
A
B
C
D
E
F
G

UNIVERS ITY OF OULU P.O.B . 7500 F I -90014 UNIVERS ITY OF OULU F INLAND

A C T A U N I V E R S I T A T I S O U L U E N S I S

S E R I E S E D I T O R S

SCIENTIAE RERUM NATURALIUM

HUMANIORA

TECHNICA

MEDICA

SCIENTIAE RERUM SOCIALIUM

SCRIPTA ACADEMICA

OECONOMICA

EDITOR IN CHIEF

PUBLICATIONS EDITOR

Senior Assistant Jorma Arhippainen

University Lecturer Santeri Palviainen

Professor Hannu Heusala

Professor Olli Vuolteenaho

University Lecturer Hannu Heikkinen

Director Sinikka Eskelinen

Professor Jari Juga

Professor Olli Vuolteenaho

Publications Editor Kirsti Nurkkala

ISBN 978-951-42-9965-0 (Paperback)
ISBN 978-951-42-9966-7 (PDF)
ISSN 0355-3213 (Print)
ISSN 1796-2226 (Online)

U N I V E R S I TAT I S O U L U E N S I SACTA
C

TECHNICA

U N I V E R S I TAT I S O U L U E N S I SACTA
C

TECHNICA

OULU 2012

C 433

Kimmo Halunen

HASH FUNCTION SECURITY
CRYPTANALYSIS OF THE VERY SMOOTH HASH
AND MULTICOLLISIONS IN GENERALISED
ITERATED HASH FUNCTIONS

UNIVERSITY OF OULU GRADUATE SCHOOL;
UNIVERSITY OF OULU, FACULTY OF TECHNOLOGY,
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING;
INFOTECH OULU

C
 433

AC
TA

K
im

m
o H

alunen

C433etukansi.kesken.fm Page 1 Tuesday, October 16, 2012 3:19 PM

A C T A U N I V E R S I T A T I S O U L U E N S I S
C Te c h n i c a 4 3 3

KIMMO HALUNEN

HASH FUNCTION SECURITY
Cryptanalysis of the Very Smooth Hash and
multicollisions in generalised iterated hash functions

Academic dissertation to be presented with the assent
of the Doctoral Training Committee of Technology
and Natural Sciences of the University of Oulu for
public defence in Auditorium TS101, Linnanmaa, on 16
November 2012, at 9 a.m.

UNIVERSITY OF OULU, OULU 2012

Copyright © 2012
Acta Univ. Oul. C 433, 2012

Supervised by
Professor Juha Röning

Reviewed by
Professor Bart Preneel
Doctor Martijn Stam

ISBN 978-951-42-9965-0 (Paperback)
ISBN 978-951-42-9966-7 (PDF)

ISSN 0355-3213 (Printed)
ISSN 1796-2226 (Online)

Cover Design
Raimo Ahonen

JUVENES PRINT
TAMPERE 2012

Halunen, Kimmo, Hash function security. Cryptanalysis of the Very Smooth Hash
and multicollisions in generalised iterated hash functions
University of Oulu Graduate School; University of Oulu, Faculty of Technology, Department of
Computer Science and Engineering; Infotech Oulu, P.O. Box 4500, FI-90014 University of
Oulu, Finland
Acta Univ. Oul. C 433, 2012
Oulu, Finland

Abstract

In recent years, the amount of electronic communication has grown enormously. This has posed
some new problems in information security. In particular, the methods in cryptography have been
under much scrutiny. There are several basic primitives that modern cryptographic protocols
utilise. One of these is hash functions, which are used to compute short hash values from messages
of any length.

In this thesis, we study the security of hash functions from two different viewpoints. First of
all, we analyse the security of the Very Smooth Hash against preimage attacks. We develop an
improved method for finding preimages of Very Smooth Hash, compare this method with existing
methods and demonstrate its efficiency with practical results. Furthermore, we generalise this
method to the discrete logarithm variants of the Very Smooth Hash.

Secondly, we describe the methods for finding multicollisions in traditional iterated hash
functions and give some extensions and improvements to these. We also outline a method for
finding multicollisions for generalised iterated hash functions and discuss the implications of these
findings. In addition, we generalise these multicollision finding methods to some graph-based
hash functions.

Keywords: cryptography, hash functions, information security, multicollisions, Very
Smooth Hash

Halunen, Kimmo, Hash-funktioiden turvallisuus. Very Smooth Hash -funktion
analyysi sekä monitörmäykset yleistetyissä iteroiduissa hash-funktioissa
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Teknillinen tiedekunta, Tietotekniikan osasto;
Infotech Oulu, PL 4500, 90014 Oulun yliopisto
Acta Univ. Oul. C 433, 2012
Oulu

Tiivistelmä

Viime vuosina digitaaliseen tiedonsiirtoon perustuva tiedonsiirto on yleistynyt valtavasti. Tästä
on seurannut monia uusia tietoturvaongelmia. Tässä yhteydessä erityisesti tiedon suojaamiseen
käytetyt kryptografiset menetelmät ovat olleet tarkastelun kohteena. Hash-funktiot ovat yksi
käytetyimmistä työkaluista nykyisissä kryptografisissa protokollissa.

Tässä väitöskirjassa tarkastellaan hash-funktioiden turvallisuutta kahden eri tutkimusongel-
man kautta. Aluksi tutkitaan Very Smooth Hash -funktion turvallisuutta alkukuvien löytämistä
vastaan. Alkukuvien löytämiseksi esitetään parannettu menetelmä, jota arvioidaan teoreettisilla
ja käytännöllisillä menetelmillä. Tämä parannettu menetelmä yleistetään koskemaan myös Very
Smooth Hashin muunnoksia, jotka perustuvat diskreetin logaritmin ongelmaan.

Toisena tutkimuskohteena ovat iteroitujen hash-funktioiden yleistykset ja monitörmäykset.
Aluksi esitellään perinteisiin iteroituihin hash-funktioihin liittyviä monitörmäysmenetelmiä.
Tämän jälkeen tutkitaan iteroitujen hash-funktioiden yleistyksiä ja osoitetaan, että aiemmat
monitörmäysmenetelmät voidaan laajentaa koskemaan myös näitä yleistyksiä. Lopuksi tutki-
taan graafeihin perustuviin hash-funktioihin liittyviä monitörmäysmenetelmiä ja osoitetaan, että
iteroitujen hash-funktioiden monitörmäysmenetelmä voidaan osittain yleistää koskemaan myös
graafeihin perustuvia hash-funktioita.

Asiasanat: hash-funktiot, kryptografia, monitörmäykset, tietoturva, Very Smooth Hash

Acknowledgements

The journey to complete my Ph.D. thesis has been quite long and there are many people
and organisations that I want to thank for helping me reach this goal. The research
presented in this thesis has been carried out at the Oulu University Secure Programming
Group (OUSPG) of the Department of Computer Science and Engineering, University of
Oulu. For financial support, I thank Infotech Oulu, Tauno Tönning Research Foundation
and Emil Aaltonen Foundation.

It would have been impossible to make it through this process without all the great
people that I have had to help me and to work with. First of all, I would like to thank
my advisor Professor Juha Röning for his guidance and support throughout the Ph.D.
process. I would also like to thank Docent Juha Kortelainen, who has given great advice
and mentoring to me and solved many of the common research problems that we tackled.

Special thanks go to the other co-authors of the papers included in this thesis, M.Sc.
Tuomas Kortelainen and M.Sc. Pauli Rikula. It has been a privilege and a pleasure to
work with such talented people. I also thank the reviewers of this thesis, Professor, Dr.
Bart Preneel and Dr. Martijn Stam, for their valuable comments that helped to improve
my thesis.

In addition, the great folks of OUSPG deserve all my thanks for helping me with all
the practical aspects of information security and giving a fun and warm atmosphere to
our workplace. I extend my greatest thanks to M.Sc.(Tech.) Teemu Tokola, who has
been a true friend for over fifteen years and helped me find my way into OUSPG. Also
all my friends both near and far have been a valuable source of advice, humour and
encouragement. Thank you all for being my friends.

I also owe much gratitude towards my family; my siblings, parents, grandparents,
aunts and uncles all deserve my thanks. Especially, my parents, Lea and Seppo, have
always been supportive of my studies and academic career and have encouraged me to
make most of my education. For that, I am very grateful for them.

Finally, I want to thank my son, Lenni, who has shown me that all learning and
success come through persistence despite failures. Last and definitely most importantly,
I want to thank my wife, Heidi, for all her love throughout the years and all the
encouragement and comfort during the hard times and all the shared joy of my successes.

7

8

Abbreviations and notation

~0 The zero vector, i.e. a vector with zero in all its coordinates

dae The ceiling function, i.e. the smallest integer greater than or equal to a

bac The floor function, i.e. the greatest integer less than or equal to a

≺ A partial order (in some set), i.e. a transitive, antisymmetric and irreflex-

ive relation

≺α The partial order in the set of symbols of the word α induced by the word

α , i.e. a≺α b iff all occurrences of a in α precede the first occurrence of

b in α

|A| Cardinality of A, i.e. the number of elements in the set A

|w| Length of w, i.e. the number of symbols in the word w

|w|a The number of occurrences of the symbol a in the word w

A+ Kleene plus, i.e. the set of all possible words from the alphabet A with

length ≥ 1
A∗ Kleene star, i.e. the set of all possible words from the alphabet A,

including the empty word ε

alph(w) The set of symbols occurring in the word w, i.e. the set {a ∈ A | |w|a > 0}
ε The empty word, i.e. word with no symbols and of length 0

Fq A finite field of order q

/0 The empty set, i.e. a set containing no elements; the set with the cardi-

nality 0

N The set of all natural numbers, i.e. {0,1,2, . . .}
N+ The set of all positive natural numbers, i.e. {1,2, . . .}
O(f) The big O of f , i.e. the set of functions asymptotically greater than f

Ω(f) The big Ω of f , i.e. the set of functions asymptotically smaller than f

Θ(f) The big Θ of f , i.e. the set of functions asymptotically equal to f

Z The set of integers, i.e. {. . . ,−2,−1,0,1,2, . . .}
Zn The set of integers modulo n, i.e. {0,1,2, . . . ,n−1}
3C A method of constructing hash functions by adding an extra XOR-sum

calculation in the iteration process

AES Advanced Encryption Standard, a block cipher standardised by NIST in

2001

9

ASCII American Standard Code for Information Interchange

CEILIDH A torus-based public key cryptosystem

DES Data Encryption Standard, a block cipher standardised by NIST in 1976

DLP The discrete logarithm problem, see Definition 1 on page 29

FIL-RO A fixed input length random oracle, i.e. a function that accepts messages

of a fixed length as input and outputs a value from the range uniformly

and at random

FIPS 186-3 Digital Signature Standard published by the National Institute of Stan-

dards and Technology

GB Gigabyte, a unit of memory, i.e. 109 bytes

GHz Gigahertz, a unit of frequency, i.e. 109 hertzs

GOST Russian governmental standard, in this work, it refers to the hash

function standard defined in GOST R 34.11-94 and GOST 34.311-95

HAIFA Hash iterative framework, a method of constructing hash functions from

compression functions

HMAC Hash-based Message Authentication Code, a method of constructing

message authentication codes by utilising a cryptographic hash function

IEC International Electrotechnical Commission, a standards organisation

ISO International Organization for Standardization

MAC Message Authentication Code, a short piece of information for authenti-

cating a message

MD4 Message Digest 4, a hash function

MD5 Message Digest 5, a hash function

MDC-2 Modification Detection Code 2, a hash function

NFS Number field sieve, a factoring method

NIST National Institute of Standards and Technology

NMCAS Nested Multicollision Attack Schema, a method for finding multicollisions

for generalised iterated hash functions

NMSRVS Nontrivial Modular Square Root of Very Smooth numbers, a number

theoretic problem, see Definition 5 on page 42

QS Quadratic sieve, a factoring method

ROX A method of constructing hash functions from compression functions,

see Andreeva et al. (2007)

RSA Rivest Shamir Adleman, an encryption method based on the hardness of

the modular root problem

10

SHA Secure Hash Algorithm, a family of hash functions

VIL-RO A variable input length random oracle, i.e. a function that accepts

messages of any length as input and outputs a value from the range

uniformly and at random

VSH Very Smooth Hash, a hash function

VSH-DL Discrete logarithm variant of the Very Smooth Hash

XOR The exclusive or -operation

XTR A method for fast arithmetic in finite fields

11

12

List of original articles

This thesis is based on the following publications that are referred to in the text by their
Roman numerals (I–VII).

I Halunen K, Rikula P & Röning J (2008) On the Security of VSH in Password Schemes.
Proceedings of the Third International Conference on Availability, Reliability and Security
(ARES 2008): 828–833.

II Halunen K, Rikula P & Röning J (2009) Finding Preimages of Multiple Passwords Secured
with VSH. Proceedings of the Fourth International Conference on Availability, Reliability
and Security (ARES 2009): 499–503.

III Halunen K, Kortelainen J & Kortelainen T (2010), Combinatorial Multicollision Attacks and
Generalized Iterated Hash Functions. Proceedings of Australasian Information Security
Conference 2010 (AISC 2010): 86–93.

IV Kortelainen T, Kortelainen J & Halunen K (2010) Variants of Multicollision Attacks on
Iterated Hash Functions. Proceedings of the Sixth China International Conference on
Information Security and Cryptology (Inscrypt 2010): 139–154.

V Kortelainen J, Halunen K & Kortelainen T (2010) Multicollision Attacks and Generalized
Iterated Hash Functions. Journal of Mathematical Cryptology 4(3): 239–270.

VI Halunen K & Röning J (2010) Preimage Attacks Against Variants of Very Smooth Hash.
Proceedings of the Fifth International Workshop on Security (IWSEC 2010): 251–266.

VII Halunen K (2011) Multicollisions and Graph-based Hash Functions. Proceedings of the
Third International Conference on Trusted Systems (INTRUST 2011): 156–167.

13

14

Contents

Abstract
Tiivistelmä
Acknowledgements 7
Abbreviations and notation 9
List of original articles 13
Contents 15
1 Introduction 17

1.1 Contributions of this thesis . 18

2 Applications of hash functions 21
2.1 Data integrity . 21

2.2 Authentication and encryption. .22

2.3 Applications as one-way functions . 23

2.4 Digital signatures . 24

2.5 Digital timestamping . 25

3 Basic concepts 27
3.1 Words, relations and basic algebra . 27

3.2 Finite fields and groups . 29

3.3 Graphs . 30

3.4 Hash functions . 31

3.5 Constructions .34

3.6 Practical implementations and results . 37

3.7 Security models for hash functions . 38

4 Cryptanalysis of the Very Smooth Hash 41
4.1 The Very Smooth Hash algorithm . 41

4.2 Collision resistance of the VSH . 44

4.3 Preimage resistance of the VSH . 45

4.3.1 Saarinen’s method for finding preimages . 45

4.3.2 Improvements and practical results . 46

4.4 Discrete logarithm variants of the VSH. .52

5 Multicollisions and iterated hash functions 57
5.1 Multicollisions on iterated hash functions .57

15

5.2 Countermeasures against Joux’s multicollision attack . 62
5.2.1 Wide pipe and double pipe hashing . 62
5.2.2 Checksums . 63
5.2.3 Dithering . 64
5.2.4 Generalised iterated hash functions . 65

5.3 The Nested Multicollision Attack Schema . 66
5.4 Multicollisions on graph-based hash functions . 70

5.4.1 Tree-based hash functions . 72
5.4.2 Graph-based hash functions and multicollisions 74

6 Summary and conclusions 79
References 81
Original articles 87

16

1 Introduction

The need to communicate securely and reliably in a possibly insecure and unreliable
environment has existed for as long as information has been perceived to have any signif-
icant value. In recent years, the amount of communication has increased tremendously
with the advent of the Internet and other electronic communication media. Together
with the new, electronic nature of communication it has become evident that many of the
traditional means to achieving security and reliability in communications are no longer
effective.

There are two branches of mathematics, which try to answer the theoretical and
practical problems posed by the new challenges in communication. Coding theory

seeks answers to the reliability side of the communication, i.e. how can one trans-
mit information across noisy channels efficiently and without errors. Cryptography

examines the possibilities of securing the communications from eavesdropping and
other misuse. This field is quite old with some methods dating back to ancient Greece
and Babylon, but nowadays, cryptography has become more and more pervasive in
communications systems and it has also branched in new directions such as secure
multi-party communication, secret sharing schemes, e-voting and zero-knowledge
proofs.

One problem, which has been fairly easy with handwritten correspondence, is the
problem of authenticating the source of the message and making sure that the message
has not been altered en route to the recipient. With a handwritten letter, the sender can
authenticate herself by signing the letter and protect the message from being switched or
altered during transmission, by placing the letter in a sealed envelope. Of course, these
methods are not perfect, but the problem is more complex as for digital messages. With
digital messages, such as email, the message is displayed on the screen and usually any
message of valid form will be displayed. Thus, the recipient of an email cannot be sure
whether the signer is actually the real sender or if the message has been modified on the
way to the recipient’s display.

Hash functions are one method for solving the cryptographic problem mentioned
above. A hash function is an algorithm that takes as input any message and computes a
unique value of prespecified length for that message. This value is known as the hash

value or “fingerprint” of the said message. With the help of these hash functions, one

17

can perform message authentication and digital signatures, which are crucial in modern
information technology. These functions can also be used in digital timestamping
schemes and pseudorandom number generation.

For this thesis, we had two main paths of research. In the first one, we analysed the
cryptographic properties of the Very Smooth Hash (VSH) hash function. In the second,
we examined the properties of iterated and generalised iterated hash functions against
multicollisions. The contributions of this thesis are described in detail below.

1.1 Contributions of this thesis

The main contributions of this thesis are the following:

– A practical study of the preimage resistance of the VSH hash function in a password
setting and an improvement of the previous preimage finding method by Saarinen
(2006).

– Extending the preimage attacks to discrete logarithm variants of VSH.
– Development of a unified theoretical framework for studying (generalised) iterated

hash functions.
– Using the framework to prove new results on the security of iterated hash functions,

e.g. showing that arbitrarily large multicollisions can be found faster than with
previous methods and for a larger family of iterated hash functions than before.

