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Kurzzusammenfassung
Die experimentellen Realisierungen der ersten Bose-Einstein Kondensate im Jahre 1995 legten den
Grundstein für die physikalische Untersuchung von entarteten Quantengasen. Seitdem ist dieses
Wissenschaftsfeld ein robuster und schnell wachsender Teil der Tieftemperaturphysik geworden
und hat viel Aufmerksamkeit der physikalischen Gemeinschaft auf sich gezogen. Die ersten ma-
gnetischen dipolaren Effekte wurden in Bose-Einstein Kondensaten aus Atomen von 52Cr, 87Rb,
7Li und 164Dy beobachtet. Durch die Verwendung des STIRAP-Verfahrens (stimulierter adiaba-
tischer Raman-Übergang) ist es möglich geworden, die fermionischen Moleküle 40K87Rb mit einem
Dipolmoment von 0.5 Debye in die Nähe des quantenentarteten Bereiches zu bringen. Mit diesem
experimentellen Fortschritt ist es realistisch anzunehmen, dass entartete dipolare Fermigase in
Kürze experimentell untersucht werden können. In dieser Diplomarbeit stelle ich die Herleitung
einer Theorie dar, die die Dynamik solcher Gase vom kollisionslosen- hin zum hydrodynamischen
Regime beschreibt. Der erste Teil behandelt die Herleitung der Bewegungsgleichung, der so ge-
nannten Boltzmann-Vlasov-Gleichung, welche die Dynamik des Systems beschreibt und der zweite
Teil behandelt die Bestimmung einer approximativen Lösung.

Um eine Gleichung herzuleiten, welche die Zeitentwicklung des Systems beschreibt, führe ich eine
Quasi-Phasenraumverteilungsfunktion ein, welche aufgrund einer Gradientenentwicklung zu einer
semiklassischen Beschreibung führt und die Gültigkeit dieser Herleitung auf schwache Teilchen-
wechselwirkungen beschränkt. Deren Effekte werden mit Hilfe von Störungstheorie bestimmt,
welche in erster Ordnung zur Molekularfeldbeschreibung mittels Hartree- und Fock-Potenzialen
führt. Der Term zweiter Ordnung beschreibt die Zweiteilchen-Wechselwirkung über ein binäres
Kollisionsintegral. Aus der Betrachtung von dessen Eigenschaften leiten wir die Erhaltungsgrößen
des Systems ab, was zu einer konkreten Form der Verteilungsfunktion im lokalen Gleichgewicht
führt, welche den Limes jedes Relaxationsprozesses aufgrund von Kollisionen darstellt. Um
das Kollisionsintegral zu vereinfachen, linearisiere ich dieses und diskutiere die mathematische
Gültigkeit einer Relaxationszeitnäherung.

Um eine Lösung der Boltzmann-Vlasov Gleichung zu finden, benutze ich einen Skalenansatz
und berechne Momente der gesamten Gleichung, was zu gewöhnlichen Differentialgleichungen für
die Skalierungsparameter führt. Um diese zu lösen, minimieren wir die Gesamtenergie des Sys-
tems, was zu Gleichungen führt, welche die statische Lösung beschreiben. Dabei betrachte ich
insbesondere auch den zylindersymmetrischen Fall. Ich berechne die Wirkung der Kollisionen,
welche mittels einer Relaxationszeitnäherung beschrieben werden, durch die Bestimmung der Im-
pulssymmetrie des lokalen Gleichgewichts und kopple diese an die Differentialgleichungen mit Hilfe
der Erhaltungssätze. Dies führt zu einem geschlossenen Gleichungssystem, das numerisch gelöst
werden kann. Durch die Betrachtung der Grenzfälle der Kollisionen, dem kollisionslosen- und
dem hydrodynamischen Regime, zeige ich, wie diese Theorie in unterschiedlichen Regimen zu ver-
schiedenen Gleichungen führt und vergleiche die Ergebnisse mit früheren Untersuchungen dieser
Grenzfälle. Dies liefert die theoretischen Grundlagen für weitere Forschungen auf diesem Ge-
biet und könnte in zukünftigen Experimenten mit entarteten dipolaren Fermi-Gasen Anwendung
finden.
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Abstract

The experimental realization of the first Bose-Einstein condensates in 1995 created the basis
for the physical investigation of quantum degenerate gases. Since then, this research field has
become a robust and fast growing branch of low-temperature physics and attracted much attention
throughout the physical community. The first magnetic dipolar effects were observed in atomic
Bose-Einstein condensates of 52Cr, 87Rb, 7Li, and 164Dy. By using stimulated Raman adiabatic
passage (STIRAP) it was possible to bring the fermionic molecules 40K87Rb, with an electric
dipole moment of 0.5 Debye, close to quantum degeneracy. With this experimental progress it is
realistic to assume that it would soon be possible to investigate degenerate dipolar Fermi gases.
In this thesis, I present the derivation of a theory describing the dynamics of such gases from
the collisionless until the hydrodynamic regime. The first part deals with the derivation of the
underlying equation of motion, the so-called Boltzmann-Vlasov equation, which describes the
dynamics of the system and the second part is dedicated to find an approximate solution of it.

In order to derive an equation which governs the time evolution of the system, I introduce a
quasi phase-space distribution function which leads, due to a gradient expansion, to a semiclassical
description of the system and limits the validity of this derivation to weak interparticle interactions.
These effects are determined by means of perturbation theory which leads in first order to a mean-
field description by the Hartree and Fock potentials. The second order term describes two-particle
interactions via the binary collision integral. By considering its properties, I derive the conserved
quantities leading to a concrete form of the local equilibrium distribution function which denotes
the limit of any relaxation due to collisional effects. I linearize the collision integral to simplify it
and discuss the mathematical validity of a relaxation time approximation.

To find a solution of the Boltzmann-Vlasov equation, I use a scaling ansatz and calculate mo-
ments of the whole equation leading to ordinary differential equations for the scaling parameters.
In order to solve them, I minimize the total energy of the system and construct the equations
which determine the static solution. To this end, I consider in particular the cylinder-symmetric
case. Furthermore, I calculate the effect of collisions, which is described within a relaxation time
approximation, by determining the momentum symmetry of the local equilibrium and coupling
it to the differential equations by means of the conservation laws. This provides a closed set of
ordinary differential equations which can be solved numerically. By considering the collisional lim-
its, the collisionless and the hydrodynamic regime, I show how this theory leads to miscellaneous
equations of motion in the different regimes and compare these results with previous investigations
of these limiting cases. This provides a theoretical background for further theoretical studies and
could be useful for future experiments with degenerate dipolar Fermi gases.
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1 Introduction

This chapter provides a concise overview of the physics of ultracold quantum systems with a
special emphasis on dipolar Fermi gases. Starting in Section 1.1 from the first theoretical and
experimental developments, I present in chronological order important historical advances up to
the present status of this particular branch of low-temperature physics. In Section 1.2, I review
how interparticle interactions affect both static and dynamic properties of Fermi gases. In Section
1.3, I highlight the current theoretical and experimental state of knowledge in the topic of dipolar
Fermi gases. Finally, Section 1.4 shows the table of contents of the present thesis.

1.1 Bose Gases

Physicists have been working on the topic of low-temperature physics for about 90 years. In 1924
Satyendra Nath Bose derived Planck´s quantum radiation law using a novel method for counting
states of identical photons [1]. His idea was extended by Albert Einstein in the same year for
massive particles [2]. In this way it was discovered that the Maxwell-Boltzmann distribution is
no longer valid for microscopic bosonic particles and has to be replaced by another one, which
is called Bose-Einstein distribution. It predicts the existence of a new state for macroscopic
quantum systems, namely the Bose-Einstein condensate (BEC), in which a large fraction of bosons
occupy the quantum mechanical ground state of the system. In a BEC, quantum effects become
apparent on a macroscopic scale. Therefore, it is one prominent example for a macroscopic
quantum phenomenon. The physics community was skeptical whether a BEC could ever be
realized, considering the interaction of the particles. Nonetheless, further theoretical progress was
achieved and, in 1956, a common criterion for Bose-Einstein condensation, which is based on the
necessity of long-range order, was formulated by O. Penrose and L. Onsager [3].

An important step for experimentally realizing a Bose-Einstein condensate was the development
of laser cooling, which cools a gas of atoms or molecules via the interaction with one or more laser
fields. The method is based on the detuning of a laser field slightly above an electronic transition
frequency for the gas particles. If they move in the opposite direction of the light beam, the laser
light is red-shifted due to the Doppler effect, which leads to a higher probability to absorb the
photon and, therefore, to an effective cooling due to the direction independence of the spontaneous
emission. This method enables physicists to reach the µK regime.

Evaporative cooling is used to further cool down the gas in order to reach the temperatures
necessary for Bose-Einstein condensation. This method removes the particles with the highest
energy, thereby lowering the average energy of the particles and providing an effective cooling.

The experimental realization of Bose-Einstein condensates was achieved 70 years after their
theoretical prediction in 1995 by Eric Cornell and Carl Wieman at JILA [4] in a rubidium vapor
and by Wolfgang Ketterle at MIT [5] in a sodium vapor. In the next few years, most of the
theoretical and experimental studies were dedicated to bosonic quantum gases to investigate the
consequences of Bose-Einstein condensation and the physical properties of Bose gases. Finally,
it was possible to Bose-Einstein condense twelve chemical elements in the last years as shown
in Fig. 1.1, i.e., the elements of the first column of the periodic table as hydrogen in 1998 [6],
lithium in 1997 [7], potassium in 2001 [8] and cesium in 2003 [9]. The first two-electron BEC
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1 Introduction

Figure 1.1: Periodic table in which all elements, that were Bose-Einstein condensed, are high-
lighted in green.

was the rare-element ytterbium in 2003 [10], and recent developments made it possible to Bose
condense the alkaline earth metals calcium [11] and strontium [12,13], both in 2009. Another
major achievement was the Bose-Einstein condensation of helium in 2001 [14,15]. Additionally, in
the search for strong dipolar BEC´s, the condensation of chromium in 2005 [16] and dysprosium
in 2011 [17] succeeded.

1.2 Fermi Gases

In view of the experimental achievements with BECs, the attention of the physics community
naturally also turned towards fermionic gases. In contrast to bosons, fermions obey the Pauli
exclusion principle, leading to a quite different behavior. One important difference lies in the
fact that the s-wave scattering is inhibited for fermions, which has large consequences for cooling
mechanisms based on evaporation [18], because thermalization is suppressed in this case. This
property makes it hard to achieve low temperatures in Fermi gases. Nevertheless, this can be
realized through sympathetic cooling techniques, where two different spin components of the same
Fermi gas are used. Alternatively, a Bose gas may be used as a refrigerator. Another important
difference between fermionic and bosonic gases is that no phase transition into a BEC occurs in a
Fermi gas. Instead, there is a smooth crossover into quantum degeneracy.

These major differences are rooted in quantum statistics, which become prevalent at low tem-
peratures. Hence, ultracold Fermi gases lend themselves to the study of quantum effects in many-
body systems. The first important achievements of quantum degeneracy in trapped Fermi gases
were obtained in 1999 at JILA [19], where temperatures smaller than the Fermi temperature
were reached. As the experimental data did not agree with classical theory, but coincided with
theoretical predictions for degenerate Fermi gases, the quantum nature of the sample became
apparent.

Interactions play a major role in quantum gases, as one can see in the context of the BCS-BEC
crossover. BCS theory, which was proposed by J. Bardeen, L. Cooper and J. R. Schrieffer, was the
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1.2 Fermi Gases

Figure 1.2: a) Schematic representation of the interaction potential with respect to the interpar-
ticle distance r. The red line represents the open channel and the blue one the closed
channel. b) Functional behavior of the s-wave scattering length with respect to the
applied magnetic field [20].

first microscopic theory of superconductivity, its name being derived from the physicists’ initials.
The BCS theory explains the effect of superconductivity on the basis that attractively interacting
fermions form Cooper pairs which behave like a particle with integer spin. Therefore, these pairs
obey Bose-Einstein statistics, despite their fermionic constituents. The condensation of Cooper
pairs at the Fermi edge leads to the famous effects of superconductivity and superfluidity. On
the other hand, when the interaction between the fermions is repulsive, loosly bound molecules
are formed, which are small in comparison to the Cooper pairs, and their condensation leads to
superfluidity.

In recent years, the interparticle interaction strength could be changed by means of a Feshbach
resonance which enables one to change an attractive interparticle interaction into a repulsive one.
To discuss this in detail, consider two particles interacting via an underlying potential as a function
of the relative distance r as is depicted in Fig. 1.2 a). An incoming particle will be scattered back
by the barrier of the potential at r = 0 if the potential is independent of the atomic internal degrees
of freedom, which is called the open channel. But if the interparticle interaction depends on the
internal degrees of freedom, different sub-states will be coupled due to the hyperfine interaction.
An example will be the formation of a bound state of two particles due to the collision process
between them. This is called the closed channel. A Feshbach resonance occurs when the energy of
the bound state is equal to the asymptotic energy of the open channel. The important point is the
tunability of this energy difference for the hyperfine interaction by means of an external magnetic
field. This enables one to change the s-wave scattering length as shown in Fig. 1.2 b), thereby
providing a control over the strength and nature of the interparticle interaction. This represents
an ideal testing ground for investigating many-body quantum systems.

In order to characterize Fermi gases, it is important to investigate the elementary excitations of
the system, which depend on the interaction. In the nearly collisionless regime, in which only a few
scattering events per oscillation of the excitation occur, this corresponds to the zero sound mode,
a collective excitation due to the effective mean field provided by a large number of particles. On
the other hand, in the case of a large collisional rate, which is called the hydrodynamic regime,
the elementary excitation is the first sound mode due to the high collision rate which ensures local
equilibrium. The transition between these two regimes was first observed by S. D. Gensemer and
D. S. Jin [21] where a change of the density of a gas consisting of 40K led to a drastic change in
the strength of the interparticle interaction.
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1 Introduction

1.3 Dipolar Fermi Gases

The experimental observation of quantum degeneracy leads to the possibility of studying the long-
range dipole-dipole interaction in a polarized Fermi gas in a controlled way. The corresponding
interaction potential reads

Vint(x) =
Cdd

4π |x|3
(
1− 3 cos2 ϑ

)
, (1.1)

with ϑ being the angle between the polarization direction and the relative position of the dipoles.
The constant Cdd is a useful abbreviation so that Eq. (1.1) holds both for magnetic Cdd = µ0m

2

and for electric dipoles Cdd = 4πd2, with the magnetic permeability in vacuum µ0 and the electric
dipole moment d measured in units of Debye.

The first theoretical article dealing with a dipolar Fermi gas was published in 2001 by K. Góral
et al. [22], where a semiclassical theory of fermionic dipoles was used in order to investigate the
hydrodynamic excitations of the system [23]. At about the same time, the anisotropic pairing in
polarized dipolar gases in homogeneous [24] and harmonically trapped samples [25] was studied.
Recently, it was discovered that, due to the dipole-dipole interaction, the momentum distribution
of a Fermi gas is deformed from a sphere to an ellipsoid [26]. This important fact was not
considered in previous investigations. Moreover, other remarkable studies have been made for
trapped dipolar Fermi gases which cover, e.g., stationary solutions, low-lying excitations, and
time-of-flight dynamics in the collisionless regime at zero temperature [27] or at finite temperatures
[28] and in the hydrodynamic regime [20,29,30].

The experiments in the field of dipolar Fermi gases are not so far advanced, but recently, promis-
ing progress was made. Dipolar Fermi gases can be realized in several ways. One method consists
of using atoms with large permanent magnetic dipole moments m, for example the chromium iso-
tope 53Cr with m = 6 µB, which has been magneto-optically trapped [31]. A crucial characteristic
of these magnetic atoms is the strength of their dipole moments, because the dipole-dipole poten-
tial depends quadratically on them. Therefore, dysprosium, which is one of the elements with the
largest magnetic dipole moments of ten Bohr magnetons µB, is the most promising candidate for
future experiments. As it was recently possible to condense 1.5 × 104 164Dy atoms below 30 nK
[17], it is realistic to assume that fermionic isotopes, such as 163Dy, which can be trapped simul-
taneously with bosonic isotopes [32], can soon be brought into the quantum degenerate regime as
well.

Another option is to use heteronuclear polar molecules. They are especially suitable due to
their large electric dipole moments. Further investigations of this topic led to the possibility to
control the interparticle interaction in these systems through applied electric fields [33] similar to
a Feshbach resonance. Recently, 40K87Rb molecules were brought close to quantum degeneracy
by using stimulated Raman adiabatic passage (STIRAP) to convert the molecules into the rovi-
brational ground state [34]. Further developments made it possible to detect via thermodynamic
measurements the anisotropy of the 40K87Rb-sample caused by the dipole-dipole interaction [35]
as well as both the space and the momentum distribution [36]. However, these molecules are
not suitable for further studies at lower temperatures due to their chemical instability. Currently,
several groups are trying to cool proper endothermic heteronuclear molecules which are chemically
stable, so that polar molecules could serve as a background for testing theoretical predictions as
those developed in the present thesis.
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1.4 This Thesis

1.4 This Thesis

The present thesis deals with the physical properties of a Fermi gas interacting via the long-range
dipole-dipole interaction within a triaxial trap at zero temperature. In the first part, I present the
derivation of the Boltzmann-Vlasov equation describing the time evolution of the system and its
properties. The second part is dedicated to find an approximate solution to this equation.

In Chapter 2, I present the description of the system in terms of a phase-space distribution
function, starting from basic quantum mechanics. The equation of motion for this function will
be derived according to perturbation theory, leading in first order to the Hartree and Fock terms
and in second order to the collision integral.

Chapter 3 analyses the physical properties of the collision integral. At first, I will demonstrate
how it conserves particle number, momentum and kinetic energy and how any relaxation due to
the collision processes leads to a relaxation of the system into a Fermi-Dirac distribution. Then, I
will also deal with approximations of the collision integral, i.e., the linearization and the relaxation
time approximation, and discuss their validity.

In Chapter 4, I present the derivation of an approximate solution of the equation of motion
for the distribution function which should be able to describe different collisional regimes, such
as the collisionless or the hydrodynamic regime. To this end, I derive the static solution and the
momentum symmetry of distribution functions which are invariant under collisions.

Chapter 5 considers the limiting cases of my approximate solution. For this purpose, I spe-
cialize the system into different collisional regimes and trapping geometries to obtain equations
which can be checked against previous theoretical work.

The thesis is concluded in Chapter 6, where an outlook is given in which I describe applications
of the theory and propose further developments, e.g., how a more general equation of motion can
be derived and how one can include temperature in this model.
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2 The Boltzmann-Vlasov Equation

In order to describe an ultracold Fermi gas, I use a semiclassical description in terms of a phase-
space distribution function. It describes the dynamics of the system by an equation of motion,
which is called Boltzmann-Vlasov equation. I present in this chapter its derivation at zero tem-
perature with all important steps of the calculation.

Consider a Fermi gas, which is contained in a trap and where the constituent fermions can
interact via a two-particle interaction. The physical properties of the considered Fermi gas are
mathematically contained in the Hamilton operator Ĥ of the system which determines the time
evolution of quantum states |ψ(t)〉 through

ih̄
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉. (2.1)

Moreover, the Hamilton operator of the system decomposes according to

Ĥ = Ĥ0 + Ĥint, (2.2)

and can be written in terms of the creation and annihilation operators ψ̂†(r) and ψ̂(r). In turn,
these satisfy the anticommutation relations

{ψ̂(r), ψ̂†(r′)} = δ(r− r′),

{ψ̂(r), ψ̂(r′)} = 0, (2.3)

{ψ̂†(r), ψ̂†(r′)} = 0,

where the curly brackets denote the anticommutator {Â, B̂} = ÂB̂ + B̂Â. The one-particle
Hamilton operator Ĥ0 contains the kinetic energy and the trapping potential U(r) in the form

Ĥ0 =

∫

d3rψ̂†(r)

[

− h̄
2∇2

r

2m
+ U(r)

]

ψ̂(r) (2.4)

and the interaction Hamilton operator Ĥint describes two-particle interactions via the potential
Vint(r− r′) according to

Ĥint =
1

2

∫

d3rd3r′Vint(r− r′)ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r). (2.5)

In this thesis I only consider the dipole-dipole interaction Eq. (1.1) between the fermions. This is
based on the assumption that the van-der-Waals forces between the atoms can be approximated
at low temperatures by an effective contact interaction [37–40]. This approximation considers
only the s-wave scattering of the potential, which is however forbidden for fermions, due to their
asymmetric wave functions [41]. Conveniently, then, there is no need to account for this type of
interaction.

