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Hartree-Fock-Bogoliubov nuclear mass model with 0.50 MeV accuracy based on standard
forms of Skyrme and pairing functionals
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We present a new Hartree-Fock-Bogoliubov nuclear mass model based on standard forms of Skyrme and
pairing functionals, which corresponds to the most accurate mass model we ever achieved within the framework
of the nuclear energy density functional theory. Our new mass model is characterized by a model standard
deviation σmod = 0.500 MeV with respect to essentially all the 2353 available mass data for nuclei with neutron
and proton numbers larger than 8. At the same time, the underlying Skyrme functional yields a realistic description
of infinite homogeneous nuclear matter properties, as determined by realistic calculations and by experiments;
these include in particular the incompressibility coefficient, the pressure in charge-symmetric nuclear matter,
the neutron-proton effective mass splitting, the stability against spin and spin-isospin fluctuations, as well as the
neutron-matter equation of state.
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Two main categories of nuclear mass model can be
recognized: (i) the microscopic-macroscopic approach, based
on the liquid-drop model and consisting of various degrees of
refinement of the original Weizsäcker mass model [1], e.g.,
the new finite-range drop model of Möller et al. [2] and the
work of Liu et al. [3]; (ii) the Hartree-Fock-Bogoliubov (HFB)
approach followed by our group, using density functionals
based on Skyrme-type or Gogny-type effective interactions;
the most recent versions are found in Refs. [4–6].

Despite the great differences between these two approaches
they can both be said to be “semi-empirical” in the sense
that they contain a certain number of parameters that are
determined by fitting to essentially all the available mass
data. The presence of such free parameters is made necessary
by the hitherto very limited success of ab initio approaches,
in which one tries to derive nuclear masses, along with all
other nuclear properties, from the “real” basic interactions
between nucleons, as determined by the properties of two- and
three-nucleon systems. So far this approach has succeeded
only for nuclei with mass number A � 74 (see, for example,
Ref. [7]) and homogeneous or infinite nuclear matter (INM).

Insofar as the interest of mass models lies in the calculation
of masses of nuclei that cannot be measured at the present
time, the presence of parameters that are fitted to the mass
data inevitably raises questions as to the reliability of such
extrapolations. Indeed, for this reason in our own work [4–6]
we require that some of our parameters satisfy constraints
derived from ab initio calculations of INM. Actually, a number
of groups [8–10] have calculated nuclear masses with methods
that are much closer in spirit to the ab initio approach than
are either of the first two categories that we have mentioned.
However, very heavy computation is required, and so far
such functionals have not been able to reproduce existing
nuclear data with the same degree of accuracy as more
phenomenological methods. Thus these promising methods
cannot yet be said to have led to viable mass models.

Our concern in this paper is with our own Skyrme-HFB
approach. In two recent papers [5,6] we have presented a

family of eight Skyrme-type functionals, BSk19 to BSk26,
along with their corresponding mass tables, HFB-19 to
HFB-26, respectively, that we constructed with a view to
providing a unified approach not only to the structure of
all the different regions of neutron stars (outer crust, inner
crust, and core) but also to other phenomena associated with
the birth and death of neutron stars, such as supernova core
collapse, the r process of nucleosynthesis (both in the neutrino-
driven wind and during the decompression of neutron-star
matter). These functionals are all based on effective forces
with a 16-parameter generalized Skyrme form, characterized
by unconventional terms that have simultaneous density and
momentum dependence.

The parameters of this form of force were determined
primarily by fitting measured nuclear masses, which were
calculated with the HFB method. For this it was necessary
to supplement the Skyrme forces with a pairing force,
phenomenological Wigner terms, and correction terms for the
spurious collective energy. However, in fitting the mass data
we simultaneously constrained the Skyrme force to fit the zero-
temperature equation of state (EoS) of homogeneous neutron
matter (NeuM), as determined by many-body calculations with
realistic two- and three-nucleon forces.