– Showing that the previous methods can be extended to some graph-based hash
functions.

This thesis consists of seven publications.
In Publications I, II and VI, we consider the security of the VSH hash function and

its different variants against preimage attacks. In I, we show that the original preimage
attack by Saarinen (2006) can be used in a realistic setting with 8-character passwords.
In II, we modify the method of Saarinen (2006) in a way that facilitates the reuse of
the precomputed tables and thus makes finding multiple preimages easier. In VI, we
demonstrate that these preimage finding methods generalise to the discrete logarithm
variants of VSH.

In Publications III–V and VII, we demonstrate the results of the research on the
multicollisions in generalised iterated hash functions. In III, we give some preliminary
results on the Nested Multicollision Attack Schema (NMCAS). In IV, we demonstrate a
new method for finding multicollisions in iterated hash functions and show that this is

18

better than the method by Joux (2004) in some cases. We also describe a general limit
for the complexity of finding arbitrarily large multicollisions for iterated hash functions.
In V, we detail the NMCAS with exact proofs and evaluate its complexity. Publication
VII continues the work on multicollisions in generalised iterated hash functions by
generalising the results of III and V to some graph-based hash functions.

In Publications I and II, the study was planned and conducted mainly by the author
and the discussion and conclusion were mostly the author’s own contribution. The
programming and the practical results were done in cooperation with M.Sc. Pauli
Rikula, based on some earlier programs written by the author. In Publications III and
V, the main contribution was made by Docent Juha Kortelainen and the author was
mainly responsible for the background work on iterated hash functions and parts of the
discussion, conclusions and interpretation of the theoretical results with some minor
contribution on the theoretical findings on multicollisions. In IV, the main result was
due to M.Sc. Tuomas Kortelainen with the author of this thesis providing some input on
the theoretical limit result and in the background and discussion sections. In Publication
VI, the author was responsible for both the theoretical results and for conducting the
practical experiments partially based on the work done in Publications I and II. In VII,
the results are by the author of this thesis.

19

20

2 Applications of hash functions

Before going into the details of modern cryptographic hash function design and the
security of hash functions, we give some examples of the applications of hash functions.
These examples serve as a particular motivation for this thesis.

Hash functions have become an integral part of many cryptographic protocols and
they can also be applied to some non-cryptographic problems. In these cases, some of
the security properties required for cryptographic hash functions are not necessary for
the hash function. Some of the methods presented below can be considered “folklore” in
cryptography and thus no attribution has been made in the examples. More thorough
presentation on these topics can be found in the thesis by Van Rompay (2004) and in the
Handbook of Applied Cryptography (Menezes et al. 1996).

2.1 Data integrity

Hash functions can be applied to check the integrity of data sent over an untrusted
channel. If there exists another, trusted channel for sending small messages, the
following simple example shows how to use a hash function to check the integrity of the
message. Assume that h is a hash function and x a message that Alice wants to send
to Bob. Hash functions are usually assumed to be public, so that anyone can easily
compute the hash value of any given message. Now, Alice and Bob may use h to ensure
the data integrity of x in the following manner:

Alice uses h and computes h(x). Then she sends the message x to Bob over the
insecure channel and the value h(x) over the trusted channel. When Bob receives the
message x′ from the untrusted channel, he computes h(x′). If h(x′) = h(x), Bob can be
assured that the message he received was the one that Alice sent, if the hash function h

is cryptographically secure.
Of course, if the untrusted channel is used to send both the message and the hash

value, one can always intercept the message sent by Alice, replace it with another and
send this message with the corresponding hash value to Bob. Bob would not know that
this is not the original message, unless he can somehow communicate with Alice or
unless some other, more complicated protocol is used.

21

In practice, cryptographic hash functions are used for example to check the integrity
of program files downloaded from the Internet. In the simplest case, this means that the
hosting site provides the hash value of the file (under some publicly known, secure
hash function) on their site and when one downloads the file one can check whether the
hash values match. This, of course, does not offer much added security if the files and
hash values are distributed over the same channel, but is still used as an easy safeguard
against rogue code. In order to gain more security, one could check the hash value over
some other, trusted channel as in the above example. However, code authenticity is
usually verified by code signing in many modern software products. This requires the
use of public key cryptography techniques and the distribution of the required public
keys to the users of the software.

2.2 Authentication and encryption

By authentication of a message, we mean that the receiver can be sure the message
comes from a legitimate sender and that the message itself has not been changed during
transmission. It can also happen that even an encrypted message can be changed
during transmission (without knowing the key) and that the resulting ciphertext will be
decrypted into a plaintext message. Clearly, the above procedure cannot achieve security
against these threats if only an untrusted channel is used. With the help of symmetric
encryption, this can be achieved.

We assume that Ek is an encryption function that uses the (secret) key k and can be
applied to encrypt any given message by the parties that know the secret key. Also it can
be reversed to obtain the plaintext, if the key is known. Now, Alice and Bob can proceed
as follows: We assume that Alice and Bob have previously agreed on some secret keys
k1 and k2 that they will use when encrypting and authenticating the message.

Alice takes the message x and encrypts it with Ek1 to obtain C = Ek1(x). Then Alice
computes a message authentication code (MAC) over C (using k2) to obtain the MAC
value t. Now, Alice sends Bob C || t. Bob first verifies the authenticity of the received
message and then decrypts, if the check is passed. This way, the authenticity of the
message is assured.

There are three different possibilities to combine the encryption and the computation
of the MAC. The above method is known as encrypt-then-MAC. The two others are
MAC-then-encrypt and encrypt-MAC-plaintext. According to Bellare & Namprempre

22

(2000), the first is secure in most of the different scenarios that they propose, whereas
the other two display weaknesses in many of these scenarios.

Realising a MAC can be done in different ways, but one widely used method is
Hash-based Message Authentication Code, (HMAC), where a hash function is used to
build the MAC value. This hash function can be any hash function (e.g. MD5, SHA-1).
The security of the HMAC is related to that of the underlying hash function and thus
designing secure cryptographic hash functions is essential for the security of HMAC
message authentication.

2.3 Applications as one-way functions

Hash functions can also be applied as one-way functions, for example when someone
wants to commit to a message of certain content and later prove that the message content
was the same as in the original commitment. In a simplistic manner, these could be used
also to prove some knowledge without disclosing the knowledge itself. For example,
Alice might want to convince Bob that she knows the winning numbers of a national
lottery in advance.

First, Alice and Bob agree on some coding scheme (e.g. ASCII) to represent the
numbers and the ordering of the numbers. Then, Alice generates a random string of
appropriate size (say, 256-bits). Now, Alice can compute the hash value of this random
string catenated with her intended message and give the resulting value to Bob. After the
lottery, Alice makes the random string public and Bob can compute the hash value
of the winning numbers and compare that with the one given to him by Alice. If the
values agree, Bob can be assured that Alice knew the right values. On the other hand,
because of the one-way properties of the hash function, Bob cannot obtain the right
numbers from the hash value. The random string is necessary to prevent Bob from
making guesses at the numbers before the lottery.

One-way functions are also useful in modern information security contexts. For
example, many operating systems store password information in hashed form. This
means that the plaintext of the password is not stored in the file, but the hash value of the
password instead. When a user enters her password to the system, the system computes
the hash value and compares that with the stored value. If the password file gets into the
wrong hands, the attacker will not automatically gain the password information, but only
the hash values, which should be hard to invert.

23

Passwords stored in this fashion are susceptible to the so-called dictionary attack.
This means that the attacker computes the hash values of passwords in some small
subset of all the possible passwords. Then, the attacker compares the values in the
database with the precomputed values in his dictionary. If a match is found, the attacker
learns the password. The success of this attack is based on the observation that when
people choose their passwords, they usually try to come up with something that is easily
memorised and thus choose passwords from a relatively small subset of all the possible
passwords. Thus, a dictionary attack can be very effective even when the one-way
function is secure. This attack can be alleviated by adding a salt (a short random string)
to the beginning of the password before hashing it. This salt can be made public and it
makes dictionary attacks much harder for the attacker as the attacker would need to
build a different dictionary for all possible salts.

In general, there are many methods for inverting these one-way functions that use
the property of time-memory trade-off (Hellman 1980). This means that the cost of
an attack is divided between the time of computing the hash values and then making
look-ups on some precomputed table. In an extreme case, the attacker could build a
dictionary for all the possible passwords. Then, the attacker would need only single
table look-up to invert the hash value of any given password. Of course, this should be
infeasible, when the passwords are chosen from a large alphabet and are long. However,
there is a possibility for the attacker to make an optimisation based on his resources
available for time and memory. Barkan et al. (2006) give a thorough analysis on the
bounds of time-memory trade-off attacks.

Also pseudorandom sequences can be generated with one-way functions. In this
type of scenario, one is given a seed number s and a one-way function f . It is then
possible to construct a sequence f (s), f (s+ 1), f (s+ 2), The seed s should be a
secret and the function f publicly known. If the one-way function f could be inverted,
then, the sequence could be predicted and the randomness of the sequence would be lost.
Hash functions can be used in this pseudorandom sequence generation when they meet
the one-wayness requirement.

2.4 Digital signatures

In modern commerce, electronic transactions have become more and more commonplace.
Thus, there is a need to have the digital equivalents of signatures. The advent of public
key cryptography has enabled digital signatures, but the signing of a large file or

24

database is computationally very expensive. There should also be a safeguard against
the repudiation of the signed document. Thus, cryptographic hash functions are used
and the hash values are signed instead of the possibly very large files or messages. This
way, better performance is achieved, as well as security against possible attacks such as
forgery and repudiation.

The basic strategy for digital signatures is the following: First, Alice generates a key
pair (SA,PA), where SA is Alice’s secret key and PA her public key. When Alice wants to
sign a message x, she computes the hash value h(x) and then inputs h(x) into the signing
algorithm, which depends on the secret key SA. The result s(x) = sign(SA,x) is then sent
to Bob, who can verify the signature by using a verification algorithm v. This algorithm
uses the public key PA, the hash value of the signed message and the received signature
(and possibly some other data) and computes v(s(x)) = ver(PA,s(x)).

The basic principles of this type of use for hash functions have been laid by Diffie &
Hellman (1976), Rivest et al. (1978), Lamport (1979) and Merkle (1989a). A more
recent study on digital signatures has been made by Lysyanskaya (2002). Nowadays,
digital signatures are considered as reliable and binding as pen and paper signatures in
many countries. There are also several standards for digital signatures, e.g. FIPS 186-3
(2009), ISO/IEC 9796-2 (2010).

2.5 Digital timestamping

Sometimes, it is necessary to establish the timeliness of communications, documents,
transcripts or other records. For this, one needs digital timestamps. These can be used
to establish either the relative timeline for a sequence of messages, transactions or
documents or an absolute timeline. A relative timeline means that the order of the
messages can be verified, but the exact times of the messages cannot be recovered. An
absolute timeline can be used to ascertain the exact times of the messages. In public key
cryptosystems, timestamps are important because they can be used to determine whether
a message was signed before a key had been revoked.

Hash functions can be used in both of these schemes. First, we assume that there is a
Time Stamping Authority (TSA), which is a trusted party, who issues the timestamps for
the messages. Now, Alice can have message x timestamped by computing h(x) and
sending her identity information (IDA) to the TSA, together with a serial number n for
the message and the current time tn. The TSA then forms the timestamp by signing
these values. Thus, timestamp = sign(IDA,h(x),n, tn) and this value is returned to Alice

25

as the timestamp. To verify the timeliness of the message x, one can use the public key
of the TSA to verify the signature and then compare the hash value in the timestamp
with the hash value of the message the timestamp is attached to.

In the above scheme, the timestamp holds the absolute time tn and even the TSA does
not learn the message x (only its hash value is sent to the TSA). However, a malicious
TSA could issue timestamps with false (earlier) time than in reality. To overcome this
obstacle, we may use the following scheme: Suppose that Alice wants to timestamp the
nth message xn in some communication. Alice computes h(xn) and sends this to the
TSA. Now, the TSA takes a previous linking value ln−1 (for the first message this can be
some random string) and computes the value ln = h′(h(xn) || ln−1), which becomes the
next linking value. Here, h′ is a hash function, which may be different from h. The
linking values are stored in a database by the TSA and the relative timeline for the
timestamped messages can be verified.

The above methods require the hash functions to be collision resistant in order to
generate unforgeable timestamps. In the latter method, the TSA cannot forge timestamps
as in the first method. On the other hand, the second method only generates relative
timestamps. To gain the best of both worlds, one could use both methods. Then, one
would have unforgeable, absolute timestamps.

A survey on timestamping methods has been done by Une (2001). The basic ideas
behind timestamping schemes have been introduced by Haber & Stornetta (1990)
and Bayer et al. (1993). The ISO/IEC 18014 (2009) defines a standard for digital
timestamping.

26

3 Basic concepts

In this chapter, we present the basic definitions used throughout this thesis. We
also briefly describe some fundamental results concerning iterated hash functions.
Furthermore, we present some of the traditional methods for constructing hash functions
and give the result of Damgård (1989) concerning the collision resistance of the iterated
construction. We also briefly describe the security notions for (iterated) hash functions
and security models at the level that is necessary for this thesis.

3.1 Words, relations and basic algebra

In order to define hash functions, we need some basic concepts. LetN= {0,1,2, . . .} be
the set of natural numbers andN+ =N\{0} the set of all positive natural numbers.
For each finite set S, let |S| be the cardinality of S, i.e. the number of elements in S.

Now, we say that an alphabet is any finite, nonempty set of symbols, which are
called letters. If A is an alphabet, we say that any finite sequence of letters from A

forms a word (over A). So, if w = a1a2 . . .an,n ∈N is a word over A, then ai ∈ A for all
i = 1,2, . . . ,n. The number n is the length of the word w and it is denoted by |w|. If the
length of a word is 0, we say that this word is the empty word, which contains no letters.
The empty word is unique and it is denoted by ε . By |w|a, we denote the number of
occurrences of the letter a ∈ A in the word w.

Let n ∈ N and A be an alphabet. We define the set An as the set of all words
over A with the length n. We also define A∗ =

⋃
∞
i=0 Ai and A+ =

⋃
∞
i=1 Ai. Notice that

A+ = A∗ \{ε}. Let w,u ∈ A∗. We define the catenation (·) of w and u as w ·u = wu, i.e.
the words w and u written one after the other. Clearly, catenation is a binary operation
over A∗ (and A+, if w,u ∈ A+) and we omit the · when applying catenation on words,
e.g. wu means the catenation of w and u. As algebraic structures, (A∗, ·) is a free monoid

and (A+, ·) is a free semigroup.
Let m ∈N. The word u = u1u2 · · ·um ∈ A∗ is a subword of the word w ∈ A∗ if there

exist x0,x1, . . . ,xm ∈ A∗ such that w = x0u1x1 . . .umxm. A subword u of w is a factor

of w if w = x0ux1 for some x0,x1 ∈ A∗. We define alph(w) = {a ∈ A | |w|a > 0} as the
alphabet of w. A permutation of an alphabet A is any word w ∈ A+ such that |w|a = 1
for each a ∈ A. Furthermore, we say that any subset of A∗ is a language (over A).

27

Let A and B be alphabets. A mapping τ : A∗ → B∗ is a (monoid) morphism if
τ(uv) = τ(u)τ(v) for each u,v∈A∗ and τ(ε) = ε . If B⊆A, then the projection morphism

from A∗ into B∗, denoted by πA
B (or πB, when A is clear from the context), is defined by

πA
B (b) = b for each b ∈ B and πA

B (a) = ε for each a ∈ A\B.
Let L and L′ be languages. The catenation of L and L′ is the language LL′ = {uv |u ∈

L,v ∈ L′}, which is a logical extension from the catenation of words. We define the
powers of L recursively as follows: Let L1 = L, and Li+1 = LiL for i ∈N+. The Kleene+

of L is the language L+ = ∪∞
i=1Li. The catenation closure of L is the set L∗ = L+∪{ε}.

For the sake of simplicity, we write w+ instead of {w}+, for any word w.
A binary relation R of set X is called irreflexive, if for all x ∈ X ,(x,x) /∈ R. R is

called antisymmetric, if for all x,y ∈ X , (x,y) ∈ R⇒ (y,x) /∈ R holds. Furthermore, if
for all x,y,z ∈ X , (x,y) ∈ R,(y,z) ∈ R⇒ (x,z) ∈ R holds, then R is transitive. A binary
relation R of the set X is a partial order (in X) if it is irreflexive, antisymmetric and
transitive.

Let ≺ be a partial order in X . We say that (X ,≺) is a partially ordered set or
poset for short. The elements x,y ∈ X are incomparable (in (X ,≺)) if neither x≺ y nor
y ≺ x holds. The nonempty finite sequence x1,x2, . . . ,xn of elements of X is a chain

of (X ,≺) if xi ≺ xi+1 for i ∈ {1,2, . . . ,n−1}. Here, n ∈N+ is the length of the chain
x1 ≺ x2 · · · ≺ xn. For each chain c of (X ,≺), let |c| be the length of c. An (indexed) set
of chains {ci}i∈I is a chain decomposition of (X ,≺), if {Ci}i∈I is a partition of X , where
Ci = {x ∈ X |x occurs in the chain ci}. Obviously, a chain decomposition exists for all
posets.

Let X be a finite poset, i.e. X is a finite set with some partial order. The maximum

number of incomparable elements of (X ,≺) is the cardinality of the largest set Y ⊆ X

such that the elements of Y are pairwise incomparable. The minimum chain decom-

position size of (X ,≺) is the smallest number m ∈N+ such that there exist chains
c1,c2, . . . ,cm of (X ,≺) for which {ci}m

i=1 is a chain decomposition of (X ,≺). Finally,
let maximum chain length of (X ,≺) be the greatest number m ∈N+ such that there
exists a chain of length m in (X ,≺).

An important connection between two of the concepts defined above is stated
in a famous theorem of Dilworth (1950). This result will be useful in the study of
multicollisions on generalised iterated hash functions (see Chapter 5 of this thesis).