13



2 The Boltzmann-Vlasov Equation

2.1 Wigner Representation

A classical system is fully described through space and momentum variables and one often uses
phase-space distribution functions to describe the dynamics of a many-particle system. In a
quantum description, it is possible to consider a quasi-distribution function, the Wigner function,
which is defined through the Fourier transform of the correlation function G(2)(x;x′; t) with respect
to the relative coordinate s = x− x′ and reads

f(r,p, t) =

∫

d3se
i
h̄
p·sG(2)

(

r +
s

2
; r− s

2
; t
)

. (2.6)

This correlation function is defined through the average of a field operator and an adjoint one

G(2)(x;x′; t) =
〈

ψ̂† (x) ψ̂ (x′)
〉

t
(2.7)

and the quantum average is understood as the trace over the field operators with the underlying
density matrix ρ̂(t)

〈

ψ̂† (x) ψ̂ (x′)
〉

t
= Tr

[

ρ̂(t)ψ̂† (x) ψ̂ (x′)
]

. (2.8)

Calculating the averages with the density matrix is a more general method than using the scalar
product of quantum states, because it enables to describe not only pure states but also mixed
ones. Therefore, it contains the whole time evolution of the system in the Schrödinger picture.

The Wigner function contains all quantum information of the system and is equivalent to a
quantum mechanical wave function [42,43]. Despite of this, it can be negative within small areas
of the phase space, which are shielded by the Heisenberg uncertainty relation. Therefore, the
Wigner function is only a quasi-distribution function, but the quantum-mechanical expectation
values of observables can be obtained by integrating them over the whole phase space, weighted
with the Wigner function. In particular, integrating the Wigner function over the space or the
momentum variable leads to the respective densities

n(x, t) =

∫
d3p

(2πh̄)3
f(x,p, t), (2.9)

n(p, t) =

∫
d3x

(2πh̄)3
f(x,p, t), (2.10)

which are genuine distribution functions. In my further calculations, I perform gradient expan-
sions which assume that the Wigner function is slowly varying in its spatial argument. Thereby,
quantum mechanical information is lost, which yields a semiclassical Wigner function [44].

Note that I will perform all of my further calculations in the Schrödinger picture. Then, the
whole time evolution of the system is governed by the density matrix ρ̂(t) according to the von
Neumann equation

ih̄
∂ρ̂

∂t
(t) =

[

Ĥ, ρ̂(t)
]

, (2.11)

where the square brackets denote the commutator [Â, B̂] = ÂB̂−B̂Â. The resulting time evolution
of the Wigner function can be computed with the help of Eq. (2.6)–(2.11) by using the cyclic
permutation of the trace and the explicit form of the Hamiltonian from Eqs. (2.2), (2.4), and
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2.2 Kinetic Term

(2.5):

ih̄
∂f

∂t
(r,p, t) =

∫

d3sd3r′e
i
h̄
p·sTr

(

ρ̂(t)

{

ψ̂†
(

r +
s

2

)

ψ̂
(

r− s

2

)

, ψ̂†(r′)

[

− h̄
2∇2

r′

2m
+ U(r′)

]

ψ̂(r′)

})

+
1

2

∫

d3sd3r′d3r′′e
i
h̄
p·sTr {ρ̂(t)Vint(r

′ − r′′)

×
[

ψ̂†
(

r +
s

2

)

ψ̂
(

r− s

2

)

, ψ̂†(r′)ψ̂†(r′′)ψ̂(r′′)ψ̂(r′)
]}

. (2.12)

The calculation of the respective terms on the right-hand side of Eq. (2.12) represents the goal of
this chapter. The kinetic and trapping terms contain anticommutators of four field operators which
lead to averages of two field operators and, through Eq. (2.6) and Eq. (2.7), to Wigner functions.
The six operator average in the interaction term is more complicated. It will be necessary to use
perturbation theory to compute this term in an appropriate way. For simplicity, I will deal with
all these terms individually.

2.2 Kinetic Term

At first, I will calculate the term which contains the one-particle Hamiltonian Ĥ0. After performing
the commutator, the kinetic energy contribution in Eq. (2.12) yields the following expression

IK =

∫

d3s
−h̄2

2m
e

i
h̄
p·sTr

(

ρ̂(t)
{

ψ̂†
(

r +
s

2

) [

∇2
−ψ̂
(

r− s

2

)]

−
[

∇2
+ψ̂
†
(

r +
s

2

)]

ψ̂
(

r− s

2

)})

,

(2.13)

where ∇± = ∇r±s/2 is an abbreviation. The derivatives can be rewritten into pure derivatives of
r and s by using the chain rule

∇r± 1
2
s = ∇r ±

1

2
∇s. (2.14)

Inserting this into Eq. (2.13) leads to

IK =

∫

d3s
h̄2

m
e

i
h̄
p·s∇s · ∇rTr

[

ρ̂(t)ψ̂†
(

r +
s

2

)

ψ̂
(

r− s

2

)]

. (2.15)

Using a partial integration, computing the action of ∇s onto the exponential function and taking
into account Eqs. (2.6)–(2.8) yields

IK = −ih̄ p

m
· ∇rf(r,p, t). (2.16)

Note that the kinetic term Eq. (2.16) was obtained without any approximation.

2.3 Trapping Term

In the case of a smooth trapping potential U(r), the corresponding term in Eq. (2.12) can be
calculated similar to the kinetic term. At first one has to calculate the commutator with the
trapping term which leads to

IU =

∫

d3se
i
h̄
p·s
[

U
(

r− s

2

)

− U
(

r +
s

2

)]

Tr
{

ρ̂(t)ψ̂†
(

r +
s

2

)

ψ̂
(

r− s

2

)}

. (2.17)
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2 The Boltzmann-Vlasov Equation

In order to deal with the potentials at different space points, I use the translation operator
f(x+a) = ea·∇xf(x). This can also be understood as a Taylor expansion of the function f(x+a)
with respect to a at the space point x. Using the translation operator yields

IU =

∫

d3se
i
h̄
p·s
[(
e−

s
2
·∇r − e s

2
·∇r
)
U(r)

]
Tr
[

ρ̂(t)ψ̂†
(

r +
s

2

)

ψ̂
(

r− s

2

)]

. (2.18)

To obtain a term proportional to the Wigner function, I have to approximate the exponential
functions to first order. Physically, neglecting higher order derivatives of the trapping potential
U(r) within a gradient expansion means that it is assumed to be slowly varying in space. Hence
I approximate Eq. (2.18) to

IU ≈ −
∫

d3se
i
h̄
p·s s · ∇rU(r)Tr

{

ρ̂(t)ψ̂†
(

r +
s

2

)

ψ̂
(

r− s

2

)}

. (2.19)

Now I can rewrite the factor s in the integrand with the help of the exponential function in
Eq. (2.19) as a derivative of the momentum p and get with Eqs. (2.6)–(2.8)

IU = ih̄∇rU(r) · ∇pf(r,p, t). (2.20)

2.4 Hierarchical Structure of Quantum Averages

Putting the kinetic and trapping terms (2.16) and (2.20) together and calculating the commutator
in the interaction term in Eq. (2.12) yields the intermediate result

∂f

∂t
(r,p, t) +

p

m
· ∇rf(r,p, t)−∇rU(r) · ∇pf(r,p, t) =

1

ih̄

∫

d3s

∫

d3xe
i
h̄
p·s

×
[

Vint

(

x− r +
s

2

)

− Vint

(

x− r− s

2

)]

Tr
[

ρ̂(t)ψ̂†
(

r +
s

2

)

ψ̂† (x) ψ̂ (x) ψ̂
(

r− s

2

)]

. (2.21)

The right-hand side of Eq. (2.21) shows the main problem of deriving an equation that determines
the time evolution of the Wigner function: The time derivative of the average of two field operators
leads to an average of four field operators, the time derivative of this four-field operator average
would lead to a six-field operator average, and so on. Note that this is a hierarchical structure
and it is, therefore, impossible to get a closed set of equations without further approximations.
Thus, I approximate this term with the help of perturbation theory with respect to the interaction
potential, which can only be done in the case of weak interparticle interactions, thereby limiting the
validity of the resulting Boltzmann-Vlasov equation. The first-order term leads to the mean-field
potentials and the second-order term to the collision integral.

With the help of the Wick contraction, one is able to approximate higher order operator averages
as products of two-field operator averages according to
〈

ψ̂†(x1)ψ̂
†(x2)ψ̂(x3)ψ̂(x4)

〉

t
≈
〈

ψ̂†(x1)ψ̂(x4)
〉

t

〈

ψ̂†(x2)ψ̂(x3)
〉

t

−
〈

ψ̂†(x1)ψ̂(x3)
〉

t

〈

ψ̂†(x2)ψ̂(x4)
〉

t

=G(2)(x1;x4; t)G
(2)(x2;x3; t)−G(2)(x1;x3; t)G

(2)(x2;x4; t). (2.22)

Note that this is only an approximation. It is therefore necessary to understand, what is lost by
using it. To explain this in more detail, I consider two- and four-field operator averages. With
the help of the abbreviation

h(x) =
−h̄2∇2

x

2m
+ U(x), (2.23)
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2.4 Hierarchical Structure of Quantum Averages

the dynamics of the correlation functions is described via the following differential equations

ih̄
∂G(2)(x1;x2; t)

∂t
= [h(x2)− h(x1)]G

(2)(x1;x2; t)

+

∫

d3x [Vint (x− x2)− Vint (x− x1)]G
(4) (x1,x;x,x2; t) , (2.24)

ih̄
∂G(4)(x1,x2;x3,x4; t)

∂t
= [h(x4) + h(x3)− h(x2)− h(x1)]G

(4)(x1,x2;x3,x4; t)

+ [Vint (x3 − x4)− Vint (x2 − x1)]G
(4)(x1,x2;x3,x4; t)

+

∫

d3x [Vint (x− x4) + Vint (x− x3)− Vint (x− x2)− Vint (x− x1)]

×G(6) (x1,x2,x;x,x3,x4; t) . (2.25)

Consequently, the equation of motion for an n-field operator average involves an n + 2 operator
average. This hierarchical structure contains, in principle, an infinite number of coupled partial
differential equations, where the first one is of first order in the interaction potential and the n-th
differential equation is of order n in Vint. Thus, approximately solving this hierarchical structure
up to a certain equation corresponds to applying perturbation theory up to this order in the
interaction potential. To understand in which case the Wick contraction is exact, I consider
at first the simplest case, where no interaction occurs. For this purpose, I introduce two- and
four-field operator averages

G
(2)
0 (x1;x2; t) = Tr

[

ρ̂0(t)ψ̂
†(x1)ψ̂(x2)

]

, (2.26)

G
(4)
0 (x1,x2;x3,x4; t) = Tr

[

ρ̂0(t)ψ̂
†(x1)ψ̂

†(x2)ψ̂(x3)ψ̂(x4)
]

, (2.27)

where the density matrix ρ̂0(t) evolves only with respect to the one-particle Hamilton operator
Ĥ0 according to

ih̄
∂ρ̂0

∂t
=
[

Ĥ0, ρ̂0(t)
]

. (2.28)

To distinguish them from correlation functions, which evolve with the full Hamilton operator
Ĥ, I denote them with the index ’zero’. Their differential equations can be obtained from the
equations of motion for the general field operator averages Eq. (2.24) and Eq. (2.25) by setting
the interaction potential to zero:

ih̄
∂G

(2)
0 (x1;x2; t)

∂t
= [h(x2)− h(x1)]G

(2)
0 (x1;x2; t), (2.29)

ih̄
∂G

(4)
0 (x1,x2;x3,x4; t)

∂t
= [h(x4) + h(x3)− h(x2)− h(x1)]G

(4)
0 (x1,x2;x3,x4; t). (2.30)

Inserting the Wick contraction of G
(4)
0 , e.g.

G
(4)
0 (x1,x2;x3,x4; t) = G

(2)
0 (x1;x4; t)G

(2)
0 (x2;x3; t)−G(2)

0 (x1;x3; t)G
(2)
0 (x2;x4; t), (2.31)

into its differential equation Eq. (2.30) and using Eq. (2.29) shows that the Wick contraction is
exact in the considered case. The reason for this is that Ĥ0 in Eq. (2.4) is quadratic in the field
operators. Hence, performing the Wick contraction means neglecting the interaction part Ĥint in
the complete Hamiltonian Eq. (2.2).
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2 The Boltzmann-Vlasov Equation

But this perturbation theory can not be performed exactly, which means that I have to make an
additional approximation. The reason for this is that the Wick contraction only applies exactly to
G

(2n)
0 and therefore one has to find an exact relation between G(2n) and G

(2n)
0 , which is generally

not possible. In the case of G(2) such a relation can be derived, because of the linearity of
the differential equation Eq. (2.24) and the fact that G

(2)
0 is the homogeneous solution of it.

Then, a relation between these two correlation functions can be derived by using the fact that
general solutions of linear differential equations consist of the general homogeneous solution and a
particular solution of the inhomogeneous equation. In the case of higher order correlation functions
this is not possible, because their differential equations contain two terms proportional to G(2n),
one due to the one-particle Hamiltonian Ĥ0 and a second one originating from the interaction
Hamiltonian. For G(4) these are the first two terms in Eq. (2.25). Thus, the homogeneous solution
of this differential equation is not the correlation function which evolves only with the one-particle
Hamiltonian G

(4)
0 .

2.5 Perturbation Theory

In order to achieve an expression for the right-hand side of Eq. (2.21), I have to perform pertur-
bation theory. Eq. (2.11) determines the time evolution of the density matrix ρ̂(t). To solve this
differential equation approximately, I will iterate the associated integral equation up to first order
in the interaction potential. At first, I will derive this integral equation and afterwards solve it
approximately. The time evolution due to the one-particle Hamiltonian Ĥ0 can be expressed in
terms of the time evolution operator Û0(t, t0) = e−

i
h̄

Ĥ0(t−t0). To this end, I will reformulate the
equation of motion for ρ̂(t) in order to describe the effects of the one-particle Hamiltonian Ĥ0

only in terms of time evolution operators. This can be achieved by using the interaction picture
in which the density matrix is defined through the following formula

ρ̂(t) = Û0(t, t0)ρ̂D(t)Û †0(t, t0). (2.32)

The time evolution of ρ̂D(t) is then governed by

ih̄
∂ρ̂D(t)

∂t
= Û †0(t, t0)[Ĥint, ρ̂(t)]Û0(t, t0). (2.33)

The corresponding integral equation can be obtained by integrating the whole differential equation

ρ̂D(t) = ρ̂D(t0)−
i

h̄

∫ t

t0

dt′Û †0(t
′, t0)[Ĥint, ρ̂(t

′)]Û0(t
′, t0). (2.34)

Thus, taking into account Eq. (2.32), I get for the density matrix in the Schrödinger picture

ρ̂(t) = Û0(t, t0)ρ̂(t0)Û
†
0(t, t0)−

i

h̄

∫ t

t0

dt′Û0(t, t0)Û
†
0(t
′, t0)[Ĥint, ρ̂(t

′)]Û0(t
′, t0)Û

†
0(t, t0). (2.35)

The products of the time evolution operators can be rewritten into single time evolution oper-
ators. Obviously, a time evolution from t′ to t0, i.e., Û †0(t

′, t0) = Û0(t0, t
′), followed by a time

evolution from t0 to t, i.e., Û0(t, t0), is equivalent to a time evolution from t′ to t, i.e., Û0(t, t
′).

Mathematically, this can be seen by considering the underlying exponential functions of the time
evolution operator. Thus, I obtain

Û0(t, t0)Û
†
0(t
′, t0) = Û0(t, t

′). (2.36)
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2.6 Mean-Field Terms

The other two time evolution operators can be treated analogously. Inserting this into Eq. (2.35)
leads to

ρ̂(t) = Û0(t, t0)ρ̂(t0)Û
†
0(t, t0)−

i

h̄

∫ t

t0

dt′Û0(t, t
′)[Ĥint, ρ̂(t

′)]Û †0(t, t
′). (2.37)

Iterating this relation to first order and inserting this into the four-field operator average of
Eq. (2.21) leads to

Tr
[

ρ̂(t)ψ̂†
(

r +
s

2

)

ψ̂† (x) ψ̂ (x) ψ̂
(

r− s

2

)]

= Tr
{

Û0(t, t0)ρ̂(t0)Û
†
0(t, t0)

×ψ̂†
(

r +
s

2

)

ψ̂† (x) ψ̂ (x) ψ̂
(

r− s

2

)

− i

h̄

∫ t

t0

Û0(t, t
′)[Ĥint, Û0(t, t0)ρ̂(t0)Û

†
0(t, t0)]

×Û †0(t, t′)ψ̂†
(

r +
s

2

)

ψ̂† (x) ψ̂ (x) ψ̂
(

r− s

2

)

+ · · ·
}

. (2.38)

The first term of Eq. (2.38) will lead to the Hartree and Fock mean-field terms, while the second
term, which is of second order in the interaction, will lead to the binary collision integral.

2.6 Mean-Field Terms

Here, I will derive the mean-field terms of Eq. (2.21). Hence, I only consider the first term of the
right-hand side of Eq. (2.38), inserting it into the interaction term of Eq. (2.21). The four-field
operator average in this term evolves only with respect to the one-particle Hamiltonian Ĥ0, so
it satisfies Eq. (2.30). As discussed earlier, the Wick contraction for this four-operator average
is exact, but leads to two-field operator averages which also evolve only via the one-particle
Hamiltonian Ĥ0, so I get with the Wick contraction Eq. (2.31)

Tr
{

Û0(t, t0)ρ̂(t0)Û
†
0(t, t0)ψ̂

†
(

r +
s

2

)

ψ̂† (x) ψ̂ (x) ψ̂
(

r− s

2

)}

= G
(4)
0

(

r +
s

2
,x;x, r− s

2
; t
)

= G
(2)
0

(

r +
s

2
; r− s

2
; t
)

G
(2)
0 (x;x; t)−G(2)

0

(

r +
s

2
;x; t

)

G
(2)
0

(

x; r− s

2
; t
)

. (2.39)

Because of the linearity of the differential equation for G(2) in Eq. (2.24), an exact relation can

be obtained between the two-operator averages G(2) and G
(2)
0 , which evolve with and without the

interaction Hamiltonian, respectively. A general solution of such a differential equation is the sum
of the general solution of the homogeneous differential equation G

(2)
0 and a particular solution of

the inhomogeneous differential equation. The latter can be derived with the method of varying
constants:

G(2)(x1;x2; t) =G
(2)
0 (x1;x2; t) (2.40)

+
1

ih̄
G

(2)
0 (x1;x2; t)

∫ t

t0

dt′
∫
d3x [Vint(x− x2)− Vint(x− x1)]G

(4)(x1,x;x,x2; t
′)

G
(2)
0 (x1;x2; t′)

.

