
HARTIK: A Real-Time Kernel
for Robotics Applications

Giorgio C. Buttazzo

A.R.T.S. Lab, Scuola Superiore S. Anna
Via Carducci, 40 - 56100 Pisa, Italy

Email: giorgio@sssup 1 .sssup.it

Abstract

This paper presents a hard real-time kernel, called
HARTIK, specifically designed to handle robotics
applications with predictable response time.

The main relevant features of this kernel include: direct
specification of time constraints, such as periods and
deadlines; preemptive scheduling; coexistence of hard,
soft, and non real-time tasks: separation between time
constraints and importance; deadline tolerance: dynamic
guarantee of critical tasks; and graceful degradation in
overload conditions.

The functionality of the kernel is then shown by
presenting a concrete example of a robot system that has
to explore unknown objects by visual and force feadback.
This and other examples of real-time tasks are available in
videotape.

1. Introduction

Advanced robotic systems are going to become more
complex, distributed, and capable of exhibiting intelligent,
adaptive, and highly dynamic behavior. Next generation
robotic system have to operate autonomously in
unstructured environments, and perform critical tasks in
many different conditions.

In order to perform critical operations in an unknown
and dynamic environment, the robot control system must
be equipped with a sophisticated sensory apparatus, and
may have to satisfy different classes of timing constraints
at different times. This precludes the use of static
scheduling policies, commonly adopted in today’s real-
time systems.

Consider for example a robot arm equipped with an
electrical gripper and a set of sensory systems, such as
CCD cameras, proximity transducers and force/torque
sensors. If the robot has to operate in unstructured
environments, sensory information must be processed in
real-time and used for closing servo loops at different
control levels.

Controlling such a complex system requires the
execution of different activities, each characterized by

specific time constraints. Some constraints may be
critical, in the sense that a missed deadline can cause
serius damages to the system. For instance, sensory
acquisition is a typical periodic activity that is performed
at constant sampling rate. Low level se~o loops, sensor-
based control, and trajectory planning are also intrinsically
periodic activities, that must execute under strict time
constraints to guarantee the stability of the system. Other
tasks involving graphics representations, status display, or
monitoring activities, may not be critical, and can be
delayed when a critical task has to complete the execution
within its deadline.

Moreover, tasks can be activated dynamically. For
instance, if a moving obstacle enters in the robot
workspace while the arm is performing a critical action,
the robot trajectory has to be replanned within the time
constraints imposed by the current action to avoid
catastrophic results. If this new activity cannot be
executed in time, the system should not activate it, but
execute instead a recovery action, which for example stops
the robot in a safe location.

Conventional real-time kernels are not suitable for
critical robot applications, since they do not manage time
explicitly. This is because they are usually based on
priority preemptive schedulers, which minimize the
average response time of the system activities, but do not
guarantee the meet the individual timing requirement of
each task in all anticipated operating conditions [8].

In this paper we describe the characteristics of a hard
real-time kernel, called HARTIK, specifically designed to
develop predictable robotics applications. Although a
number of HARTIK characteristics are common with
other hard real-time systems [63 [11][91[4], there are novel
features that allow coexistence of hard, soft, and non real-
time tasks, allow to define different types of time
constraints, specify tolerant deadlines, separate dealines
and importance, offer recovery strategies in overload
conditions, and provide fast and asynchronous
communication channels, called CABS, particularly suited
for exchanging information among periodic control tasks.

201
1052-8725193 $03.00 0 1993 IEEE

Administrator
Proc. of the 14th IEEE Real-Time Systems Symposium (RTSS 1993), Raleigh-Durham, NC, pp. 201-205, Dec. 1993.

2. Characteristics of HARTIK

The HARTIK kernel has been designed with the
following characteristics:

Flexibility in expressing timing constraints. To cope
with the different application requirements, each task
can be declared as hard, soft, or non real-time; hard and
soft tasks can be periodic or sporadic. Deadlines may
have a tolerance value. See [2] for details.