Actually, a wide range of EoSs of NeuM have been
proposed, differing greatly in the predicted stiffness at the
densities encountered in neutron star cores, but the form of
our functionals is sufficiently flexible to allow each of them to
be fitted, with an appropriate choice of parameters, while at the
same time obtaining a precise fit to the mass data. Our preferred
functional, BSk24 (mass model HFB-24) [6], fits the 2353
measured masses of nuclei with N and Z � 8 appearing in the
2012 Atomic Mass Evaluation [11] with an rms deviation of
0.549 MeV, and supports the heaviest observed neutron stars.

Moreover, our functionals simultaneously achieved (a) a
precise fit to the charge-radius data [12] (in the case of
BSk24 the rms deviation is 0.026 fm) as well as a good
description of the charge density radial distribution; (b)
a value of 0.8M for the isoscalar effective mass M∗
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charge-symmetric INM at the appropriate equilibrium den-
sity n0, this being the value indicated by calculations on
INM with realistic forces (see the discussion in Ref. [13]);
(c) an incompressibility Kv of charge-symmetric INM falling
in the experimental range 240 ± 10 MeV [14]; (d) the stability
of NeuM and of β-equilibrated neutron star matter (i.e.,
the homogeneous nucleon-lepton mixture of which neutron
star cores are comprised) against an unphysical polarization
at any density relevant to neutron star cores [15,16]; (e)
an EoS of charge-symmetric INM that is consistent with
measurements in heavy-ion collisions of nuclear-matter flow
over the density range 3–4.5n0 [17,18]; and (f) a qualitatively
acceptable distribution of potential energy among the four
different spin-isospin channels in INM.

However, this success was possible only because
of the presence of the unconventional t4 and t5 terms in the
Skyrme force, which introduce considerable complexity into
the formalism (see the Appendix of Ref. [15]). Furthermore,
while the usual δ-function form of pairing force was taken,
our treatment of its density dependence was far from conven-
tional: Rather than postulating a simple functional form for
the density dependence, the pairing strength was calculated
analytically at each point in the nucleus in question in such
a way as to reproduce the 1S0 pairing gaps of INM of the
appropriate density and charge asymmetry, as determined by
many-body calculations with realistic two- and three-nucleon
forces [19–21].

Realizing that our unconventional functionals cannot be
used in many nuclear structure codes, we explore in the
present paper the extent to which it is possible to reproduce
the successes of functional BSk24 with a standard form of
functional, i.e., using a 10-parameter Skyrme force of the form

vij = t0(1 + x0Pσ )δ(rrrij ) + t1(1 + x1Pσ )
1

2h̄2

{
p2

ij δ(rrrij )

+ δ(rrrij )p2
ij

} + t2(1 + x2Pσ )
1

h̄2pppij .δ(rrrij )pppij

+ 1

6
t3(1 + x3Pσ ) n(rrr)γ δ(rrrij )

+ i

h̄2 W0(σi + σ j )...pij × δ(rrrij )pppij , (1)

and a pairing force of the form

vpair(r ij ) = Vπq

[
1 − η

(
n

n0

)α]
δ(r ij ), (2)

where rrrij = rrri − rrrj , rrr = (rrri + rrrj )/2, pppij = −ih̄(∇∇∇ i − ∇∇∇j )/2
(this is the relative momentum), Pσ is the two-body spin-
exchange operator, and n(rrr) is the total local density.

As in our previous mass models [5,6,15,19,20], the above
mentioned constraints are again applied. We also impose
a symmetry coefficient J = 30 MeV, which was shown to
provide a good description of the NeuM EoS at low densities
and of nuclear masses and neutron skin data of nuclei [6].
In particular, it was shown in Ref. [6] that an increase of J
by 1 or 2 MeV leads to an increase of the rms deviation by
typically 20 and 80 keV, respectively. Similar results were
found in our previous mass fits based on standard Skyrme
functionals [22]. In addition, all the terms quadratic in the

TABLE I. Parameters of the HFB-27* mass model: first two
columns shows the parameters of the underlying Skyrme force
BSk27*, third and fourth columns the pairing parameters and last
two columns the parameters for the Wigner and collective corrections
(units for energy and length are MeV and fm, respectively).

