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Abstract

Background: Random-effects meta-analysis is commonly performed by first deriving an estimate of the
between-study variation, the heterogeneity, and subsequently using this as the basis for combining results, i.e., for
estimating the effect, the figure of primary interest. The heterogeneity variance estimate however is commonly
associated with substantial uncertainty, especially in contexts where there are only few studies available, such as in
small populations and rare diseases.

Methods: Confidence intervals and tests for the effect may be constructed via a simple normal approximation, or via
a Student-t distribution, using the Hartung-Knapp-Sidik-Jonkman (HKSJ) approach, which additionally uses a refined
estimator of variance of the effect estimator. The modified Knapp-Hartung method (mKH) applies an ad hoc
correction and has been proposed to prevent counterintuitive effects and to yield more conservative inference. We
performed a simulation study to investigate the behaviour of the standard HKSJ and modified mKH procedures in a
range of circumstances, with a focus on the common case of meta-analysis based on only a few studies.

Results: The standard HKSJ procedure works well when the treatment effect estimates to be combined are of
comparable precision, but nominal error levels are exceeded when standard errors vary considerably between studies
(e.g. due to variations in study size). Application of the modification on the other hand yields more conservative
results with error rates closer to the nominal level. Differences are most pronounced in the common case of few
studies of varying size or precision.

Conclusions: Use of the modified mKH procedure is recommended, especially when only a few studies contribute to
the meta-analysis and the involved studies’ precisions (standard errors) vary.
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Background
Random-effects meta-analysis is most commonly per-
formed based on an underlying hierarchical model includ-
ing two unknowns as parameters: the effect μ, which is the
figure of primary interest, and the between-study variance
(heterogeneity) τ 2, which is a nuisance parameter. Infer-
ence then is usually done sequentially, by first deriving
an estimate of the heterogeneity variance, τ̂ 2, and then
determining the effect estimate μ̂ by conditioning on the
estimate τ̂ 2 [1, 2]. A large number of different estimators
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for the heterogeneity variance is available (see e.g. [3–6]),
and effect estimation may be done based on a simple nor-
mal approximation, or by utilizing a Student-t distribution
[7] with an additionally refined estimator of the variance
of μ̂ [8–12].While the normal model may bemotivated by
asymptotic arguments, in actual applications the number
of estimates to be combined is commonly small [13, 14]
and hence the estimation uncertainty in the between-
study variance τ 2 is substantial, so that an adjustment is
appropriate and in fact improves operating characteristics
[7–12, 15].
The problem of deriving estimates from only a small

number of data sources is a common problem especially in
fields of application where empirical information is sparse
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due to the rarity of the condition in question. The rarity
of a disease is often accompanied with a low (commer-
cial) interest or incentive, which is why such diseases are
also known as orphan diseases. According to the European
Commission, a disease is designated orphan status when
the prevalence is ≤ 5 in 10 000 [16]. While by definition
any individual rare disease has a low prevalence, there is
a large number of these, eventually affecting a substantial
fraction of an estimated 6–8 % of the total population [17],
and with that posing a challenge to health care systems
worldwide.
The EuropeanMedicines Agency acknowledges the par-

ticular obstacles in rare diseases research but points out
that there is no fundamental difference between rare and
more common diseases and hence no “paradigm change”
when it comes to regulatory issues. Because of the com-
mon small-sample settings, the importance of sophisti-
cated methods is emphasized, and meta-analyses of good
quality randomised controlled clinical trials are still con-
sidered the highest level of evidence [18]. The problems
encountered in rare diseases research often call for spe-
cial statistical methods, especially with respect to study
designs [17, 19, 20]. Meta-analyses are particularly impor-
tant in this field due to the lack of large trials, while
these will commonly still be faced with the problem of
small numbers of available studies. Between-study het-
erogeneity then is anticipated, since the gathered pieces
of evidence are likely to differ with respect to study
designs, types of control groups or treatment allocation
[17, 19, 20], Unkel S, Röver C, Stallard N, Benda N, Posch
M, Zohar S, et al., Systematic reviews in paediatric mul-
tiple sclerosis and Creutzfeldt-Jakob disease exemplify
shortcomings in methods used to evaluate therapies in
rare conditions, Submitted. Small studies have in fact epir-
ically been found to exhibit more heterogeneity than large
trials [21]. Consequently, the use of methods suitable for
few studies andmarginally significant findings is of crucial
importance here.
With an estimated incidence of 2–20 cases per 100 000

population, juvenile idiopathic arthritis (JIA) is an exam-
ple of a rare disease [22]. In the following, we will use a
meta-analysis in JIA [23] as a case study to illustrate the
different methods discussed below.
In the following sections, we will first describe themeth-

ods used, then show the results of a simulation study, and
demonstrate the different types of analyses in an example
data set, before closing with conclusions and recommen-
dations.