Dynamic preemptive scheduling and guarantee: when
activating a critical task, the system performs a
schedulability analysis to check whether all critical
tasks will meet their timing constraints. If a task cannot
be guaranteed, the system raises an exception to allow
the programmer to take an alternative action.

Separation between time constraints and importance of a
task. Each task has an additional parameter, called
VALUE, which reflects the relative importance of a task
with respect to the other task in the set. The value is
used to reject the least important tasks in overload
conditions to make the task set schedulable. This feature
allows graceful degradation in overload conditions.

Asynchronous communication for periodic task
interactions. A particular non blocking mechanism
(CAB) is used to exchange data among periodic
processes, so that unpredictable delays can be avoided
during task execution.

Interrupt mechanism integrated with the general
scheduling policy of the kernel. Any I/O interrupt is
treated as an instantiation of a new task, which is
guaranteed and scheduled just like any other task.

Time bounded primitives and short context switch time.
This feature allows to develop processes with bounded
execution and predictable response time.

These features cannot be found, all together, in current
real-time systems. For example, the Spring kernel [9] is
highly dynamic and flexible for specifing time constraints,
but it uses non preemptive scheduling and does not
provide special facilities (like CABS) for handling periodic
activities, typical in robotics control applications. On the
other hand, the MARS system [4], is intrinsically
periodic, but it is based on static scheduling and off-line
guarantee, which is not suited to work in dynamic
environments.

2.1. Task scheduling and guarantee

To deal with all possible activities that can occur in a
real-time control application, such as a multisensor
robotics system, HARTIK handles four types of tasks:

HARD tasks. A hard task is a periodic process with a
critical deadline coincident with its period. As a hard
task is activated, a guarantee routine verifies whether all
time critical tasks will meet their deadline. A run time
check on hard deadlines is also performed.

SPORADIC tasks. A sporadic task is an aperiodic
process with irregular arrival times, a maximum
interarrival rate, a critical deadline, and guaranteed
execution time. A missed deadline for a sporadic task is
signalled by the system.

SOFT tasks. A soft task is a process with non
critical time constraints. Soft tasks are scheduled based
on their deadlines, but they are not guaranteed by the
system. Soft tasks are dispatched only when no HARD,
nor SPORADIC processes are ready to execute. A
missed deadline for a soft task is signalled by the kernel.

NRT tasks. They are Non-Real-Time tasks with no
time constraints at all. They are scheduled based on a
static priority assigned by the user. NRT tasks are
dispatched only when no HARD, SPORADIC, nor
SOFT processes are ready to execute.

Time critical processes are scheduled based on their
deadlines, according to the Robust Earliest Deadline
(RED) scheduling policy [2]. The RED algorithm is an
extension of the Earliest Deadline First (EDF) algorithm,
which behaves as EDF in underload conditions, but also
have a good performance in overload conditions. By
separating task importance from time constraints, different
rejecting and recovery strategies can be used during
transient overloads to make the task set schedulable,
minimizing the total loss value.

SPORADIC tasks are handled by using a sporadic
server [101. For a generic set of periodic and sporadic tasks
in which all sporadic processes are handled by a server, the
system guarantees the scheduling feasibility according to
the following rule:

c n G+c,.pu
i=l Ti T,

ov

where Ci the estimated worst case execution time of a
task, Ti is its period, C, and T, are the capacity and the

period of the server, and Uov is the utilization factor due

to the overhead introduced by the timer handling routine.
The guarantee algorithm uses a set of timing

parameters specified by the user, including an estimation
of the worst-case execution time of the task, which can be
computed by a dedicated tool, specifically developed for
the processor used in the application.

202

2.2. Basic primitives

The kernel is implemented as a set of library
functions, which extend the C language by introducing
concurrency and hard real-time characteristics. The
HARTIK environment is generated by the primitive
ini system(quantum, unit), which allows the user to
specifies the period of the interrupts from the real-time
clock, ranging from 50 microseconds to 55 milliseconds.

