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Abstract

Recent advances with Convolutional Networks

(ConvNets) have shifted the bottleneck for many com-

puter vision tasks to annotated data collection. In this

paper, we present a geometry-driven approach to automati-

cally collect annotations for human pose prediction tasks.

Starting from a generic ConvNet for 2D human pose, and

assuming a multi-view setup, we describe an automatic

way to collect accurate 3D human pose annotations. We

capitalize on constraints offered by the 3D geometry of the

camera setup and the 3D structure of the human body to

probabilistically combine per view 2D ConvNet predictions

into a globally optimal 3D pose. This 3D pose is used as

the basis for harvesting annotations. The benefit of the

annotations produced automatically with our approach is

demonstrated in two challenging settings: (i) fine-tuning

a generic ConvNet-based 2D pose predictor to capture

the discriminative aspects of a subject’s appearance

(i.e.,“personalization”), and (ii) training a ConvNet from

scratch for single view 3D human pose prediction without

leveraging 3D pose groundtruth. The proposed multi-view

pose estimator achieves state-of-the-art results on standard

benchmarks, demonstrating the effectiveness of our method

in exploiting the available multi-view information.

1. Introduction

Key to much of the success with Convolutional Net-

works (ConvNets) is the availability of abundant labeled

training data. For many tasks though this assumption is

unrealistic. As a result, many recent works have explored

alternative training schemes, such as unsupervised training

[17, 26, 45], auxiliary tasks that improve learning represen-

tations [42], and tasks where groundtruth comes for free,

or is very easy to acquire [31]. Inspired by these works,

this paper proposes a geometry-driven approach to auto-

matically gather a high-quality set of annotations for human

pose estimation tasks, both in 2D and 3D.

ConvNets have had a tremendous impact on the task of

2D human pose estimation [40, 41, 27]. A promising re-

search direction to improve performance is to automatically
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Figure 1: Overview of our approach for harvesting pose

annotations. Given a multi-view camera setup, we use a

generic ConvNet for 2D human pose estimation [27], and

produce single-view pose predictions in the form of 2D

heatmaps for each view. The single-view predictions are

combined optimally using a 3D Pictorial Structures model

to yield 3D pose estimates with associated per joint uncer-

tainties. The pose estimate is further probed to determine

reliable joints to be used as annotations.

adapt (i.e., “personalize”) a pretrained ConvNet-based 2D

pose predictor to the subject under observation [11]. In con-

trast to its 2D counterpart, 3D human pose estimation suf-

fers from the difficulty of gathering 3D groundtruth. While

gathering large-scale 2D pose annotations from images is

feasible, collecting corresponding 3D groundtruth is not.

Instead, most works have relied on limited 3D annotations

captured with motion capture (MoCap) rigs in very restric-

tive indoor settings. Ideally, a simple, marker-less, multi-

camera approach could provide reliable 3D human pose es-

timates in general settings. Leveraging these estimates as

3D annotations of images would capture the variability in

users, clothing, and settings, which is crucial for ConvNets

to properly generalize.

Towards this goal, this paper proposes a geometry-driven

approach to automatically harvest reliable annotations from

multi-view imagery. Figure 1 provides an overview of our

approach to automatically harvest reliable joint annotations.

Given a set of images captured with a calibrated multi-view

setup, a generic ConvNet for 2D human pose [27] pro-
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duces single-view confidence heatmaps for each joint. The

heatmaps in each view are backprojected to a common dis-

cretized 3D space, functioning as unary potentials of a 3D

pictorial structure [16, 15], while a tree graph models the

pairwise relations between joints. The marginalized pos-

terior distribution of the 3D pictorial structures model for

each joint is used to identify which estimates are reliable.

These reliable keypoints are used as annotations.

