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Abstract. The bipolaronic ground state of two electrons in a spherical quantum dot or a quantum wire with
parabolic boundaries is studied in the strong electron-phonon coupling regime. We introduce a variational
wave function that can conveniently conform to represent alternative ground state configurations of the
two electrons, namely, the bipolaronic bound state, the state of two individual polarons, and two nearby
interacting polarons confined by the external potential. In the bipolaron state the electrons are found to
be separated by a finite distance about a polaron size. We present the formation and stability criteria of
bipolaronic phase in confined media. It is shown that the quantum dot confinement extends the domain
of stability of the bipolaronic bound state of two electrons as compared to the bulk geometry, whereas the
quantum wire geometry aggravates the formation of stable bipolarons.

1 Introduction

Last three decades or so have witnessed a hectic pace of
activity in the area of ultra-low-dimensional semiconduc-
tors the realization of which has now become possible with
the advent of sophisticated micro-fabrication techniques.
These structures provide a tiny laboratory to test the pre-
dictions of quantum mechanics and also have tremendous
potentiality for applications in micro-electronic devices
such as single-electron transistors, quantum-dot lasers,
ultra-fast quantum computers and so on. As a natural
consequence, extensive investigations have been carried
out in this area in recent years, both theoretical and ex-
perimental, and a great deal of literature with extremely
rich data for electronic, optical and magnetic properties
has already piled up [1–6]. Recently, the role of electron-
longitudinal- optical (LO) phonon interaction on various
electronic properties of polar semiconductor quantum dots
has been studied by a number of authors (see [7] and
references therein) and one of the most important obser-
vations that has been made in this context is that the
polaronic effects are extremely important in small dots
and should therefore be taken into account when making
devices with them. Several investigations have also been
made to study the formation and stability of bipolarons
in a quantum dot. A bipolaron is a bound pair of two
polarons with a common cloud of virtual phonons and in
the context of a quantum dot the bipolaron problem was
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first investigated by Mukhopadhyay and Chatterjee [8].
It was shown that in the strong coupling limit the con-
fining potential of the quantum dot reduces the stability
of the bipolaron. Essentially similar results were also ob-
served by Senger and Erçelebi [9]. Pokatilov et al. [10]
have investigated the stability of bipolarons in a spheri-
cal quantum dot with parabolic confinement by applying
Feynman’s variational principle and calculated the bipo-
laron binding energy, number of phonons in a bipolaron
cloud and the bipolaron radius. They have shown that
in a quantum dot bipolaron states are possible even for
intermediate values of the electron-phonon coupling con-
stant, α (α ∼ 2). They have also shown that the binding
energy passes through a maximum for a certain value of
the confinement length. Because of the conflicting conclu-
sions obtained by different groups, the bipolaron problem
in quantum dots has thrown up a new challenge to the
theorists. Motivated by this controversy, Mukhopadhyay
and Chatterjee (MC) [11] took up this problem and in-
vestigated the bipolaronic stability in realistic quantum
dots using a variational method based on the Lee-Low-
Pines-Huybrechts (LLPH) technique [12] and showed for
the first time that stable bipolarons can indeed form in
GaAs, CdS, CdSe and CdTe dots. One of the most im-
portant aspects of the investigation of MC is the incorpo-
ration of the Coulomb interaction between the two indi-
vidual polarons in the unbound phase which was hitherto
neglected. They have shown that inclusion of Coulomb
correlation energy in the unbound phase brings in a dra-
matic and qualitative change in the results. Of course the
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exact form of the interaction potential for the two indi-
vidual polarons in the unbound phase in a quantum dot
is not known and MC had to resort to some approxi-
mation. Senger and Ercelebi [13] have made an investi-
gation on the stability of a bipolaron in spherical quan-
tum dots using a single hamiltonian which seems to be
the correct way of dealing with the bipolaron problem in
a confined system. They used a variational method and
have obtained a broader range of stability than shown
in [8]. The analysis of Senger and Ercelebi [13] however
involves Hartree-like wave function for the two-electron
system which includes the Coulomb correlation but does
not incorporate the Pauli correlation. In the present paper
we purport to make an improved calculation based on the
Hartree-Fock approximation which takes into account the
Coulomb correlation and also the proper antisymmetric
behaviour of the two-electron wave function.