I approximate G
(2)
0 with G(2), which is correct up to first order in the interaction. I perform this

approximation following Kirkpatrick and Dorfman [45] and note that this means neglecting terms
which are of second order in the interaction potential. The importance of these terms for the
Boltzmann-Vlasov equation is beyond the scope of this diploma thesis. Thus, I am left with the
following result for the left-hand side of Eq. (2.39)

Tr
{

Û0(t, t0)ρ̂(t0)Û
†
0(t, t0)ψ̂

†
(

r +
s

2

)

ψ̂† (x) ψ̂ (x) ψ̂
(

r− s

2

)}

≈ G(2)
(

r +
s

2
; r− s

2
; t
)

G(2) (x;x; t)−G(2)
(

r +
s

2
;x; t

)

G(2)
(

x; r− s

2
; t
)

. (2.41)
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2 The Boltzmann-Vlasov Equation

Inserting this into the the right-hand side of Eq. (2.21) yields

Iint ≈ IH + IF, (2.42)

with the Hartree term

IH =
1

ih̄

∫

d3sd3xe
i
h̄
p·s
[

Vint

(

x− r +
s

2

)

− Vint

(

x− r− s

2

)]

×G(2)
(

r +
s

2
; r− s

2
; t
)

G(2) (x;x; t) (2.43)

and the Fock term

IF =− 1

ih̄

∫

d3s

∫

d3xe
i
h̄
p·s
[

Vint

(

x− r +
s

2

)

− Vint

(

x− r− s

2

)]

×G(2)
(

r +
s

2
;x; t

)

G(2)
(

x; r− s

2
; t
)

. (2.44)

For simplicity, I treat the mean field terms separately, starting with the Hartree contribution.

2.6.1 Hartree Term

At first, I reformulate the interaction potential in Eq. (2.43) with the help of the translation
operator

IH =
1

ih̄

∫

d3s

∫

d3xe
i
h̄
p·s
{[
e

s
2
·∇x−r − e− s

2
·∇x−r

]
Vint (x− r)

}

×G(2)
(

r +
s

2
; r− s

2
; t
)

G(2) (x;x; t) . (2.45)

To further evaluate the Hartree term, I have to approximate the exponential functions within the
gradient expansion, where the spatial derivatives are considered up to the linear term. Further-
more, the particle density can be obtained according to Eqs. (2.6), (2.7), and (2.9)

n(x, t) = G(2)(x;x; t). (2.46)

If I neglect higher order derivatives of the interaction potential, the Hartree term takes the form

IH = ∇r

[∫

d3xVint(r− x)n(x, t)

]

· ∇pf(r,p, t). (2.47)

2.6.2 Fock Term

The derivation of the Fock term is more involved than the Hartree term. With the help of the
following abbreviation

ΓEx
(

x, r− s

2
, t
)

= −Vint

(

x− r +
s

2

)

G(2)
(

x; r− s

2
; t
)

, (2.48)

the Fock term decomposes according to IF = IF1 − IF2 with the terms

IF1 =
1

ih̄

∫

d3sd3xe
i
h̄
p·sΓEx

(

x, r− s

2
, t
)

G(2)
(

r +
s

2
;x; t

)

, (2.49)
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2.6 Mean-Field Terms

and

IF2 =
1

ih̄

∫

d3sd3xe
i
h̄
p·sΓEx

(

r +
s

2
,x, t

)

G(2)
(

x; r− s

2
; t
)

. (2.50)

At first, I will treat these two terms separately, starting with IF1 . For this purpose, I use the
translation operator so that the correlation functions G(2) and ΓEx become independent from s.
Furthermore, I use Fourier transformations with respect to the relative coordinates of ΓEx and
G(2) to derive the following form of Eq. (2.49)

IF1 =
1

ih̄

∫

d3sd3xe
i
h̄
p·s

[

e−
s
2
·∇r

∫
d3p1

(2πh̄)3
Γ̃Ex

(
r + x

2
,p1, t

)

e−
i
h̄
p1·(x−r)

]

×
[

e
s
2
·∇r

∫
d3p2

(2πh̄)3
f

(
r + x

2
,p2, t

)

e−
i
h̄
p2·(r−x)

]

, (2.51)

where Γ̃Ex is the Fourier transform with respect to x− r of the quantity defined in Eq. (2.48). To
obtain a simple r dependence of the Wigner function and Γ̃Ex, I perform the substitution x′ = x−r

and afterwards use the translation operator, which yields

IF1 =
1

ih̄

∫

d3sd3x′e
i
h̄
p·s

[

e−
s
2
·∇r

∫
d3p1

(2πh̄)3
e

x′

2
·∇rΓ̃Ex (r,p1, t) e

− i
h̄
p1·x′

]

×
[

e
s
2
·∇r

∫
d3p2

(2πh̄)3
e

x′

2
·∇rf (r,p2, t) e

i
h̄
p2·x′

]

. (2.52)

The x′ in the exponential function with the spatial derivative acting on Γ̃Ex and f is proportional
to a spatial derivative with respect to pi, with i = 1, 2, leading to

IF1 =
1

ih̄

∫

d3sd3x′e
i
h̄
p·s

[

e−
s
2
·∇r

∫
d3p1

(2πh̄)3
Γ̃Ex (r,p1, t) e

ih̄
2

←−
∇r·
−→
∇p1e−

i
h̄
p1·x′

]

×
[

e
s
2
·∇r

∫
d3p2

(2πh̄)3
f (r,p2, t) e

− ih̄
2

←−
∇r·
−→
∇p2e

i
h̄
p2·x′

]

, (2.53)

where the arrows over the derivatives denote in which direction they act. With the help of partial
integrations, the direction of the momentum derivatives can be changed, so that they act only
on the distribution function and Γ̃Ex. Due to the substitution, the spatial derivatives of those
exponential functions which contain the vector s are equal to the negative derivatives with respect
to x′. Afterwards, their action on the exponential functions can be calculated

IF1 =
1

ih̄

∫

d3se
i
h̄
p·s

∫

d3x′
∫

d3p1

(2πh̄)3

d3p2

(2πh̄)3
e−

i
2h̄

s·p1

[

Γ̃Ex (r,p1, t) e
− ih̄

2

←−
∇p1 ·

←−
∇r

]

× e− i
h̄
x′·(p1−p2)

[

e
ih̄
2

−→
∇p2 ·

−→
∇rf(r,p2, t)

]

e−
i

2h̄
s·p2 . (2.54)

It is now possible to perform the x′ integral, and, with the help of the resulting delta function,
also one of the two momentum integrals. The resulting term reads

IF1 =
1

ih̄

∫

d3se
i
h̄
p·s

∫
d3p1

(2πh̄)3
e−

i
h̄
s·p1

[

Γ̃Ex (r,p1, t) e
− h̄

2i

←−
∇p1 ·

←−
∇r+

h̄
2i

−→
∇p1 ·

−→
∇rf(r,p1, t)

]

. (2.55)

Eq. (2.50) can be treated analogously, yielding

IF2 =
1

ih̄

∫

d3se
i
h̄
p·s

∫
d3p1

(2πh̄)3
e−

i
h̄
s·p1

[

Γ̃Ex (r,p1, t) e
h̄
2i

←−
∇p1 ·

←−
∇r−

h̄
2i

−→
∇p1 ·

−→
∇rf(r,p1, t)

]

. (2.56)
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Now both terms of the Fock contribution are combined. To get an expression of the Fock term,
that is similar to the Hartree Term, I approximate the exponential functions within a gradient
expansion by considering only derivatives up to first order and get

IF =

∫

d3se
i
h̄
p·s

∫
d3p1

(2πh̄)3
e−

i
h̄
s·p1

{

Γ̃Ex (r,p1, t)
[

−←−∇r ·
←−∇p1 +

−→∇p1 ·
−→∇r

]

f(r,p1, t)
}

. (2.57)

The last two integrals can now be performed with the result that all momenta p1 have to be
replaced by momenta p. The last step of my calculation is to derive an explicit expression of
Γ̃Ex. For this, I compute the Fourier transform of ΓEx in Eq. (2.48) with respect to its relative
coordinate, which yields

Γ̃Ex(r,p, t) =−
∫

d3se
i
h̄
p·sVint

(

r +
s

2
− r +

s

2

)

G(2)
(

r +
s

2
; r− s

2
; t
)

,

=−
∫

d3p′

(2πh̄)3
f(r,p′, t)Ṽint(p− p′), (2.58)

where Ṽint is the Fourier transform of the interaction potential. Inserting Eq. (2.58) into Eq. (2.57)
concludes the calculation of the Fock term with the result:

IF =∇p

[∫
d3p′

(2πh̄)3
f(r,p′, t)Ṽint(p− p′)

]

· ∇rf(r,p, t)

−∇r

[∫
d3p′

(2πh̄)3
f(r,p′, t)Ṽint(p− p′)

]

· ∇pf(r,p, t). (2.59)

The mean-field terms (2.47) and (2.59) represent one of the two ways in which interparticle
interactions enter the Boltzmann-Vlasov equation. On the one hand, they contribute through the
effect of collisions, which I explain in the next section; on the other hand, they constitute a mean-
field potential. The latter means that the interaction from the whole Fermi gas is described by an
averaged potential. Thus, this approximates the interaction between all the particles through an
effective one-particle theory in which the particles do not interact with each other, but are rather
subject to an additional effective potential which depends on the distribution of the fermions. This
dependence is explicitly taken into account by the formulas, as they contain the Wigner function.
Note that the p-dependence of the mean-field term originates only from the Fock term.

2.7 Collisionless Boltzmann-Vlasov Equation

In this section, I discuss the current status of the derivation of the Boltzmann-Vlasov equation
and explain its physical meaning. Taking Eq. (2.12) with Eqs. (2.16), (2.20), (2.47), (2.59) and
neglecting the terms of second order in the interaction potential yields

{
∂

∂t
+

p

m
· ∇r −∇r

[

U(r) +

∫

d3xVint(r− x)n(x, t) + Γ̃Ex (r,p, t)

]

· ∇p

+∇pΓ̃Ex (r,p, t) · ∇r

}

f(r,p, t) = 0, (2.60)

which represents the so called collisionless Boltzmann-Vlasov equation. This semiclassical equation
can be interpreted based on its Hamiltonian structure, which becomes clear by introducing the
Hamilton function

H(r,p, t) =
p2

2m
+ U(r) +

∫

d3xn(x, t)Vint(r− x)−
∫

d3p′

(2πh̄)3
f(r,p′, t)Ṽint(p− p′). (2.61)
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2.8 Collision Integral

Taking into account Eq. (2.58) the collisionless Boltzmann-Vlasov equation (2.60) can then be
reformulated with the help of this Hamiltonian as

[
∂

∂t
+∇pH(r,p, t) · ∇r −∇rH(r,p, t) · ∇p

]

f(r,p, t) = 0. (2.62)

This is in fact the Liouville equation for the distribution function f(r,p, t), which implies that the
function H(x,p, t) denotes really a Hamilton function. Using the Hamilton equations of classical
mechanics

dr

dt
= ∇pH(r,p, t), (2.63)

dp

dt
= −∇rH(r,p, t), (2.64)

I can reformulate Eq. (2.60) as
df(r,p, t)

dt
= 0, (2.65)

with the total derivative
d

dt
=

∂

∂t
+
dr

dt
· ∇r +

dp

dt
· ∇p. (2.66)

The physical meaning of this equation can be understood by considering a phase-space volume
d3rd3p which contains f(r,p, t)d3rd3p particles at time t. Eq. (2.62) governs the change in time of
this particle number, which is caused by two different mechanisms. The first one drives particles
away from the phase-space volume due to their velocity p/m, which is contained in the second
term in Eq. (2.66), while the second mechanism involves particles moving out of the considered
phase-space volume due to a force field which changes their momenta and is contained in the third
term of Eq. (2.66).

Note that, in the case of a contact interaction Vint(x) = gδ(x), both mean-field terms could be
further simplified according to

∫

d3xVint(r− x)n(x, t) = gn(r, t), (2.67)

Γ̃Ex = −gn(r, t). (2.68)

Thus, the mean-field terms vanish completely in Eq. (2.60) or Eq. (2.61), due to the antisymmetric
wave functions of the fermions which forbid that they interact via such a contact potential.

2.8 Collision Integral

In this section, I derive the collision integral, by following primarily the seminal paper of Kirk-
patrick and Dorfman [45]. Since I do not consider delta-type interactions, as these are not allowed
for polarized fermions, the concept of collisions is not quite the same as in classical mechanics.
At first, I remark that no true point interactions occur in physical systems. Thus, I consider that
collisions mean interactions in a finite but small area of space, and on a short time scale.

The derivation of the collision integral is based on some key approximations. On the one hand,
I assume that the Wigner function is slowly varying in space, which means that the range of the
collisional interaction is much shorter than the length scale over which the distribution function
changes significantly. On the other hand, I suppose weak interparticle interactions in order to
justify the perturbation theory.
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2 The Boltzmann-Vlasov Equation

I start with evaluating the second term of the perturbation theory of the time evolution of
the density matrix ρ̂(t) in Eq. (2.38) which leads to the right-hand side of the Boltzmann-Vlasov
Equation Eq. (2.21):

Icoll =

(−i
h̄

)2 ∫

d3s

∫

d3x

∫ t

t0

dt′e
i
h̄
p·s
[

Vint

(

x− r +
s

2

)

− Vint

(

x− r− s

2

)]

(2.69)

× Tr
{

Û0(t, t0)ρ̂(t0)Û
†
0(t, t0)

[

Û †0(t, t
′)ψ̂†

(

r +
s

2

)

ψ̂† (x) ψ̂ (x) ψ̂
(

r− s

2

)

Û0(t, t
′), Ĥint

]}

.

For simplicity, I transform Eq. (2.69) into Fourier-space. For this, I introduce the Fourier transform
of the field operators according to

ψ̂(x) =
1√
V

∑

p

e
i
h̄
p·xâp, (2.70)

ψ̂†(x) =
1√
V

∑

p

e−
i
h̄
p·xâ†p, (2.71)

where the creation and annihilation operators satisfy the anticommutation relations

{â†p1
âp2} = δp1,p2 , (2.72)

{â†p1
â†p2
} = 0, (2.73)

{âp1 âp2} = 0. (2.74)

After a short calculation, the interaction Hamiltonian Eq. (2.5) reads in terms of the creation and
annihilation operators

Ĥint =
1

2V

∑

p1

∑

p2

∑

p3

∑

p4

Ṽint(p1 − p4)δp1+p2,p3+p4 â
†
p1
â†p2

âp3 âp4 . (2.75)

To complete the reformulation of Eq. (2.69), I also have to rewrite the other field operators and
the interaction potential in Fourier-space

IP =

∫ t

t0

dt′
∫

d3sd3xe
i
h̄
p·s
[

Vint

(

x− r +
s

2

)

− Vint

(

x− r− s

2

)]

× Û †0(t, t′)ψ̂†
(

r +
s

2

)

ψ̂† (x) ψ̂ (x) ψ̂
(

r− s

2

)

Û0(t, t
′)

=
1

V

∫ t

t0

dt′
∑

q1

∑

q2

∑

q3

∑

q4

Ṽint(q2 − q3)e
− i

h̄
r·(q1+q2−q3−q4)

× e i
h̄
(t−t′)(Eq1+Eq2−Eq3−Eq4 )

[

δ
p,

q2−q3−q1−q4
2

− δ
p,

q2−q3+q1+q4
2

]

â†q1
â†q2

âq3 âq4 , (2.76)

with the energies

Eqi
=

q2
i

2m
+ U(r) (2.77)

Inserting the previous results into the collision term, Eq. (2.69) leads to the average of a commu-
tator containing eight field operators with the abbreviation

∑

{x} =
∑

x1

∑

x2

∑

x3

∑

x4

IP =− 1

h̄2

∫ t

t0

dt′
1

2V 2

∑

{q}

∑

{p}

Ṽint(p1 − p4)Ṽint(q2 − q3)e
− i

h̄
r·(q1+q2−q3−q4)e

i
h̄
(t−t′)(Eq1+Eq2−Eq3−Eq4 )

× δp1+p2,p3+p4

[

δ
p,

q2−q3−q1−q4
2

− δ
p,

q2−q3+q1+q4
2

]

×
{

ρ̂(t0)Û
†
0(t, t0)

[
â†q1

â†q2
âq3 âq4 , â

†
p1
â†p2

âp3 âp4

]
Û0(t, t0)

}

. (2.78)

24



2.8 Collision Integral

The time-evolution operators in the average of Eq. (2.78) describe a time evolution of the eight
creation and annihilation operators due to the one-particle Hamiltonian Ĥ0. The next step is the
calculation of the commutator

[
â†p1

â†p2
âp3 âp4 , â

†
q1
â†q2

âq3 âq4

]
=â†p1

â†p2
â†q2

âp4 âq3 âq4δp3,q1 − â†p1
â†p2

â†q1
âp4 âq3 âq4δp3,q2

− â†p1
â†p2

â†q2
âp3 âq3 âq4δp4,q1 + â†p1

â†p2
â†q1

âp3 âq3 âq4δp4,q2

− â†q1
â†q2

â†p2
âq4 âp3 âp4δp1,q3 + â†q1

â†q2
â†p2

âq3 âp3 âp4δp1,q4

+ â†q1
â†q2

â†p1
âq4 âp3 âp4δp2,q3 − â†q1

â†q2
â†p1

âq3 âp3 âp4δp2,q4

+ â†p1
â†p2

âq3 âq4δp4,q1δp3,q2 − â†p1
â†p2

âq3 âq4δp4,q2δp3,q1

+ â†q1
â†q2

âp3 âp4δp1,q3δp2,q4 − â†q1
â†q2

âp3 âp4δp1,q4δp2,q3 . (2.79)

Instead of calculating all these terms explicitly, I shall illustrate the procedure by calculating the
last four terms. Using the Wick contraction, they can be written as

〈
â†p1

â†p2
âp3 âp4

〉0

t
≈
〈
â†p1

âp4

〉0

t

〈
â†p2

âp3

〉0

t
−
〈
â†p1

âp3

〉0

t

〈
â†p2

âp4

〉0

t
, (2.80)

where 〈·〉0t = Tr [ρ̂0(t)·] denotes the quantum average with respect to the density matrix ρ̂0, as

IT =
1

h̄2

∫ t

t0

dt′
1

2V 2

∑

{q}

∑

{p}

Ṽint(p1 − p4)Ṽint(q2 − q3)e
− i

h̄
r·(q1+q2−q3−q4)e

i
h̄
(t−t′)(Eq1+Eq2−Eq3−Eq4 )

× δp1+p2,p3+p4

[

δ
p,

q2−q3−q1−q4
2

− δ
p,

q2−q3+q1+q4
2

]

×
[

ρ̂(t0)Û
†
0(t, t0)

(
â†p1

â†p2
âq3 âq4δp4,q1δp3,q2 − â†p1

â†p2
âq3 âq4δp4,q2δp3,q1 (2.81)

+â†q1
â†q2

âp3 âp4δp1,q3δp2,q4 − â†q1
â†q2

âp3 âp4δp1,q4δp2,q3

)
Û0(t, t0)

]

=− 1

h̄2

∫ t

t0

dt′
1

2V 2

∑

{q}

∑

{p}

Ṽint(p1 − p4)Ṽint(q2 − q3)e
− i

h̄
r·(q1+q2−q3−q4)e

i
h̄
(t−t′)(Eq1+Eq2−Eq3−Eq4 )

δp1+p2,p3+p4

[

δ
p,

q2−q3−q1−q4
2

− δ
p,

q2−q3+q1+q4
2

] [(〈
â†p1

âq4

〉0

t

〈
â†p2

âq3

〉0

t
−
〈
â†p1

âq3

〉0

t

〈
â†p2

âq4

〉0

t

)

× (δp4,q1δp3,q2 − δp4,q2δp3,q1) +
(〈
â†p1

âq4

〉0

t

〈
â†p2

âq3

〉0

t
−
〈
â†p1

âq3

〉0

t

〈
â†p2

âq4

〉0

t

)

× (δp4,q1δp3,q2 − δp4,q2δp3,q1)] . (2.82)

The key point of the derivation of the collision integral is the relation between the average of a
creation and an annihilation operator and the Wigner function. To derive the collision integral, I
have to approximate this relation by a simple form. To this end, I have to derive at first the exact
relation starting with the observation

〈
â†p1

âp2

〉0

t
=

1

V

∫

d3x

∫

d3x′e
i
h̄
p1·xe−

i
h̄
p2·x′

G
(2)
0 (x;x′; t) . (2.83)

Note that the time evolution of the Wigner function is completely determined by the one-particle
Hamilton operator, because of my restriction to perform perturbation theory up to second order.
Time evolutions of the correlation functions containing the interaction potential would lead to
terms of the order O(V 3

int) in Eq. (2.82). Inserting the inverted definition of the Wigner function
Eq. (2.6) with Eq. (2.7)

