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Hartley Transforms Over Finite Fields 
Jonathan Hong and Martin Vetterli, Senior Member, IEEE 

Abstract-A general framework is presented for constructing 
transforms in the field of the input which have a convolution- 
like property. The construction is carried out over finite fields, 
but is shown to be valid over the real and complex fields 
as well. It is shown that these basefield transforms can be 
viewed as “projections” of the discrete Fourier transform @IT) 
and that they exist for all lengths N for which the DFI is 
defined. The convolution property of the basefield transforms is 
derived and a condition for such transforms to have the self- 
inverse property is given. Also, fast algorithms for these basefield 
transforms are developed, showing gains when compared to 
computations using the FIT. Application of the methodology to 
Hartley transforms over R leads to a simple derivation of fast 
algorithms for computing real Hartley transforms. 

Index Terms- Finite fields, Hartley transforms, discrete 
Fourier transform, fast algorithms, complexity. 

I. INTRODUCTION 

T HE DISCRETE Hartley transform (DHT) has been pro- 
posed as a real transform with a convolution property 

[ll], [14], [15], [16], and thus, is an alternative to the discrete 
Fourier transform (DFT) for the convolution of real sequences. 
Since the DFT can be defined over finite fields, it is natural 
to ask whether a Hartley or Hartley-like transform exists over 
finite fields. Aside from the theoretical interest for such a finite 
field DHT, its advantages are potentially greater than in the 
real case since computing finite field DFT’s often involves 
going to large extensions of the basefield. The reason for this 
stems from the fact that an element of order N is required to 
compute a DFT of size N. Therefore, if the input belongs to 
GF (Q) it is necessary to go to GF (4”) where m is such that 

NIP- 1 in order to compute a size N DFT. Because 
of the different extension fields involved and the fact that 
computation is invariably more complex in the extension fields 
(involving polynomial multiplications and reductions etc.), it 
is desirable to have a transform in the basefield GF (Q) when 

the input is in GF (4). 
In this paper, we show that finite field Hartley transforms do 

in fact exist and give a general technique for their construction. 
We derive the convolution property of such transforms and 
state a condition for the transforms to have the self-inverse 
property. (This property is satisfied, for example, by DHT’s 
over the reals). Next we develop fast algorithms for the finite 
field DHT which will be seen as finite field “projections” of 
well-known FFT algorithms. Finally, we will show that the 
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Fig. 1. Relations between {z,}, DFT{x,}, and DHT{x,}. 

theory, though developed in the context of finite fields, applies 
to the real and complex fields as well. 

II. THE FORWARD TRANSFORM 

The most natural way to construct a Hartley transform over 
finite fields is to mimic its construction over the reals. Such 
a construction, however, leads to a noninvertible transform, 
indicating that the connection between the DFT and the DHT 

is more intricate than what is initially suggested by the real 
case. Our approach to this problem will therefore be indirect. 

Consider Fig. 1, where we have denoted the input by {x~}, 
the DET of {z~} by {Xn} and the (yet undefined) DHT 
of {x~} by {Xn}. Note that {x~} and { Xn} reside in the 
same field B = GF (4) while {Xn} is in an extension field 
E = GF (qm) of B. The function F between {xcn} and {Xn} 
is the usual DET mapping. The function 7-L is the Hartley 
transform that we seek. Shown also is an intermediate map, 
cp, between {Xn} and {Xn}. Since F and ‘Ft (if it exists) are 
bijections, it follows that the Hartley transform exists iff the 
intermediate transform cp exists. Thus, if we can construct the 
map cp from {Xn} to {X,} then the composition of J= and cp 
will yield a Hartley transform, namely ‘Ft = cp o 3. 

The key to constructing cp is to consider the vector space 
structure of the fields E and B. It is well known that if 
E = GF (qm) and B = GF (q) then in addition to being 
an extension field of B, E is also an m-dimensional vector 
space over B (notation: EB) [l]-[5]. The function cp we seek 
can thus be viewed as a linear functional on Eg. All linear 
functionals on Eg arise from the trace functions [l], that is, 
if cp is a linear functional on EB then there exists a unique 
o in E such that 

~(47 = tr (~4, W E E, 

where tr (5) = < + CQ + 14’ + + . . + CqnP1. Thus, cp must be. 
of the form 

cp(Xk> = tr (a&) 

=aXk+aqX~+cxq2X~2+~~ . + crlx;n-l, (1) 

where the element Q: remains to be determined. 
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To find the element a and to facilitate the derivation of cp-’ Theorem 1 [1]: M is invertible iff 
later on, it is instructive to look at the matrix representation 
of cp. To that end we note that since {X,} is the Fourier 
transform of a basefield sequence {x~}, it must satisfy the 

(a) = {a, QQ, cxq*, . . . , K’} 

conjugacy constraint [6], [7]: is a basis of Eg, i.e., iff (a) is a normal basis of Eg. 