2 Theory

Using convenient polaron units (m� = � = ωLO = 1) the
Hamiltonian describing a confined electron pair coupled
to LO-phonons of the medium is given by

H = He+
∑

Q

a†QaQ+
∑

j=1,2

∑

Q

VQ

(
aQe

iQ·rj + a†Qe
−iQ·rj

)

(1)
where

He =
∑

j=1,2

[
p2

j

2
+ Vconf(rj)

]
+

U

|r1 − r2| . (2)

In the above, aQ (a†Q) is the phonon annihilation (creation)
operator, rj and pj (j = 1, 2) are the positions and
the momenta of the electrons. The interaction amplitude
is related to the phonon wavevector Q through VQ =
(2
√

2πα)1/2/Q. It should be noted that using the polaron
units corresponds to scaling all energy and length quanti-
ties respectively by �ωLO and (�/m∗ωLO)1/2, where ωLO is
the dispersionless frequency of LO phonons, and m∗ is the
effective mass of the electron. The dimensionless constants
of the Coulomb interaction U and of the electron-phonon
coupling α are related by the equation

U =
e2

ε∞
=

α
√

2
1 − η

(3)

in which parameter η = ε∞/ε0 is the ratio of the high fre-
quency and static dielectric constants of the dot material.

We model the quantum dot with an anisotropic har-
monic oscillator having cylindrical symmetry

Vconf(r) =
1
2

(
Ω2

ρρ
2 +Ω2

zz
2
)
, (4)

which describes a spherical dot for Ωρ = Ωz and conforms
to a quantum wire when Ωz is set to zero.

In the adiabatic approximation of the polaron theory
the total wave function of the two polarons is written sep-
arable in the phononic and electronic parts,

Ψbipol = Φ(r1, r2) eS |0〉, with S =
∑

Q

fQ(aQ−a†Q) (5)

where |0〉 denotes the phonon vacuum state, and the
displaced-oscillator transformation eS yields the most ef-
ficient lattice distortion around the electrons through the
variational terms fQ. Minimization of 〈Ψbipol|H |Ψbipol〉
with respect to fQ yields fQ = VQsQ, where

sQ =
1
2

〈
Φ

∣∣∣∣∣∣

∑

i=1,2

(
eiQ·ri + e−iQ·ri

)
∣∣∣∣∣∣
Φ

〉
, (6)

such that the ground state energy of the two polaron com-
plex is calculated by optimizing the expression

Eg = 〈Φ|He|Φ〉 −
∑

Q

V 2
Qs

2
Q (7)

in terms of the variational parameters contained in Φ.
The form of the electronic part of the trial wave

function is chosen flexible enough to describe alternative
ground state configurations of the two polaron system at
once. These are the bipolaronic bound state, the state of
two spatially separated individual polarons, and in partic-
ular for the case of small quantum dots, the state of two
nearby polarons that are not in the bipolaronic bound
state but yet confined within the same dot. Compatible
with the adiabatic approximation and the form of the con-
finement potentials we write the two-electron wave func-
tion in terms of Gaussian functions. For the ground state
since the electrons are assumed to be in spin singlet state
the spatial part of the two-body wave function with the
correct exchange symmetry has the form:

Φ (r1, r2) ∼ |r1 − r2|
[
Ga,b

(
r1 − 1

2
r0

)
Ga,b

(
r2 +

1
2
r0

)

+ Ga,b

(
r1 +

1
2
r0

)
Ga,b

(
r2 − 1

2
r0

)]
(8)

where we combine two anisotropic Gaussian functions
Ga,b(r) = e−a2ρ2−b2z2

centered symmetrically around the
origin at + 1

2r0 and − 1
2r0, where a and b are variational

parameters. The factor |r1−r2| sets up a Coulomb correla-
tion between the electrons which gets more important for
nearby polarons. The separation |r0| between the centers
of the two Gaussians serves as a measure of the distance
between the two electrons. Without loss of generality the
electrons can be assumed to be located along the z-axis,
i.e. r0 = r0ẑ, when the confinement potential is weaker
along z (Ωρ ≥ Ωz). We expect to retrieve an upper bound
to the ground state of the two polarons by tracing the
value of r0 from zero to infinity. For instance in bulk, the
state of two independent polarons is achieved by r0 → ∞
and a = b. As we start decreasing the separation between
the polarons the total energy is expected to increase due
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to the Coulomb repulsion between the electrons until the
polarization fields of the polarons start to overlap. De-
pending on the material parameters if a bound state of
the electrons is favorable, the energy of the system will
display a local minimum at a finite (or zero) value of r0,
where the energy of the bipolaronic state will be lower
than twice the energy of a single polaron. The current
formulation of the problem will also provide an answer
regarding the structural form of the bipolaronic ground
state; whether it leads to a one-center (like He atom) or
a two-center (like H2 molecule) charge distribution of the
electrons in the bipolaronic state.