Parameter Value Parameter Value Parameter Value

t0 −1837.06 V +
πn −456.6 VW −2.40

t1 376.186 V −
πn −482.1 λ 230

t2 −60.3080 V +
πp −500.2 V ′

W 1.08
t3 11521.7 V −

πp −527.6 A0 25
x0 0.460067 ε� 16.0 b 0.8
x1 −0.385853 c 10
x2 1.25982 d 3.7
x3 0.640301 l 16
W0 114.631 β0

2 0.1
γ 0.3

spin-current tensor and their time-odd counterpart are dropped
from the functional; as discussed in Ref. [5,16], this ansatz
(i) leads to more realistic values for the Landau parameters
and the Landau sum rules and (ii) removes spurious spin
and spin-isospin instabilities in nuclear matter, including in
particular unphysical ferromagnetic transitions over the full
range of densities relevant to neutron stars. Finally, we drop
the Coulomb exchange term for protons. This is a device
that leads to a significant improvement in the mass fits,
especially mirror-nucleus differences, and it can be interpreted
as simulating neglected effects such as Coulomb correlations,
charge-symmetry breaking of the nuclear forces, and vacuum
polarization [23]. For the pairing force, we use the same
parameters η = 0.45 and α = 0.47 as found in Ref. [24] and
include only single-particle states of energy ±ε� around the
Fermi level (Table I). In an attempt to take into account
Coulomb and charge-symmetry-breaking effects, as well as
time-reversal effects, the strength parameter Vπq was allowed
to be different for neutrons and protons, and also to be slightly
stronger for an odd number of nucleons (V −

πq) than for an even
number (V +

πq); i.e., the pairing force between neutrons, for
example, depends on whether the neutron number N is even
or odd.

To go beyond the mean-field approach, we subtract from
the HFB energy an estimate for the spurious collective energy.
As described in Ref. [19], the form we adopt here (and in
Refs. [5,6]) is

Ecoll = Ecrank
rot {b tanh(c|β2|) + d|β2|e−l(|β2|−β0

2 )2} (3)

in which Ecrank
rot denotes the cranking-model value of the rota-

tional correction and β2 denotes the quadrupole deformation,
while all other parameters are fitted freely. While the first term
here represents the rotational correction, phenomenologically
modified from its cranking-model value, the second term takes
account of the deformation dependence of the vibrational
correction (since Ecoll as given by Eq. (3) vanishes for spherical
nuclei we suppose that the vibrational correction for such
nuclei is absorbed into the fitted force parameters). The latter
correction has been shown to be of prime importance for a
proper description of shape isomers and fission barriers [25].
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FIG. 1. (Color online) Representation in the (N,Z) plane of
the difference between measured [11] and HFB-27* masses. Open
squares represent stable (incuding the long-lived Th and U isotopes)
nuclei.

To describe the well-known overbinding found in the N �
Z nuclei, the final mass formula adds to the above-described
energy a phenomenological Wigner term of the form

EW = VWe−λ((N−Z)/A)2 + V ′
W |N − Z|e−(A/A0)2

(4)

which contributes significantly only for light nuclei (A < A0)
or nuclei with N ∼ Z. Our treatment of this correction is
purely phenomenological, although physical interpretations of
each of the two terms can be made [19,26].

Results. The foregoing model, labeled HFB-27* (we now
adopt the notation * to refer to results obtained with standard
Skyrme functionals), was fitted to the full data set of 2353
measured nuclear masses [11]; the resulting parameter set,
labeled BSk27*, is given in Table I. We plot in Fig. 1 the
difference Mexp − Mth for all the 2353 nuclei with Z and
N � 8 for which the mass is known; no deviation exceeds
2.5 MeV. The rms and mean values of these deviations are
shown in the first two lines of Table II, with an rms deviation of
0.512 MeV, which is lower than achieved in any of our previous
models. Table II also gives the deviation for the subset of 257
masses of neutron-rich nuclei with Sn � 5 MeV, the neutron
separation energies (Sn) and the β-decay Q values. Because
experimental errors can give a significant contribution to the
rms deviation we also give in Table II the model error (σmod)
as defined by Eqs. (42) and (43) of Ref. [27]. As can be seen
in Table II, the model error for HFB-27* has now reached the
value of 0.500 MeV.

