRAIL in animal

models could inhibit the proliferation of TRAIL-sensitive human

tumor xenografts without any serious systemic toxicity,

Razeghian et al. Overcoming Resistance to TRAIL

Frontiers in Immunology | www.frontiersin.org August 2021 | Volume 12 | Article 6997462

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


sustaining the potent application of TRAIL in vivo (23–25).
Nonetheless, the chief restriction of TRAIL therapy is the

progress of TRAIL resistance by a variety of mechanisms in

target cells (26, 27). Based on the literature, up-regulating anti-

apoptotic proteins and survival or proliferation involved

signaling axis concomitant with down-regulating pro-apoptotic

proteins, as well as DR4/5 expression and activation seem to play

a crucial role in cancer cells resistance to TRAIL (28, 29). Hence,
for improvement of the TRAIL elicited anti-tumor effects,

combined use of TRAIL with various TRAIL sensitizing

components (e.g., synthetic agents and natural products) has

represented pronounced therapeutic outcomes. Further, the use

of NPs and stem cells, in particular, human mesenchymal stem/

stromal cells (MSCs), as TRAIL delivery vehicles has currently
attracted rapidly evolving attention (30–32).

MECHANISMS OF CANCER
RESISTANCES TO TRAIL

Anti-Apoptotic Proteins in
TRAIL Resistance
In 1998, Griffith et al. showed that presence or the absence of
intracellular apoptosis inhibitors could mediate resistance or

sensitivity to TRAIL-induced apoptosis in melanoma cell lines

(33). After that, in 1999, Tepper and Seldin described that there

is a direct association between expression levels of the anti-

apoptotic protein c-FLIP and resistance to apoptosis-inducing

molecules, such as Fas, in a cancer cell line in vitro. They found
that the relative levels of caspase-8 and c-FLIP act as a

determinant factor affecting susceptibility to Fas -induced

apoptosis in Burkitt’s lymphoma (BL) (34). Similarly, another

report suggested that tumor cell evasion from T cell

immunosurveillance may rely on the c-FLIP expression in human

melanomas in vivo. Correspondingly, c-FLIP overexpression

resulted in marked resistance to Fas -induced apoptosis in tumor
cells in vitro (35). Besides, c-FLIP averts caspase-8 cleavage in

breast carcinoma cell line T47D and negatively regulates cell

death in T47D cells (36). In a similar pattern, it has been found

that c-FLIP is typically expressed in human hepatocellular

carcinomas (HCCs) cells at a higher level than in non-tumor

liver tissues. As well, c-FLIP down-regulation exerted by cFLIP
antisense oligodeoxynucleotides made HCCs susceptible to

TRAIL-, and - Fas mediated apoptosis, and conversely, its over-

expression intensified cells resistance to apoptosis-inducing

agents, more importantly via inhibition of caspase-8 activation

concurrently promoting nuclear factor (NF)-kB activation (37).

These results indicate that c-FLIP participates in cell survival by

both blocking death-receptor-mediated apoptosis and adjusting
NF-kB activation in human HCCs (37).

Likewise, Bcl-xL, a cellular inhibitor of apoptosis 2 (cIAP2)

and survivin down-regulating following silencing of zinc finger

protein SNAIL, which in turn, sustained HCC cells susceptibility

to TRAIL-mediated apoptosis signified the chief role of the anti-

apoptotic proteins in the resistance process of tumor cells to
TRAIL (38). Besides, investigation of the TRAIL effects on non-

FIGURE 1 | The recognized receptors for TRAIL. TRAIL connects with two agonistic receptors, termed TRAIL-R1 (DR4) and TRAIL-R2 (DR5), and three antagonistic

receptors, termed TRAIL-R3 (DcR1), TRAIL-R4 (DcR2) as well as a soluble receptor, known as osteoprotegerin (OPG). TRAIL, Tumor necrosis factor-related

apoptosis inducing ligand.
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small cell lung cancer (NSCLC) cell line, NCI-H460, verified

tumor cell’s sensitivity to TRAIL, while Bcl-2 overexpression

supported a highly TRAIL-resistant phenotype, and thereby
evidenced the importance of the mitochondrial pathway in

stimulating TRAIL-induced apoptosis. Interestingly, Bcl-2

overexpression largely suppressed the final cleavage in caspase-

8 and also caspase-3; on the other hand, XIAP knockdown led to

the improvement of the cellular levels of cleaved caspase-3 upon

treatment with TRAIL (39). Cingöz and his coworkers showed
that TRAIL-mediated apoptosis in glioblastoma (GBM) cell lines

can be promoted following combination therapy with

proteasome inhibitor bortezomib and TRAIL, evidently by

down-regulating Bcl-2 or Bcl-xL, suggesting a role for these

anti-apoptotic proteins in inducing resistance to apoptosis-

inducing cytokines, in particular, TRAIL (40). Moreover,

analysis of the apoptosis process induced by TRAIL in human
colon cancer cell line SW620 revealed that although caspase-8

activation and subsequent tBid formation was triggered in tumor

cells upon treatment with TRAIL, up-regulating Bcl-2, Bcl-xL

and Mcl-1 blocked TRAIL-mediated apoptosis in treated tumor

cells (41). Conversely, Lippa et al. found that the steady blocking
of the XIAP in human colon carcinoma cell line Colo320

subcutaneous tumors led to the delayed tumor growth and also

supported susceptibility to TRAIL exerted anti-tumor functions

in vivo (42). Considering other studies, up-regulating Mcl-1 in

melanoma cells is proposed to boost tumor cells resistance to

TRAIL-mediated apoptosis, while combination therapy with
Mcl‐1‐selective inhibitor S63845 with TRAIL improved robust

apoptosis in TRAIL-resistant melanoma cells, and thereby

confirmed the influential role of the Mcl-1 in determining the

cell responses to TRAIL (21).

Pro-Apoptotic Proteins in
TRAIL Resistance
A large number of studies suggest that DRs-mediated apoptosis

in tumor cells may arise from inducing pro-apoptotic proteins,

FIGURE 2 | The mechanism of TRAIL-induced apoptosis in tumor cells. TRAIL connecting to DR4 and DR5 stimulates apoptosis in both the extrinsic and intrinsic

pathways following trimerization of receptors and FADD translocation and activation. However, various anti-apoptotic proteins, including c-FLIP, XIAP, Mcl-1, survivin,

Bcl-2, and Bcl-xL can negatively regulate apoptosis pathways. TRAIL, Tumor necrosis factor-related apoptosis-inducing ligand; DRs, Death receptors; FADD, FAS-

associating death domain-containing protein; c-FLIP, Cellular FLICE (FADD-like IL-1b-converting enzyme)-inhibitory protein; Bcl-2, B-cell lymphoma-2; Bcl-xl, B-cell

lymphoma-extra large; Mcl-1, Myeloid-cell leukemia 1; XIAP, X-linked inhibitor of apoptosis; Bax, Bcl-2 associated X; Bak, Bcl-2 homologous antagonist/killer; Bid,

BH3-interacting domain death agonist.
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such as Bax. In 2002, LeBlanc et al. found that Bax-deficient

human colon carcinoma cells show remarkable resistance to

death-receptor ligands, while Bax-expressing sister clones were

susceptible. They suggested that although Bax is unessential for

apical death-receptor signaling actions like caspase-8 induction,

this pro-apoptotic protein largely contributes to mitochondrial
changes and downstream caspase induction (43). Likewise, other

reports revealed that Bax null tumor cells were resistant to

TRAIL-induced apoptosis; however, Bax deficiency had no

impact on TRAIL-induced caspase-8 induction and following

cleavage of Bid. Given that Bax deficiency supports imperfect

caspase-3 processing due to the inhibition by XIAP, observations
indicated that secretion of Smac/Diablo from mitochondria by

the TRAIL-caspase-8-tBid-Bax cascade is essential for removing

the negative effect of the XIAP on apoptosis. Therefore, Deng

et al. suggested that Bax-dependent secretion of Smac/Diablo,

but not cytochrome c, from mitochondria participate in TRAIL-

induced apoptosis (44). Further, tumor stem cells derived from
patients with the most malignant primary brain tumor,

medulloblastoma (MB), demonstrated robust resistance to

TRAIL-induced apoptosis. The analysis showed that several

mechanisms, in particular, down-regulating Bax in tumor stem

cells were responsible for the defect in TRAIL-induced apoptosis

(45). In this regard, other studies have shown that despite the Bak

expression, Bax-deficient cells demonstrated resistance to
TRAIL-induced apoptosis. Indeed, Bax dependency of TRAIL-

elicited cell death is determined through Mcl-1 but not Bcl-xL,

whereas silencing of Mcl-1 but not Bcl-xL could defeat resistance

to TRAIL in Bax-deficient cells, and also facilitate Bak inducing

by TRAIL (46).