28

Theorem 1 (Dilworth’s Theorem). Let (X ,≺) be a finite, partially ordered set. Then,

the maximum number of incomparable elements of (X ,≺) is equal to the minimum chain

decomposition size of (X ,≺).

Let A be an alphabet and α ∈ A∗. We define a partial order ≺α induced by
α in alph(α) by setting a ≺α b if and only if all occurrences of a are before the
first occurrence of b in the word α , for all a,b ∈ alph(α). We call the elements
a1,a2, . . . ,al ∈ alph(α) independent (with respect to ≺α) if these elements form a chain
in the poset (alph(α),≺α).

3.2 Finite fields and groups

In order to understand the notion of the discrete logarithm problem (DLP) and its
variations and generalisations, we need to define some basic concepts of group theory.
First, assume that G is a finite, cyclic group, with a generator g. We denote this by
G = 〈g〉.

Definition 1. Let G = 〈g〉, |G|= n and z ∈ G, drawn uniformly and at random from
G. Now, finding the unique value t ∈ {0,1, . . . ,n−1} for which z = gt , is the discrete
logarithm problem (DLP) in G.

The value t in Definition 1 is called the discrete logarithm of z in the base g. The
DLP is a basis for many modern cryptosystems, especially in public key cryptography.
For example, the Diffie-Hellman key exchange protocol is based on the difficulty of
solving the computational DLP (Diffie & Hellman 1976). The computational DLP
states that it is computationally intractable to compute gab, when only g,ga and gb are
given. There are also several other variations of the DLP, which have been used in
cryptography. Lenstra et al. (2006) give a definition for the k-modified DLP, which is
used in one of their variants for the Very Smooth Hash (VSH). This is needed in Chapter
4, where we show our results on the cryptanalysis of VSH.

Definition 2. Let G be a finite cyclic group with generator g and k ∈N+. Let C be a

subgroup of G with a generator c = g
|G|
|C| . Furthermore, let f : G→ G be a mapping such

that f (gi)
|G|
|C| = g

|G|
|C|
i for all gi ∈ G. The k-modified discrete logarithm problem for G, C

and f , is to find a nonzero solution (d1,d2, . . . ,dk) for(k

∏
i=1

f (gi)
di
) |G|
|C|

= 1 (1)

29

when the gi are drawn uniformly and at random from G for i = 1,2, . . . ,k.

Because the DLP and many of its variants require the underlying group to be
quite large, finding small groups where the DLP is hard has been an active topic in
cryptography. Two very widely used families of groups are the multiplicative groups of
finite fields and groups formed by elliptic curves. We denote by Fq the finite field of
order q. The DLP in the multiplicative group F∗q has been widely used in cryptography
and there are some very efficient methods of computing in and/or compressing the
results into some subgroups of these groups, e.g. XTR (Lenstra & Verheul 2000) and
CEILIDH (Rubin & Silverberg 2003).

To make the resulting values even shorter, elliptic curves can be utilised. Elliptic
curves over prime fields Fp, p > 3 can be represented in the short Weierstrass from as

y2 = x3 +a4x+a6, (2)

where one usually chooses a4 = −3 to extract some performance benefits in the
arithmetic (Lenstra et al. 2006). The set of points (x,y) that satisfy (2) and a point at
infinity form an Abelian group when the addition is defined appropriately. The point at
infinity is the identity element and the inverse of a point (x,y) is (x,−y). Elliptic curves
require usually less bits for the same level of security than finite fields or other groups
where the DLP is hard.

3.3 Graphs

In Chapter 5, we also study graph-based hash functions, which are a generalisation of
iterated hash functions. Here, we give some basic definitions of graph theory that are
used in the study of graph-based hash functions.

A graph G = (V,E) consists of a finite set of vertices V and the set E ⊆V ×V of
edges between vertices. A path between two vertices u and v is a sequence of vertices
(u,w1,w2, . . . ,wt ,v) with an edge from each of the vertices to the next vertex in the
sequence. A cycle is a path from v to v. A graph is connected if for each pair of vertices
u,v there exists a path between them. A graph G is a tree if it is connected and has no
cycles.

In the following, we consider only directed graphs (digraphs for short). In a digraph,
the indegree of a vertex v is the number of edges that have v as an endpoint and the
outdegree of v is the number of edges that have v as a starting point. A source of a

30

digraph is any vertex that has an indegree equal to zero and a sink is a vertex with an
outdegree equal to zero. In a tree, sources are called leaves and sinks are called roots of
the tree.

A t-ary tree G is a tree for which all vertices have an indegree t or 0, an outdegree
equal to one and there is a unique sink r called the root of G. All non-leaf, non-root
vertices are known as intermediate vertices. A 2-ary tree is also called a binary tree. For
a more thorough presentation on graphs and their properties, see the book by Diestel
(2006).

Let G = (V,E) be a digraph. For any vertex v in G, we define u→ v iff (u,v) ∈ E.
Furthermore, we denote by u⇒ v if there exists a directed path from u to v or if u = v.
If u⇒ v, we say that v is reachable from u. Let v ∈V . We denote by G[v] = (V [v],E[v])

the subgraph of G such that V [v] = {u∈V : u⇒ v} and E[v] = {(u,v)∈ E : u,v∈V [v]}.
Finally, we denote by L(G) the set of sources of G and L(v) := L(G[v]) for any v ∈V .

3.4 Hash functions

Now, we can define hash functions as mathematical entities. It is well known that any
message can be presented as a word over the binary alphabet {0,1}, so we may assume
that all the messages are from {0,1}∗.

Definition 3. A hash function is any function f : {0,1}∗→ {0,1}n, where n ∈N+.
The number n is the length of f .

As can be seen from the above definition, there are many functions, which qualify
as hash functions. For example, for all m ∈N+, the function f (x) = x mod m, where
x ∈ {0,1}∗ is a natural number understood to be in the binary form, is a hash function of
length dlog2 me when we interpret the residues modulo m as binary numbers. Thus, we
can easily devise hash functions satisfying the very general definition above.

However, there are some properties that a hash function must possess in order to be
considered as a cryptographically useful hash function. These properties have been
studied quite extensively and we present only the most commonly used definitions for
these properties. There are some other uses for hash functions, for which there is no
need for a hash function to possess these cryptographic qualities, e.g. using a hash
function to generate a hash table for fast table look-ups.

In general, we use asymptotic notation in the evaluation of the security of hash
functions. Let f and g be functions from N→ N. We say that a function f is

31

asymptotically smaller than g (denoted by f ∈ O(g)) if there exists n0 ∈N+ and a
constant c > 0 such that f (n)≤ c ·g(n) for all n≥ n0. This means that for large values
of x, f (x) is bounded from above by g(x). Furthermore, we say that function f is
asymptotically greater than g (denoted by f ∈ Ω(g)) if there exists n0 ∈ N+ and a
constant c > 0 such that f (n)≥ c ·g(n) for all n≥ n0. If f ∈ O(g) and f ∈ Ω(g), we
say that f is asymptotically equal to g and denote this by f ∈Θ(g).

The following are some informal criteria for cryptographic hash functions:

– The hash function must accept messages of any length as its input.
– The value of the hash function has to be easily computable.
– The hash function should be one-way, i.e. given y = f (x) and f , it should be hard to

obtain x.

Any function that has the above three properties is called a one-way hash function. If, in
addition to the above, it is hard to find any two distinct messages x and y satisfying
f (x) = f (y), the hash function is called collision resistant. These properties have already
been proposed in the thesis by Merkle (Merkle 1979, pp. 12-13) and formalised in
several publications afterwards (e.g. Rogaway & Shrimpton (2004), Andreeva & Stam
(2011)).

In the Handbook of Applied Cryptography (Menezes et al. 1996, p. 323), there are
definitions for three properties of hash functions. These properties are quite similar to
those presented above.

– Preimage resistance means that for essentially all prespecified outputs it is computa-
tionally hard to find any input, which hashes to that output.

– 2nd preimage resistance means that for any given input it is computationally hard to
find a second input with the same output.

– Collision resistance means that it is computationally hard to find any two distinct
inputs with the same output.

These properties are usually required for hash functions to be considered applicable in a
cryptographic context.

Of course, defining the word “hard” in this context is the key to hash function
security. For example Menezes et al. (1996), do not give any strict definition of “hard”,
but state instead that it is very dependent on the context in which the hash functions are

32

used. However, there are some measures of this “hardness” that are widely accepted to
be the benchmark for hash functions. These are discussed later.

More refined analysis of the security properties of hash functions has been done by
Rogaway & Shrimpton (2004), who take a more granular look at preimage and collision
searches. They show that between the seven security properties that they define there are
implications and separations. Thus, some of these properties are more desirable as they
imply others for the hash function. There are also security properties, which are quite
independent of the others. Especially, the notion of keying hash functions is very useful
as some security results require that the hash function is chosen from a family of hash
functions. Keying means that the hash function takes the key as an extra input and this
key is used to differentiate the hash functions of the same family from each other.

Some additional results regarding these more refined security notions have been
presented by Andreeva & Stam (2011). In this thesis, we concentrate on the more
general aspects of preimage and collision resistance and do not take full advantage of
these results.

The formal model of an ideal hash function (of length n) is the random oracle (of
length n), which is a function, that takes as input any message and chooses the hash
value uniformly at random from {0,1}n. This is also called a variable input length
random oracle (VIL-RO). However, this type of ideal random oracle cannot be efficiently
realised and thus these cannot be utilised in constructing hash functions in the real world.
However, these ideals have been used to prove the security of cryptographic protocols
and real hash functions, such as iterated hash functions, are used instead of the ideal for
practical purposes.

For an ideal hash function h of length n, we expect the following security properties.
Finding a preimage x of any y = h(x) should require the computation of approximately
2n messages, i.e. the function describing the complexity of finding the preimage should
be in Θ(2n). The same holds for second preimages, meaning that given x and h(x) it
should require Θ(2n) computations to find y 6= x for which h(x) = h(y). The so-called
birthday paradox states that it is likely that in a small group of some tens of people there
are two with the same birthday, even though there are 366 possible birthdays. From this
observation, it can be shown that finding two distinct messages x and y with h(x) = h(y)

should have complexity in Θ(2
n
2). This can be done simply by computing and listing

hash values until a collision is found. This is known as the birthday attack against hash
functions. The above are also the limits of brute force attacks against particular hash
functions.

33

An attack against a hash function is a (usually probabilistic) method for reducing the
complexity of finding a preimage, a second preimage or a collision. This means that
one demonstrates that the complexity of the particular attack is bounded from above
by some smaller function than in the case of an ideal hash function. Sometimes, this
reduction is merely theoretical in the sense that even with the attack method at hand, it is
still infeasible to produce a (second) preimage or a collision, even if the complexity
is lower than for an ideal hash function. A practical attack is an attack by which one
actually provides the messages that are (second) preimages or collisions for the given
hash function. Nowadays, many collision attacks against particular hash functions are
practical, e.g. MD4 and MD5, whereas most preimage finding attacks against hash
functions are mostly theoretical.

Attacks against hash functions can also be roughly divided into two other categories
besides theoretical and practical, namely general attacks and special attacks. An attack
in the latter category concerns only a single hash function, such as MD5 or VSH. In this
type of attack, usually some weakness of the specific underlying function is used to gain
advantage over the brute force attacks. A general attack applies to a larger set of hash
functions, such as all iterated hash functions, and is thus applicable to a wide range of
hash functions. These attacks usually assume that the underlying primitives are ideal
and show weaknesses in the actual method of compression instead of weaknesses in
some part of a specific function.

3.5 Constructions

As mentioned in the previous section, there is no known method for efficiently construct-
ing an ideal hash function. However, there are methods for constructing hash functions
with at least some of the desired properties. The most popular method has been the idea
of iterated hash functions devised by Rabin (1978). In order to describe the method, we
need one further definition.

Definition 4. Let n,m ∈N+. A compression function (of length n and block length m)

is any function f : {0,1}n×{0,1}m→{0,1}n.

An ideal compression function can be described as a fixed input length random
oracle (FIL-RO) (of length n). A FIL-RO is a function that accepts two inputs: one is
any message of length m and the other is any message of length n. The output is chosen
from {0,1}n uniformly at random. Again, it is not possible to efficiently implement a

34

FIL-RO. For a FIL-RO, the same limits to finding preimages, second preimages and
collisions apply as for a VIL-RO.

Let m,n ∈N+ and f : {0,1}n×{0,1}m→{0,1}n be a given compression function.
We define the function f ∗ : {0,1}n× ({0,1}m)∗→{0,1}n inductively as follows. Let
y0 ∈ {0,1}n, y1 ∈ ({0,1}m)∗, and y2 ∈ {0,1}m. Then, f ∗(y0,ε) = y0 and f ∗(y0,y1y2) =

f (f ∗(y0,y1),y2).
The idea of an iterated hash function is quite simple. Let f be as in Definition 4

and y0 ∈ {0,1}n. Now, we may take any message x from {0,1}∗, divide x into d blocks
of length m (x = x1x2 · · ·xd), add zeroes to the end of the message if the length of the
message is not divisible by m, add also a block denoting the length of the message as the
final block xd+1 and compute in the following iterative manner

yi = f (yi−1,xi), for i = 1,2, . . . ,d +1.

Now, the final value of the iteration yd+1 is then defined as the hash value of the message
x. If we define x′ = x1x2 · · ·xd+1, then the hash value is h(x) = f ∗(y0,x′).

Now, this construction does not automatically guarantee any of the necessary security
properties for hash functions. The results of Merkle (1989b) and Damgård (1989) state
the following:

Theorem 2. Let f be a compression function of length n. If f is collision resistant, then

the iterated hash function h constructed from f is also collision resistant.

Theorem 2 holds for any suffix-free set of messages. The proof by Damgård (1989)
is based on the idea that any collision on h can be reduced to either a collision on f or
to imply that the two colliding messages are the same. Both of these are, of course,
contradictory to the assumptions of the theorem. Merkle (1989b) shows essentially the
same result. There is one drawback in the original method presented by Damgård, which
requires one to sacrifice one bit for each message block in order to get a suffix-free
encoding of the messages. There is a workaround for this, where one just adds the
length of the message at the end of the message as a part of the final block as we did in
our construction above. This ensures the suffix-freeness of the messages and thus allows
the above result to be applied. This limits the length of the message, but this limit is
usually large enough to accommodate all practical messages (2128 bits or more). Figure
1 presents the basic MD-construction for iterated hash functions.

Damgård (1989) also assumes that the compression function is drawn from a family
of possible compression functions. In real constructions, the compression function is

35

usually fixed. This issue is tackled in the research of Rogaway & Shrimpton (2004)
and Andreeva & Stam (2011) by considering the properties against keyed and unkeyed
hash functions separately. This yields a more refined analysis of the different security
properties.

Fig 1. Basic MD-type iteration.

Due to Theorem 2, collision resistant hash functions could be designed, if collision
resistant compression functions can be devised. However, proving the compression
function collision resistant with mathematical certainty has been a very difficult task and
most of the modern hash functions have quite varied arguments on the security of the
compression function or the hash function as a whole. The security proofs are usually
quite involved and hardly ever can one directly prove that the compression function is
actually collision resistant.

One should also note that even though the collision resistance of the underlying hash
function is sufficient for the iterated hash function to be collision resistant, it is not a
necessary condition. One example of this is Very Smooth Hash (VSH), which has a
very rigorous proof of its collision resistance, even though the underlying compression
function is not collision resistant (Contini et al. 2006). VSH is discussed in more detail
in Chapter 4 of this thesis.

The results of Preneel (1993) show how the result of Damgård (1989) can be applied
to constructions using block ciphers. The results of Black et al. (2002) show also
the limitations of Theorem 2 as they are able to prove that some of the iterated hash
functions with weak (against collisions) compression functions considered already by
Preneel (1993) are secure against collisions.

Usually, the complexity of attacks against iterated hash functions is not measured
as the number of messages needed to hash in order to gain the desired result. For

36

the iterated hash functions, the measure of complexity is the number of compression
function calls needed for the attack to work. It is easy to see that also with this notion of
complexity it takes Θ(2n) compression function calls to find a (second) preimage and
Θ(2

n
2) compression function calls to find a collision for an iterated hash function with a

FIL-RO as a compression function with a brute force search.

3.6 Practical implementations and results

The iterated structure described in the previous section prompted the design of many
hash functions that worked on that principle. One of the most widely adopted hash
functions was MD5 (Rivest 1992), the successor of MD4 (Rivest 1991).

MD5 is still widely used even though there are several flaws found in the design
and even very practical attacks have been published (Stevens 2006, Klima 2005, Wang
& Yu 2005, Stevens et al. 2007). These attacks demonstrate collisions for the hash
function and some applications of these collisions in communication protocols. For
MD4, collisions were first demonstrated by Dobbertin (1998) and nowadays there are
very effective methods for finding collisions for MD4 and MD5. For MD4, there is
also a method for finding preimages of the hash values (Leurent 2008), which is of
course much harder than finding collisions. Also multicollisions against the compression
function of MD4 can be found (Yu & Wang 2007).

The SHA-family of hash functions has been proposed as a more secure alternative to
the MD-family of hash functions, but even SHA-1 has been found quite weak against
collisions (Biham et al. 2005, Wang et al. 2005). Thus, the National Institute for
Standards in Technology (NIST) has called for a new secure hash function standard for
SHA-3 (Kayser 2007). An excellent survey of the multitude of protocols, attacks and the
motivation for the competition has been made by Preneel (2008).

The above constructions of MD and SHA hash function families are so called
dedicated hash functions. In dedicated hash functions, the compression function is
designed solely to be used in iterated hash functions. However, these were not the first
types of iterated hash functions to emerge. The first iterated hash functions operated
on the idea that already known block ciphers (such as DES or AES) could be used
as compression functions. The distinction between the two ways of constructing
hash functions is not very strict as the compression functions of many dedicated hash
functions include a part that acts as a block cipher.