Methods
Random-effects meta-analysis
Meta-analysis is very commonly performed via a random-
effects approach, utilizing the normal-normal hierarchical
model. Here the data are given in terms of a number k

of estimates yi ∈ R that are associated with some uncer-
tainty given through standard errors si > 0 that are
taken to be known without uncertainty. The estimates are
assumed to measure trial-specific parameters θi ∈ R:

yi ∼ N
(
θi, s2i

)
for i = 1, . . . , k. (1)

The parameters θi vary from trial to trial around a global
mean μ ∈ R due to some heterogeneity variance between
trials that constitutes an additive variance component to
the model,

θi ∼ N
(
μ, τ 2

)
for i = 1, . . . , k, (2)

where τ 2 ≥ 0. The model may then be simplified by
integrating out the parameters θi, leading to the marginal
expression

yi ∼ N
(
μ, s2i + τ 2

)
for i = 1, . . . , k. (3)

Among the two unknowns in the model, the overall
mean μ, the effect, usually is the figure of primary interest,
while the heterogeneity variance τ 2 constitutes a nuisance
parameter. When τ 2 = 0, the model simplifies to the
so-called fixed-effect model [1, 2].
The “relative amount of heterogeneity” in a meta-

analysis may be expressed in terms of the measure I2,
which is defined as

I2 = τ 2

τ 2 + s̃2
(4)

where s̃ is some kind of “average” standard error among
the study-specific si [24]. In the following simulation stud-
ies, we will determine s̃2 as the arithmeticmean of squared
standard errors.

Parameter estimation
If the value of the heterogeneity variance parameter τ 2

were known, the (conditional) maximum-likelihood effect
estimate would result as the weighted average

μ̂ =
∑

i wi yi∑
i wi

(5)

with “inverse variance weights” defined as

wi = 1
s2i + τ 2

for i = 1, . . . , k. (6)

A common approach to inference within the random-
effects model is to first estimate the heterogeneity
variance τ 2, and subsequently estimate the effect μ condi-
tional on the heterogeneity estimate. Note that the wi are
effectively treated as “known” while in fact both the s2i as
well as τ 2 are only measured with some uncertainty (that
depends on the size/precision of the ith individual study
and the number of studies k). There is a wide range of
different heterogeneity estimators available (see e.g. [3–6]
for more details). In the following we will concentrate on
some of the most common ones, the DerSimonian-Laird
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(DL) estimator, a moment estimator [25] with acknowl-
edged shortcomings [26], the restricted maximum like-
lihood (REML) estimator [3, 27], and the Paule-Mandel
(PM) estimator, an essentially heuristic approach [28, 29].
Software to compute the different estimates is provided
e.g. in the metafor and meta R packages [30, 31].

Confidence intervals and tests
Normal approximation
Confidence intervals and, equivalently, tests for the
effect μ are commonly constructed using a normal
approximation for the estimate μ̂. The standard error of μ̂,
conditional on a fixed heterogeneity variance value τ 2, is
given by

σ̂μ =
√

1∑
i wi

. (7)

A confidence interval for the effect μ then results via a
normal approximation as

μ̂ ± σ̂μ z(1−α/2) (8)

where z(1−α/2) is the (1− α/2)-quantile of the standard
normal distribution, and (1−α) is the nominal coverage
probability [1, 2]. The normal approximation based on a
heterogeneity variance estimate τ̂ 2 usually works well for
many studies (large k) and small standard errors (small si),
or negligible heterogeneity (small variance τ 2), but tends
to be anticonservative otherwise [8, 9], Friede T, Röver C,
Wandel S, Neuenschwander B, Meta-analysis of few small
studies in orphan diseases, Submitted.

The Hartung-Knapp-Sidik-Jonkman (HKSJ) method
Hartung and Knapp [8, 9] and Sidik and Jonkman [10]
independently introduced an adjusted confidence inter-
val. In order to determine the adjusted interval, first the
quadratic form

q = 1
k − 1

∑
i
wi(yi − μ̂)2 (9)

is computed [8–10]. The adjusted confidence interval then
results as

μ̂ ± √q σ̂μ t(k−1);(1−α/2) (10)

where t(k−1);(1−α/2) is the (1 − α/2)-quantile of the
Student-t distribution with (k − 1) degrees of freedom.
Note that qσ̂ 2μ is derived from a non-negative and unbi-
ased estimator of 1∑

i wi
[32]. Confidence intervals based

on the normal approximation may easily be converted to
HKSJ-adjusted ones [12]. The method has also been gen-
eralized to the cases of multivariate meta-analysis and
meta-regression [33].