Besides achieving state-of-the-art performance as com-

pared to previous multi-view human pose estimators, our

approach provides abundant annotations for pose-related

learning tasks. In this paper, we consider two tasks. In

the first task, we project the 3D pose annotations to the 2D

images to create “personalized” 2D groundtruth, which is

used to adapt the generic 2D ConvNet to the particular test

conditions (Figure 2a). In the second task, we use the 3D

pose annotations to train from scratch a ConvNet for single

view 3D human pose estimation that is on par with the cur-

rent state-of-the-art. Notably, in training our pose predictor,

we limit the training set to the harvested annotations and do

not use the available 3D groundtruth (Figure 2b).

In summary, our four main contributions are as follows:

• We propose a geometry-driven approach to automati-

cally acquire 3D annotations for human pose without

3D markers;

• the harvested annotations are used to fine-tune a pre-

trained ConvNet for 2D pose prediction to adapt to the

discriminative aspects of the appearance of the sub-

ject under study, i.e., “personalization”; we empiri-

cally show significant performance benefits;

• the harvested annotations are used to train from scratch

a ConvNet that maps an image to a 3D pose, which is

on par with the state-of-the-art, even though none of

the available 3D groundtruth is used;

• our approach for multi-view 3D human pose esti-

mation achieves state-of-the-art results on standard

benchmarks, which further underlines the effective-

ness of our approach in exploiting the available multi-

view information.

2. Related work

Data scarcity for human pose tasks: Chen et al. [12] and

Ghezelghieh et al. [18] create additional synthetic examples

for 3D human pose to improve ConvNet training. Rogez

and Schmid [34] introduce a collage approach. They com-

bine human parts from different images to generate exam-

ples with known 3D pose. Yasin et al. [44] address the data

scarcity problem, by leveraging data from different sources,

e.g., 2D pose annotations and MoCap data. Wu et al. [42]

also integrate dual source learning within a single ConvNet.

“Personalized”  

2D Annotations

(a) “Personalizing” a 2D pose ConvNet

3D Annotations

(b) Training a 3D pose ConvNet

Figure 2: The quality of the harvested annotations is

demonstrated in two applications: (a) projecting the 3D es-

timates into the 2D imagery and using them to adapt (“per-

sonalize”) a generic 2D pose ConvNet to the discriminative

appearance aspects of the subject, (b) training a ConvNet

that predicts 3D human pose from a single color image.

Instead of creating synthetic examples, or bypassing the

missing data, the focus of our approach is different. In par-

ticular, our goal is to gather images with corresponding 2D

and 3D automatically generated annotations and use them to

train a ConvNet. This way we employ images with statistics

similar to those found in-the-wild, which have been proven

to be of great value for ConvNet-based approaches.

2D human pose: Until recently, the dominant paradigm for

2D human pose involved local appearance modeling of the

body parts coupled with the enforcement of structural con-

straints with a pictorial structures model [3, 43, 32]. Lately

though, end-to-end approaches using ConvNets have be-

come the standard in this domain. The initial work of To-

shev and Szegedy [40] regressed directly the x, y coordi-

nates of the joints using a cascade of ConvNets. Tompson

et al. [39] proposed the regression of heatmaps to improve

training. Pfister et al. [30] proposed the use of intermediate

supervision, with Wei et al. [41] and Carreira et al. [10] re-

fining iteratively the network output. More recently, Newell

et al. [27] built upon previous work to identify the best prac-

tices for human pose prediction and propose an hourglass

module consisting of ResNet components [19], and itera-

tive processing to achieve state-of-the-art performance on

standard benchmarks [2, 36]. In this work, we employ the

hourglass architecture as our starting point for generating

automatic 3D human pose annotations.

Single view 3D human pose: 3D human pose estimation

from a single image has been typically approached by ap-

plying more and more powerful discriminative methods on

the image and combining them with expressive 3D priors to
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recover the final pose [37, 47, 7]. As in the 2D pose case,

ConvNets trained end-to-end have grown in prominence. Li

and Chan [24] regress directly the x, y, z spatial coordinates

for each joint. Tekin et al. [38] additionally use an autoen-

coder to learn and enforce structural constraints on the out-

put. Pavlakos et al. [29] instead propose the regression of

3D heatmaps instead of 3D coordinates. Li et al. [25] fol-

low a nearest neighbor approach between color images and

pose candidates. Rogez and Schmid [34] use a classification

approach, where the classes represent a sample of poses. To

demonstrate the quality of our harvested 3D annotations,

we also regress the x, y, z joint coordinates [24, 38], while

employing a more recent architecture [27].