〈

ψ̂†(x, t)ψ̂(x′, t)
〉0

t
≈
∫

d3p

(2πh̄)3
f

(
x + x′

2
,p, t

)

e−
i
h̄
p·(x−x′) (2.84)
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and switching from the variables x and x′ to their relative coordinate s and their center-of-mass
position r leads to

〈
â†p1

âp2

〉0

t
≈ 1

V

∫

d3re
i
h̄
r·(p1−p2)f

(

r,
p1 + p2

2
, t

)

. (2.85)

In terms of this perturbation theory, this relation is still exact. The phase-space distribution
function will be now approximated by assuming that it is only weakly space dependent, so that
it can be pulled out of the integral. With the resulting Kronecker delta function, I can conclude

〈
â†p1

âp2

〉0

t
≈ δp1,p2f(r,p1, t). (2.86)

Inserting this approximation into Eq. (2.82) leads with the abbreviation fi = f(r,qi, t) to

IT =
1

h̄2

∫

dt′
1

2V 2

∑

{q}

∑

{p}

Ṽint(p1 − p4)Ṽint(q2 − q3)e
− i

h̄
r·(q1+q2−q3−q4)e

i
h̄
(t−t′)(Eq1+Eq2−Eq3−Eq4 )

× δp1+p2,p3+p4

[

δ
p,

q2−q3−q1−q4
2

− δ
p,

q2−q3+q1+q4
2

]

[f3f4 (δp1,q4δp2,q3δp3,q2δp4,q1

−δp1,q4δp2,q3δp3,q1δp4,q2 − δp1,q3δp2,q4δp3,q2δp4,q1 + δp1,q3δp2,q4δp3,q1δp4,q2)

+f1f2 (δp1,q3δp2,q4δp3,q2δp4,q1 − δp1,q3δp2,q4δp3,q1δp4,q2

−δp1,q4δp2,q3δp3,q2δp4,q1 + δp1,q4δp2,q3δp3,q1δp4,q2)] . (2.87)

The Kronecker delta functions, which contain only one momentum pi and one momentum qi, can
now be performed, so that the p-sums vanish, yielding

IT =
1

h̄2

∫ t

t0

dt′
1

2V 2

∑

{q}

Ṽ (q2 − q3)e
i
h̄
(t−t′)(Eq1+Eq2−Eq3−Eq4 )δq1+q2,q3+q4

×
[

δ
p,

q2−q3−q1−q4
2

− δ
p,

q2−q3+q1+q4
2

]

(f3f4 − f1f2)

×
[

Ṽint(q4 − q1)− Ṽint(q4 − q2)− Ṽint(q3 − q1) + Ṽint(q3 − q2)
]

. (2.88)

The next step is to eliminate the Kronecker deltas, which contain the momentum p, so that the
term simplifies to

IT =
1

h̄2

1

2V 2

∑

q2

∑

q3

∑

q4

δp+q2,q3+q4(f3f4 − ff2)

×
[(

2Ṽint(p− q4)
2 − 2Ṽint(p− q3)Ṽint(p− q4)

)∫ t

t0

dt′e
i
h̄
(t−t′)(Ep+Eq2−Eq3−Eq4 )

+
(

2Ṽint(p− q3)
2 − 2Ṽint(p− q3)Ṽint(p− q4)

)∫ t

t0

dt′e
i
h̄
(t−t′)(Ep+Eq2−Eq3−Eq4 )

]

, (2.89)

where f = f(r,p, t). The next step of the calculation is to solve the time integral. To this end,
I assume that I can consider the limit t0 → ∞. At first, I will use a Heaviside step function to
get an integral with limits ±∞. Afterwards, I will use the Fourier representation of the Heaviside
step function
∫ t

−∞

dt′e
i
h̄
(t−t′)(Ep+Eq2−Eq3−Eq4 ) =

∫ ∞

−∞

dt′e
i
h̄
(t−t′)(Ep+Eq2−Eq3−Eq4 ) lim

ǫ→0

1

2πi

∫ ∞

−∞

dy
eiy(t−t′)

y − iǫ . (2.90)

After performing the integrals, this leads to
∫ t

−∞

dt′e
i
h̄
(t−t′)(Ep+Eq2−Eq3−Eq4 ) = ih̄ lim

ǫ→0

1

Ep + Eq2 − Eq3 − Eq4 + iǫ
. (2.91)
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To arrive at a form in which the limit ǫ→ 0 can be carried out, I separate the real and imaginary
parts from each other

lim
ǫ→0

1

Ep + Eq2 − Eq3 − Eq4 ± iǫ
= lim

ǫ→0

[

Ep + Eq2 − Eq3 − Eq4

(Ep + Eq2 − Eq3 − Eq4)
2 + ǫ2

∓i ǫ

(Ep + Eq2 − Eq3 − Eq4)
2 + ǫ2

]

. (2.92)

Taking the limit leads to a distributional identity which is called the Sokhatsky-Weierstrass The-
orem [46]

lim
ǫ→0

1

x± iǫ = p.v.
1

x
∓ iπδ(x), (2.93)

where p.v. 1
x

denotes the Cauchy principal value distribution. Thus, I obtain

∫ t

−∞

dt′e
i
h̄
(t−t′)(Ep+Eq2−Eq3−Eq4 ) = h̄

[

ip.v.
1

Ep + Eq2 − Eq3 − Eq4

+ πδ(Ep + Eq2 − Eq3 − Eq4)

]

.

(2.94)
By inserting this calculation into Eq. (2.89), one can observe that the terms proportional to
the Cauchy principal value distribution cancel each other. In accordance with the semiclassical
approximation, I replace the momentum sums (1/V )

∑

pi
by the integrals

∫
d3pi/(2πh̄)

3 and the

Kronecker delta functions V δpi,pj
by Dirac delta functions (2πh̄)3δ(pi−pj), thereby obtaining the

final expression of this part of the collision integral

IT =
1

2h̄

∫
d3q2

(2πh̄)3

∫
d3q3

(2πh̄)3

∫
d3q4

(2πh̄)3
(f3f4 − ff2) 2πδ(Ep + Eq2 − Eq3 − Eq4)

× (2πh̄)3δ(p + q2 − q3 − q4)
[

Ṽint(p− q3)− Ṽint(p− q4)
]2

. (2.95)

The other terms of the collision integral can be calculated in a similar way. This calculation also
needs the approximation of a weakly space dependent phase-space distribution function. Note
that the Wick contraction, and afterwards the substitutions of G(i) = G

(i)
0 for i = 2, 4, 6, are exact

in second order perturbation theory, because the errors are of order O(V 3
int).

After a lengthy but straightforward calculation, I finally get for the remaining terms expressions
which contain three Wigner functions

Icoll − IT =
1

2h̄

∫
d3q2

(2πh̄)3

∫
d3q3

(2πh̄)3

∫
d3q4

(2πh̄)3
(ff2f3 + ff2f4 − ff3f4 − f2f3f4)

× 2πδ(Ep + Eq2 − Eq3 − Eq4)(2πh̄)
3δ(p + q2 − q3 − q4)

×
[

Ṽint(p− q3)− Ṽint(p− q4)
]2

. (2.96)

Putting all this together leads to the form of the collision integral, which is known in the literature
as [47, p. 54]

Icoll[f ] =
1

2h̄

∫
d3q2

(2πh̄)3

∫
d3q3

(2πh̄)3

∫
d3q4

(2πh̄)3
[(1− f)(1− f2)f3f4 − ff2(1− f3)(1− f4)] (2.97)

× 2πδ(Ep + Eq2 − Eq3 − Eq4)(2πh̄)
3δ(p + q2 − q3 − q4)

[

Ṽ (p− q3)− Ṽ (p− q4)
]2

.
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2 The Boltzmann-Vlasov Equation

The momentum and energy delta functions ensure momentum and energy conservation during the
collision process. However, the energy conservation shows the limit of this form of the collision
integral, because it is not the total energy that is conserved. Only the trapping and the kinetic
energy are conserved. Thus, the interaction energy is neglected, which can only be justified, when
I assume a weak two-particle interaction.

Note that the minus sign between the potentials in Eq. (2.97) reflects the fact that I consider
fermions and, therefore, I have to deal with anticommutating operators. In the case of a bosonic
gas, there would instead appear a plus sign.

With this collision integral the previous intermediate result Eq. (2.60) finally yields the
Boltzmann-Vlasov equation in the form

{
∂

∂t
+

p

m
· ∇r −∇r

[

U(r) +

∫

d3xV (r− x)n(x, t) + Γ̃Ex (r,p, t)

]

· ∇p

+∇pΓ̃Ex (r,p, t) · ∇r

}

f(r,p, t) = Icoll[f ](r,p, t), (2.98)

which completes the derivation.
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3 Properties of the Collision Integral

This chapter provides an overview of the properties of the collision integral. To this end, I discuss
the quantities which are conserved under collisions, demonstrating that any relaxation process,
due to collisions, leads to a Fermi-Dirac distribution function. In the last section I deal with
approximations of the collision integral which are often used for concrete applications.

3.1 Conserved Quantities

The collision integral describes directly the effect of two-particle interactions in the Boltzmann-
Vlasov equation, in contrast to the mean-field terms, which describe them indirectly by means of
an effective potential. Therefore, the collision integral is nonlinear in the distribution function,
which makes it complicated to deal with it. Nevertheless, it is possible to deduce important
properties of the collision integral, such as conserved quantities. According to Ref. [47], they are
provided by momenta up to second power, i.e., the number of particles, the components of the
momentum and the kinetic energy. In order to prove this I have to show that the phase-space
average of the conserved quantity with respect to the collision integral vanishes. As an example,
I calculate this average for one momentum coordinate. The other conservation laws can then be
obtained analogously. Thus, I split the momentum pi with i = x, y, z into four equal terms:

∫

d3r

∫

d3ppiIcoll[f ] =

∫

d3rd3p
1

4
(pi + pi + pi + pi)

1

2h̄

∫
d3q2

(2πh̄)3

∫
d3q3

(2πh̄)3

∫
d3q4

(2πh̄)3

× [(1− f)(1− f2)f3f4 − ff2(1− f3)(1− f4)] 2πδ(Ep + Eq2 − Eq3 − Eq4)

× (2πh̄)3δ(p + q2 − q3 − q4)
[

Ṽint(p− q3)− Ṽint(p− q4)
]2

. (3.1)

I rename the integration variables of three of the four momentum terms, yet here one has to be
careful. The momentum and energy delta functions, along with the Wigner function terms, are
invariant under transformations such as switching p and q2. Thus, I switch in the second term p

and q2. In the third term I switch p and q3 and also q2 and q4 to ensure the invariance of the
delta functions. In the fourth term, I switch p and q4 and also q2 and q3. With the abbreviation
〈pi〉I =

∫
d3r
∫
d3ppiIcoll[f ], this leads to

〈pi〉I =

∫

d3rd3p
1

2h̄

∫
d3q2

(2πh̄)3

∫
d3q3

(2πh̄)3

∫
d3q4

(2πh̄)3
[(1− f)(1− f2)f3f4

−ff2(1− f3)(1− f4)] 2πδ(Ep + Eq2 − Eq3 − Eq4)(2πh̄)
3δ(p + q2 − q3 − q4)

× 1

4

{

pi

[

Ṽ (p− q3)− Ṽ (p− q4)
]2

+ q2,i

[

Ṽ (q2 − q3)− Ṽ (q2 − q4)
]2

−q3,i

[

Ṽ (q3 − p)− Ṽ (q3 − q2)
]2

− q4,i

[

Ṽ (q4 − q2)− Ṽ (q4 − p)
]2
}

, (3.2)
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3 Properties of the Collision Integral

where qj,i denotes the i-th component of the vector qj. The momenta in the interaction potential
can be switched using the momentum delta function with the result

〈pi〉I =

∫

d3rd3p
1

2h̄

∫
d3q2

(2πh̄)3

∫
d3q3

(2πh̄)3

∫
d3q4

(2πh̄)3
[(1− f)(1− f2)f3f4 − ff2(1− f3)(1− f4)]

× 2πδ(Ep + Eq2 − Eq3 − Eq4)
[

Ṽ (p− q3)− Ṽ (p− q4)
]2

× (2πh̄)3 1

4
(pi + q2,i + q3,i + q4,i)δ(pi + q2,i + q3,i + q4,i)

∏

j
j 6=i

δ(pj + q2,j + q3,j + q4,j). (3.3)

With the distributional identity xδ(x) = 0 the right-hand side of Eq. (3.3) is equal to zero. The
calculations for the particle number N and the kinetic energy p2/(2m) are performed analogously.
Note that the kinetic energy is conserved, because the trapping potential is momentum indepen-
dent.

Note that the vanishing of the collision integral results only from the momentum-containing
delta functions. Hence, a phase-space average quantity which is the product of an arbitrary
space-dependent function and either particle number, momentum coordinate, or kinetic energy, is
conserved by the collision integral as well.

3.2 Local Equilibrium

In this section, I deal with the effect of collisions on the distribution function f , looking for
functions that are not altered by collisions. Physically, the particles interact via collisions and
interchange energy and momentum, with a tendency to balance these quantities. This leads
to a relaxation of the system into a limiting case in which the collisions will no longer change
the distribution function of the system. The limiting function of this relaxation is called local
equilibrium function f le(r,p, t) and satisfies the condition

Icoll[f
le] = 0. (3.4)

In order to obtain the general form of the local distribution function f le(r,p, t), I insert it into
the collision integral Eq. (2.97) and demand that the scattering-in and scattering-out terms cancel
each other

(1− f le)(1− f le
2 )f le

3 f
le
4 − f lef le

2 (1− f le
3 )(1− f le

4 ) = 0, (3.5)

with f le = f le(r,p, t) and f le
i = f le(r,pi, t) being abbreviations. Taking the logarithm of Eq. (3.5)

leads to

ln
f le

1− f le
+ ln

f le
2

1− f le
2

= ln
f le

3

1− f le
3

+ ln
f le

4

1− f le
4

. (3.6)

This equation provides me with a new conserved quantity f le/(1− f le), which I shall denote with
c. Due to the fact that only five fundamental conserved quantities exist, one has to be able to
represent this new conserved quantity c through a linear combination of these five. At first, I
reformulate the relation between the equilibrium distribution and c in the following form

f le(r,p, t) =
1

e−c + 1
. (3.7)

This equation shows that a general equilibrium function has the form of a Fermi-Dirac distribution
function and that any distribution function will describe a relaxation into such an equilibrium.
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3.3 Approximations of the Collision Integral

As given by Ref. [47], the expression for c can be inserted, which leads to

f le(r,p, t) =
1

e
βle(r,t)



[p−mvle(r,t)]2

2m
−µle(r,t)

ff

+ 1

, (3.8)

where µle is the local chemical potential, vle the local velocity field, and βle = 1/(kBT
le) the inverse

local temperature. All of them are still time- and space-dependent quantities.
The space dependence of the chemical potential, the local velocity field and the temperature

cannot be fixed by the collision integral. Explicit expressions for them can, however, be deduced
by demanding that the whole Boltzmann-Vlasov equation conserves them [47]. Eq. (3.8) implies
that the collision integral fixes only the momentum distribution in local equilibrium and, therefore,
explains the name local equilibrium. This picture is based on the assumption of a weakly space-
dependent distribution function which is actually a relation between the range of the collisional
interaction and the length scale over which the distribution changes significantly.

The special local equilibrium, which is time independent, denotes the global equilibrium f 0, in
which no dynamics occurs. There are two ways to characterize this global equilibrium. The first
is that it is a time-independent local equilibrium

Icoll[f
0] = 0 and

∂f 0

∂t
= 0. (3.9)

The second possibility is that it can be defined as the limiting function of the local equilibrium
for large times

lim
t→∞

f le(r,p, t) = f 0(r,p). (3.10)

Both definitions are equivalent.

3.3 Approximations of the Collision Integral

In this section, I derive approximations that allow me to deal with the collision integral in a
simpler form. At first, I linearize the collision integral and afterwards I discuss the validity of a
relaxation time approximation for it.

3.3.1 Linearization of the Collision Integral

To simplify the collision integral, I linearize it in terms of the deviation δf := f − f le from local
equilibrium

f le(r,p, t) =
1

eβle(Ep−µle) + 1
, (3.11)

where I described it in the local rest frame in which the local velocity field is zero. I assume
that the system is near the thermal equilibrium, so that the distribution function f(r,p, t) can be
described as a Fermi-Dirac distribution function containing a deviation Φ(r,p, t) specifying the
difference to local equilibrium

f(r,p, t) =
1

eβle(Ep−µle)−Φ(r,p,t) + 1
. (3.12)

A Taylor expansion of the phase-space distribution function f(r,p, t) with respect to the deviation
function

f(r,p, t) ≈ f le(r,p, t) +
∂f

∂Φ

∣
∣
∣
Φ=0

(r,p, t)Φ(r,p, t) (3.13)
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3 Properties of the Collision Integral

yields up to first order

f(r,p, t) ≈ f le(r,p, t) + f le(r,p, t)[1− f le(r,p, t)]Φ(r,p, t). (3.14)

Inserting this approximation into the collision integral Eq. (2.97) leads to

Icoll[f ] ≈ Ilin[Φ] =
1

2h̄

∫
d3q2

(2πh̄)3

∫
d3q3

(2πh̄)3

∫
d3q4

(2πh̄)3
2πδ(Ep + Eq2 − Eq3 − Eq4)

× (2πh̄)3δ(p + q2 − q3 − q4)
[

Ṽ (p− q3)− Ṽ (p− q4)
]2

Ff (3.15)

with the abbreviation

Ff =Feq − Φ(r,p, t)
[
f le(1− f le)(1− f le

2 )f le
3 f

le
4 + f le(1− f le)f le

2 (1− f le
3 )(1− f le

4 )
]

− Φ(r,q2, t)
[
f le

2 (1− f le
2 )(1− f le)f le

3 f
le
4 + f le

2 (1− f le
2 )f le(1− f le

3 )(1− f le
4 )
]

+ Φ(r,q3, t)
[
f le

3 (1− f le
3 )(1− f le)(1− f le

2 )f le
4 + f le

3 (1− f le
3 )f lef le

2 (1− f le
4 )
]

+ Φ(r,q4, t)
[
f le

4 (1− f le
4 )(1− f le)(1− f le

2 )f le
3 + f le

4 (1− f le
4 )f lef le

2 (1− f le
3 )
]
, (3.16)

where
Feq = (1− f le)(1− f le

2 )f le
3 f

le
4 − f lef le

2 (1− f le
3 )(1− f le

4 ) (3.17)

is the equilibrium term and f le
i = f(r,qi, t) and f le = f(r,p, t) are abbreviations. In order to

show that the equilibrium term (3.17) has to vanish, I rewrite it according to

Feq = f lef le
2 f

le
3 f

le
4

[
1− f le

f le

1− f le
2

f le
2

− 1− f le
3

f le
3

1− f le
4

f le
4

]

. (3.18)

Inserting the Fermi-Dirac distribution function Eq. (3.11) into this equation, I get

Feq = f lef le
2 f

le
3 f

le
4

{

eβle[Ep+Eq2−2µle] − eβle[Eq3+Eq4−2µle]
}

. (3.19)

The term in the curly brackets in Eq. (3.19) vanishes due to energy conservation, as expected.
Thus, I can rewrite terms that are linear in Φ in Eq. (3.16), using the property

(1− f le)(1− f le
2 )f le

3 f
le
4 = f lef le

2 (1− f le
3 )(1− f le

4 ) (3.20)

yielding

Ff = −f lef le
2 (1− f le

3 )(1− f le
4 ) [Φ(r,p, t) + Φ(r,q2, t)− Φ(r,q3, t)− Φ(r,q4, t)] . (3.21)

Inserting Ff into Eq. (3.15) leads to a linear collision operator which is not as complicated as the
full collision integral, but it is still an integral operator.