Themodified Knapp-Hartung (mKH)method
The HKSJ confidence interval (10) tends to be wider than
the one based on the normal approximation (8), since the
Student-t quantile is larger than the corresponding nor-
mal quantile, while q will tend to be somewhere around
unity. However, q may in fact also turn out arbitrarily
small, and if √q <

z(1−α/2)
t(k−1);(1−α/2)

, then the modified interval
will be shorter than the normal one, which may be con-
sidered counter-intuitive. A simple ad hocmodification to
the procedure results from defining

q� = max{1, q} (11)

[11] and using q� instead of q to construct confidence
intervals and tests. This will ensure a more conservative
procedure. The modification was originally proposed in
the meta-regression context, but the simple meta-analysis
here constitutes the special case of an “intercept-only”
regression.
Note that the PM heterogeneity variance estimator is

effectively defined by choosing τ̂ 2 such that q (Eq. (9))
is =1 (or less, if no solution exists) [28, 29], so that for the
PM estimator the corresponding q� value always equals
q� =1.

Simulations
Since a (1−α) confidence interval is supposed to cover
the true parameter value with probability (1−α), the cal-
ibration of such intervals may be checked by repeatedly
generating random data based on known parameter val-
ues and then determining the empirical frequency with
which true values are actually covered [34].We performed
such a Monte Carlo simulation comparing the HKSJ and
mKH approaches using the setup that was introduced by
IntHout et al. [12]. Data were simulated on a continuous
scale, according to the random-effects model described
above, with study-specific standard errors si set to reflect
certain scenarios with respect to the relative size of studies
and their variation due to estimation uncertainty. Many
meta-analyses are based on (discrete) count data, where
the random-effects model assumptions only hold to an
approximation that works well unless event probabilities
are very low. Alternative methods have been proposed to
deal with low event probabilities [35, 36], but low-event-
rate effects were not considered in the present investiga-
tion. These simulations considered four different scenar-
ios, namely meta-analyses (A) with trials of equal size, (B)
with equally sized trials but including one small trial, (C)
with 50 % large and small trials, and (D) equally sized tri-
als and one large trial. The sizes of “small” and “large”
trials (and hence, squared standard errors s2i ) here differ
by a factor of ten, so that the associated standard errors
differ by roughly a factor of 3; for more details see ([12],
Appendix 2). Numbers of studies k considered here are
in the range of 2–11, and the true levels of heterogeneity
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were I2 ∈ {0.00, 0.25, 0.50, 0.75, 0.90}. At each combina-
tion of parameters 10 000 meta-analyses were simulated.
All simulations were performed using R [37].

Results
Simulations
Figure 1 shows the estimated coverage probabilities of the
different confidence intervals based on the DL hetero-
geneity variance estimate. The corresponding figure for
REML and PM look essentially the same, which is in line
with the findings in [38], Friede T, Röver C, Wandel S,

Neuenschwander B, Meta-analysis of few small studies
in orphan diseases, Submitted. The HKSJ method works
very well when the analyzed studies are of equal size (i.e.,
have equal standard errors), as can also be shown ana-
lytically [39], but coverage decreases in more imbalanced
settings, especially for small numbers of studies. For the
case of no heterogeneity (I2 = 0) the HKSJ method also
works fine, but if τ 2 was known a priori, in this case the
fixed-effect model should work as well. The mKH proce-
dure on the other hand is rather conservative for small k,
but does not tend to inflate the type-I error substantially
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Fig. 1 Coverage probabilities of HKSJ and mKH 95 % confidence intervals. Probabilities are shown in dependence of the number k of studies and
the amount of heterogeneity I2. The four different scenarios A–D correspond to different amounts of imbalance between the study-specific
standard errors si . The DerSimonian-Laird (DL) method was used for estimation of the heterogeneity variance τ 2
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Fig. 2 Ratios of lengths of HKSJ and mKH confidence intervals. (Same

as
√
q�√
q ). Lengths are shown in dependence of the number k of

studies and the amount of heterogeneity I2. Numbers are averaged
over all 4 scenarios. The DL method was used for τ 2 estimation

regardless of the underlying study sizes or true hetero-
geneity. For bothmethods, the dependence on the amount
of heterogeneity is mostly a matter of whether τ 2 is = 0
or > 0.
Application of the modification obviously tends to

widen the resulting confidence intervals. The ratio of
interval lengths (which is equal to

√
q�√q ) is shown in Fig. 2.

Most notably, the effect is largest for small heterogeneity
and for few studies.
The modification eventually only makes a difference

in those cases where q turns out smaller than one. The
fraction of intervals affected by the modification ranges
between 31 % and 82 % for the DL heterogeneity variance
estimator and for the scenarios investigated here, with an
overall average of 61 %. For the other two estimators the
fractions are 29–82 % with a mean of 62 % (REML), and
31–91 % with a mean of 74 % (PM). Again, the differences
between the different estimators are rather small. With
respect to the underlying simulation scenario, the proba-
bility decreases with increasing heterogeneity, since larger
heterogeneity also leads to larger values of q.