Multi-view 3D human pose: Several approaches [6, 1, 9,

22, 4, 5] have extended the pictorial structures model [16,

15] to reason about 3D human pose taken from multiple

(calibrated) viewpoints. Earlier work proposed simultane-

ously reasoning about 2D pose across multiple views, and

triangulating 2D estimates to realize actual 3D pose esti-

mates [6, 1]. Recently, Elhayek et al. [13, 14] used ConvNet

pose detections for multi-view inference, but with a focus

on tracking rather than annotation harvesting, as pursued

here. Similar to the current paper, 3D pose has previously

been directly modelled in 3D space [9, 22, 4, 5]. A straight-

forward application of the basic pictorial structures model

to 3D is computationally expensive due to the six degrees

of freedom for the part parameterization. Our parameteri-

zation instead models only the 3D joint position, something

that has also been proposed in the context of single view

3D pose estimation [23]. This instantiation of the pictorial

structure makes inference tractable since we deal with three

degrees of freedom rather than six.

Personalization: Consideration of pose in video presents

an opportunity to tune the appearance model to the dis-

criminative appearance aspects of the subject and thus im-

prove performance. Previous work [33] leveraged this in-

sight by using a generic pose detector to initially identify

a set of high-precision canonical poses. These detections

are then used to train a subject-specific detector. Recently,

Charles et al. [11] extended this idea using a generic 2D

pose ConvNet to identify a select number of high precision

annotations. These annotations are propagated across the

video sequence based on 2D image evidence, e.g., optical

flow. Regarding identifying confident predictions, the work

of Jammalamadaka et al. [21] is related, where they extract

features from the image and the output and train an evalua-

tor to estimate whether the predicted pose is correct. In our

work, rather than using 2D image cues to identify reliable

annotations, our proposed approach leverages the rich 3D

geometry presented by the multi-view setting and the con-

straints of 3D human pose structure, to combine and consol-

idate single view information. Such cues are highly reliable

and complementary to image-based ones.

3. Technical approach

The following subsections describe the main compo-

nents of our proposed approach. Section 3.1 gives a brief

description of the generic ConvNet used for 2D pose pre-

dictions. Section 3.2 describes the 3D pictorial structures

model used to aggregate multi-view image-driven keypoint

evidence (i.e., heatmaps) provided as output by a ConvNet-

based 2D pose predictor with 3D geometric information

from a human skeleton model. Section 3.3 describes our

annotation selection scheme that identifies reliable keypoint

estimates based on the marginalized posterior distribution

of the 3D pictorial structures model for each keypoint. The

proposed uncertainty measure inherently integrates image

evidence across all viewpoints and geometry. Finally, Sec-

tions 3.4 and 3.5 present two applications of our annota-

tion harvesting approach. Section 3.4 describes the use of

the harvested annotations to fine-tune an existing 2D pose

ConvNet predictor. The resulting adapted predictor is sen-

sitive to the discriminative aspects of the appearance of the

subject under consideration, i.e., “personalization”. Section

3.5 describes how we use the harvested annotations to train

from scratch a 3D pose ConvNet predictor that maps a sin-

gle image to 3D pose.

3.1. Generic ConvNet

The initial component of our approach is a generic

ConvNet for 2D human pose estimation that provides the

initial set of noisy predictions for single view images. Since

our approach is agnostic to the particular network architec-

ture, any of the top-performing ConvNets is sufficient for

this step, e.g., [41, 8, 27]. Here, we adopt the state-of-the-

art stacked hourglass design [27]. The main architectural

component of this network is the hourglass module which

consists of successive convolutional and pooling layers, fol-

lowed by convolutional and upsampling layers, leading to a

symmetric hourglass design. Stacking multiple hourglasses

together allows for iterative processing of the image fea-

tures. Best performance is achieved by the use of interme-

diate supervision, forcing the network to produce one set of

predictions at the end of each hourglass.