Resistance to TRAIL can be caused by activation of protein
kinase C-epsilon (PKCepsilon) which inhibits caspase-8 and -9

activation as well as hindering cytochrome c secretion from

mitochondria, as shown in MCF-7 breast cancer cells (47). The

PKCepsilon functions result in improvement in Bcl-2 expression,

and also reduction in Bid expression without any effect on Bax,

and thus implying that it arbitrates TRAIL resistance through

both Bcl-2 and Bid in breast cancer cells (47).
Studies have shown that resistance of the oral squamous cell

carcinoma (OSCC) to TRAIL-induced apoptosis is mediated by

RANK ligand (RANKL) activation and subsequent blocking of

pro-apoptotic proteins Bad and Bax, highlighting the

importance of the pro-apoptotic proteins in TRAIL-induced

OSCC tumor cell apoptosis (48). Moreover, resistance to TRAIL
in TRAIL-resistant SW480 cells is mediated by up-regulating

miR-20a. Silencing miR-20a and subsequent Bid activation

renders SW40 cells sensitive to TRAIL-induced apoptosis

which supports the central biological role of pro-apoptotic

proteins in determining the tumor cell response to TRAIL

(49). Consistently, Lee et al. described that although

combination therapy with TRAIL and other compounds could
make human colon cancer HCT116 cell line susceptible to

TRAIL, Bax-deficient cells but not Bak-deficient cells, restored

their resistance to TRAIL (50). In sum, these findings imply that

the TRAIL-induced apoptosis is closely linked to Bax-mediated

mitochondria-dependent pathway.

Main Survival-Involved Signaling Axis in
TRAIL Resistance
NF-kB
Previous studies have supported that activation of NF-kB by

Epstein-Barr virus (EBV) infection largely participates in

resistance of BL cell lines to TRAIL-induced apoptosis, and
consequently, application of NF-kB inhibitors may be valuable

for defeating BL cells resistance to TRAIL (Figure 3) (36).

Similarly, NF-kB activation is responsible for the resistance of

wild-type (WT) leukemia cell line HL60 cells, to TRAIL, as

shown by investigating TRAIL-resistant HL60 subclones (51).

Also, Beyer et al. showed that NSCLC-acquired resistance to

TRAIL was arbitrated by NF-kB up-regulation; however, they
also observed that p53-independent apoptosis by attenuating

NF-kB expression and concurrently suppressing Bcl-2 and Bcl-

xL activities in NSCLC, may be responsible for TRAIL-induced

apoptosis upon combination therapy with TRAIL and other anti-

tumor agents (52). Further, NF-kB activation as a downstream

target of the glycogen synthase kinase-3b (GSK-3b) activating in
lung cancer cells has been presented as another possible

mechanism involved in inducing resistance to TRAIL (53).

Interestingly, there is some evidence indicating that TRAIL

interrelation with DcR2 may result in NF-kB activation in

large granular lymphocyte (LGL) leukemia. Regardless of

detecting up-regulated TRAIL messenger RNA and protein

expression in LGL leukemia cells, studies have shown that
DcR2 is the principal TRAIL receptor in LGL leukemia cells,

and also evinced that TRAIL-elicited activation of DcR2 caused

augmented NF-kB activation in leukemic LGL cells (54).

Moreover, expression of a set of NF-kB-regulated microRNAs,

such as miR-21, miR-30c, and miR-100, which affect tumor-

suppressor genes, are suggested to be involved in acquiring
resistance to TRAIL in lung cancer cells (55). Likewise, NF-kB
contributes to supporting resistance to TRAIL in melanoma (56),

bladder cancers (57), and also glioblastoma (58).

Akt

In addition to the NF-kB, Akt activation induces tumor cell
resistance to the apoptosis-inducing agents (e.g., TRAIL). A

myriad of tumor cells such as prostate cancer cells, express

active Akt because of the loss of lipid phosphatase PTEN gene,

a prominent inhibitor of phosphatidylinositol 3-kinase (PI3K)

pathway (Figure 4). Thereby, tumor cell lines that express the

high level of Akt marked resistance to apoptosis by TRAIL. In
contrast, inhibiting Akt activities by PI3K inhibitors,

wortmannin and LY294002, abrogated cellular resistance to

TRAIL. Importantly, transfection of the constitutively active

Akt into tumor cells with low Akt activity could result in

reinforced Akt activity and then modified TRAIL-induced

apoptosis (59). Given that Akt is negatively modified by the

tumor suppressor PTEN, researchers evaluated tumor cell’s
sensitivity to TRAIL in PTEN knockdown murine prostate

epithelial cells. Unsurprisingly, they found that PTEN−/− cells

were more resistant than PTEN+/+ to TRAIL-induced apoptosis,

and also overexpression of a mutant PTEN diminished TRAIL

resistance in PTEN+/+ cells, presenting the pivotal role of PTEN
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in TRAIL sensitivity (60). Also, it has been found that liver

cancer stem cells (LCSCs) resistance to TRAIL is sustained by
miR-21-3p overexpression, which acts as an inhibitor of PTEN

and thereby positively regulates Akt activation in xenografts

nude mice (61). Also, Akt up-regulation is deemed to

negatively modify apoptotic proteins during early steps of

TRAIL-induced apoptosis in colorectal carcinoma (62), lung

cancer (63), glioma (64), neuroblastoma (65), HCC (66, 67),
and gastric cancers (68).

ERK

ERK is known as another prominent protein capable of potently

suppressing TRAIL-induced release of Smac/Diablo in

melanoma cells, and thereby diminishing their sensitivity to

TRAIL. Conversely, blocking ERK signaling using MEK

inhibitor U0126 or a dominant-negative mutant of MKK1
could sustain melanoma cells susceptible to TRAIL-induced

apoptosis (69). ERK signaling axis is suggested to protect

melanoma cells toward TRAIL-induced apoptosis by

suppressing Bax activation, which in turn, could reduce
TRAIL-mediated secretion of Smac/Diablo and activation of

apoptosis (69). Besides, studies on TRAIL-resistant sub-

population of the HCC cell line LH86 revealed that Musashi

RNA binding protein 1 (Msi1) expression which enables ERK

activation was responsible for inducing resistance to TRAIL.

Meanwhile, overexpression of Msi1 diminished the sensitivity of
HCC cells to TRAIL both in vitro and in vivo, while siRNA-

mediated exhaustion of ERK defeated TRAIL resistance (70).

Furthermore, assessment of the underlying mechanisms that

contribute to acquired resistance to TRAIL in TRAIL-resistant

human ovarian cancer cell lines (SKOV-3ip1 and A2780)

showed that DR4/5-indued signaling following their bindings

to TRAIL undesirably elicits induction of pro-survival factors
such as NF-kB, Akt, and ERK(1/2), potentiating tumor

cells resistance to TRAIL-mediated apoptosis (71). Also,

heterogeneous nuclear ribonucleoprotein K (hnRNPK) activation

FIGURE 3 | The bortezomib-mediated process involved in inducing TRAIL-mediated apoptosis in TRAIL-resistant tumor cells. The proteasome inhibitor bortezomib

prohibits NF-kB activation and consequently down-regulates anti-apoptotic protein expression in target cells, sensitizing TRAIL-resistant tumor cells to TRAIL-

induced apoptosis. TRAIL, Tumor necrosis factor-related apoptosis-inducing ligand; NF -kB, Nuclear factor-kappa B; IkB, Inhibitor kappa B.
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resulting from ERK up-regulating in lung adenocarcinoma H1299

cells is closely related to hnRNPK-mediated TRAIL resistance in

H1299 cells. Accordingly, ERK1/2 facilitates the cytoplasmic

accumulation of hnRNPK and therefore abolishes TRAIL-induced
apoptosis by positive regulation of XIAP in H1299 cells (72).