Transforming to center-of-mass, R = (r1 + r2)/2, and
relative, r = r1 − r2, coordinates the wave function can
be rewritten in the form

Φ(R, r) = ψ(R)φ(r) (9)

ψ(R) = NR e
−2a2R2

ρ e−2b2R2
z

φ(r) = Nr r e
− 1

2 a2ρ2
(
e−

1
2 b2(z+r0)

2
+ e−

1
2 b2(z−r0)

2
)

where NR, Nr are normalization constants. The trans-
formed forms of electronic part of the Hamiltonian and
the sQ terms are written as

He = −1
4
∇2

R −∇2
r +

U

r
+ Vconf(R, r) (10)

sQ = 〈ψ|e±iQ·R|ψ〉 〈φ|(eiQ·r/2 + e−iQ·r/2)|φ〉 (11)

The minimization of the variational energy Eg (7) with
respect to the parameters a and b provides us with an
upper bound of the ground state energy as a function of
the separation of polarons, r0.

3 Results and discussion

In the adiabatic approximation of the polaron problem all
energy values can be scaled by α2, which corresponds to
scaling the lengths by 1/α (a measure of polaron size). In
the following we find that scaling convenient to display
our numerical results [13].

We start with the bulk description of the problem. In
Figure 1 we plot the energy profiles of the two-polaron
complex in the bulk medium for three selected values of
the material parameter η. Each curve presents two local
minima as functions of the interpolaron distance r0. The
one at smaller values of r0 is identified as the bipolaron
state. The state of two independent polarons shows up as
the asymptotic minimum occurring for diverging r0, with
the well-known energy, Eg/α

2 = −2/3π = −0.2122. The
two minima are separated by an energy barrier, which
shows that formation of bipolaron in a metastable state
is possible even if its energy is higher than the energy of
two polarons.

The present Landau-Pekar strong coupling theory is
known to yield ground state energies proportional to α2

for both polaron and bipolaron states therefore it does
not provide a critical α value for the bipolaron stability.
Effective strength of the Coulomb interaction (η) has a
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Fig. 1. Variation of the ground state energy of the two-polaron
system as a function of the interpolaron distance, in bulk. The
inset magnifies the bipolaronic minimum region in linear scale.

critical value determined by the comparison of the ener-
gies of bipolaron bound state and state of two polarons,
where the condition for a stable bipolaron state is η < ηc.
In Figure 1 we determine that critical value as ηc = 0.130,
which is slightly less than the value we calculated previ-
ously (0.131) using a simpler wavefunction [9,13]. It is also
close to value of 0.115 that was obtained in a variational
analysis of an intermediate-coupling bipolaron [14].

The inset in Figure 1 portrays the variation of ground
state energy around the bipolaronic minimum. The mini-
mum occurs around a point where the centers of Gaussian
charge distributions of the polarons are separated by
about a polaron size, r0 ∼ 1/α. Therefore we have a
two-center configuration of bipolaron state. One should
keep in mind that even though the variational principle
is expected to provide reasonably accurate energy upper
bounds, validity of predictions regarding the form of the
wavefunction and hence the charge density is limited by
the approximations made to the exact wavefunction. In
our previous treatments of bulk and two-dimensional bipo-
laron ground states, the variational energy upper bound
to the ground state energy was obtained for r0 = 0, which
corresponds to a one-center configuration [13,15]. The ori-
gin of the apparent discrepancy between the conclusions of
our previous and present calculations on the symmetry of
the ground state lies in the degree of flexibility introduced
to the variational wavefunctions. In the former cases, after
transforming the bipolaron wavefunction constructed from
one-electron Gaussian functions to the center-of-mass and
relative coordinates (as in obtaining Eq. (9) starting from
Eq. (8)), the number of variational parameters commonly
appearing in both the center-of-mass and relative coordi-
nate components of the wavefunction were doubled by as-
signing independent parameters in each component. This
allowed a further flexibility to the variational wavefunction
which lowers the energy values in the small r0 domain,
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Fig. 2. Variation of the ground state energy of the two-polaron
system as a function of the interpolaron distance, in a spherical
dot. The scaled strength of the confining potential and the
corresponding critical η values are explicitly written. The inset
shows the variation of ηc with confinement strength, where the
dots on the curve corresponds to three cases displayed in the
figure.