3.3.2 Relaxation Time Approximation

The previous calculation shows that a relaxation time approximation

Icoll[f ](r,p, t) ≈ −δf(r,p, t)

τ
(3.22)

cannot be derived from a linearization of the collision integral without further approximations.
The first term in Eq. (3.21) has exactly the form of a relaxation time approximation, but the other
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3.3 Approximations of the Collision Integral

non-local terms can not be transformed into such a form. As discussed in Ref. [48], neglecting
these non-local terms leads to a relaxation time approximation which yields

Icoll[f ](r,p, t) ≈− δf 1

2h̄

∫
d3q2

(2πh̄)3

∫
d3q3

(2πh̄)3

∫
d3q4

(2πh̄)3
2πδ(Ep + Eq2 − Eq3 − Eq4)

× (2πh̄)3δ(p + q2 − q3 − q4)
[

Ṽ (p− q3)− Ṽ (p− q4)
]2

× f lef le
2 (1− f le

3 )(1− f le
4 )

f le(1− f le)
(f le + 1− f le). (3.23)

Using the property for the equilibrium (3.20) leads to a relaxation time in the following form:

1

τ(r,p, t)
=

1

2(2π)5h̄7

∫

d3q2

∫

d3q3

∫

d3q4δ(p + q2 − q3 − q4)δ(Ep + Eq2 − Eq3 − Eq4)

×
[

Ṽint(p− q3)− Ṽint(p− q4)
]2 [

f le
2 (1− f le

3 )(1− f le
4 ) + (1− f le

2 )f le
3 f

le
4

]
. (3.24)

Note that Ref. [48] also introduced an additional factor of 2 for the relaxation time (3.24), whose
origin is still not clear. However, the validity of the derivation of this relaxation time approxi-
mation is questionable. The derivation neglects three of four terms without legitimation, thereby
ignoring that Ilin is, in fact, an integral operator. It is possible to further simplify Ilin without an
approximation by taking into account the eigenvalue problem Ilin[Φλ] = λΦλ, where λ denotes the
eigenvalue of the eigenvector Φλ [49]. Then, one may expand the deviation

Φ(r,p, t) =
∑

λ

Aλe
−λtΦλ(r,p) (3.25)

in a full set of eigenfunctions. The sum in Eq. (3.25) shows that the Boltzmann relaxation kinetics
cannot be described in general in terms of a single relaxation time since the eigenvalues λ represent
the inverse relaxation times. Thus, this approximation Eq. (3.22) can in general not be a valid
description of the relaxation kinetics. It can only be justified, if one eigenvalue λmin is much
smaller than the others, causing the corresponding relaxation time τmax = 1/λmin to be much
larger than all the others of the linearized collision operator.

Nevertheless, the relaxation time approximation is successfully used in literature, as for example
in Ref. [50], in order to describe the dynamics of a Bose gas with delta-type interaction, or in
Ref. [51], which describe a Fermi gas in the hydrodynamic regime.
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4 Solution of the Boltzmann-Vlasov

Equation

The Boltzmann-Vlasov equation determines the time evolution of the Wigner function. In this
chapter, I calculate an approximate solution of this nonlinear integro-partial differential equation.

In recent years, approximative solutions of this equation were obtained by rescaling both the
coordinates and the momenta of the distribution function. In this way, one gets ordinary differ-
ential equations for the scaling parameters, which can then be solved numerically. Most of these
studies have so far been limited to either the ballistic or the hydrodynamic regime. The ballistic
or collisionless regime is a limiting case in which the average time between two collisions goes
to infinity. The hydrodynamic limit is characterized by a high collision rate, which dominates
the dynamics of the system, leading to an almost instantaneous relaxation into local equilibrium.
Equations for the scaling parameters were achieved in the ballistic regime for a Bose gas with
contact interaction within a triaxial harmonic trap [52] and a Fermi gas with dipolar interaction
in a cylinder-symmetric trap [27]. A more general rescaling was worked out in Ref. [50], which
gives the opportunity to describe not only the ballistic and hydrodynamic regime, but also all
intermediate regimes. The purpose of this diploma thesis is to transfer the general ansatz from
Ref. [50] to a dipolar Fermi gas. To this end, the collision integral will be treated in the relaxation
time approximation, assuming that the collisions lead to an exponential relaxation on the scale of
a certain relaxation time, which is related to the average time between two collisions.

To construct a solution of the Boltzmann-Vlasov equation, it will be necessary to proceed in the
following three steps. At first, the semiclassical Wigner function in global equilibrium is computed.
Afterwards, the scaling parameters for the local equilibrium are introduced, so that the limiting
function of the relaxation due to the collisions is known. Finally, it will be possible to compute
the scaling parameters to get an approximate expression for the solution of the Boltzmann-Vlasov
equation.

4.1 Scaling Ansatz

Therefore, I start with the Boltzmann-Vlasov equation for the phase-space distribution function
f(x,q, t), which takes the form

∂f

∂t
+

{
h̄q

m
+

1

h̄

∂ [U(x) + Umf(x,q, t)]

∂q

}
∂f

∂x
− 1

h̄

∂ [U(x) + Umf(x,q, t)]

∂x

∂f

∂q
= Icoll[f ](x,q, t), (4.1)

where U(x) is the trapping potential and Umf(x,q, t) is the mean-field potential

Umf(x,q, t) =

∫

d3x′n(x′, t)Vint(x− x′)−
∫

d3q′

(2π)3
f(x,q′, t)Ṽint(q− q′). (4.2)

Here, the first term denotes the direct Hartree term containing the interaction potential Vint

and the spatial density n(x, t), which is connected to the Wigner function f(x,q, t) through
Eq. (2.9), and the second one is the Fock exchange term containing the Fourier transform of
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4 Solution of the Boltzmann-Vlasov Equation

the interaction potential Ṽint. The distribution function f 0(x,q) satisfies the Boltzmann-Vlasov
equation in equilibrium

{
h̄q

m
+

1

h̄

∂ [U(x) + Umf(x,q)]

∂q

}
∂f 0

∂x
− 1

h̄

∂ [U(x) + Umf(x,q)]

∂x

∂f 0

∂q
= 0, (4.3)

where the effect of collisions vanishes in the static case, i.e. Icoll[f0] = 0.
The scaling ansatz to solve the Boltzmann-Vlasov equation approximately assumes that the

system is qualitatively near the equilibrium

f(x,q, t) → Γf 0 (r(t),k(t)) , (4.4)

with

ri =
xi

bi(t)
, (4.5)

ki =
1

Θ
1
2
i (t)

(

qi −
mḃi(t)xi

h̄bi(t)

)

, (4.6)

and the normalization factor

Γ =
1

∏

j bjΘ
1
2
j

. (4.7)

The time dependence of the distribution function is governed by the scaling parameters bi and Θi,
which denote the time dependent deformations of the space and momentum variables. The second
term in Eq. (4.6) describes a gauge transformation of the q-vector [53] so that the local velocity
field of the rescaled distribution function vanishes. The factor Γ in the scaling was introduced to
ensure that the scaling does not change the normalization of the distribution function. Inserting
this ansatz Eqs. (4.4)–(4.7) into equation (4.2) yields

Umf,bΘ(r,k, t) =

∫

d3r′n0(r′)Vint(b, r− r′)− 1
∏

j bj

∫
d3k′

(2π)3
f 0(r,k′)Ṽint(Θ,k− k′), (4.8)

where n0(r) denotes the spatial density in equilibrium,

Vint(b, r− r′) = Vint

[
bx(rx − r′x), by(ry − r′y), bz(rz − r′z)

]
(4.9)

the rescaled interaction potential and

Ṽint(Θ,k− k′) = Ṽint

[

Θ
1
2
x (kx − k′x),Θ

1
2
y (ky − k′y),Θ

1
2
z (kz − k′z)

]

(4.10)

the rescaled Fourier-transformed interaction potential. Note that Fourier transform and rescaling
do not commute. Hence, it is necessary to perform these two operations in the correct order.
Substituting the scaling ansatz (4.4)–(4.7) into equation (4.1) leads to

Γ̇f 0(r,k) + Γ
∑

i

{

∂f 0(r,k)

∂ri

h̄kiΘ
1
2
i

mbi
− ∂f 0(r,k)

∂ki

[

ki

(

1

2

Θ̇i

Θi

+
ḃi
bi

)

+
rimb̈i

h̄Θ
1
2
i

+
1

h̄biΘ
1
2
i

∂U(b, r)

∂ri

]}

− Γ

h̄

∑

i

1

biΘ
1
2
i

[
∂f 0(r,k)

∂ki

∂Umf,bΘ

∂ri

− ∂Umf,bΘ

∂ki

∂f 0(r,k)

∂ri

]

= Icoll[f ], (4.11)
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4.1 Scaling Ansatz

where
U(b, r) = U(bxrx, byry, bzrz) (4.12)

denotes the rescaled trapping potential. Note that I rescale the collision integral later on, when I
introduce the relaxation time approximation.

The Θ-equations can be derived by multiplying Eq. (4.11) with k2
i and integrating over the

whole phase space, which leads to

Θ̇i

Θi

+ 2
ḃi
bi
− 1

h̄ 〈k2
i 〉

0

∫
d3rd3k

(2π)3
k2

i

∑

j

1

bjΘ
1
2
j

(
∂Umf,bΘ

∂rj

∂f 0

∂kj

− ∂Umf,bΘ

∂kj

∂f 0

∂rj

)

=
1

Γ 〈k2
i 〉

0

∫
d3rd3k

(2π)3
k2

i Icoll[f ], (4.13)

where 〈·〉0 =
∫
d3rd3k/(2π)3 · f 0(r,k) denotes the phase-space average weighted with the equilib-

rium distribution function f 0. Since f 0(r,k) and the interaction potential are even functions in
both coordinates and momenta, the interaction term in Eq. (4.13) vanishes. This becomes clear in
the context of a Fermi gas without a dipole-dipole interaction which has the form of a Fermi-Dirac
distribution. In the limit of zero temperature, this Fermi-Dirac distribution degenerates into a
Heaviside function with quadratic dependence on space and momentum parameters, leading to an
even distribution. The effect of an interaction, which is described by an even potential, will not
change this qualitative behavior. Hence, the Θ-equations (4.13) simplify to

Θ̇i

Θi

+ 2
ḃi
bi

=
1

Γ 〈k2
i 〉

0

∫
d3rd3k

(2π)3
k2

i Icoll[f ]. (4.14)

Multiplying the whole equation (4.11) instead with riki and integrating again over the phase space
leads to a differential equation for the scaling parameter bi(t):

− Γ
h̄Θ

1
2
i

mbi

〈
k2

i

〉0
+

Γmb̈i

h̄Θ
1
2
i

〈
r2
i

〉0
+

Γ

h̄biΘ
1
2
i

∫
d3rd3k

(2π)3
ri
∂U(b, r)

∂ri

f 0(r,k)

− Γ

h̄

∫
d3rd3k

(2π)3
riki

∑

j

1

bjΘ
1
2
j

(
∂f 0

∂kj

∂Umf,bΘ

∂rj

− ∂f 0

∂rj

∂Umf,bΘ

∂kj

)

= 0. (4.15)

Note that the zero of the right-hand side of Eq. (4.15) stems from the fact that riki is a conserved
quantity of the collision integral, as argued at the end of Section 3.2.

The equations for the scaling parameters bi in Eq. (4.15) can be simplified by using Fourier
transforms to rewrite the mean-field terms in a more compact form. Due to the k-independence
of the Hartree term, only three mean-field potential terms appear in Eq. (4.15). For simplicity,
I treat them separately, beginning with the Hartree term in which I perform at first a partial
integration with respect to the ki-derivative

TH = − 1

m

∫
d3rd3k

(2π)3
riki

∑

j

Θ
1
2
i

bjΘ
1
2
j

∂f 0

∂kj

∂

∂rj

∫

d3r′n0(r′)Vint(b, r− r′)

=
1

bim

∫

d3rd3r′ri
∂Vint(b, r− r′)

∂(ri − r′i)
n0(r)n0(r′). (4.16)

Splitting ri = (ri+ri)/2 at the right-hand side of Eq. (4.16) and renaming the integration variables
in one of these two terms leads to

TH =
1

2mbi

∫

d3rd3r′(ri − r′i)
∂Vint(b, r− r′)

∂(ri − r′i)
n0(r)n0(r′). (4.17)
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4 Solution of the Boltzmann-Vlasov Equation

At last, Fourier transforms of the densities can be used to decrease the number of integrals

TH =
1

2mbi

∫
d3k

(2π)3
W̃i(b,k)ñ0(k)ñ0(−k), (4.18)

where ñ0 denotes the Fourier transform of the particle density and

W̃i(b,k) = F

[

ri
∂Vint(b, r)

∂ri

]

(4.19)

uses the abbreviation F [·] which denotes the Fourier transform of the argument. Note that in W̃i

the order of Fourier transforming and rescaling is opposite to the potential in the Fock term in
Eq. (4.10). The Fock exchange terms will be treated in a similar way. Partial integrations lead to
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∂Ṽint(Θ,k− k′)

∂ki

}

. (4.20)

After performing the product rule, the first term leads to two terms. After a partial integration
and a renaming of the integration variables, one of these terms coincides exactly with the original
term
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The second term on the right-hand side of Eq. (4.20) can be split into two equal terms. After
renaming the integration variables of one of these two terms, I get

TF =

∫
d3rd3kd3k′

(2π)6
f 0(r,k)f 0(r,k′)ki
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2

∂Ṽint(Θ,k− k′)

∂ki

. (4.22)

This can be rewritten using Fourier transforms

TF =
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2

∫
d3rd3r′d3kd3k′
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Putting all these together, the differential equations for the parameters bi yield

b̈i +
1

mbi 〈r2
i 〉
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∫
d3rd3k

(2π)3
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∂ri
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]

= 0, (4.24)

where W̃i(Θ,k− k′) is the rescaled Fourier transform of ri
∂Vint

∂ri

W̃i(Θ,k− k′) =

(∫

d3re−ir·qri
∂Vint

∂ri

) ∣
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. (4.25)

In order to further simplify this equation, I consider the concrete case of a Fermi gas within an
anisotropic harmonic trap

U(b, r) =
m

2

∑

i

ω2
i b

2
i r

2
i . (4.26)

Thus, the trapping term can be rewritten as
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mω2

i b
2
i r

2
i f

0(r,k) = ω2
i bi, (4.27)

so that Eq. (4.24) reduces to

b̈i + ω2
i bi −

h̄2 〈k2
i 〉

0
Θi

m2bi 〈r2
i 〉

0 +
1

2mbi 〈r2
i 〉

0

[∫
d3k

(2π)3
W̃i(b,k)ñ0(k)ñ0(−k)

− 1
∏

j bj

∫
d3rd3kd3k′

(2π)6
f 0(r,k)f 0(r,k′)W̃i(Θ,k− k′)

]

= 0. (4.28)

The integro-differential equations cannot be solved in the form of Eq. (4.14) and Eq. (4.28),
because the global equilibrium distribution f 0 is still unknown and I have not yet dealt with the
collision integral. To be consistent with my previous calculations, I would have to insert the scaling
ansatz into the whole collision integral as well and evaluate it with the ansatz (4.4)–(4.7) for the
distribution function to obtain an expression for the scaling parameters without any integrals.
However, it is not possible to do this due to the nonlinear and complex structure of the collision
integral. Therefore, I have to resort to a simplified procedure. At first, I will derive the equations
determining the global equilibrium distribution function. Afterwards, I will describe the effect of
collisions by means of a relaxation time approximation.

4.2 Static Solution

In the last section, I derived differential equations for the respecting scaling parameters. These
equations still contain some integrals over the Wigner function in equilibrium, the dipole-dipole
interaction potential, and the collision integral. The dependence of the equilibrium Wigner func-
tion stems from the scaling ansatz, which assumes that f(x,q, t) is qualitatively not very different
from the equilibrium distribution function f 0. Hence, knowing f 0(r,k) is mandatory for solving
the Boltzmann-Vlasov equation with the scaling ansatz. This function is, in principle, defined
through the partial differential Eq. (4.3).
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4 Solution of the Boltzmann-Vlasov Equation

Due to the fact that general solutions for partial differential equations are hard to achieve, I will
use a variational ansatz for determining the equilibrium Wigner function, yet I have to be careful to
construct this ansatz in a self-consistent way. In phase space, the equilibrium distribution function
will rapidly decrease to zero outside a certain closed surface, because I consider an ultracold Fermi
gas. Therefore, I use an ansatz for the semiclassical Wigner function which resembles the correct
form of a non-interacting Fermi gas at zero temperature

f 0(r,k) = Θ

(

1−
∑

j

r2
i

R2
i

−
∑

j

k2
i

K2
i

)

. (4.29)

Here the variational parameters Ri and Ki denote the extension of the Fermi surface in equilibrium
in both coordinate and momentum space. The dipole-dipole interaction will stretch the momentum
distribution in the direction of the polarization, which is taken into account by an anisotropy of
the momentum parameters Ki. With this ansatz, the normalization of f 0(r,k) leads to

N =

∫

d3r

∫
d3k

(2π)3
f 0(r,k) =

1

48
R

3
K

3
, (4.30)

where the bar denotes geometric averaging, i.e., R = (RxRyRz)
1
3 . To render the ansatz (4.29) self-

consistent, the parameters Ri and Ki have to minimize the total energy of the system. This leads
together with the particle number conservation Eq. (4.30) equations which fix these parameters.

4.2.1 Total energy

The Hamiltonian of the collisionless Boltzmann-Vlasov equation (2.61) describes an effective one-
particle theory and, therefore, determines a one-particle energy. Instead, I have to minimize the
total energy of the many-body system, which is given in the realm of the Hartree-Fock theory as
the sum of the kinetic Energy Ekin, the trapping Energy Etr, the direct Hartree energy Ed, and
the Fock exchange energy Eex [20,29,30]:

Ekin =

∫

d3r

∫
d3k

(2π)3

h̄2k2

2m
f(r,k, t), (4.31)

Etr =

∫

d3r

∫
d3k

(2π)3

m

2
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ω2
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2
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)

f(r,k, t), (4.32)
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Vint(r− r′)f(r,k, t)f(r′,k′, t), (4.33)

Eex = −1
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∫
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∫

d3k

(2π)3

∫
d3k′

(2π)3
Vint(r)e

i(k−k′)·r′f(r,k, t)f(r,k′, t). (4.34)

This Hartree-Fock energy Etot = Ekin + Etr + Ed + Eex neglects the collisional effects, hence it
is only valid, when the collisions vanish. Because I will calculate the energy in the static case
this condition is fulfilled. Note that an intriguing relation exists between the effective one-particle
Hamiltonian Eq. (2.61) and the total Hartree-Fock energy of the system Etot, which reads

H(r,p, t) =
δEtot(r,p, t)

δf(r,p, t)
, (4.35)

where δ/δf(r,p, t) denotes a functional derivative with respect to the semiclassical Wigner func-
tion. This equation was found by a comparison between Etot(r,p, t) and H(r,p, t), but I do not
have a clear derivation yet.
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4.2 Static Solution

A lengthy calculation is required to evaluate the integrals (4.31)–(4.34) in global equilibrium
for the ansatz Eq. (4.29), but a detailed computation of all 4 terms can be found in Appendix B.
The resulting total energy turns out to be

Etot =
N

8

∑

j

h̄2K2
j

2m
+
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8
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∑
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,
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)

+
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8R
3 f
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Kx

,
Kz
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)

, (4.36)

where c0 = 210Cdd/(3
4 ·5 ·7 ·π3) and f(x, y) is the anisotropy function defined through the integral

f(x, y) = − 1

4π

∫ 2π

0

dφ

∫ π
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dϑ sinϑ

[

3x2y2cos2ϑ
(
y2cos2φ+ x2sin2φ

)
sin2ϑ+ x2y2cos2ϑ

− 1

]

, (4.37)

which can also be represented in terms of elliptic integrals [20]

f(x, y) = 1 + 3xy
E(ϕ, k)− F (ϕ, k)

(1− y2)
√

1− x2
, (4.38)

where ϕ = arcsin
√

1− x2 is an abbreviation, F (ϕ, k) is the elliptic integral of first kind

F (ϕ, k) =

∫ sin ϕ

0

du
1

√

(1− u2)(1− k2u2)
(4.39)

and E(ϕ, k) is the elliptic integral of second kind

E(ϕ, k) =

∫ sin ϕ

0

du

√
1− k2u2

√
1− u2

. (4.40)

The effect of the dipole-dipole interaction is only described by the anisotropy function, which is
not only valid for Fermi gases but for all dipolar systems, i.e., dipolar Bose gases [54–57]. The
properties of the anisotropy function are described in more detail in Ref. [20, Appendix B].