Besides, recent findings have shown that growth arrest and DNA

damage-inducible protein 34 (GADD34) constrains TRAIL-

induced HCC cell apoptosis by ERK-arbitrated stabilization

of anti-apoptotic protein Mcl-1 and suppression of its degradation

(72, 73). Furthermore, ERK activation may provoke
acquired TRAIL resistance in cancers of the breast (74), colon

(75), gastric (76), cervical (77), renal carcinoma (78), and also

neuroblastoma (79).

Death Receptors and Resistance to TRAIL
Studies on TRAIL-resistant SW480 human colon adenocarcinoma

cells revealed that although the total cellular DR4 proteins are

commonly identified in TRAIL-sensitive and TRAIL-resistant

clones; the resistant cells virtually show lower rates of DR4 on

the cell surface. Further, exogenous DR4 and DR5 may not be

properly transported to the TRAIL-resistant cell surface; however,

pre-exposure with tunicamycin which enables DR4/5 expression
on cell surface, re-sensitizes resistant cells to TRAIL. These

findings imply that resistance to TRAIL can be prohibited by

adjusting the transport of death receptors to the cell surface (80).

Other investigations on human pancreatic cancer cell lines PANC-

1 and BxPC-3 showed that treatment with TRAIL reduced the

expression of DR4 and pointedly improved DCR1/2 expression,
leading to inhibition of TRAIL-induced apoptosis, while OPG

levels persisted unaffected. Interestingly, co-stimulation with

TRAIL and lipopolysaccharides (LPS) more obviously promoted

the variations in TRAIL-receptor-expression sponsoring apoptosis

resistance due to the recognized effects of LPS on TLR-4 activation

(52). On the other hand, CRISPR/Cas9 mediated silencing of DR5

suppressed bortezomib-mediated re-sensitization of glioblastoma
cell lines to TRAIL-induced apoptosis, representing its significant

FIGURE 4 | The PTEN important roles in the regulation of cell response to TRAIL. Downregulation of PTEN results in unregulated activation of the PI3K/Akt

pathway, which in turn, leads to the tumor cell’s resistance to TRAIL. Nonetheless, PTEN up-regulating using therapeutic agents plus TRAIL may support TRAIL-

induced apoptosis in TRAIL-resistant cells. TTRAIL, umor necrosis factor-related apoptosis-inducing ligand; PTEN, Phosphatase and tensin homolog; NF -kB,

Nuclear actor-kappa B; mTOR, Mechanistic target of rapamycin; PI3K/AKT, Phosphatidylinositol 3-kinase; IKK, IkB kinase; FOXO, forkhead box transcription

factors; Bad, Bcl2 associated agonist of cell death; RHEB, Ras homolog enriched in brain; S6K, S6 kinase; eIF4E, Eukaryotic translation initiation factor 4E.
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role in determining cell response to TRAIL (40). Furthermore, it

has been suggested that DCR2 could shape a heteromeric complex

with the DR5 and consequently diminish caspase-8 activation and

apoptosis in human cervical cancer HeLa cells. Correspondingly,

ectopic expression of DCR2 in HeLa cells could trigger

morphological variations along with improved cell proliferation
in vitro as well as tumor growth in vivo. These findings have

signified that DCR2 up-regulating leads to the activation of

signaling pathways enabling cell survival and proliferation in

HeLa cells (26). Moreover, Zhang et al. have suggested that loss

of cell surface expression of DR4 or DR5 is reliable for attenuated

sensitivity to TRAIL in human breast cancer cells. They also found
that TRAIL resistance developed in the lack of DR4/5 on cell

surface regardless of changes in Bcl-2 family proteins or caspases.

Importantly, reserving endocytosis using pharmacologic

inhibitors or interruption of clathrin-dependent endocytosis

signaling molecules facilitated DR4/5 cell surface expression

and then made resistant cells susceptible to TRAIL-induced

apoptosis (81). In this regard, other studies presented that DR5

up-regulating upon combination therapy with TRAIL and

paxilline was responsible for sensitizing TRAIL-resistance

glioma cell to TRAIL-induced apoptosis mediated by a C/EBP
homologous protein (CHOP)/GADD153-arbitrated process

(Figure 5) (82). This theory declares that activating the

CHOP/GADD153 axis upon treatment of TRAIL-resistant cells

with various therapeutic agents may result in up-regulation of

DR4/5, and consequently elicits ER stress-mediated apoptosis in

these cells (82). Regardless of the central role of DR4 during
TRAIL-mediated apoptosis of tumor cells, there is some proof

suggesting that DR4-C626G and -A1322G polymorphisms could

be considered as the molecular risk factors for non-Hodgkin

lymphoma (NHL) in human (83).

FIGURE 5 | The CHOP-mediated up-regulation of DR5. The ER stress stimulates the induction of PERK, which supports phosphorylation of eIF2a, and thereby

results in stimulation of translation of ATF4. Then, ATF4- ATF3- CHOP signaling pathway is elicited and contributes to the up-regulating DR5 expression, facilitating

tumor cells-sensitivity to TRAIL. TRAIL, Tumor necrosis factor-related apoptosis-inducing ligand, CHOP, C/EBP homologous protein; PERK, Protein kinase R-like ER

kinase; eIF2a, Eukaryotic translation initiation factor 2a; ATF3/4, Activating transcription factor 3/4; ER Stress, Endoplasmic reticulum stress; DISC, Activation of

death-inducing signaling complex.
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OVERCOMING TRAIL RESISTANCE USING
COMBINATION THERAPY

Synthetic Agents
As described earlier, TRAIL is suggested as an encouraging anti-

cancer modality; however, many cancers are or become

inherently resistant to TRAIL. Nonetheless, combination

treatment can defeat TRAIL resistance and improve TRAIL-

induced apoptosis in TRAIL-resistant tumor cells. Recently,
combined treatment of histone deacetylase inhibitors

(HDACi’s) and TRAIL have demonstrated marked capability

to overcome TRAIL resistance in human cancers. TRAIL-

induced apoptosis was chiefly promoted in colon cancer WiDr

cells by pre-exposure to Entinostat, an HDAC1, 2, and 3

inhibitors, and in colon cancer DLD-1 cells by RGFP966, an
HDAC3-specific inhibitor, or PCI34051, an HDAC8-specific

inhibitor. Analysis indicated that RGFP966 and PCI34051

could stimulate DR4 expression on DLD-1 cells, while

RGFP966 elicited more DR5 expression on WiDr cells,

representing a dissimilar role for DR4 or DR5 in these

interventions (84). Similarly, Entinostat could induce apoptosis
in TRAIL-resistant melanoma following combination therapy

with TRAIL by up-regulating DR4, DR5, and procaspase 8

expressions, and concurrently c-FLIP downregulating in tumor

cells. Meanwhile, intensified expression of ectopic c-FLIP could

negatively modify the cooperative apoptosis stimulation by

the combination of entinostat and TRAIL (85). Likewise,

combined treatment of TRAIL and HDACi vorinostat
(suberanilohydroxamic acid, SAHA) in multiple myeloma

(MM) (86), and sarcoma (87), and also HDACi valproic acid

(VPA) in anaplastic thyroid carcinoma (ATC) (88), and head

and neck cancer (HNC) (88) could defeat tumor cells resistance

to TRAIL-induced apoptosis.