Even though the BSk27* functional was primarily fitted to
nuclear masses, it also provides a realistic description of INM.
Table III shows the corresponding macroscopic parameters.
For comparison, we have also indicated the values of these
parameters for the generalized Skyrme functional BSk24 [6].
Note that in both cases, the same values of the isoscalar
effective mass M∗

s and symmetry energy J were imposed.
For both forces, the isovector effective mass M∗

v is found to
be smaller than M∗

s at the saturation density n0, implying
that the neutron effective mass M∗

n is larger than the proton
effective mass M∗

p in neutron-rich matter. Such an isovector
splitting of the effective mass is consistent with measurements
of isovector giant resonances [28] and has been confirmed in

TABLE II. Rms (σ ) and mean (ε̄) deviations between data and
predictions for the HFB-27* model of this paper. The first pair of
lines refers to all the 2353 measured masses that were fitted [11], the
third line to the corresponding model error, the next pair to the masses
Mnr of the subset of 257 neutron-rich nuclei with Sn � 5.0 MeV, and
the following two pairs to the 2199 Sn and 2065 Qβ measured values.
The last pair corresponds to charge radii (884 measured values [12]).
For comparison, the results obtained with the HFB-24 mass model [6]
are also given.

HFB-24 HFB-27*

σ (M) (MeV) 0.549 0.512
ε̄(M) (MeV) −0.012 −0.005
σmod(M) (MeV) 0.542 0.500
σ (Mnr ) (MeV) 0.702 0.645
ε̄(Mnr ) (MeV) 0.011 0.051
σ (Sn) (MeV) 0.474 0.425
ε̄(Sn) (MeV) −0.009 −0.003
σ (Qβ ) (MeV) 0.567 0.516
ε̄(Qβ ) (MeV) 0.010 0.002
σ (Rc) (fm) 0.026 0.028
ε̄(Rc) (fm) −0.001 0.010

several many-body calculations with realistic forces [29,30].
It is quite remarkable that the actual values of the effective
masses predicted by both forces are in close agreement
with those obtained in Ref. [8], namely M∗

s = 0.825M and
M∗

v = 0.727M . It is to be noted that unlike in Ref. [28], we
have not had to resort to a second t3 term in the Skyrme force
in order to obtain the correct sign for the isovector splitting
of the nucleon effective mass while fitting a realistic NeuM
EoS. As shown in Fig. 2, the charge-symmetric INM EoS as
obtained from our functional BSk27* is consistent with the
analysis of the matter flow in heavy-ion collision experiments
at densities ranging from ∼n0 to ∼4.5n0 [17,18].

As shown in Fig. 3, the NeuM EoSs predicted by BSk27*
and BSk24 are both compatible with recent quantum Monte
Carlo calculations [31] up to a density of about 0.5 fm−3

at least, but also with those obtained by Tews et al. [32] at
next-to-next-to-next-to-leading order in chiral effective field

TABLE III. Macroscopic parameters for forces BSk24 and
BSk27*. Note that units for energy and length are MeV and fm,
respectively. For the definition of the parameters, see, for example,
Ref. [19].

BSk24 BSk27*

av −16.048 −16.051
n0 0.1578 0.1586
J 30.0 30.0
M∗

s /M 0.80 0.80
M∗

v /M 0.71 0.72
Kv 245.5 241.6
Ksym −37.6 −221.4
K ′ 274.5 363.5
L 46.40 28.5
G0 0.57 0.59
G

′
0 0.95 0.95
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FIG. 2. Pressure as a function of density in charge-symmetric
nuclear matter for the Skyrme functional BSk24 [6] and for our new
Skyrme functional BSk27*. The shaded area represents the constraint
inferred from the analysis of heavy-ion collisions [17,18].

theory. On the other hand, the high-density stiffness of these
two NeuM EoSs differs significantly: BSk24 is the stiffest
possible, while BSk27* is the softest with respect to the
constraints shown in Fig. 3. If extrapolated to the high densities
prevailing in neutron star cores, the very soft NeuM predicted
by the BSk27* functional appears to be ruled out by the
measured mass of PSR J1614−2230 [33]. We were unable
to get a stiffer NeuM EoS without degrading the quality of the
mass fit or including additional terms that are simultaneously
density and momentum dependent, as done in Refs. [5,6]. In
this respect, generalized Skyrme functionals, like BSk24, seem
better suited for applications to neutron star cores. On the other
hand, massive neutron stars are not necessarily incompatible
with a soft nucleonic EoS: It may suffice that neutron-star
cores contain non-nucleonic matter (e.g., deconfined quarks)
with a sufficiently stiff EoS, as discussed, e.g., in Ref. [34].
As a matter of fact, a soft nucleonic EoS is suggested by the