An HARTIK process has the same structure as a C
function, except that a process cannot have arguments, and
its name has to be declared as PROCESS type. Once
defined, a process can be created by the primitive:

create(pr_id, pr_name, mode, type, dline,

ex time, value); _

where pr id is an arbitrary string of characters; pr name is
the name-used in the process definition; mode spekes the
creation modality by which a process is inserted in the
ready queue; type specifies the timing characteristics of the
task (HARD, SPORADIC, SOFT, NRT); dline is the absolute
time by which the process must complete its execution;
ex time is the estimated time required to the processor to
execute the task without interruptions; and vallte is a
parameter specifying the relative importance of the process
within its class.

For periodic processes, the deadline parameter is
interpreted as a period, whereas for sporadic tasks it
represents the minimum interarrival time between two
consecutive requests. For NRT tasks the execution time is
ignored, and the deadline parameter is considered as a static
priority from 0 to 255, being 0 the maximum priority.

Three types of activation modes are provided: NOW,
SLEEP, and GROUP. Using the NOW modality, the task
is created and immediately inserted in the ready queue. In
SLEEP mode, all task data structures are allocated and
initialized, but the process is maintained in a sleeping
state, until an activation primitive, activate@rocess), is
explicitally invocated by another task. When more tasks
must be activated at the same time, they can be created
with the GROUP mode, and then activated simultaneously
by the primitive start_group().

To terminate an instance of a periodic activity,
HARTIK provides a primitive, called endgeriod, which
inserts the process in a queue of suspended tasks. Since
endgeriod does not modify the program counter and the
process stack, the periodic code must be contained in a
cyclic program structure, such as a while loop.

An aperiodic activity is simply terminated by calling
the primitive endgrocess. The complete set of primitives
with the evaluation of their computation time can be
found in [11.

3. Process communication

Communication among critical tasks must be carefully
considered in real-time systems. In fact, blocking over a
shared resource or waiting for a message to arrive may
introduce an unbounded delay that can cause a task to miss
its deadline. For this reason, synchronous interactions
should be avoided among critical tasks, unless they are
time bounded. HARTIK provides both synchronous and
asynchronous communication primitives to adapt to
different task requirements.

3.1 Ports

The notion of port is widely used in real-time systems,
since it provides the abstraction of “communication
channel” as a data type [73[5]. HARTIK provides three
types of ports: RECEIVE, BROADCAST and STICK.

A RECEIVE port is a port for one to one
communication, where the owner task is the only task
allowed to receive data from it. Sending messages to a
receive port is non blocking, whereas receiving messages
is always synchronous with timeout.

A BROADCAST port provides a one-to-many
communication channel. It has a list of destination ports
to which messages are to be forwarded. When a message is
sent to a broadcast port, it is redirected to all ports
specified in the list.

STICK ports can be seen as shared variables, because
communicating tasks can block only in the critical section
of the procedures send and receive, but never block for an
empty or full buffer. Messages are not consumed in a
stick port, and they are overwritten by a new message.

3.2 Cyclic Asyncronous Buffers (CAB)

HARTIK provides a particular communication
mechanism, call CAB (Cyclic Asynchronous Buffer),
purposely designed for the communication among periodic
activities, such as control loops and sensory acquisition
processes. A similar communication mechanism was
proposed in 131.

A CAB provides a one-to-many communication
channel, and contains at any instant the latest message
inserted in its buffer. A message is not consumed by a
receiving process but is maintained into the buffer until a
new message is overwritten. In this way, a receiving
process will always find a data in the buffer, SO that
unpredictable delays due to synchronization can be
eliminated, making the system more reliable. Unlike a
STICK port, a CAB does not require to copy the message
in the data area of the receiving task, but it returns the
message pointer to all tasks that make an explicit request.