Various chemotherapeutic drugs such as 5-fluorouracil
(5-FU), mitomycin, and calpain inhibitor I, an NFkB inhibitor,

can make TRAIL-resistant DLD1 colon cancer cells susceptible

to TRAIL-induced apoptosis. Combination therapy with

TRAIL and 5-FU improved tumor inhibition in vivo in nude

mice bearing subcutaneous tumors. While combination

therapy with TRAIL and 5-FU or mitomycin caused boosted

caspase-3 stimulating, the combination treatment of TRAIL
and calpain inhibitor I led to improved caspase-8 and

caspase-3 stimulation. Further, mitomycin but not 5-FU or

calpain inhibitor I triggered pro-apoptotic protein Bax

expression in TRAIL-resistant DLD1 cells (89). Also, TRAIL

plus 5-FU showed remarkable cytotoxicity against TRAIL-

resistant renal cell carcinoma (RCC) Caki-1 cells, and also
freshly derived RCC cells from patients. Molecular studies

revealed that treatment of Caki-1 cells with 5-FU supported

p53 and Bax, but not Bcl-2 expression. On the other hand,

treatment of Caki-1 cells with TRAIL reduced the expression

of thymidylate synthase (TS) and dihydropyrimidine

dehydrogenase (DPD) modestly and improved the expression

of orotate phosphoribosyl transferase (OPRT) (90). Thereby,
these observations verified the potential utility of combination

treatment with TRAIL and 5-FU for treating TRAIL/5-FU-

resistant cancer cells. Besides, cisplatin presented a synergistic

impact on TRAIL-induced apoptosis in HCC cell lines mainly

mediated by DR4 up-regulating. Respecting that, blocking NF-

kB by specific inhibitor had no significant impact on TRAIL-

induced apoptosis in HCC cells, which could indicate that NF-kB
activities may not contribute to the TRAIL resistance of HCC
cells (91).

Furthermore, cisplatin can induce TRAIL apoptotic pathway

in glioblastoma cells neurospheres by DR5 up-regulation and c-

FLIP downregulation (92), and also in ovarian cancer SKOV-3

and TOV-21G cells through up-regulating Bax and caspase 3

expression and down-regulating Bcl-2 expression (93).
Moreover, for enhancing the efficacy of TRAIL receptor

agonists, the proteasome inhibitor bortezomib is considered

one of the most effective sensitizers. For example, combined

treatment with TRAIL and bortezomib supported robust

synergistic response with heightened activation of caspases-8,

-9, and -3, and reinforced Annexin V-binding cell fractions in
TRAIL-resistant SNU-216 gastric cancer cells. Although

bortezomib improved DR5 expression, DR5 silencing

considerably recovered cell viability. Moreover, bortezomib

reduced phosphorylation of ERK1/2, but improved JNK

phosphorylation, and also bortezomib-mediated DR5

upregulation was blocked only by suppressing activation of

ERK1/2 but not JNK in gastric cancer cells (94). Moreover,
bortezomib could restore TRAIL-mediated apoptosis in MM cell

lines, RPMI 8226 and U266, by reducing c-FLIP protein

expression concomitantly enhancing DR4 and DR5 expression

(95) in HPV-positive head and neck cancer (HNC) cells by

ameliorating activation of caspase-8, -9, and -3, improving

membrane expression of DR5, cytochrome c release, and
inducing G2/M arrest (96), and also in HCC cells by inhibition

of the PI3K/Akt pathway (97). Finally, it has been suggested that

gemcitabine plus TRAIL could promote the responsiveness of

pancreatic cancer cells to treatment with TRAIL (98).

A list of synthetic agents which recently have been applied to

sensitize tumor cells to TRAIL-induced apoptosis has been cited

in Table 1.

Natural Products
In addition to the synthetic agents, natural products have shown

remarkable competence to improve apoptosis in resistant cell

lines and also in tumor-bearing mice. In this regard, upregulation

of DRs in association with affecting pro-and anti-apoptotic

proteins in tumors is responsible for sensitizing TRAIL-
resistant cells to TRAIL following combination treatment with

natural products (121). For instance, toosendanin (TSN) as a

triterpenoid derivative could render human primary NSCLC

cells or NSCLC cell lines susceptible to TRAIL-induce

apoptosis in vitro and in vivo largely through DR5 up-

regulating and activation of CCAAT/enhancer-binding
proteins (C/EBP) involved in endoplasmic reticulum (ER)

stress response (122). Also, another natural product

Taraxacum officinale F.H. Wigg (TO) currently has been

suggested as a novel TRAIL sensitizer, as shown in human

liver cell line Huh7 by suppressing MAP kinase kinase 7
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TABLE 1 | Combination therapy with synthetic agents and TRAIL for improving TRAIL-mediated apoptosis in TRAIL-resistance cells.

Agent Cancer Results Ref

Entinostat Colon

cancer

Up-regulation of DR4/5 in DLD-1 and WiDr cells (in vitro) (84)

Entinostat Melanoma Up-regulation of DR4/5 and activation of caspase 8 (in vitro) (85)

SAHA MM Induction of caspase-8 and -9 activation in OPM-2, RPMI 8226, NCI-H929, U266, and JJN-3 cells (in vitro) (86)

SAHA Sarcoma Attenuating mitochondrial membrane potential and caspase-3, -6, and -7 activation, and PARP cleavage in MES-SA and ESS-1

cells (in vitro)

(87)

VPA ATC Activation of JNK and the phosphorylation of FADD and c-Jun, and induction of caspase-3, and -8 activation in ARO cells (in

vitro)

(88)

VPA HNC HDAC4 degradation (in vitro) (88)

5-FU Colon

cancer

Induction of caspase 3 activation and Bax expression in DLD-1 cells (in vitro) (89)

5-FU RCC Up-regulating p53 and Bax expression in Caki-1 cells (in vitro) (90)

Cis-platin HCC Up-regulating DR4 (in vitro) (91)

Cis-platin Glioblastoma Up-regulation of DR5 and down-regulation of c-FLIP in glioblastoma-derived stem cells (in vitro) (92)

Cis-platin Ovarian

cancers

Up-regulating caspase-8 and DR5 expression in SKOV-3 and TOV-21G cells (in vitro) (93)

Bortezomib Gastric

cancer

ERK1/2 activation resulted in DR5 up-regulation, and activation of caspases-8, -9, and -3 in SNU-216 cells (in vitro) (94)

Bortezomib MM Up-regulating DR5 (in vitro) (99)

Doxorubicin Breast

cancer

DR5 activating (in vitro and in vivo)

(100)

Gemcitabine Pancreatic

cancer

Elevating the expression of 4E-BP1 (in vitro) (98)

Paxiline Glioma Down-regulating c-FLIP, an survivin expression, and up-regulating CHOP mediated DR5 expression in U251MG cells (in vitro) (82)

SHetA2 Lung cancer Down-regulating c-FLIP, and up-regulating DR5 (in vitro)

(101)

Actinomycin

D

Prostate

cancer

Down‐regulation of XIAP, c-FLIP, Bcl-2, and up-regulation of DR4/5 in CL‐1, DU‐145, and PC‐3 cells (in vitro)

(102)

Actinomycin

D

Pancreatic

cancer

Down-regulating c-FLIP in HPAF, Panc1, Miapaca2, Bxpc3, Panc89, SW979, and Aspc1 cells (in vitro)

(103)

Actinomycin

D

NSCLC Increased expression of DR5 and caspase activation (in vitro and in vivo)

(104)

PPARy

ligands

Prostate

cancer

Down-regulating c-FLIP in prostate cancer, PPC-1 and LNCaP, ovarian cancer, OVCAR-3, and SK-OV-3 cells (in vitro)

(105)

Ovarian

cancer

YM155 Cervical

cancer

Downregulation of cFLIP and surviving in HeLa cells (in vitro)

(106)

YM155 Breast

cancer

The p38 MAPK- and CHOP-mediated DR5 up-regulation (in vitro and in vivo)

(107)

YM155 RCC Down-regulation of Mcl-1 and NF-kB-mediated down-regulation of c-FLIP expression in Caki cells (in vitro)