Xkq” = xqL Vk, 1. (2) 
Theorem 2 [I]: A normal basis always exists. 

k ) Thus by taking a to be a generator of a normal basis of 

The conjugacy class of XI, with respect to B therefore, 
Eg the map 

consists of ‘p: XI, H Rk = tr (ox,) (-3 

{Xk, xkq, Xkq2,. . . , Xkq4 
defines a one-to-one correspondence between {Xn} and 

zz {X,, q, x/f,. . . ,Xy}. {xnJ* 
To obtain a Hartley transform 7-& consider the DFT of {xn} 

It follows that (1) can be rewritten as 

cp(X,) = tr (ax,) = axk + CGXk, 

N-l 

Xk = cxnw;k, 
n=O 

+aqaxky2 + ‘. ’ + aqm-lxkqm-l (3) where x, E B and WN is an element of order N in E. Let 

{PO, Pl, /32>... ,&-r} be a basis of Eg, then Wgk has a 
unique representation with respect to this basis 

and we can identify the restriction of cp to the conjugacy class 
of Xk with the matrix operator 

wgk = w$j,“,‘po + w$p31 + w~32 +. . . + w;~-l)pm-l. 

aqEL 

Qq o!12 . 

o!q . 

M = aqm-2 &“-’ a . 

. . . . . . . . . . 

($ &J2 a43 . 

so that 

. . gm-l 

. . CT-; 

. . a4 > 

. . . . . 

. . a 1 

Therefore, 

N-l N-l 

n=O 
(0) (1) (2) (m-1) =bx, +bx, +hx, +“‘+,&-1x, , 

w’~~eX~~t~o 7$1$&f E B iS the ith component of XI, 
, , ,“‘, /L-l}. Smce ‘Ft = cp 0 F, 

we have 

+tr (a/32)-@) + . . . + tr (c@ In -l)X(“-1), k 
(6) 

. . . m--l 
tr(dG 1 which is indeed a basefield transform. While this shows the ex- 

Note that M is circulant which is as we would expect. From 
istence of a basefield transform, expression (6) is not optimum. 

this and the fact that the conjugacy relation is an equivalence 
We can reduce the amount of computation significantly by a 

relation on {X,} (hence the conjugacy classes are disjoint) it 
proper choice of basis. Instead of an arbitrary basis, choose 

follows that the action of cp on {Xn} can be represented by 
{/3;} to be the (unique) dual basis of (a). With this choice of 

the block diagonal matrix 
basis, {pi} is also normal. Furthermore, we have 

tr (c&j) = &j, 

i.e., I and pj are trace-orthogonal; consequently, (6) simpli- 
(4) fies to 

\ N-l N-l 

with appropriate permutation and/or repetition of the input. 
2, = xp) = c x,wz = c xn tr (aw;“). (7) 

n=O n=O 
Equation (4) implies that cp is invertible iff M is invertible, 

hence the restriction on the choice of Q: is simply that it must In other words, Xk reduces to the 0th component, with respect 

render the matrix M nonsingular. The following theorems give to a normal basis, of the discrete Fourier transform X,+. We 

a precise characterization of Q. will henceforth call (7) a Hartley transform. 
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Remark 1: There is nothing special about Xp). By per- 
muting the elements of {oi} and {,&} we could just as easily 
obtain 

for any i. 
Remark 2: Equation (7) actually defines a whole class of 

transforms thereby showing that basefield transforms are not 
unique. In fact by taking all possible combinations of WN and 

a it is easy to see that we can construct mn$(N) transforms 
of the type defined by (7), where m is the dimension of Eg, 

n is the number of normal bases in En and $ is the Euler 
totient function. Note, however, not all of these transforms 
will be “distinct.” It can be shown that many of these will be 
permutations of each other. 

III. THE INVERSE TRANSFORM 

To find the inverse Hartley transform (equation (7)) we need 
to first invert the intermediate map cp. Since 

, 

it suffices to find the inverse of the matrix M of Section II. 
Recall that the elements of M are members of a normal basis 
{oi} = (a) = {a, aq, c$,...,cK~~-~}. If {pi} is the dual 
basis of {cri} then {,&} is also normal, i.e., {pi} = (p) = 

{p, pq, ,bq2, . . . , ,dqmel} for some ,Ll E E. 
Fact 1: 

M-l = 

Proof: See [18]. 