4.2.2 Variational Parameters in Momentum Space

To render my ansatz self-consistent, the variational parameters Ri and Ki are determined by min-
imizing the total energy. By doing so, I acknowledge that they are not independent of each other,
as they are coupled via Eq. (4.30), which accounts for the particle number conservation. Hence,
I introduce a Langrange multiplier µ and add the particle number conservation to Eq. (4.36). A
minimization of the resulting quantity Etot − µN with respect to the momentum parameters Ki

leads to

Nh̄2Kx

8m
− 48N2c0

8R
3

Kz

K2
x

f1

(
Kz

Kx

,
Kz

Ky

)

− µ

48
R

3
KyKz = 0, (4.41)
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KxKz = 0, (4.42)
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+
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1
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f2

(
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,
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)

− µ

48
R

3
KxKy = 0, (4.43)

where f1/2(x, y) denotes the derivative of f(x, y) with respect to the first/second variable.
Eqs. (4.41)–(4.43) depend explicitly on the Lagrange multiplier µ. To get an expression for µ
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4 Solution of the Boltzmann-Vlasov Equation

I sum up all three momentum equations, so that any terms containing the anisotropy function
cancel each other, which leads to the following expression of the Langrange multiplier

µ =
1

12

∑

j

h̄2K2
j

2m
. (4.44)

Inserting this into the Eqs. (4.41)–(4.43) leads to the following static equations for the parameters
Kj
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=
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. (4.47)

These equations are not independent of each other, but show the influence of the dipole-dipole
interaction on the momentum distribution in phase space. Without the anisotropy function in
Eqs. (4.45)–(4.47), they yield a spherically symmetric momentum distribution, which is called
in condensed matter physics a Fermi sphere [58]. But through the effect of the dipole-dipole
interaction, the Fermi sphere will be deformed to an ellipsoid [26]. Note that the derived equations
for the momentum parameters are only influenced by the kinetic and the Fock energy term.

By considering the symmetries of the total energy (4.36), I can obtain a simple relation between
the variational parameters for the x and y directions. As a consequence of the symmetry of the
anisotropy function f(x, y) = f(y, x) [20], the total energy possesses the same symmetry between
the x- and y-direction in K-space. This implies that the momentum distribution of a dipolar
Fermi gas in global equilibrium remains cylinder-symmetric even in the case of a triaxial trap
[20,29,30], because the trap geometry does not influence the exchange term in the total energy.
Thus, I can conclude Kx = Ky, which also enables me to simplify the relation to Kz by taking
into account

lim
y→x

xf1(x, y) = lim
y→x

yf2(x, y) = −1 +
(2 + x2)fs(x)

2(1− x2)
, (4.48)

where fs(x) = f(x, x) denotes the cylinder-symmetric anisotropy function
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1− Artanh
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√
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)

+ 1. (4.49)

Subtracting Eq. (4.45) from Eq. (4.47) and inserting Eq. (4.48) yields
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z )



 . (4.50)

This equation shows the stretching of the momentum distribution due to the dipole-dipole inter-
action.
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4.2 Static Solution

4.2.3 Variational Parameters in Coordinate Space

The derivation of the equations which determine the spatial parameters with minimal total energy
is analogous to the calculation of the momentum parameters. To this end, I minimize Etot − µN
with respect to the space parameters Ri, which leads to
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To get equations which are independent of the Lagrange multiplier µ, I sum up Eqs. (4.51)–(4.53),
which yields
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This differs from Eq. (4.44) but represents an equivalent expression for µ. Inserting Eq. (4.54)
into the Eqs. (4.51)–(4.53) for the spatial parameters leads to
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Thus, I get with the cylinder-symmetric momentum distribution in total five independent Eqs.
(4.30), (4.50), and (4.55)–(4.57) for the scaling parameters which determine the static solution.

4.2.4 Cylinder-Symmetric Case

Before I use the equations derived for the global equilibrium, I specialize these equations to
a cylinder-symmetric trapping potential, which means ωx = ωy. To emphasis this, I denote
both of these directions with the subscript ρ. Due to the symmetry of the anisotropy function
f(x, y) = f(y, x), (4.55) and (4.56) become then equivalent equations and, therefore, I conclude
Rx = Ry =: Rρ. This symmetry of the system can be used to simplify the equations for the
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variational parameters Rρ and Rz with the result

ω2
ρR

2
ρ −

h̄2K2
ρ

m2
− 48Nc0

mR
3




3

R2
ρ

R2
z
fs

(
Rρ

Rz

)

2(1− R2
ρ

R2
z
)

+
3fs

(
Kz

Kρ

)

2(1− K2
ρ

K2
z
)



 = 0, (4.58)

ω2
zR

2
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+

48Nc0

mR
3




3fs

(
Rρ

Rz

)

(1− R2
ρ

R2
z
)

+
3

K2
ρ

K2
z
fs

(
Kz

Kρ

)

(1− K2
ρ

K2
z
)



 = 0, (4.59)

where R = (R2
ρRz)

1/3. In the cylinder-symmetric case, only 4 independent equations remain:
Eqs. (4.30), (4.50), (4.58), and (4.59).

4.3 Integrals with Stationary Distribution

I rescaled the Boltzmann-Vlasov equation and derived the ordinary differential equations (4.14)
and (4.28) for the scaling parameters. However, the equations (4.28) for bi still contain integrals.
In the following, I will solve or at least simplify them.

At first, I write the b-equations (4.28) in the shorter form

b̈i + ω2
i bi −

h̄2 〈k2
i 〉

0
Θi

m2bi 〈r2
i 〉

0 +
MH

i (b) +MF
i (b,Θ)

mbi 〈r2
i 〉

0 = 0, (4.60)

where MH
i (b) and MF

i (b,Θ) are the integrals from the Hartree (H) and Fock (F) term:

MH
i (b) =

1

2

∫
d3k

(2π)3
W̃i(b,k)ñ0(k)ñ0(−k), (4.61)

MF
i (b,Θ) = − 1

2
∏

j bj

∫
d3rd3kd3k′

(2π)6
f 0(r,k)f 0(r,k′)W̃i(Θ,k− k′). (4.62)

These two integrals are similar to the energy integrals calculated in Appendix B. Hence, some of
the previous calculations can be used.

At first, I study the Hartree integral MH
i (b). To this end, I have to find an explicit expression

for W̃i(b,k) which was defined in Eq. (4.19)

W̃i(b,k) =

∫

d3re−ik·rri
∂Vint(bxrx, byry, bzrz)

∂ri

. (4.63)

Rescaling of the integration variable and partial integrations lead to

W̃i(b,k) = − 1
∏

l bl

∂

∂ki

[

kiṼint

(
kx

bx
,
ky

by
,
kz

bz

)]

. (4.64)

The Fourier transform of the interaction potential is outlined in Appendix A. Inserting the result
(A.12) in Eq. (4.64) leads to the following explicit expression for W̃i(b,k)

W̃i(b,k) = − Cdd

3
∏

j bj

∂

∂ki



ki




3k2

z

b2z

k2
x

b2x
+

k2
y

b2y
+ k2

z

b2z

− 1







 . (4.65)
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The Fourier transform of the density ñ0(k) is calculated in Appendix B, its result being given by
Eq. (B.23). Using the particle number conservation Eq. (4.30), I can write the Fourier-transformed
spatial density as

ñ0(k) = 48N
J3

[(
R2

xk
2
x +R2

yk
2
y +R2

zk
2
z

) 1
2

]

(
k2

xR
2
x + k2

yR
2
y + k2

zR
2
z

) 3
2

, (4.66)

which has manifestly the symmetry property ñ0(k) = ñ0(−k). Having all ingredients for the
Hartree integral (4.61) at hand, I can now write it down

MH
i (b) = −1

2
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(4.67)
Applying the product rule of differentiation leads to two terms which differ only in the derivative
with respect to a momentum coordinate, multiplied by the same momentum coordinate

MH
i (b) =− 482N2Cdd
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Then, I perform the substitution ui = Riki and rewrite the derivative in the second term as a
derivative of biRi, using the identity

∂f

∂a

(x

a

)

= −x
a

∂f

∂x

(x

a

)

, (4.69)

which is valid for any differentiable function. Thus, I obtain

MH
i (b) =− 482N2Cdd
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Switching to spherical coordinates and taking into account the definition of the anisotropy function
Eq. (4.37) as well as [59, (6.574.2)]

∫ ∞

0

dtJν(αt)Jµ(αt)t−λ =
αλ−1Γ(λ)Γ

(
ν+µ−λ+1

2

)

2λΓ
(
−ν+µ+λ+1

2

)
Γ
(

ν+µ+λ+1
2

)
Γ
(

ν−µ+λ+1
2

)

for Re(ν + µ+ 1) > Re(λ) > 0, α > 0 (4.71)

leads to

MH
i (b) =

48N2c0
8
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j bjRj
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∂

∂biRi
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An explicit expression for the Fock integral (4.62) can be obtained in a similar way. Using Fourier
transforms, one can rewrite it in the following form

MF
i (b,Θ) = − 1

2
∏

j bj

∫
d3k′′

(2π)6
W̃i(Θ,k

′′)

∫

d3k′
∫

d3r′f̃
0

(k′, r′)f̃
0

(−k′,−r′)eir′·k′′

, (4.73)

where f
0
(k′,k) denotes the Fourier transform of f 0(x,k) with respect to the first variable and

f̃ 0(x,x′) the Fourier transform with respect to the second variable. The rescaled Fourier transform
of the interaction potential as defined in Eq. (4.25) reads

W̃ (Θ,k′′) = −Cdd

3

∂
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3Θzk

′′2
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− 1
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. (4.74)

The calculation of the r′ and k′ integrals over the double Fourier transformed Wigner functions
and the exponential function can be found in Appendix B, its result being given by Eq. (B.39).
Putting all this together leads to
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. (4.75)

Substituting ki = uiKi, I get

MF
i (b,Θ) =
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After switching into spherical coordinates and rewriting the derivative ∂/∂ui into a derivative with

respect to Θ
1
2
i Ki, I finally get

MF
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The Hartree and Fock integrals Eq. (4.72) and Eq. (4.77) are both determined through the
anisotropy function Eq. (4.37) and its derivatives. The remaining equilibrium averages over k2

i

and r2
i yield

〈
k2

i

〉0
=
N

8
K2

i , (4.78)

〈
r2
i

〉0
=
N

8
R2

i . (4.79)
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Having calculated all ingredients now, I insert the Eqs. (4.72) and (4.77)–(4.79) into the equation
of motion (4.60) for the scaling parameter bi, which leads to
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4.4 Local Equilibrium Distribution

Through the effect of collisions, the Fermi gas relaxes into local equilibrium, which is in general
defined by Eq. (3.4). The system is then in local thermodynamical equilibrium, but not in global
equilibrium, meaning that, for example, the local velocity field or the density can still vary from
point to point. The scaling ansatz assumes that the distribution function is qualitatively not very
different from equilibrium. Therefore, I assume, furthermore, that it is appropriate to approxi-
mately describe a relaxation from a distribution near equilibrium in terms of only one relaxation
time

Icoll[f ] ≈ −f − f
le

τ
, (4.81)

where τ denotes this relaxation time. For simplicity, we neglect that τ may depend on space and
momentum as well as time and assume that it is constant. Note that the collision integral defines an
infinite number of local equilibrium distribution functions, but the particular distribution function
f le in the relaxation time approximation is clearly defined, determining the limit function of the
relaxation of f . Therefore, the choice of f le is not arbitrary, since it depends on f . This point
is crucial in understanding the structure of this local equilibrium function in the relaxation time
approximation Eq. (4.81). It was shown in Section 3.2 that the collisions determine the momentum
distribution in local equilibrium, but do not fix any spatial dependence. This implies that the
collisions do not affect the spatial dependence of the distribution function.

Inserting Eq. (4.81) into the equations (4.14) for the Θi´s and rescaling both distribution func-
tions leads to

Θ̇i

Θi

+ 2
ḃi
bi

= −1

τ

[

1− Γle

Γ 〈k2
i 〉

0

∫

d3r

∫

d3kk2
i f

0(r,kle, t)

]

, (4.82)

where I also rescaled the local equilibrium according to Eqs. (4.4)–(4.7), but with the new scaling
parameters Θle

i , owing to the change of the momentum distribution by the collisions. Furthermore,

Γle =
1

∏

j bj(Θ
le
j )

1
2

(4.83)

represents the scaling factor for f le. As discussed above, the limiting function of the relaxation
inherits its spatial dependence from the distribution function f , so that the spatial scaling param-
eters bi of both functions are equal, as is also concluded in Refs. [50,51].

Through the scaling ansatz, one can derive coupling equations between the rescaled k-vectors

ki =

(
Θle

i

Θi

) 1
2

kle
i . (4.84)
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Inserting this into the equation of motion for the momentum scaling parameter Eq. (4.82) leads
to

Θ̇i + 2
ḃi
bi

Θi = −1

τ
(Θi −Θle

i ). (4.85)

The right-hand side shows that dissipation occurs when the system is not in local equilibrium and
the relaxation time τ has a finite value.

The most important property of the Θle
i ´s is that they are not independent of each other.

Rather, the system is in local equilibrium for all directions. Therefore, the different directions
of the system are coupled. The only exception is the ballistic regime, in which all directions
are independent of each other. Note that this represents the fundamental difference between the
hydrodynamic and the ballistic regime.

The system relaxes through the effect of collisions into a state described by the local equilibrium
distribution function f le, which means that the system only minimizes its energy with respect to
the momentum scaling parameters Θle

i , because the local collisional interactions do not influence
the spatial distribution of the Fermi gas. Therefore, I minimize the total energy of the system,
whose components vary generally in time, with respect to the momentum scaling parameters. To
obtain the corresponding form for the total energy, I rescale the distribution functions according
to Eqs. (4.4)–(4.7) in the energy integrals (4.31)–(4.34). Afterwards, I calculate the integrals
by means of the ansatz for the global equilibrium function f 0 in Eq. (4.29). The calculation of
these integrals is analogous to the computation in the stationary case, but contains the scaling
parameters. The solution is given by
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, (4.86)

where the first term, which vanishes in global equilibrium, represents the flow energy which is one
part of the kinetic energy contribution.

To obtain relations for the scaling parameters in local equilibrium, I have to minimize the
quantity Etot−µN with respect to Θ

1/2
i Ki. Here, µ is also a Lagrange multiplier which is introduced

because of the particle number conservation. By summing up the resulting equations, I find again
an explicit expression of the Lagrange multiplier µ

µ =
1

12

∑

j

h̄2Θle
j K

2
j

2m
(4.87)
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which leads to the equations

h̄2Θle
xK

2
x

2m
=

1

3

∑

j

h̄2Θle
j K

2
j

2m
+

48Nc0
2
∏

j bjRj

(
Θle

z

) 1
2 Kz

(Θle
x )

1
2 Kx

f1





(
Θle

z

) 1
2 Kz

(Θle
x )

1
2 Kx

,

(
Θle

z

) 1
2 Kz

(
Θle

y

) 1
2 Ky



 , (4.88)

h̄2Θle
yK

2
y

2m
=

1

3

∑

j

h̄2Θle
j K

2
j

2m
+

48Nc0
2
∏

j bjRj

(
Θle

z

) 1
2 Kz

(
Θle

y

) 1
2 Ky

f2





(
Θle

z

) 1
2 Kz

(Θle
x )

1
2 Kx

,

(
Θle

z

) 1
2 Kz

(
Θle

y

) 1
2 Ky



 , (4.89)

h̄2Θle
z K

2
z

2m
=

1

3

∑

j

h̄2Θle
j K

2
j

2m
− 48Nc0

2
∏

j bjRj

(
Θle

z

) 1
2 Kz

(Θle
x )

1
2 Kx

f1





(
Θle

z

) 1
2 Kz

(Θle
x )

1
2 Kx

,

(
Θle

z

) 1
2 Kz

(
Θle

y

) 1
2 Ky





− 48Nc0
2
∏

j bjRj

(
Θle

z

) 1
2 Kz

(
Θle

y

) 1
2 Ky

f2





(
Θle

z

) 1
2 Kz

(Θle
x )

1
2 Kx

,

(
Θle

z

) 1
2 Kz

(
Θle

y

) 1
2 Ky



 . (4.90)

These are the coupling equations for the scaling parameters in local equilibrium. I drop the second
equation, as it provides no new information. Subtracting the first equation from the third one
yields
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By considering the symmetries of the total energy Eq. (4.86) I can obtain, as discussed in Section
4.2.1, the identity Θle

x = Θle
y , which also enables us to simplify Eq. (4.91) to
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. (4.92)

The relations between the scaling parameters can be physically interpreted. Without the dipole-
dipole interaction, i.e. c0 = 0, the effect of collisions will lead to a spherically symmetric distribu-
tion in momentum space which corresponds to an equilibrium with minimized energy. Through
the influence of the dipole-dipole interaction, this spherical-symmetric distribution is deformed,
however. Note that only the Fock term is responsible for this.

As discussed earlier, the three scaling parameters Θle
i are coupled via the cylinder-symmetric

distribution in momentum space and Eq. (4.92). Hence, there is effectively only one independent
scaling parameter in local equilibrium which can be determined using the fact that the collision
integral conserves the kinetic energy. The effect of collisions is considered by means of the relax-
ation time approximation. This method is only consistent with the full collision integral when the
approximation has the same conserved quantities. This provides me with a coupling between the
distribution function f and the semiclassical Wigner function in local equilibrium f le

−1

τ

∫

d3x

∫
d3q

(2πh̄)3
q2
i

[
f(x,q, t)− f le(x,q, t)

]
= 0. (4.93)
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By using the scaling ansatz, I can reformulate this equation into the simple form

∑

i

Θle
i

〈
k2

i

〉0
=
∑

j

Θj

〈
k2

j

〉0
. (4.94)

This connects the Θi with the Θle
i , so that Eqs. (4.80) and Eqs. (4.85) represents now a closed set

of equations.
Note that the ansatz Eq. (4.29) ensures that the conservation laws for the momentum and

the particle number are consistent with the relaxation time approximation. In the case of the
particle conservation, the rescaling can be done without any difficulties, leading to the same
term for the local equilibrium and for an arbitrary distribution f . In the case of the momentum
conservation law, I use that the distribution functions are even, so that the integrals vanishes.
Hence, the conservation laws for the particle number and the momentum do not provide any new
information.

4.5 Discussion

In the previous sections, I have shown how to perform the scaling ansatz on the Boltzmann-
Vlasov equation. This ansatz assumes a distribution function which has mathematically the
same form as the global equilibrium distribution function f 0(x,q). This was derived with a
variational ansatz, whose parameters were determined by minimizing the total energy of the
system. By taking moments of the space and momentum variables over the Boltzmann-Vlasov
equation, it was possible to derive differential equations for the scaling parameters bi in Eq. (4.80)
and Θi in Eq. (4.85). The differential equation for bi contained integrals from the Hartree and the
Fock term which could be solved if the global equilibrium function is known. The Θ-equations
contained the moment of the collision integral, which was calculated within the relaxation time
approximation. The effect of the local equilibrium function was also calculated via the scaling
ansatz. The corresponding scaling parameters Θle

i were determined through a minimization of the
time dependent total energy, reflecting the fact that the global equilibrium is only a static local
equilibrium.

The effect of collisions is governed by the equations for Θi, whereas the equations for bi are
unaffected by them. Therefore, the equations for the scaling parameters bi have the same form
in all collisional regimes. Hence, the strength and frequency of the collisions affect the equations
for Θi, which relates them to bi. Inserting this relation, which is different for different collisional
regimes, fixes the differential equations for bi and couples them, if necessary.