The prediction of the network is in the form of 2D

heatmaps for each joint. The entire heatmap output includes

useful information regarding the confidence of predictions,

and can be considered as a 2D distribution of the joint loca-

tions. To take advantage of the entire heatmap prediction,

we backproject the 2D distributions of the joints in a dis-

cretized 3D cube. This is used to accommodate the predic-

tions for all the views and serves as the inference space for

3D pictorial structures model, described in Sec. 3.2.

3.2. Multi­view optimization

The pose model used to aggregate information across

views is based on a 3D generalization of the classical pic-
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torial structures model [16, 15]. A major departure of the

current work from prior 3D instantiations of multi-view

approaches (e.g., [9]) is the use of a joint representation,

S = {si|i = 1, . . . , N}, where si ∈ R
3 encodes the

3D position of each joint, rather than the 3D configuration

of parts, i.e., limbs. The simplified parameterization and

tree structure for the pairwise terms admit efficient 3D joint

configuration inference via dynamic programming, i.e., the

sum-product algorithm.

Articulation constraints: The pairwise relation between

joints is modelled by a tree structure of the human skeleton.

The edge set is denoted by E and the edge (i.e., limb) lengths

by {Lij |(i, j) ∈ E}. The prior distribution is given by the

articulation constraints and can be written as

p(S) ∝
∏

(i,j)∈E

p(si, sj). (1)

The pairwise terms, p(si, sj), constrain the lengths of the

human limbs Lij :

p(si, sj) =

{

1, if Lij − ε ≤ ‖si − sj‖ ≤ Lij + ε

0, otherwise
, (2)

where ε = 1 is used as a tolerance for the variability from

the expected limb length Lij of the subject. More sophisti-

cated pairwise terms can also be adopted if MoCap data are

available, e.g., [23].

Data likelihood: Given a 3D pose, the likelihood of see-

ing M synchronized images from M calibrated cameras is

modeled as

p(I|S) ∝

M
∏

k=1

N
∏

i=1

p(Ik|πk(si)), (3)

where πk(si) denotes the 2D projection of si in the k-th

view given the camera parameters. The data likelihood,

p(Ik|πk(si)), is modelled by the multi-channel heatmap

outputs of the ConvNet (Sec. 3.1).

Inference: Finally, the posterior distribution of a 3D pose

given 2D images from different views is given by:

p(S|I) ∝

M
∏

k=1

N
∏

i=1

p(Ik|πk(si))
∏

(i,j)∈E

p(si, sj). (4)

The solution space of the 3D joint position is restricted to a

3D bounding volume around the subject and quantized by

a 64 × 64 × 64 grid. Pose estimates are computed as the

mean of the marginal distribution of each joint given the

multi-view images. The marginal distribution of the dis-

crete variables is efficiently computed by the sum-product

algorithm [15].

3.3. Annotation selection

The 3D reconstructions provided by the multi-view op-

timization offer a very rich but noisy set of annotations.

We are effectively equipped with automatic 3D annota-

tions for all the images of the multi-view setup. Moreover,

these annotations integrate appearance cues from each view

(2D pose heatmaps), geometric constraints from the multi-

ple views (backprojection in a common 3D space), as well

as constraints from the articulated structure (3D pictorial

structure). This allows us to capitalize on the available in-

formation from the images and the 3D geometry to provide

a robust set of annotations.

For further benefits, we proceed to a selection step over

the annotations provided from the 3D reconstruction. A

useful property of our multi-view optimization using the

pictorial structures model is that the marginalized distribu-

tion of each joint offers a measure of the prediction’s uncer-

tainty. This means that we are provided with a selection cue

for free. For example, the determinant of the 3D covariance

matrix for each joint’s marginalized distribution can be used

as a confidence measure to decide whether the joint will be

used as an annotation. In our experiments, we identify as

reliable annotations the 70% most confident predictions for

each joint in terms of the determinant of the 3D covariance

matrix, although other measures are also possible.

