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Abstract 

This paper presents a hard real-time kernel, called 
HARTIK, specifically designed to handle robotics 
applications with predictable response time. 

The main relevant features of this kernel include: direct 
specification of time constraints, such as periods and 
deadlines; preemptive scheduling; coexistence of hard, 
soft, and non real-time tasks: separation between time 
constraints and importance; deadline tolerance: dynamic 
guarantee of critical tasks; and graceful degradation in 
overload conditions. 

The functionality of the kernel is then shown by 
presenting a concrete example of a robot system that has 
to explore unknown objects by visual and force feadback. 
This and other examples of real-time tasks are available in 
videotape. 

1. Introduction 

Advanced robotic systems are going to become more 
complex, distributed, and capable of exhibiting intelligent, 
adaptive, and highly dynamic behavior. Next generation 
robotic system have to operate autonomously in 
unstructured environments, and perform critical tasks in 
many different conditions. 

In order to perform critical operations in an unknown 
and dynamic environment, the robot control system must 
be equipped with a sophisticated sensory apparatus, and 
may have to satisfy different classes of timing constraints 
at different times. This precludes the use of static 
scheduling policies, commonly adopted in today’s real- 
time systems. 

Consider for example a robot arm equipped with an 
electrical gripper and a set of sensory systems, such as 
CCD cameras, proximity transducers and force/torque 
sensors. If the robot has to operate in unstructured 
environments, sensory information must be processed in 
real-time and used for closing servo loops at different 
control levels. 

Controlling such a complex system requires the 
execution of different activities, each characterized by 

specific time constraints. Some constraints may be 
critical, in the sense that a missed deadline can cause 
serius damages to the system. For instance, sensory 
acquisition is a typical periodic activity that is performed 
at constant sampling rate. Low level se~o loops, sensor- 
based control, and trajectory planning are also intrinsically 
periodic activities, that must execute under strict time 
constraints to guarantee the stability of the system. Other 
tasks involving graphics representations, status display, or 
monitoring activities, may not be critical, and can be 
delayed when a critical task has to complete the execution 
within its deadline. 

Moreover, tasks can be activated dynamically. For 
instance, if a moving obstacle enters in the robot 
workspace while the arm is performing a critical action, 
the robot trajectory has to be replanned within the time 
constraints imposed by the current action to avoid 
catastrophic results. If this new activity cannot be 
executed in time, the system should not activate it, but 
execute instead a recovery action, which for example stops 
the robot in a safe location. 

Conventional real-time kernels are not suitable for 
critical robot applications, since they do not manage time 
explicitly. This is because they are usually based on 
priority preemptive schedulers, which minimize the 
average response time of the system activities, but do not 
guarantee the meet the individual timing requirement of 
each task in all anticipated operating conditions [8]. 

In this paper we describe the characteristics of a hard 
real-time kernel, called HARTIK, specifically designed to 
develop predictable robotics applications. Although a 
number of HARTIK characteristics are common with 
other hard real-time systems [63 [ 11][91[4], there are novel 
features that allow coexistence of hard, soft, and non real- 
time tasks, allow to define different types of time 
constraints, specify tolerant deadlines, separate dealines 
and importance, offer recovery strategies in overload 
conditions, and provide fast and asynchronous 
communication channels, called CABS, particularly suited 
for exchanging information among periodic control tasks. 
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2. Characteristics of HARTIK 

The HARTIK kernel has been designed with the 
following characteristics: 

Flexibility in expressing timing constraints. To cope 
with the different application requirements, each task 
can be declared as hard, soft, or non real-time; hard and 
soft tasks can be periodic or sporadic. Deadlines may 
have a tolerance value. See [2] for details. 

Dynamic preemptive scheduling and guarantee: when 
activating a critical task, the system performs a 
schedulability analysis to check whether all critical 
tasks will meet their timing constraints. If a task cannot 
be guaranteed, the system raises an exception to allow 
the programmer to take an alternative action. 

Separation between time constraints and importance of a 
task. Each task has an additional parameter, called 
VALUE, which reflects the relative importance of a task 
with respect to the other task in the set. The value is 
used to reject the least important tasks in overload 
conditions to make the task set schedulable. This feature 
allows graceful degradation in overload conditions. 

Asynchronous communication for periodic task 
interactions. A particular non blocking mechanism 
(CAB) is used to exchange data among periodic 
processes, so that unpredictable delays can be avoided 
during task execution. 