It follows from this that 

xk 

xkq 

xkqz 
. . . 

xkqm-1 

0 

= 
i 

, 

therefore, 

cp 
-1 : 2, H XI, = ,88, + Pq&.qm-l 

+pq2ifkq7n--2 + . . . + pqm-%kq. (8) 

‘Ft = cp o F implies ‘FI-’ = 7-l o 9-l. Composing the two 
functions we obtain the following inverse transform 

N-l 

xk = N-l X(1” x, + pT?nqm- 1 
n=O 

+pq2znqn-2 + . *. + pqm-lx,Lq)w~“k. (9) 

While expression (9) will compute the correct inverse, this 
computation is performed in the extension field E. Since we 
seek a transform in the basefield B, we need an alternative to 
(9). To that end consider the first summand of (9) 

N-l N-l 

N-l N-l 

+paq c x;w,-“” + . . . + pcr,qm-1 c X$-l wgk. 

n=O n=O 

Fact 2: 

N-l 

c 
X;‘W;“’ E B, vi. 

n=O 

Proofi Recall that < E B = GF (q) iff [‘J = <. We have 

N-l N-l 

where the first equality is a consequence of the fact that 
charB = p and q = pl for some integer 1 and some prime 
p; the second equality follows from the conjugacy relation; 

and the last equality holds because gcd (N, q) = 1. 0 

From Fact 2 and the trace-orthogonality of ai and /3j, it 
follows immediately that 

/N-l \ N-l 

= xxn.w;nk = NXk. 

n=O n=O 

If we expand Wink with respect to the normal basis (a): 

w-gk = $‘) _,ka+w~~k~“+W~~kcyq2+. . .+uJ~yw-l, 

then tr (PW;““) = w(o) nk and we have the following basefield 
inverse of (7) 

N-l N-l 

xk = N-l ~x,w~~, = N-l c gr, tr (/?Wink). (10) 
n=O n=O 
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TABLE I 
GF(24)” 

VS Index Normal Dual Order 

0001 0 1 
0010 1 3 15 

0100 2 6 1.5 
1000 3 1 5 

1001 4 12 15 
1011 5 3 

1111 6 2 5 

0111 7 1.5 
1110 8 9 15 

0101 9 8 5 

1010 10 3 

1101 11 15 

0011 12 4 5 

0110 13 15 

1100 14 15 

Example: Let E = GF (2”) and B = GF (2), then E is 
a four-dimensional vector space over B. Table I lists some 
information regarding E*, the nonzero elements of E. 

The entries under vs are the vector space representation of 
EB with respect to a polynomial basis generated by a primitive 
element y of E. The entries under index are the representations 
of the same elements as powers of y. If an element generates 
a normal basis for Eg, then in the column under normal dual 
we list the generator of its dual basis. Finally, in the last 
column, we list the order of the elements. As an example, 
take Ws = y3, (a) = (y6), then WC1 = y12, (p) = (r2) and 

Proposition 1: Let E be an extension field of B. There 
exist a self-inverse B-transform iff there is a normal basis (a) 
of Eg such that 

tr (aWk) = tr (pW&‘), Vk, (13) 

where WN is an element of order N in E and (p) is the dual 
basis of (o). 

While the utility of Proposition 1 is unclear when the 
underlying fields are finite fields,’ it has direct implications 
for the real and complex fields. As shown in Appendix A, 
Proposition 1 allows us to determine all the self-inverse real 
transforms admissible under this type of construction. 

V. THE CONVOLUTION PROPERTY 

The convolution property of the Hartley transforms can be 
deduced readily with the aid of the intermediate map cp. Since 
the convolution property is well-understood in the Fourier 
domain, to obtain the convolution in the Hartley domain we 
map the sequences we are convolving to the Fourier domain 
(via (p-l), perform the convolution in the Fourier domain 
(pointwise product), and map the result back to the Hartley 
domain (via cp). 

Let {Y,} be the convolution of {xn} and {h,}. Using the 
notation of the previous sections, we have 

XI, = (p-‘(.?‘rc) = ,8& + ,6q~kqm-l 

+ pq2a%kqm-2 + ’ * ’ + pq?tkq, 

Hk = (p-‘(ii&) = ,bfi, + pqiikqm-’ 

+pq2Eikqm-2 +-‘+pq”-l&q, 

therefore, 

m-1 

= c pqi+qjxkqm-i&kqm-j. 

i, j=o 

IV. THE SELF-INVERSE PROPERTY 
To express Yk in terms of %k and fik, we “project” Yk to 

The real Hartley transform has the interesting property that the basefield by taking its trace with c11. This results in the 
it is its own inverse. In this section, we give a condition for following convolution formula for Hartley transforms 
the proposed transform to have the self-inverse property. We 
restate the Hartley transform and its inverse 

m-1 

N-l N-l 

2, = c x,w$j = c xn tr (awsk) 

n=O n=O 

& = p(Yk) = tr (a&) = c tr (~~qi'qj)~kqm-i~kqm-j. 

i, j=o 

(11) (14) 
which has the form of a polynomial product. 

N-l N-l 

xk = N-l -pfnw19)2k = N-l c & tr (PW;““). (12) 
VI. THE HARTLEY TRANSFORM AS A PROJECTION 

n=O n=O In this section, we give an interpretation of the proposed 

From the definitions, it is clear that the forward and inverse 
Hartley transform. It is shown that the construction is effec- 

transform will be the same iff wi (‘) = wl”,! for all i (note that 
tively a decoupling and distribution operation in which the 

these components are with respect to different bases). The 
mapping cp plays the role of a “projection operator.” 