3.4. “Personalizing” 2D pose ConvNet

The goal of “personalization” is to adapt the original de-

tector such that it captures the discriminative appearance

aspects of the subject of interest, such as clothing. Both

Ramanan et al. [33] and Charles et al. [11] proposed meth-

ods to “personalize” a detector using 2D evidence (e.g., op-

tical flow) from monocular video. Instead, our proposed

approach focuses on cues provided by image evidence, ge-

ometric properties of the multi-view setup, and structural

constraints of the human body.

Given the set of selected annotations, we use them to

fine-tune a generic 2D pose ConvNet with backpropaga-

tion, such that it adapts to the testing conditions of inter-

est. The procedure is very similar to the one used to train

the ConvNet in the first place, with the difference that we

leverage our automatically generated annotations as targets

for the available images. The target heatmaps consist of a

2D Gaussian with a standard deviation σ = 1 pixel, cen-

tered on the annotation location of the joint. A separate

heatmap is synthesized for each joint. During training, we

use a Mean Squared-Error loss between the predicted and

the target heatmaps. If the joint is not within the selected

annotation set (i.e., the localization is not confident), we

simply ignore the loss incurred by it during optimization.

We terminate refinement after four epochs through our auto-

annotated data to avoid overfitting on the given examples.
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3.5. 3D pose ConvNet training

For 3D human pose estimation, we train a ConvNet from

scratch that takes a single image as input and predicts the

3D pose. Our formulation follows the coordinate regres-

sion paradigm [24, 38], but more sophisticated methods can

also be employed, e.g., the volumetric representation for 3D

pose [29]. The target of the network is the x, y, z coordi-

nates of N human body joints. For x, y we use pixel coor-

dinates, while z is expressed in metric depth with respect to

a specified root joint (here the pelvis is defined as the root).

We organize the output in a single 3N -dimensional vector.

The network is supervised with an L2 regression loss:

L =

N
∑

n=1

‖xn
gt − x

n
pr‖

2
2, (5)

where x
n
gt is the groundtruth and x

n
pr is the predicted loca-

tion for joint n. The architecture we use is a single hourglass

module [27] with the addition of a fully connected layer at

the end to allow every output to have a connection with each

activation of the previous feature volume.

4. Empirical evaluation

This section is dedicated to the empirical evaluation of

our proposed approach. First, we give a description of the

datasets used (Section 4.1). Next, we briefly discuss the

implementation details of our approach (Section 4.2). Fi-

nally, we present the quantitative (Sections 4.3 to 4.5) and

the qualitative evaluations (Section 4.6).

4.1. Datasets

For our quantitative evaluation we focused on two

datasets that target human pose estimation and provide a

multiple camera setup; (i) KTH Multiview Football II [9],

a small-scale outdoor dataset with challenging visual con-

ditions, and (ii) Human3.6M [20], a large-scale indoor

dataset, with a variety of available scenarios.

KTH Multiview Football II [9] contains images of pro-

fessional footballers playing a match. Evaluation for 3D

pose was performed using the standard protocol introduced

with the dataset [9] and used elsewhere [22, 5], where Se-

quence 1 of “Player 2” is used for testing. Reported results

are based on the percentage of correct parts (PCP) to mea-

sure 3D part localization using the two and three camera

setups. Additional evaluation for 2D pose was performed

using Sequence 2 of “Player 2” for testing, where reported

results are based on the percentage of correct parts in 2D.

Human3.6M [20] is a recent large-scale dataset for 3D

human sensing captured in a lab setting. It includes 11 sub-

jects performing 15 actions, such as walking, sitting, and

phoning. Following previous work [25, 47], we use two

subjects for testing (S9 and S11), and report results based

on the average 3D joint error.