37

There are many ways to construct iterated hash functions from block ciphers.
As pointed out by Preneel et al. (1993), some of these are secure against collision
and/or preimage attacks and some constructions are not. One of the first ideas was
the Davies-Mayer -construction, which is the following: Let Ek be a block cipher, i.e,
Ek(x) = y, where x is a block of plaintext, y is then a block of ciphertext and k a key
from some keyspace. Now, Davies-Meyer -method for constructing an iterated hash
function is

yi+1 = Exi(yi)⊕ yi,

where xi is a message block of the same length as the key, y0 is some given initial value
and ⊕ denotes the XOR operation. A variation of this is the Matyas-Meyer-Oseas
-method, which defines the iteration as

yi+1 = Ez(yi)(xi)⊕ xi,

where xi is as above and z is a function which transforms ciphertext blocks into valid
keys for the cipher (if necessary).

The results of Preneel et al. (1993) describe many other possible variations of
these primitives, and as mentioned above, describe their security in a detailed fashion.
However, in this thesis, we will consider a black box approach to the underlying
primitive and assume that the compression function f used in the iterative structure is a
FIL-RO.

3.7 Security models for hash functions

The security models in which hash function constructions from some underlying
primitive (usually a compression function) are studied are basically of two different
types. First, one may look at property preservation of the type of construction. The idea
in this type of reasoning is very simple. If the underlying primitive has some desirable
property, then under some assumptions the iterated construction based on this primitive
should have the same property. For example, the results of Merkle (1989b) and Damgård
(1989) show, that MD-type of iteration preserves collision resistance of the underlying
compression function. There are results concerning MD-type of iteration and property
preservation, which show that the MD-type of iteration is far from perfect and in fact
does not preserve some of the desirable properties for an ideal hash function (see for
example the papers by Bellare & Rogaway (1993) and Coron et al. (2005)).

38

Furthermore, Andreeva et al. (2007) have studied many iteration methods used in
modern hash function designs, including the MD-type iteration. The results show that
from the seven properties proposed by Rogaway & Shrimpton (2004) many designs
preserve only one or two properties. Especially, the MD-type iteration does not preserve
the basic notions of preimage and second preimage resistance. Andreeva et al. (2007)
propose a new design called ROX and prove that it preserves all the seven security
notions of Rogaway & Shrimpton (2004).

Another security model under which iterated constructions can be studied is
indifferentiability (from a random oracle) introduced by Maurer et al. (2004) and
Coron et al. (2005). In this methodology, one tries to show, that the construction is
indifferentiable from a random oracle (or some other idealised function). This way, one
can be more convinced of the usability and security of the hash function, because many
security proofs for the protocols rely on the assumption that the hash function is a random
oracle. Thus, indifferentiability from a random oracle is a very strong security notion.
However, Coron et al. (2005) show that ordinary MD-type iteration does not meet the
requirements of indifferentiability. They present three different ways to overcome this
and prove that these three modified methods are in fact indifferentiable from a random
oracle. Although indifferentiability from a random oracle is a very desirable property for
a hash function, Ristenpart et al. (2011) show that indifferentiability is not enough to
guarantee the security of schemes, where there are multiple disjoint adversarial stages.

Furthermore, Canetti et al. (1998) show that there are some cryptographic protocols,
which are proven secure in the random oracle model, but are completely insecure, when
the random oracle is replaced by some other, weaker construction. The results of Maurer
et al. (2004) also lead to this conclusion. Therefore, there are also proofs of security in
the standard model. In the standard model, the security proofs state that an adversary
gains only an insignificant amount of advantage (usually given as a probability for
breaking the scheme) when applying a certain amount of queries.

There is a vast amount of research carried out in the formalisation of different
security notions and different types of attacks against hash functions. An interested
reader is referred to the Ph.D. thesis of Andreeva (2010), where many of these aspects
are presented in more detail and the properties of hash functions are extensively studied.

39

40

4 Cryptanalysis of the Very Smooth Hash

In this chapter, we describe and analyse the Very Smooth Hash (VSH) hash function,
presented by Contini et al. (2006). This proposal has very nice mathematical properties,
which also enable a proof for its collision resistance. Unfortunately, the preimage
resistance of this hash function suffers from these mathematical properties as demon-
strated first by Saarinen (2006). We present our improvements to this method and
generalise it to some variants of VSH. We also give some results of our experiments
from Publications I, II and VI.

4.1 The Very Smooth Hash algorithm

In order to understand the VSH algorithm and prove its collision resistance, we need to
define some mathematical concepts related to number theory. First of all, we enumerate
the prime numbers and denote by pi the ith prime number. Thus, p1 = 2, p2 = 3, p3 = 5 . . .
and we define p0 =−1.

Let a and x be integers, c > 0 a constant and N a hard-to-factor integer. If a has all
its prime factors less or equal to pk, for some k ∈N+, we say that a is pk-smooth. If
a≡ x2 mod N and the largest prime factor of a is at most (logN)c, we say that a is a
very smooth quadratic residue modulo N.

It is a well-known fact that all positive integers can be uniquely represented as
products of prime numbers. Finding this prime factor representation for a given number
is considered a very hard computational task when the number is sufficiently large and
this problem is the foundation of many cryptographic techniques, e.g. RSA (Rivest
et al. 1978). Many algorithms have been developed to achieve fast factorisation of large
numbers although a polynomial time algorithm for factorisation has not been devised
yet (see for example the book by Crandall & Pomerance (2001)).

The factorisation methods, which are most related to VSH, are the quadratic sieve
(QS) (Pomerance 1985) and the number field sieve (NFS) (Lenstra et al. 1990). NFS is
acknowledged as the fastest method for factoring large integers and the theory behind
the algorithm is quite involved. NFS uses many of the same ideas as QS and these ideas
are also behind the security of VSH against collisions.

41

The main connecting idea between QS, NFS and VSH is the use of relations of very
smooth numbers to factor large integers. A relation in this sense is a congruence of the
form

v2 ≡ ∏
0≤i≤u

pei(v)
i mod N,

where u > 0 and v are integers and ei(v) is a (u+1) -dimensional integer vector. If there
are more than u+1 relations, one can combine the information from these relations with
the help of some linear algebra. Specifically, the information can be used to form a
relation with all even exponents. Thus, one gains a congruence of the form

x2 ≡ y2 mod N.

After this, one may find nontrivial factors of N from gcd(x±y,N), provided that x 6≡ ±y

(Contini et al. 2006).
Relations can be easily constructed when the factorisation of N is known. One

merely computes square roots modulo each of the prime factors and combines these
with the help of the Chinese Remainder Theorem (Crandall & Pomerance 2001, p. 81).
For a more thorough presentation on prime numbers and factoring algorithms, the reader
is instructed to consult the book by Crandall & Pomerance (2001).

For evaluating the security of the VSH algorithm, we need the function, which
describes the running time of the NFS. As in the paper by Contini et al. (2006), we have

L[N, t] = e(t+o(1))(lnN)1/3(ln lnN)2/3
,

for constant t > 0 and asymptotically when N→ ∞. The NFS expected runtime behaves
as O(L[N,1.923 . . .]) (Contini et al. 2006).

Furthermore, Contini et al. (2006) define a problem under which the security of
VSH can be evaluated. This problem is related to finding non-trivial modular square
roots modulo a very smooth number.

Definition 5. (Nontrivial Modular Square Root of Very Smooth numbers) Let N be the
product of two unknown primes of approximately the same size and let k≤ (logn)c. The
NMSRVS problem is the following: Given N, find a ∈ Z∗N s.t. a2 ≡∏

k
i=0 pei

i mod N

and at least one of e0,e1, . . . ,ek is odd.

There are two assumptions on the difficulty of NMSRVS. The NMSRVS assumption
states that there is no probabilistic, polynomial time algorithm, which solves the
NMSRVS problem with a significant probability. This assumption does not give

42

guidelines on how to select a suitable modulus for VSH. Thus, there is a need for a
computational approach to the problem.

For the other assumption, we need to find the least positive integer S′ solving the
inequality

L[2S′ ,1.923 . . .]≥ L[N,1.923 . . .]
u

and assume that finding a relation for this N and u is as hard as factoring an S′-bit integer
with NFS. Then, the computational NMSRVS assumption is that solving the NMSRVS
problem is as hard as factoring an S′-bit integer. (Contini et al. 2006)

The VSH hash function calculates the hash value of a message in the following way
(Contini et al. 2006):

The VSH algorithm

1. Let x = x1x2 . . .x` be a message to be hashed with xi the ith bit of the message. Let
the block length k be the largest integer for which ∏

k
i=1 pi < N. We assume ` < 2k.

2. Let y0 = 1.
3. Let d =

⌈
`
k

⌉
be the number of blocks. Let xi = 0 for ` < i≤ dk be the padding.

4. Let B = b1b2 . . .bk be the binary representation of `. Let xdk+i = bi for 1≤ i≤ k.
5. For j = 0,1, . . . ,d in succession compute

y j+1 = y2
j ×

k

∏
i=1

p
x(jk+i)
i mod N.

6. Return yd+1 as H(x).

The authors of VSH claim that this algorithm offers security comparable to the
security of RSA. By using some assumptions on the difficulty of factoring large integers,
the complexity of the NFS algorithm and some approximation, the authors state that
VSH with 1024-bit modulus achieves the same level of security as 840-bit RSA (Contini
et al. 2006). This security claim is for the collision resistance of VSH, as can be seen
from the next section. It should be noted that the VSH algorithm produces a family
of hash functions with the modulus N acting as the index or key for the specific hash
function from the family.

43

4.2 Collision resistance of the VSH

Now, we provide a proof for the collision resistance of VSH. The proof is a reduction
from the collision finding problem to the (computational) NMSRVS assumption stated
above.

Theorem 3. Finding a collision for VSH is as hard as solving the NMSRVS problem

(Contini et al. 2006).

Proof. Assume that we have two messages x and x′ 6= x with the same hash value under
H, which is a VSH hash function. We denote by yi the intermediate values in the
computation of H(x) and y′j respectively for H(x′). We also define L and ` as the number
of blocks in and the length of x. For x′ the values L′ and `′ are defined respectively. Now,
because x and x′ collide, we have yL+1 = y′L′+1.

First, we consider the case where `= `′. We denote by xi the ith block in the message
x and by b j the jth bit in the message x (x′i and b′j for x′ respectively). Let t ≤ L be the
largest index for which (yt ,xt) 6= (y′t ,x

′
t) and (yi,xi) = (y′i,x

′
i) for all i, t < i≤ L. Thus

we have

(yt)
2×

k

∏
i=1

pbtk+i
i ≡ (y′t)

2×
k

∏
i=1

p
b′tk+i
i mod N. (3)

Now, we define two sets ∆ = {i | btk+i 6= b′tk+i,1 ≤ i ≤ k} and Γ = {i | btk+i =

1,b′tk+i = 0,1≤ i≤ k}. Since all elements in (3) are invertible modulo N, we have(yt

y′t
×∏

i∈Γ

pi
)2 ≡∏

i∈∆

pi mod N. (4)

If ∆ 6= /0, then (4) solves the NMSRVS problem. If ∆ = /0, then (yt)
2 ≡ (y′t)

2 mod N

and t ≥ 1 by definition. If yt 6≡ ±y′t mod N, then NMSRVS can be solved by factoring
N. Now, if yt ≡±y′t mod n, then ∆ = /0 and the definition of t guarantee that yt ≡−y′t
mod N. Now, we consider the values yt−1 and y′t−1. By proceeding as in (3) and in (4),
we get that (yt−1

y′t−1
)2 is equivalent to some very smooth number times −1 mod N and this

solves the NMSRVS problem. Now, the case `= `′ is finished.
Finally, consider the case ` 6= `′. We have yL+1 = y′L′+1 and thus

(yL

y′L′

)2 ≡
k

∏
i=1

p`
′
i−`i

i mod N. (5)

Furthermore, |`i
′− `i|= 1 for some i and the NMSRVS problem can be solved with

a similar transformation as in (4).

44

Although the above proof relates the collision resistance of VSH to the NMSRVS
problem, there has been some research on the collision properties of VSH. Blake
& Shparlinski (2007) provide an analysis of the statistical distribution of the VSH
collisions. This leads to some novel number theoretic problems, but does not undermine
the security against collisions provided by the above proof.

4.3 Preimage resistance of the VSH

Even the authors of the VSH hash function state that it does not provide preimage
security for short messages when there is no wraparound modulo N (Contini et al. 2006).
The reason why this is not considered too restricting is that in some protocols only
collision resistance of the hash function is necessary (Menezes et al. 1996, p. 327) and
that there is no proof of the existence of one-way functions (Contini et al. 2006). Thus,
the lack of preimage resistance is not significant although for a general purpose hash
function it would be essential.

However, Saarinen (2006) has found an interesting mathematical relation of VSH
hash values and demonstrated that it could be used to find preimages of short passwords.
In Publications I and II, we improved this method and demonstrated how to find
preimages of multiple eight character passwords secured with VSH. In Publication
VI, we demonstrated that similar attacks are applicable against the discrete logarithm
variants of VSH.

4.3.1 Saarinen’s method for finding preimages

Let H be a VSH hash function and x,y and z messages of equal length with x∧y = z and
z =~0. Now, Saarinen (2006) has shown that

H(x)H(y)≡ H(x∨ y)H(z) mod N. (6)

The equivalence follows from the simple fact that the condition x∧ y = z ensures
that the messages x and y do not have the same bits set to one. Thus, in the computation
of the hash values H(x) and H(y), there are exactly the same primes with the same
exponents as in H(x∨ y). The value H(z) is needed to balance the equivalence as the

45

block containing the length of the message gets calculated twice on the left hand side of
(6).

With the help of the above result, Saarinen (2006) presents the following method for
finding preimages of VSH hash values: Let x be the message for which the preimage is
wanted. Thus, H(x) is the hash value of x and this value is known to the attacker. Now,
let ` be the length of the message x. Furthermore, x can be divided into two messages
x1 and x2 of length ` by setting the `

2 first bits of x1 equal to those in x and the rest
equal to zero. Then, the first `

2 bits of x2 are set to zero and the last bits equal to the
corresponding bits of x. If the length of x is odd, then the odd bit can be taken into either
of the halves. Clearly, the assumptions of (6) hold for x,x1 and x2. Thus, by (6) we have

H(x1)H(x2)≡ H(x)H(z) mod N.

Since the VSH hash values are invertible modulo N, we get

H(x1)≡ H(x)H(z)H(x2)
−1 mod N. (7)

Now, Saarinen (2006) shows that (7) can be used to find preimages of the hash values
quite efficiently. One first tabulates the right hand side values of (7) for all possible
values of x2. Then, one starts to go through the left hand side values for all possible
values of x1. Once a match is found between the table and the left hand side values, the
original message can be reconstructed with x = x1∨ x2. Saarinen (2006) demonstrates
this method with a toy example where he uses much smaller primes than suggested by
the authors of VSH and lowercase alphabet passwords of only four characters.

4.3.2 Improvements and practical results

As the practical experiment made by Saarinen (2006) was not made with such security
parameters as required by Contini et al. (2006), we decided to experiment with security
parameters chosen to be large enough and with 8-character passwords, which would
give a more realistic picture of the effectiveness of the method. Furthermore, we found
ways to improve the method and to efficiently find preimages of large sets of passwords
secured with the same instance of VSH.

First of all, we noticed that the order of tabulation and search in (7) could be changed,
so that the left hand side is tabulated and the right hand side is used while searching for
a match. This also facilitates the reuse of the generated table for different messages
because the tabulated values do not depend on the original message x. However, this did

46

not give any advantage to the running time in finding the preimage of a single password,
but it made it faster for subsequent passwords secured with the same implementation of
VSH.

We tested four different versions of VSH: 1024-bit, 2048-bit and the cubing variants
of these (Contini et al. 2006). In the cubing variant of VSH, the compression function in
the fifth step of the algorithm is replaced with the following compression function

y j+1 = y3
j ×

k

∏
i=1

p
x(jk+i)
i mod N.

We made our own implementations of the VSH hash functions, as it provided a level
ground for testing all three methods for finding preimages. Programming was done with
the Python programming language (Python Software Foundation 2007), which offered
support for large number arithmetic. It should be noted that our implementation of VSH
was not in any way optimised, so in an optimised environment, the time needed to find a
preimage would be less than the times found in our research. The precomputed values
were stored in a hash table for easy and fast access. In the searching phase, the possible
prefixes were used in alphabetical order with lowercase alphabets first and numerical
values last. The comparison was then done and there was some printing functionality to
ensure that the correct password had been identified. The method worked 100% of the
time.

The tests were performed with quite modest hardware as we had one 2.2 GHz
processor and 8 GB of memory available. However, the memory needed for the
computations was only 2-4 GB with the 1024-bit VSH and up to 9 GB for 2048-bit
VSH. At least for the 1024-bit VSH, the amount of memory could easily be available
in a modern desktop computer and thus these methods could be applied without any
expensive special hardware or software.

The results for the different moduli and different variants of VSH are summarised
in Tables 1 and 2. Table 1 presents the runtime of the algorithm divided between
precomputation and the searching, where the best case and the worst case runtimes after
precomputation with our method are given. Table 2 presents the best and worst case
times with Saarinen’s method. The precomputation time is not separated in this case
as the method requires one to compute the tables for comparison for each message
separately.

47

Table 1. Results for our method.

VSH type Precomputation Best case Worst case

1024-bit 2.5 h 0 s 6.5 h

2048-bit 6 h 0 s 21 h

1024-bit cubing variant 2.5 h 0 s 10 h

2048-bit cubing variant 6 h 0 s 17 h

Table 2. Results for Saarinen’s method.

VSH type Best case Worst case

1024-bit 7.5 h 9.5 h

2048-bit 12 h 23 h

1024-bit cubing variant 9.5 h 12 h

2048-bit cubing variant 18 h 25 h

With our method, the runtime of the preimage finding algorithm varied between 2.5
and 9 hours for passwords secured with 1024-bit VSH. The precomputation took 2.5
hours and the searching phase was finished immediately for the best case (password
aaaaaaaa) and took 6.5 hours in the worst case (password 99999999) This was
of course due to the naive search in alphabetical order. With 2048-bit VSH, the
precomputation time was 6 hours and in the worst case the table look-ups took 21 hours.
The times for the cubing variants were very similar to the normal VSH implementations,
which was somewhat surprising. With Saarinen’s method, the runtimes were greater
than those of our method in the best case and similar or slightly faster than those of our
method in the worst case. This held for all the variants in our study, as can be seen in the
tables.