-following proposition therefore characterizes the self-inverse ‘It does provide a brute force way of determining the self-inverse transforms 
transforms. when E and B are given. 
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Let {,@“i}~~’ be a normal basis of EB with dual 

{&‘}~&‘. Expressing W”” with respect to the basis {,& } 

J/p = ,wfip + w,‘,‘,‘pq + wf$$ + . . . + w;yl)pqm-l; 

we can write the DFT of zn as 

XI, = -&wnk 

where Xf) ef C, z,wtL is the ith vector space component 

of XI, with respect to the basis {pq” }. 
Since the proposed Hartley transform is 

%k = tr(O!xk) = CC&w2 = xr); (16) 
n 

i.e., Xk is assigned the 0th component of Xk, one may wonder 
what happened to the other components of Xk? Recall from 
Section III (8) that 

x, = (p-l&) = ,drl;, + pqitkqm-l 

+pq%kqm-2 + . . . + pqm-%kq. (17) 

Since the representation of an element with respect to a given 
basis is unique, comparing (1.5) and (17), we see that 

Zk = xp 

2kq = xp-1) 

xkq2 = x (m-2). . . 

&.,,-I =kxf’. (18) 

Thus, the proposed transform distributed the m components 

(with_respe_ct to the normal basis {pq”)) of Xk amongst 

xk, xkq, xkq2,-‘- What is the significance of the normal 
basis? As we shall see, the choice of a normal basis is 
crucial in ensuring that the distribution operation is consistent. 
Its function is to decouple completely the m vector space 
components Of Xk. 

To illustrate this decoupling mechanism, consider the fol- 
lowing question: given that the input data is in the basefield B 
and hence the DFT of the data satisfies the conjugacy relation 

i 
xk q2 - -x,p > vi, 

what is the choice of basis which expresses this conjugacy 
relation in the simplest form: The answer apparently, is a 

normal basis. Let {pq”} be an ormal basis, then the conjugacy 

class of XI, with respect to {pq’ } is 

XI, = px;’ + /jq+) + pq2x@) 
k k 

+ . . 
. + pm-1xp4 

x,, =x; =,8x, (m-1) + pqxw + pq2xp 

+ . . . + pm-1xp-2) 

xk 
q2 = xi2 = /f&m-2) + pxp-1) + /y12xp 

+ . . . + pm-1xp-3) 

xk 
- q-l 

qm-1 - = pxp + pqxf) + pq2x(3) 
k 

+ . . , + pn”-lxf). (19) 

Thus, with respect to a normal basis, the conjugacy relation is 
simply a circular shift of the m components of Xk. This not 
only shows the decoupling nature of a normal basis, in addition 
it shows that there are (at most) m degrees of freedom within 
each conjugacy class. Clearly, if we know the m components 
of any element of the conjugacy class, or equivalently, the 0th 
component of each element of the conjugacy class, then we 
know the entire conjugacy class. Referring to (16), we see that 
the Hartley transform does precisely this: it picks out the 0th 
component of each element of the DFT. 

While it is true that if one were to choose a non-normal basis 
then the components of a conjugacy class with respect to this 
basis still has (at most) m degrees of freedom and hence can 
be characterized by m components, the distribution of these 
components can be done consistently only then the basis is 
normal. Thus in order to ensure that (16) is well defined, it is 
necessary to use a normal basis {,f3q’ }. 

Finally, we note that the act of extracting a component of 
an element with respect to a basis is reminiscent of the action 
of projection operators in Hilbert spaces. We can thus view cp 
as a projection operator with domain E and range B, and the 
Hartley transform as the image, under cp, of the DFT of {z~} 
onto the subspace spanned by ,f3. We use the term “projection” 
loosely to convey the sense of the action of cp. We do not mean 
to imply that ‘p is a projection operator in the usual sense. For 
example (p2 # cp. 

VII. FAST ALGORITHMS 

As noted in the previous section, the Hartley transform can 
be viewed as a projection of the Fourier transform from the 
extension field E into the basefield B via the function (o, 

zk = 9(x,) = tr (axk). 

Thus, if A is a fast algorithm for the DFT, then by an abuse 
of notation, tr (CIA) will be a fast algorithm for the DHT. In 
what follows we will use this fact to derive fast algorithms 
for the Hartley transform. Specifically we will derive the 
Hartley equivalent of Cooley-Tukey, Radix-2(DiT), Radix- 
2(DIF), Rader, and the Prime Factor algorithms. 
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A. Cooley-Tukey Algorithm Therefore, the Cooley-Tukey FHT is given by 

Let W, be an element of order N = NrNz, then W,, dzf 

Wz is an element of order Nr and WN, dsf W; is an 
m-1 N, -1 

gkz+klNz = c (%, j, 1 2 w~)klqm-” 

element of order Ns. Write n and L as 

n = n1 + n2Nl 

then the Cooley-Tukey FFT can be written as [8], [9], 

N1-1 Nz-1 

xk,+klNz = c 
111 kl 

WNl c %,+n2N1W$k2 . 

n1=0 nz=O 

Let 

m-1 

w$nl = c wfJnlyl 

l=O 

m-1 

W $“’ = ~w,zl)kIp”i 

i=o 

where 

c;, j, 1 dgf tr (c~ylfi~‘+~~) 0 5 i, j, 15 m - 1 
are constants that can be precomputed. 