Interrupt mechanism integrated with the general 
scheduling policy of the kernel. Any I/O interrupt is 
treated as an instantiation of a new task, which is 
guaranteed and scheduled just like any other task. 

Time bounded primitives and short context switch time. 
This feature allows to develop processes with bounded 
execution and predictable response time. 

These features cannot be found, all together, in current 
real-time systems. For example, the Spring kernel [9] is 
highly dynamic and flexible for specifing time constraints, 
but it uses non preemptive scheduling and does not 
provide special facilities (like CABS) for handling periodic 
activities, typical in robotics control applications. On the 
other hand, the MARS system [4], is intrinsically 
periodic, but it is based on static scheduling and off-line 
guarantee, which is not suited to work in dynamic 
environments. 

2.1. Task scheduling and guarantee 

To deal with all possible activities that can occur in a 
real-time control application, such as a multisensor 
robotics system, HARTIK handles four types of tasks: 

HARD tasks. A hard task is a periodic process with a 
critical deadline coincident with its period. As a hard 
task is activated, a guarantee routine verifies whether all 
time critical tasks will meet their deadline. A run time 
check on hard deadlines is also performed. 

SPORADIC tasks. A sporadic task is an aperiodic 
process with irregular arrival times, a maximum 
interarrival rate, a critical deadline, and guaranteed 
execution time. A missed deadline for a sporadic task is 
signalled by the system. 

SOFT tasks. A soft task is a process with non 
critical time constraints. Soft tasks are scheduled based 
on their deadlines, but they are not guaranteed by the 
system. Soft tasks are dispatched only when no HARD, 
nor SPORADIC processes are ready to execute. A 
missed deadline for a soft task is signalled by the kernel. 

NRT tasks. They are Non-Real-Time tasks with no 
time constraints at all. They are scheduled based on a 
static priority assigned by the user. NRT tasks are 
dispatched only when no HARD, SPORADIC, nor 
SOFT processes are ready to execute. 

Time critical processes are scheduled based on their 
deadlines, according to the Robust Earliest Deadline 
(RED) scheduling policy [2]. The RED algorithm is an 
extension of the Earliest Deadline First (EDF) algorithm, 
which behaves as EDF in underload conditions, but also 
have a good performance in overload conditions. By 
separating task importance from time constraints, different 
rejecting and recovery strategies can be used during 
transient overloads to make the task set schedulable, 
minimizing the total loss value. 

SPORADIC tasks are handled by using a sporadic 
server [ 101. For a generic set of periodic and sporadic tasks 
in which all sporadic processes are handled by a server, the 
system guarantees the scheduling feasibility according to 
the following rule: 

c n G+c,.pu 
i=l Ti T, 

ov 

where Ci the estimated worst case execution time of a 
task, Ti is its period, C, and T, are the capacity and the 

period of the server, and Uov is the utilization factor due 

to the overhead introduced by the timer handling routine. 
The guarantee algorithm uses a set of timing 

parameters specified by the user, including an estimation 
of the worst-case execution time of the task, which can be 
computed by a dedicated tool, specifically developed for 
the processor used in the application. 
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2.2. Basic primitives 

The kernel is implemented as a set of library 
functions, which extend the C language by introducing 
concurrency and hard real-time characteristics. The 
HARTIK environment is generated by the primitive 
ini system(quantum, unit), which allows the user to 
specifies the period of the interrupts from the real-time 
clock, ranging from 50 microseconds to 55 milliseconds. 

An HARTIK process has the same structure as a C 
function, except that a process cannot have arguments, and 
its name has to be declared as PROCESS type. Once 
defined, a process can be created by the primitive: 

create(pr_id, pr_name, mode, type, dline, 

ex time, value); _ 

where pr id is an arbitrary string of characters; pr name is 
the name-used in the process definition; mode spekes the 
creation modality by which a process is inserted in the 
ready queue; type specifies the timing characteristics of the 
task (HARD, SPORADIC, SOFT, NRT); dline is the absolute 
time by which the process must complete its execution; 
ex time is the estimated time required to the processor to 
execute the task without interruptions; and vallte is a 
parameter specifying the relative importance of the process 
within its class. 

For periodic processes, the deadline parameter is 
interpreted as a period, whereas for sporadic tasks it 
represents the minimum interarrival time between two 
consecutive requests. For NRT tasks the execution time is 
ignored, and the deadline parameter is considered as a static 
priority from 0 to 255, being 0 the maximum priority. 