To discuss this in more detail, I provide the derivation of the equations of motion for the scaling
parameters in the limiting cases. In the collisionless regime, all directions are independent from
each other and the relaxation time τ goes to infinity. Therefore, the differential equations (4.85)
for the scaling parameters Θcl

i have the form

Θ̇cl
i + 2

ḃcli
bcli

Θcl
i = 0, (4.95)

which are solved by Θcl
i = (bcli )−2. Inserting this solution in the equations for the scaling param-

eters bcli in (4.80) yields the equations of motion in the collisionless regime. Note that then, the
normalization factor (4.7) turns out to be Γcl = 1.

In the opposite hydrodynamic limit, the system is always in local equilibrium due to the high
collision rate. Hence, the scaling parameters Θhy

i are equal to the scaling parameters in local
equilibrium, and the right-hand side of Eqs. (4.85) vanishes. Thus, no dissipation occurs in the
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4.5 Discussion

system but, in contrast to the collisionless regime, the different directions are coupled, as the
system is in local thermodynamic equilibrium. Therefore, one has to be careful when taking the
hydrodynamic limit Θi → Θhy

i = Θle
i on the left-hand side of these equations. A naive substitution

Θi = Θhy
i leads to three different equations which is obviously wrong. To discuss this in detail,

consider the case of a spherically symmetric distribution in k-space. This would be the case with
a delta-type interparticle interaction. In such a case all Θhy

i are equal and, therefore, Eqs. (4.85)
must lead to three equivalent equations in the hydrodynamic limit, which is obviously wrong due
to the different bhy

i ´s in the equations.
To take the hydrodynamic limit in the correct way, I sum up all three equations, which leads to

∑

i

(

Θ̇i

Θi

+ 2
ḃi
bi

)

= −1

τ

∑

i

(

1− Θle
i

Θi

)

. (4.96)

The advantage of this equation is that it does not describe an isolated direction. Carrying out the
hydrodynamic limit by substituting Θi = Θhy

i leads to the vanishing of the right-hand side of this
equation.

∑

i

(

Θ̇hy
i

Θhy
i

+ 2
ḃi

hy

bhy
i

)

= 0 (4.97)

The left-hand side of Eq. (4.97) can be reformulated so that a relation to the normalization factor
Γ, which is defined in Eq. (4.7), can be obtained

−2Γ̇hy

Γhy
=
∑

i

(

Θ̇i
hy

Θhy
i

+ 2
ḃi

hy

bhy
i

)

. (4.98)

Combining these two equations leads to the simple condition

Γ̇le = 0. (4.99)

Thus, Γhy has to be time independent, which means that the form of the particle number conser-
vation is invariant. The value of Γhy can be determined, because its value in the limit t → ∞ is
the stationary solution and therefore equal to one. Thus, we conclude Γhy = 1. So the particle
number conservation determines the relation between the scaling parameters Θhy

i and bhy
i . Thus,

the error by taking the hydrodynamic limit in the Eqs. (4.85) occurred due to the fact that the
scaling parameters are not independent of each other.

This concludes the derivation of the theory, which allows me to describe a dipolar Fermi gas
within a triaxial trap. The next step would be the numerical analysis of the system in order to
derive the low-lying excitation modes or the time-of-flight dynamics. Due to the experimental
progress in cooling down dipolar Fermi gases, it is realistic to assume that this theory could soon
be compared with experiments.
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5 Limiting Cases

This chapter provides a concise overview of the limiting cases of the equations for the scaling
parameters. At first, I discuss the limiting case of the ballistic regime and compare these equations
with Ref. [27], which describe a dipolar Fermi gas in the collisionless regime within a cylinder-
symmetric trap. Afterwards, I consider the hydrodynamic limit and compare the specialized
equations with the papers [29,30] which describe a dipolar Fermi gas in the hydrodynamic regime
within a triaxial trap.

5.1 Collisionless Limit

In this section, I will calculate the equations of motion for the scaling parameters in the case of
a cylinder-symmetric trap in the collisionless regime. The purpose is to compare the resulting
equations of the theory with the equations derived in Ref. [27]. To this end, it will be necessary
to calculate the integrals in terms of the anisotropy function.

The scaling parameters derived in Ref. [27] determine a dipolar Fermi gas, as described above.
Hence, I specialize the general equations to this case and derive a simpler form of the differential
equations for the scaling parameters. The relaxation time in the collisionless regime goes to
infinity, which leads to the relation between the scaling parameters bcli and Θcl

i as discussed in the
previous chapter to Θcl

i = (bcli )−2.
Due to the cylinder symmetry of the system, the equations of motion for bclx and bcly are equal.

Hence, I only have to consider differential equations for bclz and for bclx . Inserting the relation
between Θcl

x = (bclx )−2 into the equation of motion for bclx leads to

b̈clx =− ω2
xb

cl
x +

h̄2K2
x

m2(bclx )3R2
x

− 48Nc0
m
∏

j b
cl
j RjbclxR

2
x

[

f

(

bclxRx

bclz Rz

,
bclyRy

bclz Rz

)

− bclxRx

bclz Rz

f1

(

bclxRx

bclz Rz

,
bclyRy

bclz Rz

)

−f
(

bclxKz

bclz Kx

,
bclyKz

bclz Ky

)

+
bclxKz

bclz Kx

f1

(

bclxKz

bclz Kx

,
bclyKz

bclz Ky

)]

. (5.1)

Due to the cylinder symmetry of the system, the anisotropy functions are symmetric in their
arguments. Thus, I can rewrite the derivatives of f as algebraic terms of the anisotropy function,
using the identity Eq. (4.48). After inserting this into Eq. (5.1), the equation of motion for the
scaling parameter bclx reads

b̈clx =− ω2
xb

cl
x +

h̄2K2
x

m2(bclx )3R2
x

− 48Nc0
m
∏

j b
cl
j RjbclxR

2
x







2

[

1−
(

bclx Rx

bclz Rz

)2
]

− 3
(

bclx Rx

bclz Rz

)2

fs

(
bclx Rx

bclz Rz

)

2

[

1−
(

bclx Rx

bclz Rz

)2
]

−
2

[

1−
(

bclx Kz

bclz Kx

)2
]

− 3
(

bclx Kz

bclz Kx

)2

fs

(
bclx Kz

bclz Kx

)

2

[

1−
(

bclx Kz

bclz Kx

)2
]







. (5.2)
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Inserting the expression for the cylinder-symmetric anisotropy function (4.49) into Eq. (5.2) yields

b̈clx + ω2
xb

cl
x −

h̄2K2
x

m2(bclx )3R2
x

+
48Nc0

2m
∏

j b
cl
j RjbclxR

2
x

[

dx

(
bclxRx

bclz Rz

)

− dx

(
bclxKz

bclz Kx

)]

= 0, (5.3)

where

dx(y) =
2− 7y2 − 4y4 + 9y4Artanh

(√

1− y2
)

/
√

1− y2

(1− y2)2
(5.4)

is an abbreviation. An analogous calculation leads to the equation for the scaling parameter bclz

b̈clz + ω2
zb

cl
z −

h̄2K2
z

m2(bclz )3R2
z

+
48Nc0

2m
∏

j b
cl
j Rjbclz R

2
z

[

dz

(
bclxRx

bclz Rz

)

− dz

(
bclxKz

bclz Kx

)]

= 0 (5.5)

with the abbreviation

dz(y) =
1 + 10y2 − 2y4 − 9y2Artanh

(√

1− y2
)

/
√

1− y2

2(1− y2)2
. (5.6)

Eqs. (5.3) and (5.5) are the equations of motion, which have to be solved to obtain the time
evolution of the Fermi gas in the collisionless regime. It is a lengthy calculation to reformulate
these equations into the form given by Ref. [27]. I will only sketch the necessary steps. One has

to make both dimensionless the time t = t′

ω
and the space variable 〈R2

x〉 = N
4
3

h̄2

mω
〈R′2x 〉 and one

has to use the stationary equations for the momentum parameters. After doing this, one has to
connect the space and momentum parameters Ri and Ki with the stationary parameters used in
Ref. [27]. These authors used a special ansatz for a cylinder-symmetric Fermi gas, which reads

f 0(r,k) = Θ

[

k2
F −

k2
x

α
− α2k2

z −
λ2m2ω2

h̄2

(

βx2 +
z2

β2

)]

, (5.7)

so that the number conservation simplifies to

N =
k6

F h̄
3

48λ3m3ω
. (5.8)

A comparison between the two approaches for the equilibrium Wigner function shows the relation
between their parameters

1

R2
x

=
1

R2
y

=
λ2βm2ω2

k2
F h̄

2 , (5.9)

1

R2
z

=
λ2m2ω2

k2
F h̄

2β2
, (5.10)

1

K2
x

=
1

K2
y

=
1

αk2
F

, (5.11)

1

K2
z

=
α2

k2
F

. (5.12)
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5.2 Hydrodynamic Limit

Inserting all this into the equations of motion for the scaling parameters Eq. (5.3) and Eq. (5.5),
and reformulating these equations, leads to

d2bclx
dt′2

+
ω2

x

ω̄2
bclx −

ω2
x

ω̄2(bclx )3
+
N

1
6Cdd

4π〈R′2x 〉

(
m3ω

h̄5

) 1
2







q
[

dx

(
bclx

bclz
β−

3
2

)

− dx

(
bclx

bclz
α−

3
2

)]

∏

j b
cl
j b

cl
x

−
q
[

dx

(

β−
3
2

)

− dx

(

α−
3
2

)]

∏

j b
cl
j (bclx )3






= 0, (5.13)

d2bclz
dt′2

+
ω2

z

ω̄2
bclz −

ω2
z

ω̄2(bclz )3
+
N

1
6Cdd

4π〈R′2z 〉

(
m3ω

h̄5

) 1
2







q
[

dz

(
bclx

bclz
β−

3
2

)

− dz

(
bclx

bclz
α−

3
2

)]

∏

j b
cl
j b

cl
z

−
q
[

dz

(

β−
3
2

)

− dz

(

α−
3
2

)]

∏

j b
cl
j (bclz )3






= 0, (5.14)

where q = 1024(3λ3)
1
2/(2835π2) is an abbreviation. These are exactly the equations of motions as

given by Ref. [27]. Thus, the theory is able to reproduce this previous solution of the Boltzmann-
Vlasov equation in the collisionless regime. The equations of motion are nonlinear differential
equations, which can be solved numerically, as discussed in detail in Ref. [27].

5.2 Hydrodynamic Limit

In this section, I compare the differential equations for the scaling parameters with the hydrody-
namic limit of Refs. [29,30]. To this end, it is not necessary to calculate these equations, as this
was already done in Section 4.4. The equations of motion for the scaling parameters bhy

i are given
by Eq. (4.80), while for the scaling parameter Θhy

i = Θle
i , they are given with Θhy

x = Θhy
y and

Eq. (4.92). To compare these equations with the corresponding ones given in Refs. [29,30], I have
to note that I introduced the time-dependent scaling parameters bi and Θi, which characterize the
dynamics of the system relative to the global equilibrium, whereas the global equilibrium itself
is described by time-independent variational parameters. In the ansatz of Refs. [29,30], only one
sort of parameters appears, which has to contain the information about both the dynamics and
the equilibrium. The first step in Refs. [29,30] is that all one-particle orbitals φi(x, t) have the
same phase. These orbitals determine the correlation functions G(2n) in Eq. (2.7) and, therefore,
the distribution function. This seems to be equivalent to the gauge transformation of the q-vector,
as discussed in Section 4.1, which leads to a vanishing local velocity field. Thus, reversing the
scaling ansatz on the local equilibrium function and neglecting this gauge transformation leads to

f 0(x,q, t) = Θ

[

1−
∑

i

(

x2
i

b2i (t)R
2
i

− q2
i

Θ
1
2
i (t)K2

i

)]

. (5.15)

Comparing this with the ansatz made in Refs. [29,30], I can relate my parameters to those authors’
parameters R′i and K ′i, yielding

R′i = Rib
hy
i , (5.16)

K ′i = Ki(Θ
hy
i )

1
2 . (5.17)
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5 Limiting Cases

With these relations, I can see that Eqs. (4.80) and (4.92) are equal to those given by Refs. [29,30],
and that the same cylinder-symmetrical momentum distribution occurs, enabling me to conclude
that the hydrodynamic limit is in perfect agreement with this previous investigation.
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6 Discussion

I derived in this diploma thesis a theory that is capable to describe a dipolar Fermi gas in different
collisional regimes. To this end, I introduced in Chapter 2 a quasi phase-space distribution function
and described the dynamics of the system in terms of the equation of motion for it. Moreover, a
gradient expansion in the derivation of this kinetic equation, called Boltzmann-Vlasov equation,
led in the thermodynamic limit to a semiclassical description of the system. The interparticle
interaction was calculated by means of perturbation theory leading in first order to the Hartree-
and Fock potentials and in second order to the collision integral. By doing this, I used the
approximation that the interaction range of the dipole-dipole interaction is smaller than the length
scale in which the semiclassical distribution function changes significantly. The experiment has to
show whether this approximation is good or not.

In Chapter 3, I derived that the particle number, the momentum coordinates and the kinetic
energy are conserved by collisions and found out that a Fermi-Dirac distribution is the limiting
function of any relaxation process due to collisions. Afterwards, I linearized the collision integral
and discussed that a relaxation time approximation can not be obtained by a linearization.

Then, I rescaled in Chapter 4 the Boltzmann-Vlasov equation in order to obtain differential
equations for the scaling parameters, which can be solved numerically. In order to evaluate the
remaining integrals in these equations, I had to determine the global equilibrium distribution
function in terms of an energy minimization. The local equilibrium distribution function, which
describes the limiting function of the collisional relaxation process, was determined by a separate
rescaling. The corresponding spatial and momentum scaling parameters were obtained differently.
The collisions lead to a certain momentum distribution which could be determined by an energy
minimization with respect to the momentum scaling parameters. The spatial parameters could
be determined by the fact that the collisions are described as local interactions. Therefore, the
collisions do not change the spatial dependence of the distribution function during the relaxation
process.

I discussed in Chapter 5 how this theory works and compared its differential equations with
previous results in the topic of ultracold dipolar Fermi gases. Thus, it is now possible to solve
the ordinary differential equations for the scaling parameters in order to investigate the effect of
collisions on the dipolar Fermi gas. At last, I will give a short overview about possibilities for
further investigations of dipolar Fermi gases which are not performed in this diploma thesis.

I derived the equations of motion for the scaling parameters in order to describe the time
dependent change in the distribution function, but I did not solve these equations. I would have
to do this with a vanishing trapping potential in order to describe the time-of-flight dynamics,
which should lead to different results in the collisional regimes. Another important application
would be the calculation of the low-lying excitation modes and their dependence on the relaxation
time, so that the influence of the collisions on this property becomes clear.

The equations of motion for the scaling parameters describe a dipolar Fermi gas at zero temper-
ature. One can use the Sommerfeld expansion to introduce additional terms into the variational
ansatz of the global equilibrium distribution function, in order to describe its temperature depen-
dence. This ansatz would be consistent with the derived equations in this diploma thesis and it
should be possible to obtain analytic equations, which would not be possible if one introduces the
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full Fermi-Dirac distribution with its temperature dependence.
I derived the Boltzmann-Vlasov equation following the approach of Kirkpatrick and Dorfman

[45]. In these calculations, I found second-order terms which are neglected during the derivation
of the collision integral in the form of Eq. (2.98). It seems reasonable to calculate these terms
in order to determine how they change the dynamics of the system. In particular, this would be
interesting as it should soon be possible to compare the theoretical results with experimental data.

The relaxation time approximation is still not clearly derived from the collision integral, which
leads to an empirical relaxation time with a yet unknown space and momentum dependence. It
is therefore necessary to find a self-consistent derivation of the relaxation time approximation,
thereby obtaining an explicit expression for the relaxation time.

My derivation of the Boltzmann-Vlasov equation holds only for a dipolar Fermi gas, but could
also be applied to a dipolar Bose gas [60]. In this case, one has to deal with two components, a BEC
and a thermal cloud. Ref. [60] discusses that taking the average of the Heisenberg equations of
motion for the field operator leads to equations for an expectation value of the field operator which
describes the Bose-Einstein condensate. The difference between the field operator and its average
yields a new operator, which describes the thermal cloud. Using the derivation of Chapter 2, it
should then be possible to construct kinetic equations for the BEC describing a Bose-Einstein
condensate in different collisional regimes. This would include collisional interactions among
particles of the thermal cloud, as well as collisions between the thermal cloud and the BEC.
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A Fourier Transform of Dipole-Dipole

Potential

In this appendix, I present the Fourier transformation of the dipole-dipole interaction potential

Vint(x) = Cdd
1− 3cos2ϑ

4π |x3| , (A.1)

where I consider that the dipole moments are aligned along the z-axis. In a first step, I will
derive a relation between the dipole-dipole and the Coulomb potential. Afterwards, I will Fourier
transform this to obtain an explicit expression for the Fourier transformed dipole-dipole potential
from the Fourier transformed Coulomb potential. The relation between these two potentials is an
operator identity. To this end, I integrate two arbitrary x-differentials of 1/(4πx) over a sphere,
where x denotes the norm of x:

∫

V

∂

∂xi

∂

∂xj

1

4πx
d3x = −

∫

V

∂

∂xi

xj

4πx3
d3x. (A.2)

This simplifies with the Gauss´ theorem, but there is no divergence on the right-hand side of
Eq. (A.2). Therefore, consider a vector field B(x) depending explicitly on the vector x, which is
of the form B(x) = g(x)a, with a suitable vector a and a function g(x). The Gauss´ theorem for
the vector field B(x) can then be reformulated in terms of these new quantities

∫

V

∇g(x) · ad3x =

∮

∂V

g(x)a · dA, (A.3)

where ∂V is the surface of the volume V and dA is the infinitesimal surface vector. The vector a

can be pulled out of the integral due to its independence from x. A comparison of both sides of
the equation leads to the vector identity

∫

V

∇g(x)d3x =

∮

∂V

g(x)dA. (A.4)

Inserting Eq. (A.4) into Eq. (A.2) yields
∫

V

∂

∂xi

∂

∂xj

1

4πx
d3x = −

∮

∂V

dAi
xj

4πx3
. (A.5)

The direction of the infinitesimal surface vector is directed radially away from the sphere. Hence,
it is sensible to solve these integrals in spherical coordinates. An exchange of the indices i and j
does not change the value of the integral making it necessary to compute only 6 integrals

−
∮

∂V

dAi
xj

4πx3
=

{
0 i 6= j

− 1
3

i = j
. (A.6)

Calculating two equal partial derivatives acting on 1/(4πx) without the integral, as done in
Eq. (A.2), leads to zero, but this is only valid for x 6= 0, implying that one has to be aware
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A Fourier Transform of Dipole-Dipole Potential

of a delta function if i = j. With x̂i as the i-th component of the unit vector, this leads to the
operator identity, which can also be found in Ref. [61],

− ∂

∂xi

∂

∂xj

1

4πx
=
δij − 3x̂ix̂j

4πx3
+

1

3
δijδ(x). (A.7)

This equation can be Fourier-transformed, which yields

F

[
δij − 3x̂ix̂j

4πx3

]

=
kikj

4π
F

[
1

x

]

− 1

3
δij, (A.8)

where F[·] denotes the Fourier transform. Eq. (A.7) shows the relation between the dipole-
dipole and the Coulomb potential. The Fourier transform of the latter can be computed with
the Schwinger identity [62]

1

aν
=

1

Γ(ν)

∫ ∞

0

dττ ν−1e−aτ , (A.9)

which can be proven by substituting the integration variable, with Γ(ν) denoting the Gamma
function. Inserting this into the Fourier transform of the Coulomb potential leads to Gaussian
integrals ∫

d3x
1

x
eik·x =

∫

d3x
1√
x2

eik·x =

∫

d3x
1

Γ
(

1
2

)

∫ ∞

0

dττ−
1
2 e−τx2

eik·x. (A.10)

The solution of the integration yields

F

[
1

x

]

=
4π

k2
. (A.11)

Putting everything together leads to the Fourier transform of the dipole-dipole interaction poten-
tial. For the case of dipoles directed along the z-axis, the solution, which is also given in Ref. [63],
reads

Ṽint(k) =

∫

d3xVint(x)eik·x =
Cdd

3

(
3k2

z

k2
− 1

)

. (A.12)
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B Computation of the Energy Integrals

In this appendix, I present the integration of the four energy terms Eqs. (4.31)–(4.34) in global
equilibrium. This will lead to an explicit expression for the total energy of the system, which
depends then only on the variational parameters Ri and Ki. The minimal energy determines the
suitable parameters for the scaling ansatz.