Though the expression looks complicated, we note that the 

inner parenthesis is simply the DHT of {X,I+,,N1 }n, evalu- 
ated at k2qm-j. Similarly, the outer paenthesis is the DHT of 

the sequence {wfJn,(Cf$j x,,+n2N1W~2'k,qm-j))nl eval- 

uated at klqmBi. We thus have the following procedure for 
computing a Cooley-Tukey DHT. 

1) Arrange the data in an Ns by Nr array. 
2) Compute the DHT along each column. 

Nz-1 

C(n1, k2) = c xn,+n,N~~:!,. 

v&2=0 

3) For each j and I, 0 5 j, 1 L m - 1, form 

Dj,l(nl, k2) = wEjk,C(nl, k2q”-‘). 

m-l 
W j.p = ~wf$Jlqj, 

j=o 

4) For each j and I, 0 5 j, 1 5 m - 1, compute the DHT 
along each row of D. 

N1-1 

where {~r}~~’ is an arbitrary basis of Eg and {P’J’}~~’ is 

a normal basis with dual {aQ”}Eir, then 

Ej, l(h, k2) = c Dj, z(nl, h)wz’kl. 
n1=0 

5) For each kr and Ic2, 0 < Icr 5 Nr - 1 0 5 k2 5 N2 - 1, 
m-1 

i, j, z=o 

Projecting Xkz+kINz into the basefield via cp, we obtain 

N1-lN2-1 

n1=0 nz=O 

Nl-1 Nz-1 m-l 

i, j, l=O nl=o 
Nz-1 

c 
Cd 

xn, +nz NI wn2 kz 

?I2 =a 

m-1 N, -1 

compute 

m-1 

xkz+klNz = c G, j, lFi, j, Z(kl, k2), 

i, j, 1=0 

where Fi,j,l(k~, lo) dgf Ej,l(k~q”-~, k2). 

What is the (multiplicative) complexity of the Coo- 
ley-Tukey FHT? From the procedure, we see that step 2) 
requires Nr DHT’s of size Nz, step 4) requires m2Na DHT’s 
of size Nr, and steps 3) and 5) require m2 N and m3N 
multiplications respectively. Denoting the complexity of a 
size N DHT by p(N), we see that the complexity of the 
Cooley-Tukey DHT is 

p(NlN2) = Nl,u(N2) + m2N2p(N1) + m2N + m3N. (21) 

If Nr and Ns are composite, the above procedure can be 
repeated for the smaller transforms. 

1) Radix-2 (DIT) Algorithm: An important special case of 
the Cooley-Tukey algorithm results when N is divisible by 
2. By taking Nr = 2 and N2 = N/2, we have the following 
Radix-2 Decimation-In-Time algorithm: 



1634 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 5, SEPTEMBER 1993 

m-1 
- (even) 

Xk+N/2 = xk - c 
cj, kai;“m”_‘j, 

j=o 

0 5 k 5 N/2 - 1, (23) 

where 

N/2-1 

g-4 &f c x2nw;i 

n=O 

is the DHT of the even-indexed input, 

N/2-1 
*(odd) dgf 

k c 
(0) 

x2n+lw,k 

n=O 

is the DHT of the odd-indexed input, and 

m-1 

cj, k dgf 

l=O 

are constants which can be precomputed. 
Clearly, this procedure requires mN/2 multiplications and 

2 DHT’s of size N/2. The multiplicative complexity of the 

Radix-2 DIT FHT is therefore 

p(N) = 2p(N/2) + mN/2. (24) 

If N is a power of 2, the procedure can be recursively applied 
to the half-size DHT’s. 

2) Radix-2 (DIF) Algorithm: By reversing the roles of Nr 
and Ns in the Radix-2 Decimation-in-Time algorithm, we 
arrive at the following Radix-2 Decimation-in-Frequency al- 
gorithm: 

N/2--1 

22k = c (%+xN,2+n,w:5 

n=O 
0 5 k’s N/2-1 (25) 

m-1 N/2-1 

x2k+l = c Cl, j c (xn - xN,2+n)w:)w~> 

1, j=o n=O 

0 5 k 5 N/2 - 1, (26) 

def 
where cl,j = tr (o^/1,P3 ) are constants which can be pre- 
computed. 