Three types of activation modes are provided: NOW, 
SLEEP, and GROUP. Using the NOW modality, the task 
is created and immediately inserted in the ready queue. In 
SLEEP mode, all task data structures are allocated and 
initialized, but the process is maintained in a sleeping 
state, until an activation primitive, activate@rocess), is 
explicitally invocated by another task. When more tasks 
must be activated at the same time, they can be created 
with the GROUP mode, and then activated simultaneously 
by the primitive start_group(). 

To terminate an instance of a periodic activity, 
HARTIK provides a primitive, called endgeriod, which 
inserts the process in a queue of suspended tasks. Since 
endgeriod does not modify the program counter and the 
process stack, the periodic code must be contained in a 
cyclic program structure, such as a while loop. 

An aperiodic activity is simply terminated by calling 
the primitive endgrocess. The complete set of primitives 
with the evaluation of their computation time can be 
found in [ 11. 

3. Process communication 

Communication among critical tasks must be carefully 
considered in real-time systems. In fact, blocking over a 
shared resource or waiting for a message to arrive may 
introduce an unbounded delay that can cause a task to miss 
its deadline. For this reason, synchronous interactions 
should be avoided among critical tasks, unless they are 
time bounded. HARTIK provides both synchronous and 
asynchronous communication primitives to adapt to 
different task requirements. 

3.1 Ports 

The notion of port is widely used in real-time systems, 
since it provides the abstraction of “communication 
channel” as a data type [73[5]. HARTIK provides three 
types of ports: RECEIVE, BROADCAST and STICK. 

A RECEIVE port is a port for one to one 
communication, where the owner task is the only task 
allowed to receive data from it. Sending messages to a 
receive port is non blocking, whereas receiving messages 
is always synchronous with timeout. 

A BROADCAST port provides a one-to-many 
communication channel. It has a list of destination ports 
to which messages are to be forwarded. When a message is 
sent to a broadcast port, it is redirected to all ports 
specified in the list. 

STICK ports can be seen as shared variables, because 
communicating tasks can block only in the critical section 
of the procedures send and receive, but never block for an 
empty or full buffer. Messages are not consumed in a 
stick port, and they are overwritten by a new message. 

3.2 Cyclic Asyncronous Buffers (CAB) 

HARTIK provides a particular communication 
mechanism, call CAB (Cyclic Asynchronous Buffer), 
purposely designed for the communication among periodic 
activities, such as control loops and sensory acquisition 
processes. A similar communication mechanism was 
proposed in 131. 

A CAB provides a one-to-many communication 
channel, and contains at any instant the latest message 
inserted in its buffer. A message is not consumed by a 
receiving process but is maintained into the buffer until a 
new message is overwritten. In this way, a receiving 
process will always find a data in the buffer, SO that 
unpredictable delays due to synchronization can be 
eliminated, making the system more reliable. Unlike a 
STICK port, a CAB does not require to copy the message 
in the data area of the receiving task, but it returns the 
message pointer to all tasks that make an explicit request. 
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Test programs showed that communicating through CABS 
is much faster than passing messages through STICK 
ports, and CAB primitives are time bounded [l]. CABS 
must be declared as cab type, and initialized with the 
primitive open_&, having the following syntax: 

cab *cab id: - 

cab-id = open_cab(name, num, dim, first); 

where name is an arbitrary character string, num is the 
number of messages that the CAB may contain 
simultaneously, dim is the dimension (in bytes) of the 
message type for which that CAB is dedicated, and f i r s t 
is the pointer to the initial message contained in the CAB. 

To insert a message in a CAB, a task must reserve a 
buffer from the CAB memory space, then it has to copy 
the message in that buffer, and finally put the buffer in the 
CAB structure, where it becomes the most recent data. 
Reserving and putting a CAB buffer is performed by two 
system calls, according to the following syntax: 

buf_pointer = reserve(cab id); - 

<copy message in *bufgointer> 

put_mes(bufgointer, cab-id); 

Similarly, to get a data from a CAB, a receiving process 
has to read the pointer to the most recent message in the 
CAB, use the data, and release the pointer to the CAB. 
This is done according to the following scheme: 

mesgointer = get_mes(cab_id); 

<use message> 

unget(mes_pointer, cab id); - 

Notice that more tasks can access the same CAB 
simultaneously. If a task reserves a CAB for writing and 
the buffer is being used by another task, the CAB creates a 
new buffer, which will become the most recent one in that 
CAB. CABS are particularly suited for implementing 
sensor-based servo loops, in which a data acquisition 
process puts the sensory data in the CAB and one or more 
control tasks use the most recent data for monitoring 
activities or closing servo loops. 