With subsequent preimage searches, our method outperformed that of Saarinen’s as
the precomputation did not have to be done again. Further research showed that (7)
could be improved by transforming it into

H(x1)H(x)−1H(z)−1 ≡ H(x2)
−1 mod N. (8)

48

With the help of the above congruence, we can speed up the search phase by making the
computationally intensive inverting in the tabulation phase. It should be noted that the
hash value of the message (H(x)) and the hash value of the empty message (H(z)) are
both constants, which can be inverted once and then used in all subsequent computations.
This allows those values to be used in the searching phase without increasing the runtime
significantly.

We tested all three methods, the original by Saarinen and our two variants, again
with 1024-bit VSH and alphanumeric passwords with eight characters. We generated
the passwords randomly for three different sets. The sets contained 5, 10 and 50
passwords and the results are summarised in Tables 3, 4 and 5. In the tables, the average,
fastest and slowest times refer to searching times after the precomputation as far as
our methods are concerned. For Saarinen’s method, these times refer to the total times
as the precomputation is an integral part of each preimage search and thus cannot be
considered separately.

It should be noted that our task of finding the preimages of all the passwords in the
given set is more difficult than trying to find a preimage of a single password in some
given set. In the latter scenario, one would only need to find a single match from a set of
possibilities. Our methods and that of Saarinen could also be used in the latter scenario.
With our method, the search for a single match could be done with a single table and all
the hash values of the passwords could be compared against this table. With the method
of Saarinen, one would require a different table for each password and thus the search
would be more complicated. However, we did not explore this scenario in our research
although this attack scenario is very plausible from a practical point of view. Usually, a
single password is enough for an attacker to gain access to the system.

Table 3. Results for five passwords.

Method Precomputation Total time Average time

Saarinen (2006) N/A 46.00 h 9.25 h

Publication I 2.25 h 17.75 h 3.00 h

Publication II 5.00 h 10.75 h 1.25 h

49

Table 4. Results for ten passwords.

Method Precomputation Total time Average time

Saarinen (2006) N/A 62.50 h 6.25 h

Publication I 2.25 h 36.50 h 3.50 h

Publication II 5.00 h 18.25 h 1.25 h

Table 5. Results for fifty passwords.

Method Precomputation Total time Average time Fastest time Slowest time

Saarinen (2006) N/A 433.75 h 8.75 h 7.50 h 9.75 h

Publication I 2.25 h 171.00 h 3.50 h 0.12 h 6.50 h

Publication II 5.00 h 63.25 h 1.25 h 0.04 h 2.50 h

As mentioned earlier, the original method of Saarinen does not have reusable tables
and thus it is by far the most time consuming of the three methods tested for larger
password sets. Since the precomputation is an integral part of finding each preimage, it
is not mentioned for this method in the tables. With our first method, the tables are
reusable and the precomputation phase is faster than with our second method. However,
each of the searches within the precomputed tables took on the average almost three
times as much time as with our second method, as Table 5 shows. Thus, with multiple
passwords, the second method was much faster on the whole than either Saarinen’s
method or our previous method.

It is also worth noting that the precomputation of the tables with our two methods
takes a constant time for a given implementation of VSH and a given alphabet for
passwords and does not depend on the number of passwords to be searched. It can also
be stored for later use if needed.

The better efficiency of our second method can be accounted for by the following
observation: In the method from II, one needs to compute only one multiplication in the
search phase. In the method from I there is one inversion, which is more expensive
computationally when working with integers modulo N with our implementation.
The Montgomery arithmetic by Montgomery (1985) could be utilised to exchange
computationally intensive inversions with some extra multiplications. There is a method
based on Montgomery arithmetic that inverts t elements with 3(t−1) multiplications
and a single inversion (see for example the paper by Mishra & Sarkar (2003) for details).

50

The original method is not easily parallelisable, but there is a parallel version of this
algorithm by Mishra & Sarkar (2003). However, the use of these algorithms would
require some extra memory to accommodate for the intermediate results. This could be
used to make a trade-off between the required extra memory and the speed up gained
from the algorithms.

In the case where inverting an element is easy and the multiplication of elements
is hard, the method from I could be more efficient in finding preimages of multiple
hash values. An example of such a case would be elliptic curves, where the addition of
elements is computationally much more intensive than inverting an element. Elliptic
curves and VSH are discussed in more detail in Section 4.4.

Unfortunately, we have no formal model for predicting the runtime of our algorithms
as a function of the hash length. Saarinen (2006) states that the complexity of his method
is dependent only on the size of the alphabet over which the passwords are formed and
is of the order O(2

k
2), where k is the size of the alphabet for the passwords. This can

also be seen in our case. In the tabulation phase, we need to compute 2
k
2 hash values and

save these in the table. In the searching phase, the worst case is that we need to go
through all the 2

k
2 different values before a match is found. Thus, the overall complexity

for finding a preimage is in O(2
k
2+1) when we take into account the possibility for an

odd k. A normal brute force attack for finding a preimage in this alphabet would have
complexity in O(2k).

If we consider (6) and its variations derived above, it can be easily seen that a useful
congruence equation should have the two “halves” of the message on different sides of
the congruence. Otherwise, the congruence cannot be applied in preimage searches.
For the most efficient implementation against the basic VSH, one should have the
inversion of the variable messages only during the tabulation phase. This would keep
the computationally intensive use of the extended Euclid’s algorithm in the tabulation
phase and make the searches much faster. Moving the constant terms around does not
really affect the computation time. Thus, the methods presented by Saarinen (2006) and
in Publications I and II are the only variations of (6), which are usable in preimage
attacks against VSH.

There is also an improvement to the running time of VSH by Bellare & Ristov
(2008). This improvement would also further decrease the time needed to find preimages.
However, it is only an improvement to the running time and thus does not protect against
the preimage finding methods described earlier. An even more effective improvement
would be a dictionary search on the passwords. In a dictionary search, one searches the

51

most probable passwords first and not just in alphabetical order. In any attack against a
database of real (not random), user-generated passwords, a dictionary search would be
more effective and result in even shorter times in the searching phase. This would not
affect the precomputation time, unless only the most probable passwords were included
in the table.

Our methods are also highly parallelisable and the computation can be divided
among several processors with access to the precomputed table. Even the table can
be divided into parts if more processors are available. The division can be done in a
straightforward manner by simply taking (possibly equal size) parts of the table and
making the matching on these tables with separate processors or computers altogether.
This would lead to a far more effective method, especially if combined with a dictionary
search on the passwords.

The practical results show that passwords secured with VSH can be found quite
efficiently even for long moduli and for different variations of VSH. Also, the reusability
of the tables makes it very fast to find several passwords secured with the same
implementation of VSH. Fortunately, to the best of our knowledge, VSH has not been
used in password protection in real systems. In fact, we are not aware of any real
implementation of VSH that is used as a hash function in a cryptographic protocol.

4.4 Discrete logarithm variants of the VSH

The VSH hash function has quite many different variants as mentioned above and one of
these is based on the discrete logarithm problem (VSH-DL). This was proposed by
Contini et al. (2006) together with the original VSH hash function. The main idea is to
change the hardness of collision finding from integer factoring to discrete logarithm in
Zp for a suitable large prime p.

Let p = 2q+ 1 be an s-bit prime with q a prime. Furthermore, let k ∈N+ with
k ≈ s

logs . Let x = x1x2 · · ·x` be a binary message of length ` with ` < (s− 2)k. The
VSH-DL compression function algorithm is the following:

The VSH-DL algorithm

1. Let y0 = 1.
2. Let d =

⌈
`
k

⌉
be the number of blocks. Let xi = 0 for ` < i≤ dk be the padding.

3. Let B = b1b2 . . .bk be the binary representation of `. Let xdk+i = bi for 1≤ i≤ k.

52

4. For j = 0,1, . . . ,d in succession compute

y j+1 = y2
j ×

k

∏
i=1

p
x(jk+i)
i mod p.

5. Return yd+1.

This idea was further extended by Lenstra et al. (2006) in their paper, where they
demonstrate that VSH-DL can be realised using the discrete logarithm problem in finite
fields or elliptic curves. These modifications make the resulting hash value shorter, but
the computation is somewhat slower.

The finite field variant of VSH-DL is based on the following assumptions and
observations (Lenstra et al. 2006): First of all, recall the definitions of the DLP and
the k-modified DLP from Chapter 3. The idea of the VSH-DL in finite fields is
to use the efficient computation in these fields. Thus, one chooses p a prime and
generates the sixth degree extension Fp6 of Fp. Now, |F∗p6 |= p6−1, which factors
into (p2− p+1)(p2 + p+1)(p+1)(p−1). Thus, there is a unique subgroup of order
p2− p+1 in F∗p6 . This subgroup is claimed to contain the difficulty of the DLP for
F
∗
p6 as the other subgroups have some subexponential algorithms for solving the DLP

(Lenstra 1997). We denote this subgroup of order p2− p+1 by G in the following.
Now, Lenstra & Verheul (2000) and Rubin & Silverberg (2003) present methods for

efficient computation in and compression on the subgroups of multiplicative groups
of finite fields (XTR and CEILIDH). Thus, one does not necessarily need to use the
arithmetic of the full field, but could compute in the subgroups instead. This makes the
VSH-DL more efficient in finite fields. Unfortunately, these methods do not directly
help in the arithmetic as CEILIDH is only a compression method and XTR is not
applicable in the multiexponentiation of VSH. Thus, these methods can only be applied
to compress the hash values to the subgroup and thus shorten the hash value.

The modified VSH-DL compression function is the following:

The modified VSH-DL compression function

1. Let D be a finite cyclic group of known and factored order and let d be a generator of

D. Let K be a subgroup of D with a generator g = d
|D|
|K| . Let p be a prime dividing

|K| but not |D|/p and w = blog2 pc. Let C be an efficiently computable injection
and k ∈ Z+ such that (w− 1)k < 2k. Furthermore, let Ψ : H → H be a mapping

for which Ψ(di)
|D|
|K| = (di)

|D|
|K| for all yi ∈ D. For i = 1,2, . . . ,k draw di uniformly at

random from D.

53

2. Let x = x1x2 · · ·xt be the message in binary, with t ≤ (w−1)k and set y0 = 1.
3. Let `=

⌈ t
k

⌉
be the number of message blocks in x. Pad the message by setting xi = 0

for all t < i≤ `k.
4. Let t = b1b2 · · ·bk be t in binary. Let x`k+i = bi for all 1≤ i≤ k.
5. For j = 0,1, . . . , ` calculate

y j+1 = y2
j ×

k

∏
i=1

Ψ(di)
x(jk+i) .

6. Return C(y
|D|
|K|
`+1) as the hash value of x.

Lenstra et al. (2006) state that this function should be instantiated with D =F∗p6 ,
K = G and compression should be done with CEILIDH. These choices would facilitate
relatively fast computation and shorter hash values.

The elliptic curve variant of VSH-DL modifies the original only in the sense that
instead of multiplying primes in the compression phase, we use points on the elliptic
curve and addition instead of multiplication. Thus, the compression step in the algorithm
would be

yi+1 = 2× yi +
k

∑
j=1

Pj,

where Pj are some points on the elliptic curve.
In VI, we have demonstrated that these variants are susceptible to similar preimage

finding attacks as the basic VSH (and its cubing variant). These results are based on the
following observations:

First of all, it should be noted that the VSH-DL compression function is invertible
unlike the basic VSH. Thus, the meet-in-the-middle attack presented by Lai & Massey
(1993) can be directly applied. This attack is a generic one, that works for all invertible
compression functions and does not take into account any special features of VSH. It is
also a probabilistic attack that works with a very high probability, but is not guaranteed
to succeed with a single run or against a specific password from the alphabet. In addition,
finding a preimage of a single block message (without the length block) is trivial for
VSH-DL.

When the previous methods presented against VSH are considered against VSH-DL,
it is easy to see that (6) applies to the original VSH-DL compression function. Exactly
the same arguments as with the basic VSH can be applied. Thus, all the methods
presented in the previous sections apply directly to the VSH-DL.

54

Now the first interesting case is the modified VSH-DL compression function. From
VI, we have a result, which shows that similar equation as (6) can be devised for the
modified VSH-DL as well.

Theorem 4. Let x,y and z be messages of equal length, with x∧ y =~0 = z. Let H be a

modified VSH-DL compression function. Then, the following equation holds

H(x)H(y) = H(x∨ y)H(z). (9)

The above result follows from the commutativity of the multiplication, which allows
us to sum up the exponents on both sides of (9), and show that these sums are equal.
The compression in the end can be reversed and the application of the mapping Ψ can
be ignored as the exponent |D||K| is used in the end.

It is, of course, evident that because also the elliptic curve computations are
commutative, we have the same result for these as well. The only difference is again the
change from multiplication to addition, but this is irrelevant to the result of Theorem 4.

Another generalisation we prove in VI is the following:

Theorem 5. Let k ∈N+ and x1,x2, . . .xk,z be messages of equal length with xi∧ x j =

~0 = z for all i, j ∈ {1,2, . . . ,k}, i 6= j. Furthermore, let H be a VSH or VSH-DL hash

function. Then the following equivalence holds:

H(x1)H(x2) · · ·H(xk)≡ H(x1∨ x2∨·· ·∨ xk)H(z)k−1 mod N. (10)

This result is a simple induction over k with (6) as the basis step. Theorem 5 shows,
that by gaining information on the message, we may utilise that information to fix parts
of the message and only hash the unknown parts and then combine these to get the full
hash of the message. Also the computation of the hash values of the distinct parts of the
message should be quite fast as there will be a lot of zero bits in these messages. Of
course, even with other hash functions, one can fix the known parts and then only vary
the variable parts of the message. However, with many other hash functions, one needs
to compute the full hash function for all the messages.

With the help of the above results, we propose in VI a general method for preimage
finding for VSH, VSH-DL and the variants discussed in this thesis.

A general preimage finding algorithm for the VSH and the VSH-DL variants

1. Let H(x) be a hash value for a VSH or VSH-DL variant H. Let x be a (partially)
unknown message of known length of ` bits. Let t ∈N be the number of distinct
known parts of x and z a zero vector of length `.

55

2. Now, divide x into x = v0w1v1w2 · · ·vt−1wtvt , where each wi, i ∈ {1,2, . . . , t} is a
known part of x and each v j, j ∈ {0,1, . . . , t} is an unknown part of x.

3. Let w′i be a message of length ` by setting all other parts of x except wi to zeroes
for all i ∈ {1,2, . . . , t}. Similarly, form message variables v′j (of length `) from the
unknown parts v j for all j ∈ {0,1, . . . , t}.

4. Divide the possible preimage space into two parts by forming the equation

t

∏
i=1

H(w′i)×
d t

2 e

∏
j=0

H(v′j) = H(z)2tH(m)×
t

∏
j=d t

2 e+1

H(v′j)
−1 (11)

with the help of Theorem 5.
5. Compute and tabulate the values of the left hand side of (11) for all possible values

of all the message variables v′j on the left hand side.
6. Compute the right hand side of (11) for all possible values of all the message variables

v′j on the right hand side until a match between the tabulated values is found.
7. When a match is found between the table and the searched values, x = v′0∨w′1∨ v′1∨
·· ·∨ v′t−1∨w′t ∨ v′t for the values of v′j, which yield the matching between the table
and the search.

8. Return the preimage x of H(x).

As the preimage finding methods presented by Saarinen and those in this thesis
are all meet-in-the-middle attacks, these could benefit from the methods presented by
Quisquater & Delescaille (1990) and van Oorschot & Wiener (1996). These would
enable a memoryless way of performing the preimage searches. However, these would
not be directly applicable in our scenario, where several hash values of passwords need
to be inverted.

One should also notice that adding a salting value to the computation of the hash
value of the password will not be effective, if the attacker knows the length of the salt
and the place in which it is input in the computation of the hash. The attacker can then
take this information into account when dividing the preimage space and constructing
the table leaving the part where the salt is applied into the searching phase. When the
attacker learns the salt and the hash value of the password, the attacker can use the
above algorithm and the salt transforms into a constant in the search with the other parts
of the message varying through the preimage space.

56

5 Multicollisions and iterated hash functions

In this chapter, we define the concept of multicollisions for hash functions as a natural
extension to collisions. Then, we present the most significant findings on multicollisions
for iterated hash functions and discuss the practical implications. We go on to describe
some countermeasures against the multicollision attack discovered by Joux (2004) and
discuss the effectiveness of these countermeasures. We also discuss the generalised
iterated hash functions and their security against multicollisions. In our research,
we have developed a theoretical framework for studying (generalised) iterated hash
functions. We present the findings of this research without many of the detailed proofs.

5.1 Multicollisions on iterated hash functions

Next, we define the concept of multicollisions as the generalisations of collisions. Let
k ∈N+. A k-collision on the hash function h : {0,1}∗→ {0,1}n is a set A⊆ {0,1}∗

such that |A|= k and h(x) = h(y) for all x,y ∈ A. A collision (on h) is thus a 2-collision
on h.

A k-collision attack (algorithm) on a hash function h can loosely be characterised
to be a probabilistic process that finds a k-collision on h with some non-negligible
probability. According to the (generalised) birthday paradox, a k-collision can be found
(with probability approx. 1

2) by hashing (k!)
1
k 2

n(k−1)
k messages (see for example Girault

& Stern (1994) and Suzuki et al. (2008)). In the case k = 2, this gives
√

2 ·2 n
2 , which is

in O(2
n
2).

As mentioned in Sections 3.4 and 3.5, finding collisions could be done in O(2
n
2)

time complexity. Also, finding a k-collision for an arbitrary hash function requires
hashing approximately Ω((k!)

1
k 2

n(k−1)
k) messages. However, for iterated hash functions

and generalised iterated hash functions, finding multicollisions is much easier than that.
First, we take a look at the famous multicollision attack by Joux (2004).

In his paper, Joux (2004) describes a novel method for generating multicollisions
for iterated hash functions. The method is quite simple and ingenious. By generating
successive collisions to the underlying compression function, one can form a 2k-collision
with only k collision attacks, i.e. with a complexity in O(k2

n
2).