(108)

Triciribine Prostate

cancer

Dow-regulating Akt pathway in PC-3 and LNCaP cells (in vitro)

(109)

PBOX Leukemia Up-regulation of DR5, reduction of cellular mitochondrial potential, activation of the caspase cascade, and down-regulation of

PI3K/Akt, c-FLIP, Mcl-1, and IAP survival pathways (in vitro) (110)

SNX-2112 Cervical

cancers

Inducing ROS-mediated JNK-p53-autophagy-DR5 pathway, and down-regulating Bcl-2, Bcl-xL, and c-FLIP in HeLa cells (in vitro)

(111)

Progesterone Ovarian

cancers

Down-regulating c-FLIP in OVCA 420, OVCA 429, and OVCA 433 cells (in vitro)

(112)

ABT-737 Various

cancers

Up-regulation of DR5 (in vitro)

(113)

ZFL RCC Downregulation of Bcl-2 and Cbl-mediated c-FLIP by ROS-mediated p53 expression in Caki cells (in vitro)

(114)

Bortezomib MM Down-regulating c-FLIP (in vitro)

(115)RCC

c-Met

inhibitor

Liposarcoma Up-regulation of DR5 in patient-derived cells (PDCs) (in vitro)

(116)

Vemurafenib ATC Dow-regulating Akt pathway in C643, CAL62, HTh7 cells (in vitro)

(117)

Birinapant Breast

cancers

Down-regulating c-FLIP in MDA-MB-453 cell (in vitro)

(118)

(Continued)
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(MKK7)‐TOR signaling pathway regulator‐like (TIPRL)

interaction and subsequent activation of MKK7‐JNK

phosphorylation (123). Further, TRAIL plus cantharidin, a
type of terpenoid mainly extracted from the blister beetles

(Mylabris genus), resulted in significant apoptosis in TRAIL−

resistant prostate cancer DU145 cells. Importantly, observations

signified that downregulation of c−FLIP accompanying with

upregulation of DR5, supported TRAIL−induced apoptosis by

initiating the autophagy flux (124).

Among a myriad of natural products, flavonoids have been
proposed as one of the most powerful ingredients which can

facilitate TRAIL-mediated apoptosis in resistant tumors. In this

regard, some evidence has shown that flavonoid apigenin and

genistein evidently increased TRAIL-mediated cytotoxicity

against cervical cancer HeLa cells, while kaempferol and

quercetin elicited no desired effects (125). Also, flavonoid
resveratrol isolated from Artocarpus communis exerted

caspase-dependent apoptosis, improved caspase 3/7 activity,

and reinforced the protein levels of p53 and DR5 in gastric

cancer cell lines, AGS, following combination therapy with

TRAIL (126). Besides, flavonoid apigenin could connect and

block adenine nucleotide translocase-2 (ANT2) activation, which

led to inducing TRAIL-mediated apoptosis by DR5 up-
regulating in TRAIL-resistance tumor cells, and thereby

implying that ANT2 inhibitors may contribute to TRAIL

therapy due to the ANT2 negative effects on DR5 expression

on tumor cells (127). Moreover, flavonoid kaempferol elevated

cytotoxic effects of the TRAIL on human ovarian cancer cells

OVCAR-3 and SKOV-3 cells mainly mediated by up-regulation
of DR4/5, CHOP, JNK, ERK1/2, p38, and down-regulating Bcl-2,

Bcl-Xl, survivin, XIAP, and also c-FLIP. Silencing CHOP and

DR5 evidenced the contribution of CHOP in DR5 up-regulation

and also the involvement of DR5 in kaempferol-enhanced

TRAIL-induced apoptosis (3). Similarly, DR5 up-regulation in

a transcription factor CHOP-dependent manner was shown

during tumor cell treatment with TRAIL and capsaicin (128),
and also silibinin (129) in glioma cells. Also, our studies with

leukemia MOLT-4 cells demonstrated that kaempferol could act

as a sensitizer leading to sustained TRAIL-mediated apoptosis in

MOLT-4 cells by up-regulating DR4/5 expression, reducing the

expression of the NF‐kB subunit, and also down-regulating c-

FLIP, X-IAP, and cIAP1 expression (130). Also, in another study,
we showed that similar mechanisms are involved in stimulating

TRAIL-mediated apoptosis in leukemia KG-1 cells following

combination treatment with TRAIL and flavonoid quercetin

(17). Similarly, apigenin, kaempferid, galangin, and caffeic acid
phenylethyl ester (CAPE) in combination with TRAIL exerted

remarkable cytotoxicity against prostate cancer cell lines, LNCaP

(131). Besides, it has been shown that modifying WNT/b‐catenin
and JAK‐STAT pathways, and also inhibiting the NF-kB
pathway, may be involved in TRAIL-induced apoptosis in

NSCLC xenografts following treatment with apigenin plus

TRAIL (5). On the other hand, gingerol as a phenol
phytochemical ingredient found in fresh ginger could reduce

survivin, c-FLIP, Bcl-2, and XIAP expression, and restore pro-

apoptotic protein Bax and tBid by producing reactive oxygen

species (ROS), enabling TRAIL-mediated apoptosis in TRAIL-

resistant glioblastoma cells (132).

A list of the natural products which recently have been
applied to sensitize tumor cells to TRAIL-induced apoptosis

has been cited in Table 2.

TRAIL DELIVERY USING NPs

Nanoparticles (NPs) have been applied as an operational delivery

carrier for s diverse types of anticancer drugs. The molecular self-

assembly of active proteins has attracted huge attention for

nanomaterials advancement. Protein-based NPs established by
TRAIL and diphenylalanine (FF) (TRAIL-FF) by molecular self-

assembly could be constructed by adjusting the concentration

and the two ingredients ratio. Established NPs could induce

apoptosis signaling pathways in human breast cancer MCF-7

cells and lung H460 cells due to a particular interface between

TRAIL and death receptors, suggesting that the application of
protein-based functional biomaterials is a rational strategy for

treating human cancers (169). Further, magnetic ferric oxide NP-

conjugated TRAIL (NP-TRAIL) could stimulate apoptosis,

reduce tumor volume, and improve the overall survival rate in

U251 cell-derived xenografts. Moreover, combined treatment

with NP-TRAIL and g-radiation or bortezomib could sensitize

TRAIL-resistant glioblastoma cancer stem cells (CSCs) to NP-
TRAIL. Thereby, these findings offer proof of the idea that

conjugation of TRAIL to NP can improve its apoptotic

functions both in vitro and in vivo (170). Similarly, artificial

lipid NPs coated with TRAIL powerfully ameliorated TRAIL

TABLE 1 | Continued

Agent Cancer Results Ref

ABC294640 NSCLC Up-regulating DR4/5, and inducing caspase-3, -8 expression (in vitro)

(119)

Docetaxel Prostate

cancers

Inducing ER stress in DU145 and PC3 cells (in vitro)

(120)Cabazitaxel

TRAIL, Tumor necrosis factor–related apoptosis-inducing ligand; DR4/5, Death receptor 4/5; PARP, Poly(ADP-ribose) Polymerase; JNK, Jun N-terminal kinase; FADD, Fas -associated

death domain protein; HDAC4, Histone deacetylase 4; c-FLIP, Cellular FLICE (FADD-like IL-1b-converting enzyme)-inhibitory protein; ERK1/2, Extracellular signal–regulated protein kinase

1/2; 4E-BP1, Eukaryotic translation initiation factor 4E-binding protein 1; CHOP, C/EBP homologous protein; XIAP, X-linked inhibitor of apoptosis protein; NF-kB, Nuclear factor kappa B;

Bcl-2, B-cell lymphoma-2; Bcl-xL, B-cell lymphoma-extra large; PI3K/AKT, Phosphatidylinositol 3-kinase; Bax, Bcl-2 associated X; Mcl-1, Myeloid-cell leukemia 1; Cbl, Casitas B-lineage

lymphoma; ROS, Reactive oxygen species; (ER) stress, Endoplasmic reticulum; MM, Multiple myeloma; HNC, Head and neck cancer; RCC, Renal cell carcinoma; ATC, Anaplastic thyroid

cancer; HCC, Hepatocellular carcinoma; NSCLC, Non-small cell lung cancer; SAHA, Suberoylanilide hydroxamic acid; VPA, Valporate; 5-FU, Fluorouracil; YM155, Sepantronium bromide;

PBOX, Pyrrolo-1,5-benzoxazepine.
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TABLE 2 | Combination therapy with natural products and TRAIL for improving TRAIL-mediated apoptosis in TRAIL-resistance cells.