This procedure requires (m + 1) DHT’s of size N/2 plus 
(m + m2)N/2 multiplications. Thus the complexity of the 
Radix-2 DIF FHT is 

p(2.N/2)=(m+l)p(N/2)+(y+$)N. (27) 

As before, the procedure can be applied recursively to the 
half-size DHT’s when N is a power of 2. 

B. Prime Factor Algorithm 

Let N = NlNs with Nl and Ns relatively prime. Using 
the input mapping 

nl = n(mod Nl) 

na = n(mod Nz) 

and the output mapping 

k = klN2 + ksNl(mod N), 

the prime factor algorithm for the Fourier transform of {zn} 
can be expressed as [8] 

Nl-1 fNz-1 j 

xklkz = c nlkl WN, 
n1=0 

Let {,PI”“}~;~ b e a normal basis with dual {& }z;‘. With 

respect to it, let W$l”l and W$z”z have the following 
expansions 

m-1 

W ;:“I = ~wf!klpqi 

i=o 
m-1 

W $kZ = yw;;k2pqi. 

i=O 

Then, 

m-1 

nlki WN, WZk2 = c w$Jklw$$4+qi. 

i, j=o 

The projection of the DFT into the basefield B is 

Nl-lNz-1 

C C x,,,~ tr (aW$‘l W$l”“) 
n1=0 ?Q=o 

Nl-lNz-1 m-l 

C C xnln2 C tr (cr/?qi+qi)w~~klw~)kZ 
nl=orQ=o i, j=o 
m-1 N1-1 Nz-1 

C tr (apqi+qi) C wfjkl C x,,~~w~)~, 
i, j=o n1=0 nz=O 
m-1 N, -1 N7-1 

C tr (c@qi+qi) C Wci,sm-i C Xn1n2w~\2qm-j* 

i, j=o n1=0 nz=O 

As before the trace term is but a constant while the expression 
following the trace is a true 2-D DHT (i.e., no twiddle 
factors) evaluated at (klqmei, kzq’+j). Thus, if we define 

(0) 
x~~~zwnzkz’ then the prime factor DHT algorithm can be 
written as 

m-1 

Xklkz = c ci, j*klqm-i, kzq--3. (28) 
i, j=o 
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We thus have the following procedure for computing a prime 
factor FHT. 

1) Place data into an Nr by N2 array. 
2) Compute the DHT along each row. 
3) Compute the DHT along each column. 
4) For each kl and k2, compute 

VIII. HARTLEY TRANSFORM OVER R REVISITED 

It is easy to see that the results of the previous sections hold, 
mutatis mutandis, for R and C. In fact if we replace conjugate 
by complex conjugate and the definition of trace by 

tr(a) =o+cr* 

m-1 then the derivation of the preceding results for the real and 

Xklka = c 

L 
c;, jxklq”-i, kzq”-3. complex fields would be exactly the same as that for finite 

i, i=O fields. 

The procedure requires Nl DHTs of size Na, Nz DHT’s 
of size Nr and m2N multplications. The complexity of the 
prime factor algorithm is, therefore, 

P(NI&) = NIP(&) + N2,4Nl) + m2N. (29) 

C. Rader’s Algorithm 

It is well known that for p prime, a length p DFT can be 
computed by a (p - 1)-point cyclic convolution using Rader’s 
algorithm [8], [lo]. Let n be a primitive element of GF (p). 
Then Rader’s algorithm can be written as [8], [lo], 

p-1 

x0 = -&l 
n=o 

p-2 

x,k = Zo + ~w;k-n%ap-‘-nr l<k<p-1. 

n 

By defining XI, dgf x,k and L& dAf X+-l-k, this can be put 
in the simpler form 

P-1 

x0 = XX” 

n=O 

We derive, in Appendix A, the classes of real transforms 
and self-inverse real transforms admissible under this type of 
construction. It is seen that the real transforms are essentially 
Ansari’s discrete combinational Fourier transforms for real 
input [13] and the self-inverse real transforms are essentially 
the Hartley transforms. 

In Appendix B, we apply the fast algorithms derived in 
Sectio VII to the case of real input. It is seen that the 
method of projection produces known fast Hartley algorithms 
without resorting to trigonometric identities and algebraic 
manipulations. In one instance (PFA), the method produces 
a new algorithm which is a variation of an existing algorithm. 

IX. CONCLUSION 

We have presented a general framework for constructing 
basefield transforms having a convolution propertry. The con- 
struction is carried out over finite fields but is shown to apply 
to the real case as well. Fast algorithms for the computation 
of this new transform were also derived. 

The technique presented can be generalized to an arbitrary 
field I3 by taking E to be the Nth cyclotomic extension of 
B. For details see [19]. 

APPENDIX A 

p-2 

& = x,, + ~Wp”k-“i,, 
In this appendix, we apply the techniques developed for 

l<k<p-1. finite fields to the real and complex fields. We will start 
n=O by determining the ‘normal bases of CR. Since C is a two 

Applying cp to each.of the equations we obtain the following dimensional vector space over R, a normal basis of CR is 

analog of Rader’s algorithm for the Hartley transform of the form 

A = {a, a*} = {a + ib, a - ib}. 