57

Formally, the method of Joux (2004) works as follows: Let h be an iterated hash
function with f as the underlying compression function and let y0 be the initial value of
h. Now, we use the birthday attack to find two message blocks x1,x′1 with x1 6= x′1 such
that f (y0,x1) = f (y0,x′1) = y1. After this, we can perform the birthday attack on f with
the initial value y1 to find message blocks x2 and x′2 for which f (y1,x2) = f (y1,x′2) = y2.
After k such steps we have k pairs of messages out of which we can form 2k distinct
messages with the same hash value. Note that all the messages have equal length, so even
MD-strengthening does not protect against this type of attack. Thus, the multicollision
attack on the iterated compression function extends to the full hash function.

Joux (2004) uses this new method to show that the folklore assumptions on the
security of catenated hash functions are false. Catenated hash functions are formed from
two or more different hash functions. One computes the hash value of the message with
all of these and then catenates these results to form the final hash value. Joux (2004) is
able to show, that the security of this type of construction against preimage and collision
attacks is much weaker than previously assumed, when the catenation is done with two
hash functions and one of the hash functions is an iterated hash function. Let h and h′ be
hash functions of length n1 and n2, respectively. Now, if catenated hash functions were
ideal, the complexity for finding collisions would be in O(2

n1+n2
2). Joux (2004) proves

with the help of the multicollision technique presented above, that the complexity is in
O(n22

n1
2 +2

n2
2), when n2 ≥ n1. If n1 ≥ n2, then their roles in the complexity can be

exchanged. Also, finding (second) preimages should be in O(2n1+n2), but by Joux’s
results it is in O(n12

n2
2 +2n2 +2n1), if n2 ≥ n1.

With some added assumptions, Kelsey & Schneier (2005) and Aumasson (2008)
have shown that arbitrarily large multicollisions can actually be found in almost O(2

n
2)

time. The method of Kelsey & Schneier (2005) is based on the idea of expandable

messages. Let a,b ∈ N+ be such that a < b, y0 ∈ {0,1}n an initial value and f a
compression function of length n. Now, an (a,b)-expandable message is a set of
messages {xa,xa+1, . . . ,xb}, where the length of the message xi is equal to i blocks for
all i ∈ {a,a+1, . . . ,b} and f ∗(y0,x j) = f ∗(y0,x`) for all j, ` ∈ {a,a+1, . . . ,b}. Kelsey
& Schneier (2005) give a method for generating (t, t +2t−1)-expandable messages with
complexity in O(t2

n
2+1), where t ∈N+. With the help of these expandable messages,

one can generate multicollisions in different ways.
A naive method with a pair of (a,b)-expandable messages allows one to find

b−a+1 different messages with the same hash value, namely by catenating the two
messages together with a+ i blocks on the first and b− i blocks on the second message

58

for 0 ≤ i ≤ b− a. As the complexity of constructing expandable messages is fairly
small, one can make more and more expandable messages of the same size and then
combine these in the same way as before with only two expandable messages. Thus,
by generating s different (a,b)-expandable messages one can form

(b−a+1
s

)
-collisions

when increasing the work only by a factor of s. Thus, huge collisions can be generated
with complexity in O(t2

n
2+1). Kelsey & Schneier (2005) use these expandable messages

also to generate second preimages for very long messages.
The multicollision finding method of Aumasson (2008) is based on the concept of

fixed points of the underlying compression function. A fixed point of a compression
function f is a pair (y,x), where y ∈ {0,1}n and x ∈ {0,1}m, such that f (y,x) = y. Fixed
points have been studied already by Dean (1999) in the context of second preimage
attacks. The idea behind Aumasson’s method is that one finds a pair of fixed points
with colliding hash values, i.e. fixed points (y,x) and (y,x′) with x 6= x′ instead of a
colliding pair of (random) messages. If fixed points could be found very fast, i.e. assume
that finding a fixed point takes unit time, the complexity of finding arbitrarily large
multicollisions is essentially in O(2

n
2). The method works as follows: Let k ∈N+.

Generate a fixed point collision (y0,x) and (y0,x′) for the initial value y0 of the given
hash function. Now, all the messages from {x,x′}k form a 2k-collision. Moreover, the
complexity of generating this is the complexity of finding a fixed point collision, i.e. in
O(2

n
2), if we assume that finding a single fixed point takes unit time. Also Kelsey &

Schneier (2005) demonstrate that their method can be used with fixed points, but it is
not as efficient and generates longer messages if used in multicollisions.

Fixed points are very useful in constructing second preimages especially for long
messages. Several methods for constructing second preimages with the help of fixed
points have been presented in the thesis of Dean (Dean 1999, pp. 120-125). Also some
of the limitations of these methods are discussed there. Finding second preimages of
long messages is also the main application of the multicollision finding method of
Kelsey & Schneier (2005).

In our research, we have found a method for finding arbitrarily large multicollisions
for iterated hash functions with the complexity in O(2

n
2) for any compression function,

even a FIL-RO. This idea is presented in VI. The idea is very simple and is a generalisa-
tion of the ideas of Dean (1999), Kelsey & Schneier (2005) and Aumasson (2008), but it
has some serious drawbacks, which make it impractical.

Our method works in the following way: Let y0 ∈ {0,1}n,x1 ∈ {0,1}m and f a
compression function of length n and block length m. Compute the values f ∗(y0,xi

1)

59

for i = 1,2, . . . ,2
n
2 . By the results of Flajolet & Odlyzko (1990), there are (with high

probability) two values l,k ∈ {1,2, . . . ,2 n
2 }, l 6= k, for which f ∗(y0,xk

1) = f ∗(y0,xl
1) = y′0.

Without loss of generality, we may assume k < l and define s = l− k. Now, take
x2 ∈ {0,1}n,x2 6= x1 and compute the values f ∗(y′0,x

j
2) for j = 1,2, . . . ,2

n
2 . Again,

there are (with high probability) two values c,d ∈ {1,2, . . . ,2 n
2 },c 6= d, for which

f ∗(y′0,x
c
2) = f ∗(y′0,x

d
2) = y1 and we may assume c < d and define r = d− c.

Now, for any t ∈N+, we may use the two cycles in the iteration to form a t-collision
for the iterated hash function using f as a compression function. Let g be the least
common multiplier of r and s. Now, take the set of messages Ct = {xk

1xgi
1 xc

2xg(t−1−i)
2 | i =

0,1, . . . , t−1}. The messages are all distinct, because x2 6= x1. Figure 2 illustrates the
generation of the set Ct . It should be noted that all the messages in Ct have the same
length and thus MD-strengthening does not protect against this attack. Thus, Ct forms a
t-collision for the iterated hash function based on f . The complexity of this attack is
the same as finding two collisions, i.e. in O(2

n
2). However, the length of the messages

generated in this way is in O(2n) message blocks, which is completely impractical.

Fig 2. Our multicollision method with computational complexity in O(2
n
2) and mes-

sage length in O(2n).

Our method can be applied together with Joux’s method and without increasing the
asymptotic complexity, we can form arbitrarily large multicollisions with the number
of message blocks in O(2

n
2). Let y0 and x1 be as above. We first begin as in the

previous method by computing f ∗(y0,xi
1) = yi for i = 1,2, . . . ,2

n
2 . Then, we use Joux’s

method to find message blocks z1 and z2 such that z1 6= z2 and f (y′0,z1) = f (y′0,z2) = u0.
Then, we proceed by finding a cycle spanning over the message blocks y and z, i.e.
f ∗(u0,x

p
1) = up = y j for some p, j ∈ {1,2, . . . ,2 n

2 }. After this, we can form the set

Dq =
{

x j
1{x

2
n
2− j

1 z1xp
1 ,x

2
n
2− j

1 z2xp
1}

q},
where q ∈N+. Now, Dq is a 2q-collision for the iterated compression function f ∗. The
length of the messages in the set Dq is in O(q2

n
2), which makes the messages still too

long for any practical attack against real iterated hash functions.

60

In IV, there is also a method, which generalises Joux’s attack in a way, that yields
larger multicollisions for the same amount of work, if there is abundant memory
available for the attacker and the memory access rate is not too high (Wiener 2004). The
exact exposition of this method can be found in IV and possibly in a future thesis by
M.Sc. Tuomas Kortelainen and thus only the main results without proofs are given here.

In this new method, we generate smaller sets of message blocks and find collisions
between these small sets. The lengths of these messages are not all equal, but with
some approximation, we are able to show in IV that this method yields after k steps
a collision of size approximately (e

√
2)k. This limit is reached when the amount of

memory approaches infinity, but even with restricted memory, we are able to show that
our method outperforms Joux’s attack, when both utilise the same amount of calls to the
underlying compression function (see IV for details).

Based on these theoretical results and the results of Joux (2004), we can form a
theorem concerning the limits of iterated, MD-type hash functions.

Theorem 6. Let h be a hash function of the MD-type with a FIL-RO f as its compression

function. Finding arbitrarily large sets of preimages, second preimages or collisions for

h has at most the same asymptotic complexity as finding a single preimage, second

preimage or collision, respectively.

Proof. The statements for preimages and second preimages follow from the results
of Joux (2004) and the fact that any multicollision can be made into a preimage or
second preimage by adding a single preimage attack from the common hash value of the
multicollision in the end. The result for collisions is a direct consequence from our
attacks demonstrated above.

It should be noted that the above theorem does not take into account the complexity
of writing down the explicit messages in these sets. Especially with collisions, these
messages have lengths in O(2n) and thus writing down the messages would have greater
complexity than the attack to find them. However, these messages can be stored in
memory by only recording the message blocks and the lengths of the cycles that can be
used to produce the multicollisions of desired sizes.

61

5.2 Countermeasures against Joux’s multicollision
attack

After Joux (2004) had published his multicollision finding method, there were several
attempts to enhance the iterative construction of hash functions, especially against the
multicollision finding method. Next, we present some of the most widespread ideas.
Some of these methods have also been broken, whereas others, especially the wide pipe
construction by Lucks (2005), have had more success and are now used in many of the
proposals for the SHA-3 standard. This is by no means an exhaustive list of all the
methods of improvement proposed either in general or as a part of some concrete hash
function proposal.

5.2.1 Wide pipe and double pipe hashing

Lucks (2005) presented an analysis of two different methods, which work against Joux’s
multicollision finding method. These methods are called wide pipe hashing and double

pipe hashing. The methods give better security against multicollisions than the basic
MD-type of iteration, but come with some computational costs.

In the wide-pipe hashing method, one devises two compression functions f and
g, with f : {0,1}l → {0,1}m and g : {0,1}m→ {0,1}n, where l > m > n. Then, one
constructs an iterated hash function from f in the traditional manner. From the final
output of this hash function, one further compresses the result by using g. This is then
the hash value of the message. An early example of a wide-pipe design is the MDC-2
hash function by Coppersmith et al. (1990).

The improved security of the wide pipe hash is based on the following observation.
If m≥ 2n, then Joux’s attack on the iteration part of the wide pipe hash has complex-
ity O(k2

m
2). Now, m ≥ 2n guarantees that this is greater than O(k2n). Then again,

multicollisions for any hash or compression function can be found with complexity
O((k!)

1
k 2

n(k−1)
k) as noted earlier. Since g is not involved in the iteration phase, a multi-

collision attack for g would have the complexity O((k!)
1
k 2

n(k−1)
k), assuming that g is a

FIL-RO. Thus, Joux’s method does not improve the multicollision or (second) preimage
attacks against these hash functions, when the final hash length is considered as the
security parameter.

Furthermore, the results of Coron et al. (2005) show that by using two independent
FIL-ROs in the manner of the wide pipe construction, one achieves indifferentiability

62

from a random oracle. Thus, Lucks’ wide pipe hash brings added security to the basic
iterative construction. There is some computational and memory overhead in using two
distinct compression functions and having the iterative structure containing a much
larger state than in the MD-type of iteration. This seems to be a reasonable trade-off
in practice as the wide pipe construction has been used in some of the proposals for
the SHA-3 competition. Together with HAIFA (Biham & Dunkelman 2007), it seems
to be a popular choice for improving the security of iterated hash functions against
multicollisions. The description and analysis of HAIFA are out of the scope of this
thesis and the reader is encouraged to read the original article by Biham & Dunkelman
(2007) for a full description.

The other type of countermeasure against multicollision attacks analysed by Lucks
(2005) is the double pipe hash. The double pipe hash uses one compression function f

with three different initial values and interaction between the two “pipes” as follows:
Let f be a compression function with length n and block length n+m,m ≥ n and
y0,v0 and w three distinct initial values from {0,1}n. Now we set yi = f (yi−1,vi−1mi)

and vi = f (vi−1,yi−1mi) for all i = 1,2, . . . , `, where ` is the number of blocks in the
message to be hashed and mi denotes the ith block of the message. The final hash
value is defined as yfin = f (w,y`v`0m−n). Lucks (2005) is able to prove that also this
construction improves the security of the basic iteration greatly as did the wide pipe
hash. However, the drawback is that it doubles the number of calls to the underlying
compression function. Thus, this type of construction has not achieved such widespread
use as the wide pipe construction.

5.2.2 Checksums

Some iterated constructions employ checksums to ward against the multicollision attack
proposed by Joux. For example, the 3C-construction of Gauravaram et al. (2006) uses a
simple XOR-sum, which is carried through the iteration and updated after every iteration
step together with the intermediate hash values. In the final step of the procedure, this
sum is then XORed to the final value of the iteration to obtain the final hash value.
This way, the basic attack of Joux could not work as the attacker is required to find
colliding messages with proper XOR-sums. Also the GOST hash function uses this type
of checksum method as an added security feature although the checksum is calculated
with modular addition instead of XOR.

63

Unfortunately, there are multicollision attacks against these types of hash functions
for example by Gauravaram & Kelsey (2007, 2008). Thus, the method has lost its appeal
as a security measure against multicollision attacks.

5.2.3 Dithering

Rivest (2005) proposes to add some dither information to hash calculations. This
information would be added to each message block and if this added information would
not have any discernible patterns, then the attack of Joux would not work in its basic
form. Rivest proposes several methods for dithering, but also finds many of them too
simple to offer any real protection against multicollisions.

The one method Rivest finds feasible and secure enough is dithering with the help
of Abelian square-free words. These words have very aperiodic nature as they do not
contain any Abelian squares as a subword, i.e. a word and its permutation catenated.
Thus, these words could be used as the dithering information added to each message
block. Due to results of Keränen (1992), there is an efficient method for generating
Abelian square-free words in four letters. Rivest proposes this as the method for
generating the dither data.

There are two concrete proposals by Rivest (2005). First of all, one could just use
two bits to code the letters of the four-letter alphabet (00, 01, 10 and 11) and catenate the
letters from the Keränen’s word to the end of each message block. This way, there would
be minimal overhead as only two bits would be required for each message block. The
other proposal of Rivest is to use sixteen bits for each dithering symbol. In this method,
each dithering symbol except for the last block would be of the form 0 catenated with
the b i

213 cth symbol of Keränen’s sequence and the binary representation of i mod 213.
The final block would have as its dithering input 1 catenated with the length of the
message (in blocks). This way, the Keränen’s sequence only has to be updated very
rarely and the generation of the dithering input becomes much faster.

There are second preimage attacks against dithered hash functions by Andreeva et al.

(2008) and thus this approach does not in general provide much added security against
multicollisions and second preimages.

64

5.2.4 Generalised iterated hash functions

The idea of using message blocks more than once has been used in specific constructions
in message authentication already by Davies & Price (1980). This construction was
found insecure by Coppersmith (1986). Allowing the message blocks also to be used
in a permuted order in the computation of the hash function, leads into the notion of
generalised iterated hash functions that have been analysed by Nandi & Stinson (2007),
Hoch & Shamir (2006) and in Publications III, V and VII of this thesis.

Nandi & Stinson (2007) define a very general class of (iterated) hash functions
informally as follows. Let f be a compression function. A hash function H from the
class behaves in the following way:

1. It invokes f a finite number of times.
2. The entire output of any intermediate invocation (not the final invocation) is input to

some subsequent invocation of f .
3. Each bit of the message to be hashed is input into at least one invocation of f .
4. The output of the final invocation is the output of the hash function H.

More formally, Nandi & Stinson (2007) define a class of hash functions D , which
fulfil the above criteria. Let f be a compression function of length n and block length
m. We define a set V = {v1,v2, . . .} of initial values (of length n) and the message
m = m1m2 · · ·mt , where the length of each message block is k. Now, at each iteration,
the input of f is formed from d different initial values and previous hash values
and d′ different message blocks by catenating these values. Now, we must have
dn+d′k = n+m for f to be able to process this combined variable. The properties
of hash functions in this very general class of hash functions have not been studied
extensively. Some preliminary results have been given by Nandi & Stinson (2004),
Hoch & Shamir (2006) and the author of this thesis in VII.

Nandi & Stinson (2007) define a subclass of D , which they call generalised
sequential hash functions. In our terminology, these are called generalised iterated

hash functions, which will be defined formally in the following section. The results of
Nandi & Stinson (2007) show that using message blocks at most twice in a generalised
iterated hash function does not improve the security against multicollisions as much
as could be expected. Their result states, that the complexity of finding a 2r-collision
for a generalised iterated hash function with the above restriction has the average case
complexity in O(r2 · (lnr) · (n+ ln(ln2r)) ·2 n

2).

65

Hoch & Shamir (2006) have generalised the results of Nandi & Stinson (2007) and
argue that even if we allow message blocks to be used q ∈N+ times, multicollisions
can be found for generalised iterated hash functions. In our research, we were able
to improve the analysis of these complexity bounds. We outline our results in the
next section. Hoch & Shamir (2006) also define slightly more general subclass of
D , so-called tree based hash functions, and show that their results apply for binary
tree-based hash functions. This work has been extended in VII and will be discussed in
more detail in Section 5.4.

5.3 The Nested Multicollision Attack Schema

In the following, we shall define the concept of a generalised iterated hash function that
was mentioned above. We assume that all messages are in a block representation form.
By a block representation, we mean the padding and division of the message into full
blocks of equal length.