I will present all important steps of the calculations in the hope that it will be easier to follow for
the reader. For the Hartree and Fock integrals, I will consult the famous book by I. S. Gradshteyn
and I. M. Ryzhik [59]. All numbers and the formulas of the integrals used from Ref. [59] will be
given whenever they appear.

B.1 Kinetic and Trapping Energy

The kinetic and trapping energy terms can be integrated in the same way. Hence, when one
of these terms is calculated, the other term is given, the only difference being that it has other
constants. Thus, I will only calculate in detail the kinetic energy Eq. (4.31) by inserting the ansatz
Eq. (4.29):

Ekin =

∫

d3x

∫
d3k

(2π)3

h̄2k2

2m
Θ

(

1−
∑

j

x2
j

R2
j

−
∑

j

k2
j

K2
j

)

. (B.1)

It is easier to compute at first the space integrals. Due to the spherical symmetry of the integral
it is useful to switch to spherical coordinates and to rescale the space variables according to
xi = uiRi, which yields

Ekin =

∫
d3k

(2π)3

h̄2k2

2m
R

3
∫ ∞

0

du4πu2Θ

(

1−
∑

j

k2
j

K2
j

− u2

)

. (B.2)

The Heaviside step function is 1 in the range |u| ≤
√

1−
∑

j k
2
j/K

2
j , otherwise it will be 0. This

leads to

Ekin =

∫
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(2π)3
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3
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(
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∑
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j

0

duu2. (B.3)

The u-integral can now be performed

Ekin =

∫
d3v

(2π)3

4π

3
R

3
K

3 h̄
2∑

j K
2
j v

2
j

2m
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x − v2
y − v2
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3/2Θ

(
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j

v2
j

)

, (B.4)

where I used the rescaling ki = Kivi. The three remaining integrals will be computed step by
step. At first I have

Ekin =
4π

3(2π)3
R

3
K

3 h̄2

m

∫

dvxdvy

∫
√
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(B.5)
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B Computation of the Energy Integrals

After another rescaling vz =
√

1− v2
x − v2

y cosϑ, I get

Ekin =
4π

3(2π)3
R

3
K

3 h̄2

m

∫

dvxdvy(1− v2
x − v2

y)
2Θ(1− v2

x − v2
y)

×
∫ π/2

0

dϑsin4ϑ
[
K2

xv
2
x +K2

yv
2
y +K2

z (1− v2
x − v2

y)cos2ϑ
]
. (B.6)

The ϑ-integral can be performed using the standard integrals

∫ π/2

0

dϑsin4ϑ =
3π

16
, (B.7)

∫ π/2

0

dϑsin4ϑcos2ϑ =
π

32
. (B.8)

The other two integrals can be treated in the same way, so that the rest of the calculation can be
done analogously. This leads to the kinetic energy

Ekin =
N

8

∑

j

h̄2K2
j

2m
. (B.9)

The computation of the trapping term is analogous. Its solution is given by

Etr =
N

8

m

2

∑

j

ω2
jR

2
j . (B.10)

B.2 Hartree Energy

The main idea behind this calculation is to use a Fourier transform trick so that only 3 integrals
have to be computed with all functions in the integral Eq. (4.33). This implies decoupling the
distribution functions and the interaction potential with respect to their spatial arguments. Thus,
I can rewrite the Hartree term by means of the Fourier transform of the potential according to

Ed =
1

2

∫

d3x

∫

d3x′
∫

d3k

(2π)3

∫
d3k′

(2π)3

∫
d3k′′

(2π)3
eik′′·(x−x′)Ṽint(k

′′)f 0(x,k)f 0(x′,k′)

=
1

2

∫
d3k′′

(2π)3
Ṽint(k

′′)

∫
d3k

(2π)3
f̃ 0(−k′′,k)

∫
d3k′

(2π)3
f̃ 0(k′′,k′). (B.11)

Thus, in a first step I have to compute the Fourier transform of the Wigner function Eq. (4.29)

f̃ 0(−k′′,k) =

∫

d3xeik′′·xΘ

[

h(k)−
∑

j

x2
j

R2
j

]

, (B.12)

where h(k) = 1−∑j

k2
j

K2
j

is a suitable abbreviation. At first, I have

f̃ 0(−k′′,k) =

∫

dxdyei(k′′

xx+k′′

y y)

∫ ∞

−∞

dzΘ

[

h(k)−
∑

j

x2
j

R2
j

]

(cosk′′zz + i sink′′zz
︸ ︷︷ ︸

because of symmetry=0

). (B.13)
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B.2 Hartree Energy

After using the fact that the Heaviside step function is 1 for |z| ≤ Rz

√

h(k)− x2/R2
x − y2/R2

y, 0

otherwise, as well as using the rescaling z = Rz

√

h(k)− x2/R2
x − y2/R2

ycosϑ the integral yields

f̃ 0(−k′′,k) =

∫

dxdyei(k′′

xx+k′′

y y)2

∫ π/2

0

dϑsinϑcos

{

k′′zRz

[

h(k)− x2

R2
x

− y2

R2
y

] 1
2

cosϑ

}

×Rz

[

h(k)− x2

R2
x

− y2

R2
y

] 1
2

Θ

[

h(k)− x2

R2
x

− y2

R2
y

]

. (B.14)

This can be integrated using the following formula from [59, (3.715.20)]
∫ π/2

0

cos(zcosx)sin2νxdx =

√
π

2

(
2

z

)ν

Γ

(

ν +
1

2

)

Jν(z) for Re ν > −1

2
, (B.15)

where Jν(z) is a Bessel function of first kind. This leads to

f̃ 0(−k′′,k) =

∫

dxeik′′

xx

√
2πRz

√
k′′zRz

∫ ∞

−∞

dy(cosk′′yy + isink′′yy
︸ ︷︷ ︸

=0

)

[

h(k)− x2

R2
x

− y2

R2
y

] 1
4

×Θ

[

h(k)− x2

R2
x

− y2

R2
y

]

J 1
2

{

k′′zRz

[

h(k)− x2

R2
x

− y2

R2
y

] 1
2

}

. (B.16)

This can be simplified by limiting the y-integral with the help of the Heaviside function und using
an analogous substitution for the y-variable

f̃ 0(−k′′,k) =

∫

dxeik′′

xx

√
2πRz

√
k′′zRz

2

∫ π/2

0

dusin
3
2uRy

[

h(k)− x2

R2
x

] 3
4

Θ

[

h(k)− x2

R2
x

]

× J 1
2

{

k′′zRz

[

h(k)− x2

R2
x

] 1
2

sinu

}

cos

{

k′′yRy

[

h(k)− x2

R2
x

] 1
2

cosu

}

. (B.17)

The y-integral can now be evaluated using [59, (6.688.2)]
∫ π/2

0

dxsinν+1xcos(βcosx)Jν(αsinx) = 2−
1
2
√
παν

(
α2 + β2

)− 1
2
ν− 1

4 Jν+ 1
2

[(
α2 + β2

) 1
2

]

for Re ν > −1. (B.18)

After computing the y-integral and simplifying the resulting term, the x-integral can be treated
in a similar way. Hence, the Fourier-transformed distribution function yields

f̃ 0(−k′′,k) =
(2π)

3
2R

3
h(k)

3
4 Θ[h(k)]

(k′′2x R
2
x + k′′2y R

2
y + k′′2z R

2
z)

3
4

J 3
2

[

h(k)
1
2

(
k′′2x R

2
x + k′′2y R

2
y + k′′2z R

2
z

) 1
2

]

. (B.19)

The next step is the calculation of the k-integral over the Fourier-transformed Wigner function in
Eq. (B.11). This is an even function so that the k′-integral is exactly the same as the k-integral.
Hence, it is only necessary to compute one of them:

∫
d3k

(2π)3
f̃ 0(k′′,k) =

R
3

(2π)
3
2 (k′′2x R

2
x + k′′2y R

2
y + k′′2z R

2
z)

3
4

∫

d3k

(

1−
∑

j

k2
j

K2
j

) 3
4

Θ

(

1−
∑

j

k2
j

K2
j

)

× J 3
2





(

1−
∑

j

k2
j

K2
j

) 1
2
(
k′′2x R

2
x + k′′2y R

2
y + k′′2z R

2
z

) 1
2



 . (B.20)
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B Computation of the Energy Integrals

To calculate this integral, I perform the substitution ki = Kiui and use the spherical symmetry of
the integrand. Then, the integral yields

∫
d3k

(2π)3
f̃ 0(k′′,k) =

R
3
K

3

(2π)
3
2 (k′′2x R

2
x + k′′2y R

2
y + k′′2z R

2
z)

3
4

4π

∫ 1

0

duu2(1− u2)
3
4

× J 3
2

[

(1− u2)
1
2 (k′′2x R

2
x + k′′2y R

2
y + k′′2z R

2
z)

1
2

]

(B.21)

This integral can be calculated after substituting u = cosϑ and using [59, (6.683)]

∫ π/2

0

dϑJµ(asinϑ)sinµ+1ϑcos2ρ+1ϑ = 2ρΓ(ρ+ 1)a−ρ−1Jρ+µ+1(a) for Re ρ,Re µ > −1. (B.22)

Hence, the integral over the Fourier transformed Wigner function yields

∫
d3k

(2π)3
f̃ 0(k′′,k) =

4
√
ππR

3
K

3

(2π)
3
2

√
2(k′′2x R

2
x + k′′2y R

2
y + k′′2z R

2
z)

3
2

J3

[

(k′′2x R
2
x + k′′2y R

2
y + k′′2z R

2
z)

1
2

]

= ñ0(k′′).

(B.23)
With the previous calculations, I am now able to solve the last integral for the Hartree term. With
the Fourier transformed dipole-dipole interaction potential, I get

Ed =

∫
d3k′′

(2π)3

Cdd

6

(
3k′′z
k′′2
− 1

)
16π2R

6
K

6

(2π)3(k′′2x R
2
x + k′′2y R

2
y + k′′2z R

2
z)

3

π

2
J2

3

[

(k′′2x R
2
x + k′′2y R

2
y + k′′2z R

2
z)

1
2

]

.

(B.24)
After substituting k′′i Ri = ui and switching into spherical coordinates, the integral yields

Ed =
Cdd8π

3R
3
K

6

6(2π)6

∫ π

0

dϑ

∫ 2π

0

dφsinϑ

×
(

3cos2ϑ

(Rz/Rx)2cos2φsin2ϑ+ (Rz/Ry)2sin2φsin2ϑ+ cos2ϑ
− 1

)∫ ∞

0

duu−4J2
3 (u). (B.25)

With the definition of the anisotropy function Eq. (4.37) and [59, (6.574.2)]

∫ ∞

0

dtJν(αt)Jµ(αt)t−λ =
αλ−1Γ(λ)Γ

(
ν+µ−λ+1

2

)

2λΓ
(
−ν+µ+λ+1

2

)
Γ
(

ν+µ+λ+1
2

)
Γ
(

ν−µ+λ+1
2

)

for Re (ν + µ+ 1) > Re (λ) > 0, α > 0. (B.26)

the Hartree energy Ed yields

Ed =
−48N2c0

8R
3 f

(
Rx

Rz

,
Ry

Rz

)

. (B.27)

with c0 = 210Cdd/(π
3 · 34 · 5 · 7).

B.3 Fock Energy

The Fock term represents the most complicated integral of these four energy terms. Nevertheless,
it is possible to compute it as well by using Fourier transforms. The trick is to switch the space
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B.3 Fock Energy

and momentum variables of the Wigner functions via two Fourier transforms. Hence, the Fock
term can be rewritten in the following form

Eex = −1

2

∫

d3x

∫

d3x′
∫

d3k

(2π)3

∫
d3k′

(2π)3
Vint(x)ei(k−k′)·x′

f 0(x,k)f 0(x,k′),

= −1

2

∫

d3x′
∫

d3k′

(2π)3

∫
d3k′′

(2π)3
f̃

0

(k′′,x′)f̃
0

(−k′′,−x′)Ṽint(k
′)eix′·k′

, (B.28)

where f
0
(k′,k) denotes the Fourier transform of f 0(x,k) with respect to the first variable and

f̃ 0(x,x′) the Fourier transformation with respect to the second variable. The order of the cal-
culation of the integrals is determined by the interaction potential. I assume that the integral
over the interaction potential will lead to the anisotropy function exactly as in the calculation
of the Hartree term. Thus, I will solve this integral at last, trying to perform at first the other
integrals over the Fourier transformed Wigner functions. Hence, the first step is to calculate these
two Fourier transforms of the Wigner function. I have already performed the first of these two
transforms in the calculations of the Hartree term, where the result is given by Eq. (B.19). Using
this result, I get

f̃
0

(−k′′,x) =

∫
d3k

(2π)3
eik·xf̃ 0(−k′′,k), (B.29)

=

∫
d3k

(2π)
3
2

eik·x
R

3
Θ
(

1−∑j

k2
j

K2
j

)

g(k′′)
3
4

3
4 (

1−
∑

l

k2
l

K2
l

) 3
4

J 3
2





(

1−
∑

m

k2
m

K2
m

) 1
2

g(k′′)
1
2



 ,

(B.30)

where g(k′′) = k′′2x R
2
x + k′′2y R

2
y + k′′2z R

2
z is an abbreviation. The three k-integrals will be treated

separately, yet all in the same way. Hence, it is only necessary to compute one of them. With the

use of the substitution kz = Kz

√

1− k2
x

K2
x
− k2

y

K2
y

cosϑ, I can rewrite Eq. (B.30) as

f̃
0

(−k′′,x) =
R

3

(2π)
3
2

1

g(k)′′
3
4

∫

dkxdkye
ixkx+iykyΘ

(

1− k2
x

K2
x

−
k2

y

K2
y

)(

1− k2
x

K2
x

−
k2

y

K2
y

) 5
4

(B.31)

×2

∫ π
2

0

dϑ sin
5
2 ϑKz cos

(

zKz

√

1− k2
x

K2
x

−
k2

y

K2
y

cosϑ

)

J 3
2

[

g(k′′)
1
2

(

1− k2
x

K2
x

−
k2

y

K2
y

) 1
2

cosϑ

]

.

After this substitution, the ϑ-integral can be calculated using Eq. (B.18). The other two k-integrals
can be treated in the same way. Then, the Fourier transform reads

f̃
0

(−k′′,x) =
R

3
K

3

[
g(k′′) + z2K2

z + y2K2
y + x2K2

x

] 3
2

J3

{

[g(k′′) + z2K2
z + y2K2

y + x2K2
x]

1
2

}

. (B.32)

It is clear that f̃
0

(k′′,x) is an even function, which simplifies further calculations. The next step is
to calculate the x′-integral in Eq. (B.28). To avoid a quadratic Bessel function, I use the integral
representation [59, (6.519.2.2)]

∫ π
2

0

J2ν(2z sin t)dt =
π

2
J2

ν (z) for Re ν > −1

2
, (B.33)
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B Computation of the Energy Integrals

which leads to an integral over a Bessel function

J2
3

{[
x2K2

x + y2K2
y + z2K2

z + g(k′′)
] 1

2

}

=
2

π

∫ π
2

0

dtJ6

{

2 sin t
[
x2K2

x + y2K2
y + z2K2

z + g(k′′)
] 1

2

}

.

(B.34)
I will treat the three integrals separately, starting with the z-integral. After the substitution
uz = zKz, I can use [59, (6.726.2)]

∫ ∞

0

(x2 + b2)−
1
2
νJν

(

a
√
x2 + b2

)

cos(cx)dx =

√
π

2
a−νb−ν+ 1

2 (a2 − c2) 1
2
ν− 1

4Jν− 1
2

(

b
√
a2 − c2

)

for 0 < c < a, b > 0,Re ν > −1

2
,

=0 for 0 < a < c, b > 0,Re ν > −1

2
, (B.35)

to obtain

∫

d3x′f̃
0

(k′′,x′)2eik′·x′

=R
6
K

6
∫

dxdyeix′k′

x+iy′k′

y
4

πKz

∫ π
2

0

dt

(

4 sin2 t− k′2
z

K2
z

) 11
4

Θ
(

2 sin t−
√

k′2
z

K2
z

)

(2 sin t)6
[
x′2K2

x + y2K2
y + g(k′′)

] 11
4

×
√
π

2
J 11

2

{(

4 sin2 t− k′2z
K2

z

) 1
2 [
x′2K2

x + y2K2
y + g(k′′)

] 1
2

}

. (B.36)

The Heaviside function in the last equation ensures that both possible solutions of Eq. (B.35) are
covered. The other two integrals will be calculated in the same way. The solution of the x′-integral
reads

∫

d3x′f̃
0

(k′′,x′)2eik′·x′

=
2(2π)

3
2

π
R

6
K

3
∫ π

2

0

dt

(2 sin t)6

(

4 sin2 t− k′2
z

K2
z
− k′2

y

K2
y
− k′2

x

K2
x

) 9
4

g(k′′)
9
4

×J 9
2

[

g(k′′)
1
2

(

4 sin2 t− k′2z
K2

z

−
k′2y
K2

y

− k′2x
K2

x

) 1
2

]

Θ

(

2 sin t−
√

k′2z
K2

z

+
k′2y
K2

y

+
k′2x
K2

x

)

. (B.37)

The next step is to integrate the k′′-integral. Using spherical symmetry, I can make the calcu-
lation of this integral relatively short. Substituting ui = k′′i Ri and then transforming these new
integration variables into spherical coordinates, I can use [59, (6.561.17)]

∫ ∞

0

Jν(ax)

xν−q
dx =

Γ
(

1
2
q + 1

2

)

2ν−qaν−q+1Γ
(
ν − 1

2
q + 1

2

) for − 1 < Re q < Re ν − 1

2
, (B.38)

which leads to

∫

d3k′′
∫

d3x′f̃
0

(k′′,x′)2eik′·x′

=
8(2π)

3
2 Γ
(

3
2

)
R

3
K

3

Γ(4)2
5
2

∫ π
2

0

dt

(2 sin t)6

(

4 sin2 t− k′2z
K2

z

−
k′2y
K2

y

− k′2x
K2

x

)3

×Θ

(

2 sin t−
√

k′2z
K2

z

+
k′2y
K2

y

+
k′2x
K2

x

)

. (B.39)

The last step of the calculation of the Fock term is to solve the k′-integral. Therefore, I substi-
tute ui = k′i/K

′
i and afterwards switch to spherical coordinates. The Fourier transform of the
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B.3 Fock Energy

interaction potential is given by Eq. (A.12). Inserting all this, the Fock term yields

Eex =− 4Cdd(2π)
3
2 Γ
(

3
2

)

3 · 2 5
2 Γ(4)

∫ 2π

0

dφ

∫ π

0

dϑ sinϑ




3 cos2 ϑ

K2
x

K2
z

sin2 ϑ cos2 φ+
K2

y

K2
z

sin2 ϑ sin2 φ+ cos2 ϑ
− 1





×K6
R

3
∫ π

2

0

dt

(2 sin t)6

∫ 2 sin t

0

duu2
(
4 sin2 t− u2

)3
. (B.40)

The ϑ- and φ-integrals will lead to the anisotropy function, which is defined by Eq. (4.37), and
the u- and t-integrals can be solved without any difficulties. With the abbreviation
c0 = 210Cdd/(3

4 · 5 · 7 · π3), the solution of the Fock term reads

Eex =
48N2c0

8R
3 f

(
Kz

Kx

,
Kz

Ky

)

. (B.41)
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