FIG. 3. Zero-temperature equation of state of neutron matter as
obtained with the Skyrme functional BSk24 [6] and with our new
Skyrme functional BSk27*. The shaded areas represent the recent
constraints of Ref. [31] (dark) and of Ref. [32] (light).
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FIG. 4. Differences between (a) HFB-27* and HFB-24 [6] masses
and (b) HFB-27* and D1M [4] masses for all Z, N � 8, Z � 110
nuclei between the proton and neutron drip lines.

analysis of K+ production [35–37] and π−/π+ production
ratio [38] that have been measured in heavy-ion collisions.

Unlike our previous nuclear mass models since HFB-16
[19], the pairing force that we have adopted here is purely
phenomenological. It has been already shown that the density
dependence given by Eq. (2) is not flexible enough to allow
for a good fit of the 1S0 pairing gaps in both charge-symmetric
INM and NeuM, as obtained from microscopic calculations
using realistic nucleon-nucleon potentials [21,39,40]. This is
clearly a deficiency of the standard pairing force given by
Eq. (2). For this reason, the pairing functionals underlying
our previous mass models from HFB-16 to HFB-26, which
were all deduced from microscopic calculations [21], are much
better suited for studies of superfluidity in neutron star crusts
than the pairing functional underlying the HFB-27* mass
model.

We have constructed a complete mass table including all
nuclei in the range Z and N � 8 and Z � 110 located between
the proton and neutron-drip lines. In Fig. 4, we compare these
predictions with those of our mass model HFB-24 and the
Gogny-HFB mass calculation based on the D1M force [4].
When comparing with our new mass model, we see that
relatively small differences emerge, except for the heaviest
nuclei (Z > 80) and as the neutron-drip line is approached
(N > 160). Even smaller deviations are found with respect to
the D1M mass model, except in the vicinity of the N = 126
or 184 neutron shell closures.

Conclusions. We have shown that with standard forms of
Skyrme and pairing forces it is possible to get an even better fit
to the mass data than was possible with the BSk24 functional,
the rms deviation for the 2353 measured masses of nuclei with
N and Z � 8 having been reduced to 0.512 MeV and the
model deviation to 0.500 MeV. However, to do this we had
to drop the requirement of an EoS of NeuM stiff enough to
support the heaviest neutron stars that have been observed. (It
could be that the necessary support comes from non-nucleonic
matter such as hyperons and quarks, but this is far from clear
at the present time, while the generalized form of functional
adopted in Refs. [5,6] is flexible enough to support the
heaviest neutron stars without invoking non-nucleonic matter.)
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Nevertheless, the new functional fits the EoS of NeuM up to
densities of 3–4n0. Moreover, other nuclear-matter properties,
such as the incompressibility coefficient, the isoscalar and
isovector effective masses, the pressure in charge-symmetric
INM, and stability against spin and spin-isospin fluctuations
are predicted to have values consistent with both experiments
and calculations based on realistic nucleon-nucleon potentials.

Thus we believe that the new functional will have widespread
applicability in standard HFB codes, although for unified
treatments of all parts of neutron stars a generalized functional
such as BSk24 will still be necessary.
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[27] P. Möller and J. R. Nix, At. Data Nucl. Data Tables 39, 213
(1988).

[28] T. Lesinski, K. Bennaceur, T. Duguet, and J. Meyer, Phys. Rev.
C 74, 044315 (2006).

[29] E. N. E. van Dalen, C. Fuchs, and A. Faessler, Phys. Rev. Lett.
95, 022302 (2005).

[30] W. Zuo, U. Lombardo, H.-J. Schulze, and Z. H. Li, Phys. Rev.
C 74, 014317 (2006).

[31] S. Gandolfi, J. Carlson, and S. Reddy, Phys. Rev. C 85, 032801
(R) (2012).
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