smearing out the local energy minimum at finite sepa-
rations, and eventually leading to a one-center bipolaron
state. A plausible argument in this context has been pro-
vided in reports by Mukhomorov [16,17], where the bipo-
laron ground state has been found in a two-center form
as in the present work. The argument is based on the ne-
cessity of imposing additional constraints (such as virial
theorem) in the variational optimization process [17], and
leads to a conclusion that a one-center bipolaron ground
state is unstable. In view of this argument, the form of
the variational wavefunctions introduced in [13] and [15]
might not be compatible with the virial theorem. The two-
center structure of the bipolaron ground state is also sup-
ported by an analysis of experimental findings [16].

Next we consider the effect of a spherical parabolic
confinement potential (Ωρ = Ωz = Ω) on the stability of
bipolaron state. A parabolic potential of the form 1

2Ω
2r2

imposes a perfect confinement for the two polarons within
the quantum dot for all nonzero values of Ω. In Figure 2,
the energy profiles as functions of r0 for various Ω values
lack the asymptotic minimum corresponding to two un-
bound polarons. Instead of that now we have an energy
minimum belonging to a state of two polarons repelled
by their Coulomb interaction but kept at a finite separa-
tion by the barriers of the dot potential. Technically that
bound state can be viewed as a bipolaron with a larger ra-
dius, however, it may be more appropriate to describe it as
“the state of two interacting polarons confined within the
same dot”, which has the limit of “state of two noninter-
acting polarons separated to infinity” as Ω tends to zero.
The attractive interaction between the polarons due to the
overlap of their phonon fields rapidly decreases as the in-
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Fig. 3. Variation of the ground state energy of the two-polaron
system as a function of the interpolaron distance, in wire. The
scaled strength of the confining potential and the correspond-
ing critical η values are explicitly shown. The inset shows the
variation of ηc with wire size.

terpolaron distance gets larger than the polaron size. The
critical value of Coulomb repulsion strength η for a given
Ω is calculated by using the condition that the energies of
the two local minima at different r0 values are equal. En-
ergy of that state with a large but still finite r0 is certainly
higher than that of two unbound polarons in bulk. There-
fore, compared to bulk the confinement potential provides
a larger ηc value for stable bipolarons through elevating
the energies of the both alternative states of the two po-
larons in a spherical dot. For instance, the ηc value of 0.250
for Ω/α2 = 0.02 almost doubles over its bulk value of
0.130. The inset of Figure 2 where we plot the calculated
variation of ηc with the scaled potential strength shows
the broadened domain of stable bipolarons in a quantum
dot confinement.

Unlike quantum dot confinement quantum wire geom-
etry (Ωz = 0, Ωρ = Ω) reduces the range of η values that
admits a stable bipolaronic state. As shown in Figure 3
the energies of the bipolaron state and the state of the
unbound polarons in a quantum wire levels at smaller and
smaller values of η as the effective confinement strength is
increased. ηc monotonically decreases with Ω and eventu-
ally vanishes for Ω/α2 = 3.199 (see the inset of Fig. 3).

4 Conclusions

We have considered the problem of bipolaron formation
and stability in parabolic quantum dots and wires by us-
ing a variational method in the limit of strong electron-
phonon coupling, and a wave function that can conform to
both the bipolaronic bound state and the state of two sep-
arated polarons. The variational wavefunction we propose
admits a bipolaronic bound state at a finite separation
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(about a polaron size) of two polarons. The quantum dot
confinement extends the domain of stability of the bipola-
ronic bound state of two electrons as compared to the bulk
geometry, whereas the quantum wire geometry aggravates
the formation of stable bipolarons.
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