The dual basis of A is also normal, hence it too is of the form 

i?k = x0 tr (c?) + pfwjp,)_,s-n, 1 5 k 5 p - 1. (30) 

Note that the summation in the second equation is a (p - 
1)-point cyclic convolution. We thus have the following pro- 
cedure for computing a length p DHT. 

1) Compute 20 according to the first equation. 

2) Compute the cyclic convolution of {w$‘}r and {Zl}r. 
3) Add xa tr (o) to the result of Step 2). 

Since steps 1) and 3) require one multiplication each and 
step 2) requires 2(p - 1) - j where j is the number of divisors 
of p - 1 [8], the algorithm thus has complexity 

B = {P, p*} = {c + id, c - id}. 

The parameters a, b, c, d are not completely independent since 
the bases must satisfy the trace-orthogonality relation 

The constraint forces c = 1/4a and d = -1/4b, consequently 
the normal bases of CR and their corresponding dual bases 
are exactly 

A = {a, a*} = {o, + ib, a - ib} 

B={AP*)= 
1 1 1 .l’ 

4a-1.4b,4a+zG 

p(p) = 2 + 2(p - 1) - j. (31) where a, b E R are arbitrary. 
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Over the complex field, the elements of order N are 

Ie- i(z?rlN)m ) 1 _< m < N, (m, N) = 1). 

It follows that 

tr (&I+$) = 2a cos $mk f 2b sin $mk 

tr (PW;“) = & “N” ’ 2n COS -mk + 5 sin Nmk, 

which yield the following real transforms 

N-l 

= 2a cos $nmk + 2b sin $nmii] (32) 

N-l 

Xk = N-l Cr’- tr (/3WGn”) 
n=O 

cos f+,rnk + f sin $-nmk] . (33) 

For m = 1, (32) and (33) reduce to Ansari’s discrete combi- 
national Fourier transforms for real input [13] 

N-l 

2, = CX” 2a cos $nk + 2b sin $nk 
n=O 1 

xk = N-l $ cos $nk + f sin $nS 1 . 

Let us now impose the self-inverse condition on (32) and 
(33). By Proposition I; the transforms defined by (32) and (33) 
will have the self-inverse property iff equation (13) is satisfied. 
This means that we must have, for all k 

2a cos $mk+2b sin zrnk = -& cos $mk+ A sin $rnk, 

which is satisfied only if 

a=*I 
2 

and b=f;. 

Substituting these values into (32) and (33) yields the follow- 
ing self-inverse real transforms 

2n cos znmk + (*) sin $nrnk 1 (34) 

xk = N-l (4) cos $nmlc + (6) sin $nmk 1 . 

(35) 
There are thus 44(N) self-inverse real transforms of which‘the 
Hartley transform is but one case (corresponding to the case 
where m = 1 and a = b = $). It should be noted, however, 
that different choices of m, a, and b do not lead to radically 
new transforms. In fact, it is easy to see that other permissible 
values of m, a, and b lead to only permutations and/or sign 
changes of the basic Hartley transform. 

We conclude this appendix by deriving the convolution 
property of the Hartley transform. By (14) the convolution 
property (adapted for the real field) is given by 

pk = tr (a$@)fikgk + tr (app*)i?kkk 

+tr(ci!@*P)g-kiitk -k tr(a$*,d*)fi-kg-k. 

As previously indicated, the Hartley transform corresponds to 
the choice m = 1 and a = b = i, which means that the 

associated normal and dual bases are 

A={/x,a*}= ;(l+i); +)} 
C 

$1-i), i(1+i)}. 

It is readly verified that tr (@p> = tr(c@P*) = i and 

tr (@*/I*) = -i, therefore, 

x 
= H,&, - (even) + jjek$“dd) 

which is as expected [ll]. 

APPENDIX B 

In this appendix, we will apply the techniques of Sections 
VII to derive fast algorithms for Hartley transforms over the 
reals. The derivations consist of nothing more than recasting 
the formulae of Section VII in the setting of R since the 
methodology of the derivation there is independent of the 
underlying fields. Retracing the steps of the derivations, it is 
seen that the only property invoked which is particular to finite 
fields is the statement of the conjugacy relationship. By replac- 
ing such expressions with their counterparts in CR, we have 
the equivalent fast algorithms for the real input case. More 
explicitly, to obtain fast algorithms for real Hartley transforms 
we substitute every occurrence of {zk4i}rzi1 in the formulae 

of Section VII with (2 ( r)“k};=u = {zk, 2-k). We do this _ 
below for three cases: Radix-2(DIT), Radix-2(DIF), and PFA. 
The same technique can be applied to other algorithms. 