Agent Cancer Mechanisms Ref

Piperine Breast cancer Inhibition of survivin and p65 phosphorylation (in vitro and in vivo) (133)

Chalcones Prostate

cancer

Changes of mitochondrial membrane potential (DYm) in LNCaP cells (in vitro) (134,

135)

Chalcones Cervical

cancer

Enhancement of expression of DR5 in HeLa cells (in vitro) (136)

Withanolides Renal

carcinoma

Increasing cFLIP degradation (in vitro and in vivo) (137)

EEP Prostate

cancer

Disruption of DYm in LNCaP cells (in vitro) (138)

Curcumin Prostate

cancer

Inducing cleavage of procaspase-3, procaspase-8, and procaspase-9, truncation of Bid, and release of cytochrome c in

LNCaP cells (in vitro)

(139,

140)

Chrysin Colon cancer Activation of caspase 8 in HCT-116 cells (in vitro) (141)

Chrysin Lung cancer Mcl-1 downregulation by inhibiting STAT3 phosphorylation in A549 and HeLa (in vitro) (142)

Cervical

cancer

Embelin Pancreatic

cancer

Down-regulation of XIAP and c-FLIP in TRAIL-resistant PC-1 cells (in vitro) (143)

Embelin Glioma Activation of caspases 3, 7, 8, 9 and inhibition of c-FLIP (in vitro) (144)

Resveratrol Neuroblastoma Down-regulation of Bcl-2 and survivin in SHEP cells (in vitro) (145)

Resveratrol Prostate

cancer

Down-regulation of Bcl-2, Bcl-xL, and survivin and up-regulation of the expression of Bax, Bak, PUMA, Noxa, and Bim, and

DR4/5 in prostate cancer PC-3 and DU-145 cells

(146)

Resveratrol Melanoma Attenuation of the STAT3 and NF-kB activation, activating JNK and down-regulating c-FLIP and Bcl-xL (in vitro) (147)

Berberine Prostate

cancer

Upregulation of DR5 (in vitro) (148)

Liver cancer

Kaempferol Ovarian cancer Targeting JNK/ERK-CHOP pathway and up-Regulation of Death Receptors 4 and 5 in OVCAR-3 and SKOV-3 cells (in vitro) (3)

Kaempferol Leukemia Upregulation of DR4/5 and down-regulation of c-FLIP, XIAP, c-IAP in MOLT-4 cells (in vitro) (130)

Quercetin Leukemia Upregulation of DR4/5 and inhibition of NF-kB in KG-1 cells (in vitro) (17)

Quercetin Liver cancer Inhibition of NF-kB activation (in vitro and in vivo) (149)

Quercetin Pancreatic

cancer

Down-regulation of c-FLIP (in vitro) (150)

Icariin Colon cancer ROS-ERK-CHOP-mediated upregulation of DR5 and DR4 in HCT-116 cells (in vitro) (151)

Azadirone Colon cancer ROS-ERK-CHOP-mediated up-regulation of DR5 and DR4 signaling and down-regulation of the Bcl-2, Bcl-xL, c-IAP-1, c-

IAP-2, XIAP, survivin, Mcl-1 (in vitro)

(152)

Irigenin Gastric cancer Up-regulation of cleaved caspase-8, -9, and -3 and PARP and down-regulation of c-FLIP, Bcl-2, and survivin (in vitro and in

vivo)

(153)

Galangin Vrious cancer Inducing TRAIL/caspase-3/AMPK signaling pathway (in vitro) (154)

Pterostilbene Breast cancer Downregulation of c-FLIP, Bcl-xL, Bcl-2, survivin, and XIAP, and up-regulation of DR4 and DR5 through ROS-ERK-CHOP in

TNMC cells (in vitro)

(155)

Auriculasin Prostate

cancer

Up-regulation of DR4/5, Bax, PARP, AIF, endonuclease G, and cytochrome c, and down-regulation of phosphorylation of

AKT and mTOR, PI3K in RC-58T/h/SA#4 primary prostate cancer cells (in vitro)

(156)

Kurarinone Gastric cancer Downregulation of Mcl-1 and c-FLIP via inhibiting STAT3 signaling in SGC7901 cells (in vitro) (157)

Delphinidin Prostate

cancer

Inducing DR5 and caspase-mediated HDAC3 cleavage (in vitro) (158)

Luteolin Lung cancers Increasing DR5 expression and Drp1-mediates mitochondrial fission in A549 and H1975 cells (in vitro) (159)

Apigenin Prostate

cancer

Up-regulation of DR5 and binding and inhibiting ANT2 in DU145 cells (in vitro) (127)

Genistein Lung cancer increased LC3-II, p62, activated caspase-3, and activated caspase-8 accumulation in A549 cells (in vitro) (160)

Celastrol Lung cancer Modifying of ROS and DYm and up-regulation of active caspase 3 and 8 (in vitro) (161)

Biochanin-A Prostate

cancer

Inhibition of transcription factor NF-kB(p65) activity, promotion of DR5 expression, and disruption of DYm in LNCaP and

DU145 cells (in vitro)

(162)

Fisetin Prostate

cancer

Upregulation of DR4, caspase 3, 8 and downregulation of NF-kB activation (in vitro) (163)

Liquiritin Gastric cancer ROS generation (in vitro and in vivo) (164)

Codium

extracts

Colon cancer Degradation of c-FLIP (in vitro) (165)

Ampelopsin EBV+ cancers Upregulation of TRAIL/DR5 and activation of p38 signaling (in vitro) (166)

Xanthohumol Neuroblastoma Up-regulation of DR5 (in vitro and in vivo) (167)

Luteolin Pancreatic

cancer

Affecting miR-301-3p/caspase-8 axis in PANC-1 cells (in vitro) (168)

TRAIL, Tumor necrosis factor–related apoptosis-inducing ligand; DR4/5, Death receptor 4/5; STAT3, Signal transducer and activator of transcription 3; JNK, Jun N-terminal kinase; FADD,

FAS-associated death domain protein; c-FLIP, Cellular FLICE (FADD-like IL-1b-converting enzyme)-inhibitory protein; ERK1/2, Extracellular signal–regulated protein kinase 1/2; CHOP, C/

EBP homologous protein; XIAP, X-linked inhibitor of apoptosis protein; NF-kB, Nuclear factor kappa B; Bcl-2, B-cell lymphoma-2; Bcl-xL, B-cell lymphoma-extra large; PI3K)/AKT,