203

Test programs showed that communicating through CABS
is much faster than passing messages through STICK
ports, and CAB primitives are time bounded [l]. CABS
must be declared as cab type, and initialized with the
primitive open_&, having the following syntax:

cab *cab id: -

cab-id = open_cab(name, num, dim, first);

where name is an arbitrary character string, num is the
number of messages that the CAB may contain
simultaneously, dim is the dimension (in bytes) of the
message type for which that CAB is dedicated, and f i r s t
is the pointer to the initial message contained in the CAB.

To insert a message in a CAB, a task must reserve a
buffer from the CAB memory space, then it has to copy
the message in that buffer, and finally put the buffer in the
CAB structure, where it becomes the most recent data.
Reserving and putting a CAB buffer is performed by two
system calls, according to the following syntax:

buf_pointer = reserve(cab id); -

<copy message in *bufgointer>

put_mes(bufgointer, cab-id);

Similarly, to get a data from a CAB, a receiving process
has to read the pointer to the most recent message in the
CAB, use the data, and release the pointer to the CAB.
This is done according to the following scheme:

mesgointer = get_mes(cab_id);

<use message>

unget(mes_pointer, cab id); -

Notice that more tasks can access the same CAB
simultaneously. If a task reserves a CAB for writing and
the buffer is being used by another task, the CAB creates a
new buffer, which will become the most recent one in that
CAB. CABS are particularly suited for implementing
sensor-based servo loops, in which a data acquisition
process puts the sensory data in the CAB and one or more
control tasks use the most recent data for monitoring
activities or closing servo loops.

4. Other features and tools

The current version of HARTIK runs on a Intel 80486
microprocessor at 33 MHz, with 0.84 microseconds
resolution hardware clock.

The interrupt mechanism is integrated in the general
scheduling algorithm of the system, so that any I/O
interrupt is treated as an instantiation of a new task which
is subject to the guarantee algorithm and scheduled just
like any other task.

To assist the programmer in estimating the worst case
execution time of tasks, a specific tool (MET) has been
developed for this purpose. It uses a table-driven model of
the processor, where assembly instructions are translated
into execution times depending on their operating code,
operands and addressing mode.

Another tool, called Real-Time Tracer (RTT), has been
developed to monitor the system evolution while an
application is running. If active, the RTI records in main
memory all context switches performed by the kernel, and,
at system termination, it saves this information in a file.
This file can then be interpreted by another tool, which
produces a graphics representation of the system evolution
in a desired time scale.

5. A robot control example

Consider a robot system that has to explore unknown
objects by integrating visual and tactile information. To
perform this task the robot has to exert desired forces on
the object surface, and follow its contour by means of
visual feadback. The software control architecture can be
organized as two servo loops: the inner loop dedicated to
image acquisition, force reading, and robot control, and the
outer loop performing scene analysis and surface
reconstruction. The task set consists of four processes.

A sensory acquisition process periodically reads the
force sensor and puts the data in a CAB named “force”.
This process is critical since a missed deadline could
cause an unstable behavior of the robot. Hence, it is
created as a HARD task with a period of 20 ms.

A visual process periodically reads the memory filled by
the frame grabber and computes the next exploring
direction. Data are put in a CAB named “angle”. This is
also a HARD task with a period of 100 ms. A missed
deadline could cause the robot to follow a wrong
direction on the object surface.

A robot control process, based on the force data and on
the exploring direction suggested by the vision system,
computes the cartesian set points to send to the position
controller. The control process is a periodic HARD task
with a period of 28 ms. Missing a deadline for this task
could cause the robot to react too late and to exert too
large forces on the explored surface, that could break the
object or the robot itself.

A representation task reconstructs the object surface
based on the force/torque data and the exploring
direction. Since this is a graphics activity which does
not affect the robot motion, the representation process
is created as a SOFT task with a period of 80 ms.

Here is the body of the main process, and of the visual
process. HARTIK primitives are written in bold.