Let l ∈ N+ and α ∈ N∗l be such that α = a1a2 · · ·as, where s ∈ N and ai ∈ Nl

for i = 1,2, . . . ,s. Note that here N∗l is the free monoid generated by the alphabet
Nl = {1,2, . . . , l}. Let u be a word in ({0,1}m)+, with u = u1u2 · · ·ul and define the
morphism ū : N∗l →{0,1}m, ū(i) = ui for all i ∈Nl . Let uk = ω for all k ∈Nl \alph(α)

for some fixed ω ∈ {0,1}m. Now, by definition we have

ū(α) = ua1ua2 · · ·uas .

Thus ū(α) is the word where the blocks u1,u2, . . . ,ul of u are written in the order and
multiplicity determined by α . If k is an element ofNl = {1,2, . . . , l} but does not belong
to alph(α), then the respective uk is equal to some constant message block ω . This also
means that the message block uk does not affect the computation of the hash value, i.e
one can have any value for uk without changing the resulting hash value.

We now define the iterated compression function fα : {0,1}n×({0,1}m)+→{0,1}n

(based on α and f) by fα(y,u) = f ∗(y, ū(α)) for each y ∈ {0,1}n and u ∈ ({0,1}m)+.
It is clear from the definition that if α = α1α2, where α1,α2 ∈N∗l , then fα(y,u) =

fα2(fα1(y,u),u) for each y ∈ {0,1}n and u ∈ ({0,1}m)+.
Given k ∈N+ and y0 ∈ {0,1}m, a k-collision (with initial value y0) in the iterated

compression function fα is a set A ⊆ {0,1}ml such that |A| = k and for all u,v ∈ A,
|u|= |v| and fα(y0,u) = fα(y0,v). Note that arbitrarily large trivial multicollisions in
fα exist. Namely, for each r ∈N+, the set of messages of the form (ω)t{0,1}mr is a

66

2r-collision in fα (with any initial value), where t = max{i | i ∈ alph(α)}. We say that
A is nontrivial if for each u = u1u2 · · ·ul in A such that ui ∈ {0,1}m for i = 1,2, . . . , l,
the equality u j = ω holds for each j ∈Nl \ alph(α). This means that the only message
blocks that can be varied in the multicollision are the ones that actually affect the
resulting value of the compression function.

Finally, we are ready to characterise a generalised iterated hash function. For each
l ∈N+, let αl ∈N+

l be such that alph(αl) =Nl . Denote α̂ = (α1,α2, . . .). Define the
generalised iterated hash function Hα̂, f : {0,1}n× ({0,1}m)+→{0,1}n (based on α̂

and f) as follows: Given the initial value y0 ∈ {0,1}m and the message x, which has a
block representation consisting of l blocks, let Hα̂, f (y0,x) = fαl (y0,x).

It is worthwhile to notice that the traditional iterated hash function H : ({0,1}m)+→
{0,1}n based on f (with initial value y0 ∈ {0,1}n) can of course be defined by H(u) =

f ∗(y0,u) for each u ∈ ({0,1}m)+. On the other hand, H is a generalised iterated
hash function Hα̂, f : {0,1}n× ({0,1}m)+ → {0,1}n based on α̂ and f , where α̂ =

(1,1 ·2,1 ·2 ·3, . . .) and the initial value is fixed to y0.
Given k ∈ N+ and y0 ∈ {0,1}m, a k-collision in the generalised iterated hash

function Hα̂, f is a set A⊆ ({0,1}m)+ such that |A|= k and for all u,v ∈ A, |u|= |v| and
Hα̂, f (y0,u) = Hα̂, f (y0,v). Suppose now that A is a k-collision set in Hα̂, f with the initial
value y0. Let l ∈N+ be such that A ⊆ ({0,1}m)l , i.e. the messages in A consist of l

message blocks. Then, by definition, for each u,v∈ A, the equality fαl (y0,u) = fαl (y0,v)

holds. Since alph(αl) =Nl , the set A is a nontrivial k-collision in fαl with the initial
value y0.

A k-collision attack on a Hα̂, f is a probabilistic process (often based on the birthday
problem) that finds a k-collision in Hα̂, f for any initial value y0. The complexity of a

k-collision attack algorithm on Hα̂, f is the expected number of queries on f required to
get a k-collision.

In III and V, we explore the ideas presented by Hoch & Shamir (2006) and Nandi &
Stinson (2007). In V, we provide some new definitions and a more accurate analysis of
the generalised iterated hash functions. In this thesis, we present the main schema and
discuss the complexity and other properties of this design. Detailed proofs are omitted
and the reader is instructed to read V for a thorough exposition of this idea.

The main idea behind the multicollision attack against generalised iterated hash
functions is the Nested Multicollision Attack Schema (NMCAS), which is the following:

67

The Nested Multicollision Attack Schema

Input: A generalised iterated hash function Hα̂, f , an initial value y0 ∈ {0,1}n and
r ∈N+.

Output: A 2r-collision in Hα̂, f .

1. Choose a suitably large ` ∈N+. Let α` = i1i2 · · · is be the `th element of the sequence
α̂ , with s ∈N+ and i j ∈N` for all j = 1,2, . . . ,s.

2. Find and fix a suitably large set of active indices A ∈N`.
3. Find a suitable factorisation of the word α`, i.e. p ∈ {1,2, . . . ,s} and βi ∈N+

` such
that α` = β1β2 · · ·βp.

4. Using the set of active indices, generate a multicollision in fβ1 , i.e. message block
sets M1,M2, . . . ,M`, for which the following conditions hold:

– For all i ∈N` \A, the set M j consists of only one constant message block ω .
– For all j ∈ A, the set M j consists of two distinct message blocks x j,1 and x j,2.
– The set M = M1M2 · · ·M` is a 2|A|-collision in fβ1 with the initial value y0.

5. Based on the set C1 = M, find message sets C2,C3, . . . ,Cp for which the following
conditions hold:

– Cp ⊆Cp−1 ⊆ ·· · ⊆C1.
– For all t ∈ {1,2, . . . , p}, the set Ct is a multicollision in fβ1β2···βt with the initial

value y0.
– |Cp|= 2r

6. Output Cp.

If the NMCAS is carried out successfully, the set Cp is a 2r-collision in Hα̂. f . Of
course, proving that each of the steps in the NMCAS can be carried out and that these
steps are not too complex is not an easy task. In their paper, Hoch & Shamir (2006)
show that these steps can be carried out, but they do not formalise this method in this
fashion. In V, we have been able to give exact formulations of the results required to
prove the correctness and feasibility of the NMCAS and give a detailed analysis of its
complexity.

The main idea behind the NMCAS is finding a suitable set of message blocks, which
form a chain in the partially ordered set (alph(α),≺α). If such a chain is found, the
factorisation step yields only one factor and the set of active indices consists of the
corresponding indices of the elements in the chain. This idea has been proposed already

68

by Nandi & Stinson (2007). If such a chain cannot be found, the situation becomes more
complex and the results of Hoch & Shamir (2006), III and V are needed to ascertain that
even in these cases we can carry out the NMCAS.

The main differences between the results of V and the results of Hoch & Shamir
(2006) are in the resulting complexity. We denote by q ∈N+ the maximum number of
occurrences of any given message block in the computation of the hash value. The
results of Hoch & Shamir (2006) imply a complexity of rq(k3n3(q−3)+2)sq2

n
2 for a

2k-collision, with rq and sq defined inductively as r1 = s1 = 1, ri+1 = (i−1)si+1rsi+1
i

and si+1 = s2
i +1. In V, Theorem 5.4 states that the complexity of finding a 2k-collision

with the NMCAS is 2.5 · rqn(q−1)2sqk(2q−3)sq2
n
2 , where rq and sq are defined inductively

as r1 = s1 = 1, ri+1 = isirsi+1
i and si+1 = s2

i +1.
The difference between these results can be explained by the more rigorous treatment

of the words αl in the sequence α̂ . Our method leads to greater complexity, but it
is formally correct and works in all possible cases. The method of Hoch & Shamir
(2006) leaves some of the borderline cases unexamined. It is also worth noting, that
the parameter q, which limits the occurrences of the symbols in the words αl is not
included as an input to the NMCAS. As shown in the Remark 4.12 of V, the NMCAS
procedure would be at least triply exponential with respect to q. This means that with
even moderate values for q the NMCAS becomes too complex. However, Kortelainen
et al. (2011) show that the complexity of this method could be reduced significantly.

The question whether all generalised iterated hash functions are susceptible to
multicollision attacks is still open. It is worth noting that the sequence α̂ needs to
be effectively encoded, i.e. there needs to be an efficient method for choosing and
representing the words αl of α̂ . This means that completely random words cannot be
used as the storage of such words becomes infeasible quite fast. Thus, the efficient
encoding has to give a rule for generating the words in the sequence and this rule might
also lead into more efficient multicollision attacks. In any case, the hash function should
be able to process arbitrarily long messages and some limits on the words αl seem to be
inevitable if efficient algorithms are required.

One of the major weaknesses in generalised iterated hash functions is that one needs
to have all of the message before its hash value may be computed. Traditional iterated
hash functions can begin the computation as soon as the first message block has been
received. This limits the use of generalised iterated hash functions on streaming data. If
one chooses to limit the words αl in such a way that the first message blocks are utilised
heavily in the beginning and the last message blocks in the end, the NMCAS can be

69

easily applied as the third step (the factorisation) can be done more easily when certain
regularities start to appear in the words αl (see Nandi & Stinson (2007), III and V).

Constructing an optimised algorithm that realises the NMCAS and testing it against
real hash functions would be a natural continuation of this research. However, there is
some lack of motivation for this as generalised iterated hash functions have not been
constructed and remain theoretical entities at the moment. Some constructions such as
the Zipper hash (Liskov 2007) share ideas from these generalised iterated hash functions,
but still fall short from utilising the full potential of the construction.

It is interesting to note that the results of Hoch & Shamir (2006), III and V are of
a dual nature to some very famous results in combinatorics. In many combinatorial
problems of words, arbitrarily long words over a fixed (finite) alphabet are considered,
whereas our results concern arbitrarily long words over alphabets of increasing size
with the number of occurrences of each symbol restricted. In both cases, unavoidable
regularities appear as the famous results of classical combinatorics like Ramsey’s
Theorem and Shirshov’s Theorem show for the former case. For details, see for instance
the book by DeLuca & Varrichio (1999). It could be an interesting research topic to see
whether these results could be used in the context of generalised iterated hash functions.

5.4 Multicollisions on graph-based hash functions

The question of multicollision attacks becomes even harder when we turn our attention
to hash functions in the class D . These functions would generalise the construction
of generalised iterated hash functions even further. The results of Hoch & Shamir
(2006) and Nandi & Stinson (2004) on tree-based hash functions solve the problem for a
subclass of D . In VII, we generalise this notion of tree-based hash functions and prove a
slight generalisation of the results of Hoch & Shamir (2006). We also present a slight
generalisation of the hash functions in D , i.e. the graph-based hash functions.

The tree-based hash functions have been further generalised by Bertoni et al. (2009).
In their work, the tree-based hash functions can use a different compression function at
different vertices of the tree. These types of hash functions are secure up to the birthday
bound when the compression functions and the trees satisfy certain conditions.

Two of the SHA-3 candidates utilise the ideas of the tree-based construction. These
candidates are MD6 (Rivest 2008) and ESSENCE (Martin 2008). However, these hash
functions were not among the finalists of the SHA-3 competition. In the following, we

70

give some new definitions that are necessary for the further study of graph-based hash
functions.

The basic definitions for graphs can be found in Section 3.3 on page 30 of this
thesis. Let f be a compression function of length N and block length M with N,M ∈N+.
We define x = x1x2 · · ·xl to be a binary message with l blocks of length m ∈N+. Let
Ω = {ω1,ω2, . . . ,ωd} be a set of d ∈N distinct initial values (i.e. binary strings of length
n∈N+) and Bl = {x1,x2, . . . ,xl} be the set of message blocks of length m corresponding
to the message x. We follow the terminology of Nandi & Stinson (2004) and Hoch
& Shamir (2006) and define ρ to be the initial assignment function of the digraph G.
We adopt the definition from Nandi & Stinson (2004): ρ : L(G)→ Bl ∪Ω and require
that the image of ρ contains Bl as a subset. We define G to be an indexed family of
pairs (Gl ,ρl) with the property that for all l ∈N we have that ρl is an initial assignment
function from L(Gl) to Bl ∪Ω and that Gl = (Vl ,El) is an acyclic digraph for all l ∈N.

We assign a unique index between 1 and |Vl | to each vertex. For all v ∈ L(Gl), the
intermediate value is the value ρl(v). For each vertex v ∈Vl \L(Gl), we define the word
z = zi1zi2 · · ·zik , where zi j is the intermediate value assigned to the vertex ui j with the
property ui j → v for all 1 ≤ j ≤ k and is < it for all 1 ≤ s < t ≤ k. Let v ∈ Vl \L(Gl).
We define the intermediate value of the graph-based hash function h at vertex v as
h(v) = f ∗(z). Notice that the above method defines a unique way to parse the input to
the compression function from the different message blocks and initial values and that
|z|= M+N in the binary alphabet. The hash value h(x) is defined as the value assigned
to the unique sink of Gl .

Furthermore, we define Γ(X) as the multiset of all the images of the elements of
X ⊆ L(Gl) under ρl . Let x ∈ Bl . Now, freq(x,Gl) is the multiplicity of x in Γ(L(Gl)).
We set freq(Gl) = max{freq(x,Gl) : x ∈ Bl}. Finally, we define S(v) = |{x ∈ Bl :
freq(x,G[v]) ≥ 1}|. If v is the unique sink (i.e. a root) of a graph G, then we denote
S(v) = S(G).

Remark. Notice that for graph-based hash functions the set of initial values can be
empty. As the computation of the hash is defined by the graph structure, there is no need
to specify any initial values. We will return to this property later in this thesis.

We also adopt the definition of independent message blocks from Nandi & Stinson
(2004). For a digraph to be useful in the computation of a hash function, we require that
it has a root even if it is not a tree.

71

Definition 6. Let l ∈N and (Gl ,ρl)∈G . A sequence (x1,x2, . . . ,xk),k∈N+ of message
blocks is independent if there exist vertices v j1 ,v j2 , . . . ,v jk of Gl such that

1. All occurrences of xi are in ρl(L[v ji]) for all 1≤ i≤ k

2. xi /∈ ρl(L[v jt]) for all i > t

3. v jk is the root of Gl .

In the above definition, the value k is the length of the independent sequence. We
denote by I(G) the maximum value for k such that there exists an independent sequence
of length k in the digraph G. Notice that the order of the message blocks is relevant in
the above definition. Furthermore, we observe that if G is a tree and (x1,x2, . . . ,xk) is an
independent sequence in G (with vertices vi j numbered accordingly), then (x2,x3, . . . ,xk)

is an independent sequence in G−G[vi1], i.e. the subtree of G not containing G[vi1] (see
Lemma 6 of Nandi & Stinson (2004)).

If G is a tree and there exist vertices v1,v2, . . . ,vd such that S(G[vi]) = S(G), i ∈
{1,2, . . . ,d} and I(G[vi]−(

⋃
j<i G[v j])) = S(G), the tree G is said to have d independent

subtrees. This definition corresponds to the “successive permutations” case in Hoch &
Shamir (2006).

Let l ∈N,(Gl ,ρl) ∈ G and X ⊆ Bl with Gl = (V,E). We define G|X = (V ′,E ′) as
the subgraph of Gl such that V ′ = {v ∈ V : u ∈ L(Gl),x ∈ X ,ρl(u) = x,u⇒ v} and
E ′ = {(u,v) ∈ E : u,v ∈ V ′}. We call G|X the X-reachable subgraph of Gl , i.e. the
subgraph of Gl that contains all the vertices which are reachable from the leafs that have
labels from the set X . The definition of G|X is equivalent with the Definition 13 of Hoch
& Shamir (2006). Notice that if Gl is a tree, then the X-reachable subgraph of Gl is also
a tree.

5.4.1 Tree-based hash functions

Nandi & Stinson (2004) and Hoch & Shamir (2006) prove that for binary tree-based hash
functions, there exists a similar multicollision finding algorithm as for the generalised
iterated hash functions. In VII, we show a fairly straightforward method for extending
these methods to t-ary tree-based hash functions. In the following, we state the results
from VII without proofs, which can be found in the original paper and are also easily
generalised from the corresponding results of Nandi & Stinson (2004) and Hoch &
Shamir (2006).

72

The first result is a generalisation of Lemma 6 from Nandi & Stinson (2004). The
proof is identical to the original when we replace the constant 2 with the variable t. The
second result generalises Lemma 6 from Hoch & Shamir (2006) to the t-ary tree case.
Finally, the third result uses the two previous ones to prove a generalisation of Lemma 7
from Hoch & Shamir (2006).

Lemma 1. Let l ∈N,(Gl ,ρl) ∈ G , Gl = (V,E) a directed t-ary tree and r be the root

of Gl . Let C be an arbitrary positive integer satisfying S(r)
t ≥C. Then, there exists a

vertex v ∈V such that C ≤ S(v)≤ tC.

Lemma 2. Let l ∈N,(Gl ,ρl) ∈ G such that Gl = (V,E) is a directed t-ary tree with a

root r and freq(Gl)≤ q. Let C and D be arbitrary positive integers satisfying S(r)
t ≥CD.

Then, at least one of the following conditions holds:

1. I(Gl)≥ D or;

2. there exists a vertex v and X ⊆ ρ(L(Gl)) such that freq(Gl [v]|X) ≤ q− 1 and

S(Gl [v]|X)≥C.

Lemma 3. Let l ∈N,(Gl ,ρl) ∈ G such that Gl = (V,E) is a directed t-ary tree with

S(Gl)≥ (tk−1)x and freq(Gl) = 1. Then, there exist k distinct vertices vi1 , . . . ,vik such

that L(Gl [vis]) 6⊆ L(Gl [vit]) when s > t and S(Gl [vis]−
⋃

it<is Gl [vit])≥ x.