Two cameras Three cameras

[9] [4] [5] Ours [9] [22] [4] [5] Ours

Upper arms 53 64 96 98 60 89 68 98 100

Lower arms 28 50 68 92 35 68 56 72 100

Upper legs 88 75 98 99 100 100 78 99 100

Lower legs 82 66 88 97 90 99 70 92 100

Average 62.7 63.8 87.5 96.5 71.2 89.0 68.0 90.3 100

Table 1: Quantitative comparison of multi-view pose esti-

mation methods on KTH Multiview Football II. The num-

bers are the percentage of correct parts (PCP) in 3D using

two and three cameras. Baseline numbers are taken from the

respective papers. In constrast to the compared methods, no

training data from this dataset was used for our approach.

It is crucial to mention that in the experiments presented

below, no groundtruth data was leveraged for training from

the respective datasets. We relied solely on the generic 2D

ConvNet (trained on MPII [2]) and the knowledge of the

geometry from the calibrated camera setup.

4.2. Implementation details

For the generic 2D pose ConvNet, we use a publicly

available model [27], which is trained on the MPII human

pose dataset [2]. To “personalize” a given 2D pose ConvNet

through fine-tuning, we maintain the same training details

as the ones described in the original work. The learning

rate is set to 2.5e-4, the batch size is 4, rmsprop is used for

optimization and data augmentation is used, that includes

rotation (±30o), scale (±0.25), and left-right flipping.

To train the 3D pose ConvNet, we employ the same ar-

chitecture, but we use only one hourglass component and

add a fully connected layer at the end, to regress the N joints

coordinates. The training details with respect to optimiza-

tion and data augmentation are the same as for the initial

network, but training is done from scratch (we do not use a

pretrained model).

4.3. Multi­view pose estimation

First of all, we need to assess the accuracy of the anno-

tations provided from our multi-view optimization scheme.

Since our ConvNets are not trained using groundtruth data

from the aforementioned datasets, we heavily rely on the

quality of these automatic annotations. Therefore, we eval-

uate multi-view pose estimation using our approach, de-

scribed in Section 3.2

First, we report results of our approach on the small-

scale, yet challenging KTH dataset. Even though relevant

methods train specialized 2D detectors for pose estimation,

they are all outperformed by our approach using only a

generic ConvNet for 2D joint prediction. The relative im-

provement is illustrated in Table 1.

For Human3.6M we apply the same method to multi-
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Directions Discussion Eating Greeting Phoning Photo Posing Purchases

Li et al. [25] - 134.13 97.37 122.33 - 166.15 - -

Zhou et al. [47] 87.36 109.31 87.05 103.16 116.18 143.32 106.88 99.78

Tekin et al. [38] - 129.06 91.43 121.68 - 162.17 - -

Zhou et al. [46] 91.83 102.41 96.95 98.75 113.35 125.22 90.04 93.84

Ours 41.18 49.19 42.79 43.44 55.62 46.91 40.33 63.68

Sitting SittingDown Smoking Waiting WalkDog Walking WalkTogether Average

Li et al. [25] - - - - 134.13 68.51 - -

Zhou et al. [47] 124.52 199.23 107.42 118.09 114.23 79.39 97.70 113.01

Tekin et al. [38] - - - - 130.53 65.75 - -

Zhou et al. [46] 132.16 158.97 106.91 94.41 126.04 79.02 98.96 107.26

Ours 97.56 119.90 52.12 42.68 51.93 41.79 39.37 56.89

Table 2: Quantitative evaluation of our approach on Human3.6M. The numbers are the average 3D joint errors (mm). Baseline

numbers are taken from the respective papers. Note that Zhou et al. [47] use video, while our proposed method is multi-view.

view pose estimation. Since this dataset was published very

recently, there are no reported results for multi-view pose

estimation methods. It is interesting though to compare with

the top-performing works for single view 3D pose such that

we can quantify the current gap between single view and

multi-view estimation. The full results are presented in Ta-

ble 2. Our approach reduces the error of the state-of-the-art

single view approach of Zhou et al. [46] by almost a half.