As shown in Appendix A, the real Hartley transform corre- 
sponds to choosing the bases 

{QO, Ql) = {a, a*> = 
{ 

a(1 + i), $1 -i)} 

i~o,~l)={B,ii’)=(~(l-i).~(l+i)}, (36) 

which we will assume for the remainder of the appendix. In 
addition, we will take the basis {ri} to be 

{rd, 711 = 1-k 4, (37) 

with respect to which.we have 

2lr 
wk (O) = cos E&k, (1) _ 27r sin--k. wk- N 
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Radix-2(DIT) Algorithm thus (40) becomes 

To obtain a real radix-w decimation-in-time algorithm2 we 
recast equation (22) in R by reexpressing the conjugacy 

r;r,, = j;-i+) 

x2k+l = 2.f’ + a$. relation to obtain 

where the constants cj, k are given by 

Using the bases (36),(37), it is easy to verify that 

where 
def 

therefore, casx = cosx + sinx, 

CO,k = ewi) tr (ar&) = wp) = cos $k 
l=O 

the previous equations can be rearranged to yield the following 
decimation-in-frequency algorithm 

Cl,k = kWL’ tr (ay@r) = WC) = sin $k. 
l=O 

N/2-1 

22, = c (2, + xN/2+n) cas 

n=O 

tr (QroP0) = tr (CWPI) = 1, 

tr (wlP0) = tr (w0Pl) = 0, 

Since 
(38) 

n=O 

N/2-1 

N/2-1 

xN/z+n)sin ($n) cas ($nk) 

Substituting these values of cj, k into (38) yields the following 
radix-2 DIT algorithm 

2 
2k+l = (2, - xN/2+n) cos 

2-, = j$-) + Xfdd) (cos gk) + 2p:d) (sin $kI 

This we recognize as the radix-2 algorithm proposed originally 
by Bracewell [12]. 

+ (xN/2--n - xN-,)sin ($n)] cas ($nk) 

(42) 

Radix-2(DIF) Algorithm 

To obtain a radix-2 decimation-in-frequency algorithm we 
proceed as before by recasting the finite field algorithm in R. 

Restating the conjugacy relation in (25) and (26) we have 

(40) 

where 

jq = 

N/2-1 

c (xn + xN,2+n)42 

n=O 

N/2-1 

i%f’ = c (x, - xN,2+&&4j 

CZ,~ = tr (an&). 
Using the bases (36) and (37), we have, from the previous 
section 

CO, 0 = cl, I = tr (ar0P0) = tr (cwP1) = 1, 

cl, 0 = CO, I = tr (QWPO) = tr (WOPI) = 0, 

‘We have elected to combine (22) and (23) into one equation in order 
to retain Bracewell’s original formulation [12]. In practice, the computation 
should be performed as indicated by (22) and (23) in order to avqid 
unnecessary multiplications. 

(41) 

These equations we recognize as the radix-2 DIF algorithm of 
Sorensen et al. [16]. 

Prime Factor Algorithm 

Finally, let us derive a prime factor algorithm for real 
Hartley transforms. With all the necessary assumptions the 
prime factor algorithm can be written as 

Xklkz = C;,jX(-l)ik~, (-l)jkz, (43) 

i, j=o 

where 

%, j = tr (d%Pj) 

&:& = N~‘w~‘k~N~‘Xn~~~W~‘k~. 
^ 

n1=0 nz=O 

Using the bases (36) and (37) it is easy to verify that 

CO, 0 = tr (QoPo) = f 

CO, I = cl, 0 = tr (d0Pl) = 5 

cl, I = tr(4GPl) = -f, 

which when substituted into (43) gives the following real 
prime factor algorithm 

xklkz = $ki, kz +2-k,, kz +kk,, -ka -Jir-kl, -kz], (44) 
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where PI J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation 
of complex Fourier series,” Math. of Computat., vol. 19, no. 2, pp. 
297-301, Apr. 1965. 
CM. Rader, “Discrete Fourier transforms when the number of data 
samples is prime,” Proc. IEEE, vol. PROC-56, pp. 1107-1108, June 
1968. 
R.N. Bracewell, “Discrete Hartley transforms,” J. Opt. Sot. Amer., vol. 
73, no. 12, pp. 1832-1835, Dec. 1983. 

“The fast Hartley transform,” Proc. IEEE, vol. 72, no. 8, pp. 
=;018, Aug. 1984. 
R. Ansari, “An extension of the discrete Fourier transform,” IEEE Trans. 
Circuits Syst., vol. CS-32, no. 6, pp. 618-619, June 1985. 
P. Duhamel and M. Vetterli, “Fast Fourier transforms: A tutorial review 
and a state of the art,” Signal Processing, vol. 19, no. 4, pp. 259-299, 
Apr. 1990. 

This is a new algorithm that is a variation of an existing 

algorithm (see [16]).Note that it is a true two-dimensional 
DHT (45) followed by a linear combination of elements at 
the four conjugate locations (44). 
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