Phosphatidylinositol 3-kinase; Mcl-1, Myeloid-cell leukemia 1; ROS, Reactive oxygen species; ER stress, Endoplasmic reticulum; Bax, Bcl-2 associated X; Bak, Bcl-2 homologous

antagonist/killer; Bid, BH3-interacting domain death agonist; PUMA, P53 upregulated modulator of apoptosis; Noxa, Phorbol-12-myristate-13-acetate-induced protein 1; c-IAP, Cellular

inhibitor of apoptosis; PARPs, Poly (ADP-ribose) polymerases; AMPK, AMP-activated protein kinase; AIF, Apoptosis inducing factor; DRP1, Dynamin-related protein 1; ANT2, Adenine

nucleotide translocator 2; mTOR, Mechanistic target of rapamycin; LC3, Microtubule-associated protein 1A/1B-light chain 3; EEP, Ethanolic extract of propolis.
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cytotoxic activities in chemoresistant hematological cancer cells

and NSCLC, possibly mediated by up-regulating caspase-8 and

caspase-3 activation (171). Besides, TRAIL-coated gold

nanoparticles (TRAIL-AuNPs) robustly induced apoptosis in

NSCLC by inducing mitochondrial fragmentation in tumor

cells along with a marked promotion in mitochondrial
recruitment of dynamin-related protein 1 (Drp1), inducing

mitochondrial deficits, and supporting the autophagy process

(172). On the other hand, TRAIL and curcumin (Cur)-coated

NPs (TRAIL-Cur-NPs) resulted in boosted cellular uptake,

cytotoxicity, and apoptosis-inducing influences on HCT116

colon cancer cells. More importantly, TRAIL-Cur-NPs showed
remarkable anticancer in vivo effects without noticeable toxicity,

which was mostly because of the high tumor targeting and

synergistic impacts of TRAIL and Cur. Analysis indicated that

upregulation of DR4 and DR5 on tumor cells stimulated by Cur

was reliable for anti-tumor effects elicited by constructed NPs,

suggesting that co-delivery of NPs may serve notable merits for
cancer therapy (173). Moreover, Min et al. found that paclitaxel

(PTX)-bound albumin NPs with embedded TRAIL (TRAIL/PTX

HSA-NP) may be an effective option for treating pancreatic

cancer. They showed that TRAIL/PTX HSA-NPs could stimulate

more substantial apoptotic activity than plain PTX HSA-NP in

pancreatic Mia Paca-2 cells in vitro and also in Mia Paca-2 cell-

xenografted mice (174). Likewise, TRAIL/doxorubicin (Dox)
HSA-NPs inhibited tumor growth in colon cancer HCT116

tumor-bearing BALB/c nu/nu mice. It was found that TRAIL/

Dox HSA NPs infiltrated intensely into tumor masses in an

HCT116 spheroid model and localized in the tumor area upon

systemic injection (175). Furthermore, TRAIL-iron oxide NPs

induced ROS-mediated JNK activation, which in turn, could
support DR5 up-regulation, and subsequently promoted

antitumor efficacy of TRAIL in TRAIL-resistant colon cancer

HT-29, intermediately resistant SW-480 and sensitive HCT-116

cells, in vitro. TRAIL-iron oxide NPs also blocked tumor growth

and prolonged the survival rate of xenografts compared with

control and TRAIL monotherapy (32). As well, TRAIL delivery

using polyethyleneimine (PEI)-poly[(1,6-hexanediol)-diacrylate-
b-5-hydroxyamylamine] (PBAE) in TNBC (176), silver NPs

(AgNPs) in glioblastoma (177), TPGS-b-(PCL-ran-PGA)/PEI

NPs in cervical cancer (178), neutrophil membrane (NM)-

based NPs in various cancers (179), and artificial lipid NPs in

colon cancer (180), leukemia (181), sarcoma (182), and also

TNBC (30) has been suggested as authentically and operational
therapeutic approach.

TRAIL DELIVERY USING MSCs

It has been recently hypothesized that human MSCs engineered

to generate and deliver TRAIL can infiltrate to and eliminate

tumor cells in tumor models (Table 3). Accordingly, human
MSCs transduced with TRAIL-induced apoptosis in lung

cancer A549 cells, breast cancer MDAMB231 cells, squamous

cancer H357 cells, and cervical cancer HeLa cells in co-culture

experiments. As well, subcutaneous xenograft tests evidenced

that directly transferred TRAIL-expressing MSCs could

potently delay tumor growth (189). Also, TRAIL-expressing

MSCs migrated to and reduced tumor burden in squamous

H357 ce l l and lung A549 ce l l xenogra f t mode l s .

Correspondingly, engineered MSCs stimulated tumor cell
apoptosis, and concomitantly decreased colony formation of

the squamous and adenocarcinoma lung cancer cells (188).

There is other proof signifying that TRAIL-expressing MSCs

engineered by reconstituted high-density lipoprotein (rHDL)

nanovector is an effective strategy for the treatment of

pulmonary melanoma metastasis-target ing therapy.
Observations have proposed that genetically engineered MSCs

could strongly target B16F10 cells, thus making a substantial

apoptosis-inducing impact on aggressive melanoma in vitro

and in vivo (206). Other reports have proven that interferon

(IFN)-b and TRAIL-expressing adipose tissue-derived MSCs

(AT-MSCs) induced significant apoptosis in human lung
cancer cell line H460 in co-culture experiment, and also

reduced tumor burden in H460-derived cancer animal

models. As well, it has been found that serum deprivation

during cell culture triggered the expression of IFN-b and

TRAIL by engineered AT-MSCs (207).

Combined treatment with TRAIL-expressing human MSCs

and compound C, an AMP-activated protein kinase (AMPK
inhibitor), resulted in remarkable anti-tumor effects on glioma

cells in vitro and in in vivo models. Indeed, TRAIL-expressing

MSCs plus compound C increased apoptosis by improving the

expression of Bax accompanied by attenuating anti-apoptotic

proteins c-FLIP, XIAP, and Bcl-2 in glioma; on the other hand,

intervention promoted caspase-3 cleavage and apoptotic cells in
a murine glioma model (208). Similarly, MSCs engineered to

express TRAIL led to the death of classic and primary

neuroblastoma cell lines in vitro. Although these TRAIL-

engineered MSCs infiltrated into tumor tissue in vivo, they did

not significantly modify neuroblastoma progress in murine

models, indicating that MSCs could be applied to deliver

therapeutic agents in neuroblastoma patients, whereas more
effective biopharmaceuticals should be utilized instead of

TRAIL (184). In another study, in addition to the preservation

of their multipotent characteristic, TRAIL expressing MSCs co-

cultured with CD133-positive CSCs facilitated a robust reduction

in CSCs proliferation and triggered cancer cells apoptosis in vitro

mainly inspired by stimulating the apoptosis intrinsic pathway.
Molecular analysis demonstrated that adjusting the expression of

NF-kB1, BAG cochaperone 3 (BAG3), Mcl-1, growth arrest, and

DNA damage-inducible alpha (GADD45A), and harakiri (HRK)

was responsible for achieved anti-tumor effects exerted by MSCs-

TRAIL in CSCs (185). Similarly, TRAIL-expressing AT-MSCs

was found to alleviate colon cancer by stimulating the apoptosis

of CD133-positive CSCs and declining the M2 macrophage
frequency (209). Importantly, other studies have shown that

exosomes (Exos)-derived from TRAIL-expressing MSCs reduced

tumor weight in tumor-bearing mice, indicating that MSC-

derived Exo-TRAIL has a prospective ability for cancer

therapy (210).
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TRAIL-R AGONISTIC MONOCLONAL
ANTIBODY

Regardless of TRAIL interaction, agonistic antibodies targeting

TRAIL-receptors can specifically stimulate apoptosis in tumor
cells (211). For instance, a human agonistic TRAIL-R1 mAb,

HGS-ETR1, established specific communication with the TRAIL-

R1 receptor (DR4). HGS-ETR1 could decrease the viability of

various types of tumor cells in vitro, and simulated activation of

caspase-8, -9, -3, Bid, and cleavage of PARP, indicating that

stimulation of DR4 alone is adequate to trigger both extrinsic
and intrinsic apoptotic pathways. As well, combined treatment

with HGS-ETR1 and chemotherapeutic agents, topotecan, 5-FU,

and irinotecan caused restored anti-tumor function against colon

cancer xenograft models (212). Moreover, a novel anti-human

DR5 monoclonal antibody, TRA-8, could trigger apoptosis in

TABLE 3 | MSCs-based delivery of TRAIL in human tumor cells.