We note that Zhou et al. [47] use video instead of predic-

tion from a single frame. We do not include results from

Bogo et al. [7] and Sanzari et al. [35] which report average

errors of 82.3mm and 93.15mm, respectively, since they

use a rigid alignment between the estimated pose and the

groundtruth, making it not comparable with the other meth-

ods. Moreover, as a weak multi-view baseline, we averaged

the per view 3D estimates from one of the state-of-the-art

approaches [47]. This naive combination achieves an av-

erage error of 103.10mm which is a minimal improvement

compared to the original error of 113.01mm for the cor-

responding single view approach. This demonstrates that

handling the views independently and combining the sin-

gle view 3D pose results in a late stage does not leverage

the rich 3D geometric constraints available and significantly

underperforms compared to our multi-view optimization.

4.4. “Personalizing” 2D pose ConvNet

Having validated the accuracy of our proposed multi-

view optimization scheme, the next step is to actually lever-

age the automatic annotations for learning purposes. The

most immediate benefit comes from using them to refine

the generic ConvNet and adapt it to the particular test condi-

tions. This can be considered as an application of “person-

alization”, similar in nature to the goal of Charles et al. [11],

where significant pose estimation gains in terms of accuracy

were reported.

For KTH we use the two available sequences from

“Player 2” to evaluate the online adaptation of our network.

Seq 1 Seq2

Generic Refined Generic Refined

Upper arms 98 100 80 89

Lower arms 89 92 64 74

Upper legs 98 100 85 91

Lower legs 96 100 79 86

Average 95.3 98.0 77.0 84.5

Table 3: Quantitative comparison of the generic ConvNet

versus the refined version for the two sequences of “Player

2” from KTH Multiview Football II. The numbers are per-

centage of correct parts (PCP) in 2D. Performance improve-

ment is observed across all parts.

Since our focus is to purely evaluate the quality of the 2D

predictions before and after refinement, we report 2D PCP

results in Table 3. We observe performance improvement

across all parts of the subject. Moreover, for the second

sequence which is considerably more challenging, the ben-

efit from our refinement is even greater. This underlines the

importance of refinement when the original detector fails.

For Human3.6M we evaluate the quality of 2D heatmaps

through their impact on the multi-view optimization.

Achieving better results for 2D pose estimation is definitely

desirable, but ideally, the predicted heatmaps should bene-

fit other post-processing steps as well, e.g., our multi-view

optimization. In Table 4, we provide a more detailed ab-

lative study comparing different sets of annotations for re-

finement. Starting with the “Generic” ConvNet, one naive

approach we compare against is using the heatmap max-

imum predictions as annotations (“HM”), or a subset of

the most confident of those predictions (“HM+sel”). For

“HM+sel” we use the heatmap value to indicate detection

confidence, and identify only the top 70% for each joint as

reliable 2D annotations. These serve as baselines for re-

fining the ConvNet. We also employ the complete annota-

tion set that is provided from our multi-view optimization
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Purchases Sitting
Sitting Average

Down (15 actions)

Generic 63.68 97.56 119.90 56.89

HM 57.57 86.37 100.39 55.13

HM+sel 52.50 91.49 110.30 55.62

PS 51.32 79.39 97.26 51.18

PS+sel 45.98 68.09 73.91 47.83

Table 4: Quantitative comparison of multi-view optimiza-

tion after fine-tuning the ConvNet with different annotation

sets and evaluating on Human3.6M. We present results for

the three most challenging actions (based on Table 2), along

with the average across all actions. The numbers are the av-

erage 3D joint error (mm). “Generic”, “HM”, “HM+sel”,

“PS” and “PS+sel” are defined in Section 4.4.