Application to JIA example data
Hinks et al. [23] studied the occurrence of a particular
genetic variant, CCR5, in juvenile idiopathic arthritis (JIA)
patients in comparison with the general population. Their
investigation included a meta-analysis of a small num-
ber (k = 3) of available controlled studies looking into
the association of JIA with this particular biomarker. The
analysis was based on logarithmic odds ratios; the three
estimates along with their standard errors are shown in
a forest plot in Fig. 3. Here the largest standard error
is 50 % larger than the smallest one. For these data, all
three (DL, REML and PM) heterogeneity variance esti-
mates turn out as τ̂ 2 = 0. A zero heterogeneity variance

0.00

log odds ratio

Lindner (2007)

Hinks (2006)

Prahalad (2006)

−0.20 [ −0.47 ,  0.07 ]

−0.24 [ −0.41 , −0.06 ]

−0.13 [ −0.33 ,  0.08 ]

−0.19 [ −0.31 , −0.07 ]normal

−0.19 [ −0.34 , −0.05 ]HKSJ

−0.19 [ −0.45 , 0.07 ]mKH

JIA example data (Hinks et al., 2010)

−0.40

Fig. 3 Hinks et al. (2010) example data. A forest plot illustrating the
three estimated log odds ratios and 95 % confidence intervals for the
example data due to Hinks et al. [23]. The estimated amount of
heterogeneity variance (according to DL, REML and PM estimators) is
zero here. At the bottom the three alternative combined estimates
based on normal approximation, HKSJ and mKH approach are shown

estimate is not uncommon, even when the actual hetero-
geneity is in fact substantial [14]. The associated q value
is also small with q = 0.31 (√q = 0.55). The resulting
three confidence intervals based on normal approxima-
tion, HKSJ adjustment and mKHmethod all differ in their
lengths. The mKH interval is longest, and includes the
zero log odds ratio (indicating no association between
genetic marker and disease), while the other two intervals
do not include zero. So the choice of procedure directly
affects conclusions in this example.
In this example, the three standard errors are rather

similar (the largest is 50 % larger than the smallest), but
while the heterogeneity variance estimates τ̂ 2 are all at
zero, the 95 % Q-profile confidence interval [40] ranges
up to τ 2 = 0.332, corresponding to I2 = 0.90. Within
the context of our simulations (Fig. 1), we cannot tell from
the data which of the heterogeneity (I2) scenarios we are
in fact in, and as the standard errors are not exactly the
same, it remains a matter of balancing the potential conse-
quences whether one would rather risk losing on the side
of (type I) error probability or power.

Conclusions
The HKSJ procedure ensures the coverage probability
only when the included studies’ standard errors si are sim-
ilar; for unbalanced settings, the actual error probability
tends to exceed the targeted one. With the standard defi-
nition of the correction factor q the results may sometimes
be counterintuitive, since the corresponding CIs may turn
out shorter than using the simple normal approximation;
in fact they may get arbitrarily short. In case of no het-
erogeneity (τ = 0) the HKSJ method also works well,
however practically this is of limited relevance, as one can
rarely tell (or convincingly argue) whether this condition
holds.
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The ad hoc modification of the mKH method aims at
fixing these shortcomings and results in type-I error prob-
abilities that are not grossly in excess of the pre-specified
ones. Especially when the standard errors si are of dis-
similar magnitude, the mKH method can therefore be
recommended. For few studies (small k), the modified
procedure however tends to be very conservative, with
very small error probabilities especially in the extreme
case of meta-analysis of only k = 2 studies. In this
extreme case the choice of methods may therefore be con-
sidered a matter of a power vs. type-I error probability
tradeoff.
While meta-analyses of few studies are a particular

problem in indications where there is only little evi-
dence available (such as rare diseases), such circumstances
are not as uncommon as one might expect. Turner et
al. [13] and Kontopantelis et al. [14] investigated the
analyses archived in the Cochrane Database and actu-
ally found a majority of them to be based on as few as
k = 2 or k = 3 studies; so these constitute highly rele-
vant cases for which the proper control of error rates is
crucial.
The properties of either unmodified or modified

method for the extreme case of k = 2 may be considered
unsatisfactory, as it seems one has the choice of either
falling short of or exceeding the targeted error probabil-
ity; the problem has in fact been regarded as effectively
unsolved [41]. The poor behaviour may be explained by
the fact that performing a random-effects meta-analysis
effectively means the estimation of first- and second-
order statistics, and it is not overly surprising to find
that this is a hard task when the data consist of as few
as two samples that are only measured with uncertainty.
Bearing this in mind, the use of Bayesian methods [42]
and the consideration of external evidence on the likely
magnitude of the heterogeneity [43] may be the way
forward.
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