TRAIL form Cancer Main result Ref

Soluble (s) Glioblastoma Paclitaxel priming the of MSCs-TRAIL promoted antitumor functions of their secretome in CFPAC-1 and U87-MG cells (in vitro)

(183)Pancreatic

cancer

Soluble Neuroblastoma MSCs-TRAIL-induced apoptosis in neuroblastoma cells (in vitro and in vivo)

(184)

Recombinant NSCLC MSCs-TRAIL resulted in significant tumor cell inhibition in NSCLC-derived cancer stem cells (in vitro)

(185)

Recombinant Breast MSCs-TRAIL-induced cell death in a resistant type of breast cancer cells, MCF-7 (in vitro)

(186)

Soluble

Full Length

(FL)

Prostate

cancer

MSC-sTRAIL showed more prominent anti-tumor effects than MSC-FL-TRAIL when used combined with AKT inhibitors in

LNCaP, C4-2B, and PC3 cells (in vitro) (187)

Recombinant SCC MSCs-TRAIL-induced apoptosis in H357 and A549 cells (in vitro)

(188)Lung cancer

Soluble Lung cancer MSCs-TRAIL systemic injection into mice models resulted in a significant reduction in metastatic tumor burden with frequent

eradication of metastases (189)SCC

Breast cancer

Cervical

cancer

Soluble Pancreatic

cancer

MSCs-TRAIL and their secretome stimulated apoptosis in PANC1, HP62, ASPC1, TRM6, and BXPC3 cells (in vitro)

(190)

Full Length Esophageal

cancer

MSCs-TRAIL supported the inhibition of the proliferation and induced apoptosis in Eca-109 cells (in vitro)

(191)

Full Length Breast cancer MSCs-TRAIL systemic injection led to the reduced tumor burden in mice models

(192)

Full Length Multiple

myeloma

MSCs-TRAIL systemic injection resulted in decreased the tumor burden by specific induction of apoptosis in multiple myeloma

cells as showed by caspase-3 activation in mice models (193)

Recombinant Lung cancer MSCs-TRAIL systemic injection supported tumor growth inhibition in A549 xenograft mouse model

(194)

Soluble Liver cancer MSCs-TRAIL secretome led to the apoptosis induction in HepG2 cells (in vitro)

(195)

Recombinant Multiple

myeloma

MSCs-TRAIL in combination with bortezomib significantly stimulated myeloma cell apoptosis by caspase-8 activation (in vitro)

(196)

Soluble Liver cancer MSCs-TRAIL subcutaneous injection inhibited tumor growth and significantly increased survival in mice models mediate by up-

regulating caspase 3 activation (197)

Recombinant NSCLC MSCs-TRAIL administration caused a reduction in tumor size, tumor weight, and circulating tumor cells in the xenograft model

(198)

Recombinant Glioblastoma MSCs-TRAIL-induced apoptosis in C6 cells (in vitro)

(199)

Recombinant Glioma MSCs-TRAIL administration resulted in reduced tumor burden in glioma Fischer 344 rats

(200)

Recombinant Mesothelioma MSCs-TRAIL supported a reduction in malignant pleural mesothelioma tumor growth by an improvement in tumor cell

apoptosis in xenograft models (201)

Soluble Various tumors MSCs-FL-TRAIL showed superiority over MSCs-sTRAIL in terms of inducing anti-tumor effects in lung cancer lines, malignant

pleural mesothelioma lines, colon cancer lines, renal cancer lines, oral squamous cell carcinoma line, and breast

adenocarcinoma line (in vitro)

(202)Full Length

Full Length Glioma MSCs-TRAIL caused potent induction of apoptosis in gliomas cells leading to the reduced tumor burden in xenograft models

(203)

Soluble Glioma MSCs-TRAIL intratumoral injection supported inhibited tumor growth and prolonged the survival of glioma-bearing mice

(204)

Soluble RCC Complete regression of metastatic RCC by multiple infusion of MSCs expressing dodecameric TRAIL and HSV-TK into tumor-

bearing mice (205)

TRAIL, Tumor necrosis factor-related apoptosis-inducing ligand; MSCs, Mesenchymal stem/stromal cells; NSCLC, Non-small cell lung cancer; SCC, Squamous cell carcinoma; RCC,

Renal cell carcinoma; HSV-TK, Herpes simplex virus-thymidine kinase.
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HCC cells both in vitro and in vivo, while it has no cytotoxicity

against normal hepatocytes (213). Also, the combination of

cisplatin with mapatumumab, an agonistic mAb directed against

DR4, or lexatumumab, an agonistic mAb directed against DR5,

synergistically suppressed the cell proliferation and improved

apoptotic death in malignant pleural mesothelioma (MPM) cell
lines (214). Besides, Piao et al. showed that constructed mAbs to

DR4 (TR1- IgMs) using ISAAC technology activated the caspase

cascade and stimulated strong apoptosis in human tumor cell

lines, such as breast cancer and lung adenocarcinoma cells, and

also in the xenograft model (215).

In phase I and also in phase II clinical trials, mapatumumab has
demonstrated a remarkable safety profile and, resulted in complete or

partial clinical responses when injected as monotherapy in patients

suffering from follicular NHL (216). Mapatumumabwas shown to be

well tolerated up to 20 mg/kg daily and its potent therapeutic effects

has been investigated for treatment of NSCLC, multiple myeloma,

NHL, and HCC (216, 217). Currently, a phase II multicenter study
on 38 patients suffering from CRC verified the safety but not

significant efficacy of the mapatumumab therapy (218).

The therapeutic benefits of combination therapies with

mapatumumab were evaluated in several malignancies. Most of

the combinations, including mapatumumab with paclitaxel,

gemcitabine, carboplatin or bortezomib have not caused

desired outcomes (219). Nonetheless, evaluation of the efficacy
and safety of mapatumumab in combination with sorafenib in

101 patients with HCC revealed that intervention led to no

significant beneficial effects on enrolled patients (220).

Among the TRAIL-R2 agonistic antibodies, lexatumumab,

drozitumab, DS-8273a, and LBY-135, have completed the phase

I clinical trials. Further, tigatuzumab and conatumumab entered
the phase II of clinical testing (217). Investigation of the possible

anti-tumor effects of the agonistic antibody (DS-8273a) on 16

patients with advanced cancers evidenced that DS-8273a therapy

resulted in the decrease of myeloid-derived suppressor cells

(MDSC) in 50% of the patients, supporting DS-8273a utility in

combination immunotherapy of cancer (221). However, in

advanced NSCLC patients, tigatuzumab had no positive effect
on the efficacy of carboplatin/paclitaxel (222). Besides, in

metastatic pancreatic adenocarcinoma patients, conatumumab

therapy led to the significant but not remarkable improvement in

the 6-month survival rate as compared to the placebo (223).

CONCLUSION

During the last decades, exploration for innovative cancer

therapeutics has concentrated on the aim of advancing specific,
targeted, and less toxic molecules/drugs for cancer therapy (224).

In this regard, TRAIL as a capable chemotherapeutic ingredient

has attracted considerable attention; however, TRAIL therapy

has faced some limitations in the clinical setting. Although the

exact mechanisms contributing to the escape from TRAIL-

induced apoptosis and progress of resistance to TRAIL in
tumor cells has not yet been found completely, it seems that

down-regulating pro-apoptotic proteins and DR4/5,

concomitant with up-regulating anti-apoptotic proteins along

with activating some signaling axis plays an influential role in

this regard (225, 226). Nonetheless, it is still not elucidated

whether the cellular procedures alone or in combination can

stimulate resistance to TRAIL. As described, pre-clinical reports
have ideated that combination therapy with a natural product or

synthetic agents can make TRAIL-resistant cells susceptible to

TRAIL-induced apoptosis (227, 228). Moreover, TRAIL-targeted

delivery using human MSCs and also NPs has been considered

an effective strategy for overcoming resistance to TRAIL (229,

230). In sum, we suggest that operational therapeutic
modification of TRAIL resistance principally need to focus on

the progression of approach for improving the half-life of

TRAIL, recognition of appropriate biomarkers by pre-selection

of patients that show suitable response to TRAIL/agonist

antibody therapy, advancement of novel synergistic

combinations with TRAIL and blocker of cell stress response

proteins, and finally detection of novel TRAIL sensitizers from
FDA approved drug libraries.
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