4. Other features and tools 

The current version of HARTIK runs on a Intel 80486 
microprocessor at 33 MHz, with 0.84 microseconds 
resolution hardware clock. 

The interrupt mechanism is integrated in the general 
scheduling algorithm of the system, so that any I/O 
interrupt is treated as an instantiation of a new task which 
is subject to the guarantee algorithm and scheduled just 
like any other task. 

To assist the programmer in estimating the worst case 
execution time of tasks, a specific tool (MET) has been 
developed for this purpose. It uses a table-driven model of 
the processor, where assembly instructions are translated 
into execution times depending on their operating code, 
operands and addressing mode. 

Another tool, called Real-Time Tracer (RTT), has been 
developed to monitor the system evolution while an 
application is running. If active, the RTI records in main 
memory all context switches performed by the kernel, and, 
at system termination, it saves this information in a file. 
This file can then be interpreted by another tool, which 
produces a graphics representation of the system evolution 
in a desired time scale. 

5. A robot control example 

Consider a robot system that has to explore unknown 
objects by integrating visual and tactile information. To 
perform this task the robot has to exert desired forces on 
the object surface, and follow its contour by means of 
visual feadback. The software control architecture can be 
organized as two servo loops: the inner loop dedicated to 
image acquisition, force reading, and robot control, and the 
outer loop performing scene analysis and surface 
reconstruction. The task set consists of four processes. 

A sensory acquisition process periodically reads the 
force sensor and puts the data in a CAB named “force”. 
This process is critical since a missed deadline could 
cause an unstable behavior of the robot. Hence, it is 
created as a HARD task with a period of 20 ms. 

A visual process periodically reads the memory filled by 
the frame grabber and computes the next exploring 
direction. Data are put in a CAB named “angle”. This is 
also a HARD task with a period of 100 ms. A missed 
deadline could cause the robot to follow a wrong 
direction on the object surface. 

A robot control process, based on the force data and on 
the exploring direction suggested by the vision system, 
computes the cartesian set points to send to the position 
controller. The control process is a periodic HARD task 
with a period of 28 ms. Missing a deadline for this task 
could cause the robot to react too late and to exert too 
large forces on the explored surface, that could break the 
object or the robot itself. 

A representation task reconstructs the object surface 
based on the force/torque data and the exploring 
direction. Since this is a graphics activity which does 
not affect the robot motion, the representation process 
is created as a SOFT task with a period of 80 ms. 

Here is the body of the main process, and of the visual 
process. HARTIK primitives are written in bold. 
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/*__ _____--___---__----__--___--____-*/ 
#include "hartik.h" 

#include "param.h" 

main0 ( 

float ini_vect[31 = (O.O,O.O,O.O); 

float ini alfa = 0.0; _ 

cab ft data, angle; 
process force, vision; 
process control, display; 

ini_system(l,MILLI); 

ft_data = open-cab ("force", 

SIZE1,2,ini_vect); 

angle = open_cab("angle", 

SIZEZ,Z,cini alfa); _ 

create("sensor",force, GROUP, HARD, 

20, METl, VALUEl); 

create("camera",vision,GROUP, HARD, 

lOO,MET2, VALUE2); 

create ("robot",control,GROUP, HARD, 

28, MET3, VALUE3); 

create ("edge", display,GROUP, SOFT, 

80, MET4, VALUE4); 

start_group(); 

while (sys_clock() < LIFE-TIME); 

end_system(); 

1 
,*--_----_----___---_---_-_---__---__*, 

PROCESS vision0 ( 

float image[2561 [2561; 

float *alfa; 

while (1) { 
get_frametimage); 

alfa = reservecangle); 

*alfa = compute_angle(image); 

put_rnes(alfa,angle); 

end_period(); 

1 
) 
,*--___---__----_----_-----_---__----*, 

6. Conclusions and work in progress 

This paper presented a hard real-time kernel (HARTIK) 
specifically designed to provide facilities for programming 
robot tasks with explicit time constraints and predictable 
execution. For these characteristics, HARTIK is currently 
used as a platform for programming predictable real-time 
tasks in robotics applications, where control tasks and 

sensor acquisition processes have to be performed at 
different rates. 

At the moment, all resources needed by critical tasks 
are considered available, so that resource constraints will 
not influence task scheduling. However, an integrated 
scheduling algorithm taking in account both time and 
resource constraints is under investigation. 
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