(“PS”), and a high quality version of this by selecting the

most confident joint predictions only (denoted as “PS+sel”

and described in Section 3.3). The reported results include

both the average performance across all 15 actions, as well

as the performance on the three actions with the highest er-

ror, according to Table 2, namely, Purchases, Sitting, and

Sitting Down. Again, the performance benefits are greater

for more challenging actions, which justifies the use of our

method to overcome dataset bias and adapt to the scenario

of interest. Also, the naive approach to recover more 2D

annotations and bootstrapping on the output of the generic

ConvNet (“HM” and “HM+sel”) is only marginally helpful

on average, which underlines the benefit of the rich geomet-

rical information we employ to recover annotations. Finally,

the proposed selection scheme (“PS+sel”) outperforms the

model that uses all annotations of the multi-view optimiza-

tion (“PS”) which exemplifies the importance of selecting

only a high-quality subset of the annotations for refinement.

4.5. Training a 3D pose ConvNet

A great challenge, but also a very interesting application

of our method is to use the automatically generated anno-

tations to train a ConvNet for 3D pose estimation. Since

KTH is a small-scale dataset, we focus on Human3.6M.

We leverage the high-quality annotations from the multi-

view optimization scheme, and train the network described

in Section 3.5 from scratch. The results are presented in Ta-

ble 5, along with other approaches. Even though we only

use the noisy annotations recovered by our approach for

training and ignored the groundtruth from the dataset, the

final trained ConvNet is on par with the state-of-the-art.

4.6. Qualitative results

For “personalization”, Figures 3 and 4 show qualitative

sample results of the proposed approach with and without

fine-tuning on annotations recovered from the input im-

agery on KTH Multiview Football II and Human3.6M, re-

Average (6 actions) Average (15 actions)

Li et al. [25] 121.31 -

Tekin et al. [38] 116.77 -

Park et al. [28] 111.12 117.34

Zhou et al. [46] 104.73 107.26

Rogez et al. [34] - 121.2

Ours 113.65 118.41

Table 5: Quantitative comparison of single image ap-

proaches on Human3.6M. The numbers are the average 3D

joint errors (mm). Baseline numbers are taken from the

respective papers. In contrast to the other works, we do

not use 3D groundtruth for training, instead we rely solely

on the harvested 3D annotations. Despite that, our perfor-

mance is on par with the state-of-the-art.

spectively. Despite the generic ConvNet being quite reli-

able, it might fail for the most challenging poses which are

underrepresented in the original generic training set. The

benefit from the “personalized” ConvNet is greater in these

cases since it adapts to the discriminative appearance of the

user and recovers the pose successfully.

For the 3D pose ConvNet trained from scratch, we

present example 3D reconstructions in Figure 5. Notice the

challenging poses of the subject and the very accurate poses

predicted by the ConvNet.

5. Summary

This paper presented an automatic way to gather 3D an-

notations for human pose estimation tasks, using a generic

ConvNet for 2D pose estimation and recordings from a

multi-view setup. The automatically generated annotations

were used to adapt a generic ConvNet to the particular

task, demonstrating important performance benefits from

this “personalization”. Additionally, we trained a ConvNet

for 3D pose estimation which performs on par with the

current state-of-the-art, even though we only used auto-

matically harvested annotations, and ignored the provided

groundtruth.

One promising direction for future work is using the au-

tomatic annotation setup in an outdoor environment, (where

MoCap systems and depth sensors are not applicable) to

collect 3D annotations for in-the-wild images. This would

allow us to train a generic 3D human pose ConvNet, simi-

lar to the 2D counterparts, by overcoming the bottleneck of

limited color images with 3D groundtruth.

Project Page: https://www.seas.upenn.edu/˜pavlakos/

projects/harvesting
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Figure 3: Examples on KTH Multiview Football II showing the performance gain from “personalization”. For each pair of

images, pose estimation results are presented from the generic (left) and the “personalized” ConvNet (right).

Figure 4: Examples on Human3.6M showing the performance gain from “personalization”. For each pair of images, pose

estimation results are presented from the generic (left) and the “personalized” ConvNet (right).

Figure 5: Example predictions on Human3.6M from the ConvNet trained to estimate 3D pose from a single image. For each

example, we present (left-to-right) the input image, the predicted 3D pose from the original view, and a novel view. Red and

green indicate left and right, respectively.
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