204

/*__ _____--___---__----__--___--____-*/
#include "hartik.h"

#include "param.h"

main0 (

float ini_vect[31 = (O.O,O.O,O.O);

float ini alfa = 0.0; _

cab ft data, angle;
process force, vision;
process control, display;

ini_system(l,MILLI);

ft_data = open-cab ("force",

SIZE1,2,ini_vect);

angle = open_cab("angle",

SIZEZ,Z,cini alfa); _

create("sensor",force, GROUP, HARD,

20, METl, VALUEl);

create("camera",vision,GROUP, HARD,

lOO,MET2, VALUE2);

create ("robot",control,GROUP, HARD,

28, MET3, VALUE3);

create ("edge", display,GROUP, SOFT,

80, MET4, VALUE4);

start_group();

while (sys_clock() < LIFE-TIME);

end_system();

1
,*--_----_----___---_---_-_---__---__*,

PROCESS vision0 (

float image[2561 [2561;

float *alfa;

while (1) {
get_frametimage);

alfa = reservecangle);

*alfa = compute_angle(image);

put_rnes(alfa,angle);

end_period();

1
)
,*--___---__----_----_-----_---__----*,

6. Conclusions and work in progress

This paper presented a hard real-time kernel (HARTIK)
specifically designed to provide facilities for programming
robot tasks with explicit time constraints and predictable
execution. For these characteristics, HARTIK is currently
used as a platform for programming predictable real-time
tasks in robotics applications, where control tasks and

sensor acquisition processes have to be performed at
different rates.

At the moment, all resources needed by critical tasks
are considered available, so that resource constraints will
not influence task scheduling. However, an integrated
scheduling algorithm taking in account both time and
resource constraints is under investigation.

Acknowledgements

The author wish to thank Jack Stankovic for his
helpful discussions and suggestions for improving the
paper. This work has been partially supported by ESPRIT
III TRACS Project ##6373, and by Italian MURST 40%.

References

Ul

VI

131

r41

WI

@I

[91

UOI

Ull

205 205

Buttazzo, G.C. et al: “HARTIK: A Hard Real-Time
Kernel for Personal Computer”, TR - ARTS Lab
92-01, Scuola Superiore S. Anna, Pisa, 1992.

Buttazzo, G.C. and J.A. Stankovic: “RED: Robust
Earliest Deadline Scheduling”, Proc. of 3rd Int.
Work. on Responsive Comp. Sys., Austin, 1993.

Clark. D.: “HIC: An Operating System for
Hierarchies of Servo Loops”, Proc. of IEEE Int.
Conf. on Rob. and Autom., pp. 1004-1009,1989.

Damm, A. et al: “The Real-Time Operating System
of MARS”, ACM Operating System Review, Vol.
23, No. 3, pp. 141-157, July 1989.

Lee, I. and R. King: “Timix: A Distributed Real-
Time Kernel for Multi-Sensor Robots”, Proc. of
Int. Conf. on Robotics and Automation, 1988.

Levi, S., et al.: “The MARUTI Hard Real-Time
Operating System”. ACM Operating System
Review, Vol. 23, No. 3, pp. 90-105, July 1989.

Shin, K.G., and M.E. Epstein: “Intertask
Communications in an Integrated Multirobot
System”, IEEE Jou. of Robotics and Automation,
Vol. RA-3, No. 2, pp. 90-100, April 1987.

Stankovic, J. A.: “A Serious Problem for Next-
Generation Systems”, IEEE Computer, Oct. 1988.

Stankovic, J. A. and K. Ramamritham: “The Spring
Kernel: A New Paradigm for Real-Time Systems”,
IEEE Software, 8 (3). pp. 62-72, May 1991.

Sprunt, B., L. Sha, and J. P. Lehoczky: “Aperiodic
Task Scheduling for Hard Real-Time Systems”, The
Jou. of Real-Time Systems, Vol. 1, No. 1, 1989.

Tokuda, H. and C. W. Mercer: “ARTS: A
Distributed Real-Time Kernel”. ACM Operating
System Review, 23 (3), pp. 29-52, July 1989.