The above results can be used to reduce the tree-based case back to the sequential
case. First of all, Lemma 1 shows that we have a vertex in the tree that is limited by
suitable values from above and below. Then, Lemma 2 shows that we again have two
distinct cases: one with a large enough independent set of message blocks and another
where the tree can be made “smaller” and thus an induction argument can be applied.
Finally, Lemma 3 shows that each of the independent subtrees that the tree can be
divided into has enough message blocks in the leaves’ labels to enable a birthday attack
on each of the subtrees when the tree is large enough and has a suitably large number of
distinct message blocks as labels on the leaves.

Thus, the tree structure induces a sequential structure on the message blocks that
the leaves are labelled with. Now, we can apply the results of previous section with
generalised iterated hash functions and obtain a fairly similar limit for the multicollision
attack on a t-ary tree-based hash function.

73

5.4.2 Graph-based hash functions and multicollisions

The tree-based hash functions presented in the previous section are a generalisation
of the generalised iterated hash functions. Nandi & Stinson (2004) propose a class of
hash functions D that contains the generalised iterated and tree-based hash functions
as special cases. Recall that if x = x1x2 · · ·xl is a binary message with l blocks, we
have Bl = {x1,x2, . . . ,xl} and Ω = {ω1,ω2, . . . ,ωd} is a set of d ∈ N initial values.
Let s ∈ N+. We define the set of precursors of an intermediate hash value yi as
Pi = {y1,y2, . . . ,yi−1} and the set of all intermediate values P = {y1,y2, . . . ,ys}. The
hash functions in the class D have the following properties: The computation of such a
hash function is characterised by a list of triples L = {(ti,xi,yi) : i≤ s}, which satisfy
for all i ∈ {1,2, . . . ,s}:

yi = f (ti,xi)

ti = t(i,1)t(i,2) · · · t(i,c)
t(i, j) ∈ Ω∪Pi

xi = x(i,1)x(i,2) · · ·x(i,b)
x(i, j) ∈ Bl ,

where f : {0,1}N → {0,1}n is a compression function. If the length of the message
blocks is m and the length of the initial values n, we have that cn+bm = N for all i. In
the above, all yi are called intermediate hash values and the value ys is the hash value of
x (Nandi & Stinson 2004).

We define a slightly more general class of hash functions D+ in the following.

Definition 7. Let n,N and s ∈N+, n < N and x be a binary message of l blocks. Let
f : {0,1}N →{0,1}n be a compression function. A hash function hs, f from the family
D+ is defined as follows: Let ui ∈ {0,1}N , ui = v1v2 · · ·vdi with v j ∈Ω∪Bl ∪Pi for all
1≤ j ≤ di and i ∈ {1,2, . . . ,s}. Now, yi = f (ui) for all 1≤ i≤ s and hs, f (x) = ys.

It should be noticed from the above definition that even if the words ui are binary
strings of length N, we consider these words over the alphabet Ω∪Bl ∪Pi. Thus, we
are able to distinguish between words that might have the same binary representation
but which are formed from different members of the different sets, i.e. we might have
ωi = y j for some i, j, but in the computation of the intermediate hash values these values

74

have different implications to the multicollision attacks. It is also worth mentioning that
even if no restriction on the number of steps s is given in the definition, it should be
efficient to compute the hash value from any given message and thus the number of
steps should be polynomial in the length of the message. Definition 7 generalises class
D by Nandi & Stinson (2004) by allowing free interleaving of message blocks, initial
values and intermediate values in the computation of the hash value.

The representatives of the class D+ can also be described as graphs. These graphs
turn out to be graphs that have a somewhat more general structure than the t-ary trees
described previously. However, some of the results also apply to these graphs.

There are two ways to approach these hash functions. First, we describe the members
of the class D+ as the generalisations of the tree-based hash functions. This method
relies on the idea that the graph which the computation is based on is given and the
labelling function sets the message blocks and initial values on the sources of the graph.
The other way to approach these hash functions is to look at the definition of D+ and to
build the graphs from there.

Let (Gl ,ρl) ∈ G with l ∈N. Let q ∈N+ be the maximum number of occurrences of
a single message block in the computation of the hash value. The computation graph

Gl of hs, f ∈D+ is an acyclic digraph, with the following properties: The maximum
outdegree of sources that have labels from B is q and the minimum is 1. There is
a unique sink r and hs, f (x) = h(r). For all vertices of Gl which are not sources, the
indegree is p = c+b, where c,b ∈N,cn+bm = N and p≥ 2 and there are s of these
vertices. Each of these vertices corresponds to a step in the computation of the hash
value of the message x and these are ordered by the number i ∈ {1,2, . . . ,s} with r

having the number s. There may not be an edge from an intermediate vertex to another
intermediate vertex of a higher order.

Let γ be the maximum indegree of the vertices in Gl . Then, the maximum number
of edges in the graph Gl is γs. The maximum number of vertices in the graph Gl is
s+ql +wd where w is the maximum number of occurrences of a given initial value in
the computation of the hash value.

As the previous analysis of the tree-based hash functions is based on the computation
graphs, it would be essential to generalise the results on tree-based hash functions to the
more general computation graphs of hash functions. It is possible to generalise Lemma 1
to the computation graphs of graph-based hash functions.

75

Lemma 4. Let (Gl ,ρl) ∈ G with l ∈N+ and r be the root vertex of Gl . Furthermore,

let Gl be a computation graph of a hash function hs, f ∈D+. Let γ be the maximum

indegree of the vertices in Gl . Let C be an arbitrary positive integer satisfying S(r)
γ
≥C.

Then, there exists a vertex v ∈ Gl such that C ≤ S(v)≤ γC.

The proof of Lemma 4 is exactly the same as the proof of Lemma 1 with t replaced
by γ . The arguments about the indegrees of the vertices are still valid although the graph
is not exactly a tree and thus the claim holds.

Unfortunately, Lemmas 2 and 3 do not directly generalise to the computation graphs
of hash functions from D+. However, because the indegree of all intermediate vertices
is bound by γ and the total number of edges is bound by γs, it seems possible to find
an effective multicollision attack against these types of hash functions. This is one
interesting topic for further research.

Another way to study these hash functions and their properties is to build a graph
from the different dependencies that the computation induces between different message
blocks, initial values and intermediate values.

Definition 8. Let hs, f be a hash function from the family D+ as in Definition 7. The
dependency graph of hs, f is a graph G = (V,E) with V = Ω∪Bl ∪P and (a,b) ∈ E iff
a,b ∈V , b = f (ui) and a ∈ {v1,v2, . . . ,vdi}.

The dependency graph shows how the different message blocks, initial values and
intermediate values interact when the hash value of a message of a given block length is
computed. There are some restrictions on the graph that arise from the definition of the
hash function. The constant q is an upper bound for the outdegree of all the vertices
from Bl . Let β be the maximum indegree of all the vertices of the dependency graph G.
The maximum amount of edges in G is then β s. The maximum amount of vertices in
the dependency graph is d + l + s. Further study of the properties of dependency graphs
is a topic for future research.

The results concerning graph-based hash functions show that even this generalisation
does not provide much security against multicollisions. The graph-based hash functions
suffer also from a similar drawback as the generalised iterated hash functions, as for
each message length, there needs to be a graph representing the computation of the hash
value for the messages of this length. Thus, the representations of these graphs have to
be effectively encoded and this might lead to more predictable behaviour of the hash
function, which in its turn would further weaken the construction. In the design of MD6
by Rivest (2008), the requirement of effective encoding led to the decision of having an

76

option where the graph structure is replaced by a sequential structure. This could then
be used in some resource constrained devices. Of course, this property could be used by
attackers if this sequential structure is seen as less secure.

As stated in the remark on page 71, graph-based hash functions do not necessarily
require any initial values for computation. This distinguishes them from sequential hash
functions, where an initial value must be given in order to compute the hash function. In
graph-based hash functions, there is also a possibility to use more than one initial value,
but there is very little use in that as it increases the amount of computation without
introducing uncertainty. Of course, these initial values may be necessary to complete the
graph, if the graph needs some predefined structure that cannot be provided with just the
message blocks and intermediate values. Also, some specific constructions may require
the use of several initial values. This is the case for example with the HMAC message
authentication codes, where there are two initial values utilised in the computation.

In one respect, the graph-based hash functions are more effective than sequential
ones. With the sequential structure, one cannot compute the hash value until the
next message block is available. In graph-based hash functions, some amount of
parallelisation can be utilised and the hash values for each vertex v can be computed as
soon as the values for all vertices u→ v have been determined. This could make them
more attractive from a practical point of view as this property might allow some form of
streaming computation of the hash value, which is possible for traditional iterated hash
functions. In the MD6 design, the graphical structure together with parallelisation led to
a fairly efficient computation of the hash function.

One possibility to further generalise the hash functions from the class D+ would be
to allow even more general graphs as the form of computation. For example, removing
the requirement for a single root vertex, would be one generalisation. The values of the
different root vertices could be catenated to form the final hash value. This would be
much like in the wide-pipe construction for regular iterated hash functions. Studying the
properties of these hash functions could be one possibility for future research.

The generalisations presented in Bertoni et al. (2009) also show a possibility of
constructing secure hash functions with several different compression functions used
during the computation and the class D+ does not contain this possibility. In a more
general setting, these several compression functions could be taken into account. It is
our opinion that the graphical structure and the restrictions imposed by that still enable
efficient multicollision attacks. This is due to the fact that the results of Nandi & Stinson
(2004), Hoch & Shamir (2006) and this thesis do no rely on any specific weakness of the

77

underlying compression function. Thus, using many different compression functions
would not necessarily provide much added protection against these methods.

78

6 Summary and conclusions

In this thesis, we have considered the security of hash functions with two different
research problems. The first research problem was the cryptanalysis of the VSH hash
function, especially against preimage attacks. This provided some new insight into the
hash function and confirmed some of the previous results in a more realistic setting. The
second problem was to analyse the multicollision attacks against iterated hash functions
and generalised iterated hash functions. This research yielded improved analysis of
some existing methods and some new results concerning the even more general classes
of hash functions.

Chapter 4 of this thesis described the VSH hash function and the proof of collision
resistance for VSH. We also discussed the preimage security of VSH. By extending the
method of Saarinen (2006), we were able to show that many of the variants proposed
for VSH share the weakness of the original VSH proposal against preimage attacks.
Furthermore, we showed that realistic password schemes secured with VSH can be
attacked with these preimage finding methods. These attacks were both feasible and
reliable even without any additional optimisation by using dictionary searches or
parallelisation.

Chapter 5 described multicollisions and Joux’s method for finding multicollisions in
iterated hash functions. We also presented some other methods and an extension to
the method of Joux (2004). We also considered some countermeasures against this
multicollision attack. We presented generalised iterated hash functions in closer detail
and introduced the Nested Multicollision Attack Schema. Furthermore, we discussed the
implications and limitations of this method. In the final section, we studied the properties
of tree- and graph-based hash functions. We generalised the previous multicollision
results to the t-ary tree-based hash functions and discussed the properties of the more
general graph-based hash functions.

It still remains an open question whether all generalised iterated hash functions have
an efficient multicollision against them. We conjecture that in the most general case,
i.e. without any restrictions on the multiplicity and order of the message blocks, there
does not exist such a method, but for all efficiently realisable generalised iterated hash
functions such a method should exist.

79

The results of this thesis still leave many questions open for future research. Even
though the VSH and its variants are shown to be rather insecure, the development of
hash functions that have an elegant mathematical form and rigorous proofs of security is
still important. The results on multicollisions leave much room for improvement and
some results in this direction have already been achieved. Even the NMCAS method is
too complex to be realised with reasonable parameters. As mentioned earlier, the general
case for generalised iterated hash functions and multicollisions is still unanswered. The
results concerning graph-based hash functions are very preliminary and leave many
open questions for future research.

80

References

Andreeva E (2010) Domain Extenders for Cryptographic Hash Functions. Ph.D. thesis, Katholieke
Universiteit Leuven.

Andreeva E, Bouillaguet C, Fouque PA, Hoch JJ, Kelsey J, Shamir A & Zimmer S (2008) Second
preimage attacks on dithered hash functions. Proc. 27th Annual International Conference on
the Theory and Applications of Cryptographic Techniques – EUROCRYPT 2008, 270–288.

Andreeva E, Neven G, Preneel B & Shrimpton T (2007) Seven-property-preserving iterated
hashing: ROX. Proc. 13th International Conference on the Theory and Application of
Cryptology and Information Security – ASIACRYPT 2007, 130–146.

Andreeva E & Stam M (2011) The symbiosis between collision and preimage resistance. Proc.
13th IMA International Conference on Cryptography and Coding – IMACC 2011, 152–171.

Aumasson JP (2008) Faster multicollisions. Proc. 9th International Conference on Cryptology in
India – INDOCRYPT 2008, 67–77.

Barkan E, Biham E & Shamir A (2006) Rigorous bounds on cryptanalytic time/memory tradeoffs.
Proc. 26th Annual International Cryptology Conference – CRYPTO 2006, 1–21.

Bayer D, Haber S & Stornetta WS (1993) Improving the efficiency and reliability of digital
time-stamping. In: Capocelli RM, Santis AD & Vaccaro U (eds) Sequences II: Methods in
Communication, Security, and Computer Science, 329–334. Springer.

Bellare M & Namprempre C (2000) Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. Proc. 6th International Conference on the
Theory and Application of Cryptology and Information Security – ASIACRYPT 2000,
531–545.

Bellare M & Ristov T (2008) Hash functions from sigma protocols and improvements to VSH.
Proc. 14th International Conference on the Theory and Application of Cryptology and
Information Security – ASIACRYPT 2008, 125–142.

Bellare M & Rogaway P (1993) Random oracles are practical: a paradigm for designing efficient
protocols. Proc. 1st ACM conference on Computer and communications security – CCS 1993,
62–73.

Bertoni G, Daemen J, Peeters M & Van Assche G (2009) Sufficient conditions for sound
tree and sequential hashing modes. Cryptology ePrint Archive, Report 2009/210. URL:
http://eprint.iacr.org/. Cited 2012/08/24.

Biham E, Chen R, Joux A, Carribault P, Lemuet C & Jalby W (2005) Collisions of SHA-0 and
reduced SHA-1. Proc. 24th Annual International Conference on the Theory and Applications
of Cryptographic Techniques – EUROCRYPT 2005, 36–57.

Biham E & Dunkelman O (2007) A framework for iterative hash functions - HAIFA. Cryptology
ePrint Archive, Report 2007/278. URL: http://eprint.iacr.org. Cited 2012/08/24.

Black J, Rogaway P & Shrimpton T (2002) Black-box analysis of the block-cipher-based hash-
function constructions from PGV. Proc. 22nd Annual International Cryptology Conference –
CRYPTO 2002, 320–335.

Blake IF & Shparlinski IE (2007) Statistical distribution and collisions of the VSH. Journal of
Mathematical Cryptology 1(4): 329–349.

Canetti R, Goldreich O & Halevi S (1998) The random oracle methodology, revisited. Proc. 30th
Annual ACM Symposium on Theory of Computing – STOC 1998, 209–218.

81

Contini S, Lenstra AK & Steinfeld R (2006) VSH, an efficient and provable collision-resistant
hash function. Proc. 25th Annual International Conference on the Theory and Applications of
Cryptographic Techniques – EUROCRYPT 2006, 165–182.

Coppersmith D (1986) Another birthday attack. Proc. 6th Annual International Cryptology
Conference – CRYPTO 1986, 14–17.

Coppersmith D, Pilpel S, Meyer CH, Matyas SM, Hyden MM, Oseas J, Brachtl B & Schilling M
(1990) Data authentication using modification dectection codes based on a public one way
encryption function. U.S. Patent No. 4,908,861.

Coron JS, Dodis Y, Malinaud C & Puniya P (2005) Merkle-Damgård revisited: How to construct
a hash function. Proc. 25th Annual International Cryptology Conference – CRYPTO 2005,
430–448.

Crandall R & Pomerance C (2001) Prime Numbers: A computational perspective. Springer.
Damgård IB (1989) A design principle for hash functions. Proc. 9th Annual International

Cryptology Conference – CRYPTO 1989, 416–427.
Davies DW & Price WL (1980) The application of digital signatures based on public-key

cryptosystems. Proc. Fifth International Computer Communications Conference, 525–530.
Dean RD (1999) Formal aspects of mobile code security. Ph.D. thesis, Princeton University.
DeLuca A & Varrichio S (1999) Finiteness and Regularity in Semigroups and Formal Languages.

Springer.
Diestel R (2006) Graph Theory. Graduate Texts in Mathematics. Springer.
Diffie W & Hellman ME (1976) New directions in cryptography. IEEE Transactions on

Information Theory 22(5): 644–654.
Dilworth R (1950) A decomposition theorem for partially ordered sets. The Annals of Mathematics

51: 161–166.
Dobbertin H (1998) Cryptanalysis of MD4. Journal of Cryptology 11(4): 253–271.
FIPS 186-3 (2009) Digital signature standard (DSS). FIPS 186-3, National Institute of Standards

and Technology.
Flajolet P & Odlyzko A (1990) Random mapping statistics. Proc. 8th Annual International

Conference on the Theory and Applications of Cryptographic Techniques – EUROCRYPT
1989, 329–354.

Gauravaram P & Kelsey J (2007) Cryptanalysis of a class of cryptographic hash functions.
Cryptology ePrint Archive, Report 2007/277. URL: http://eprint.iacr.org/. Cited
2012/08/24.

Gauravaram P & Kelsey J (2008) Linear-XOR and additive checksums don’t protect Damgård-
Merkle hashes from generic attacks. Proc. The Cryptographers’ Track at the RSA Conference
2008 – CT-RSA 2008, 36–51.

Gauravaram P, Millan W, Dawson E & Viswanathan K (2006) Constructing secure hash functions
by enhancing Merkle-Damgård construction. Proc. 11th Australasian Conference on
Information Security and Privacy – ACISP 2006, 407–420.

Girault M & Stern J (1994) On the length of cryptographic hash-values used in identification
schemes. Proc. 14th Annual International Cryptology Conference – CRYPTO 1994, 202–215.

Haber S & Stornetta WS (1990) How to time-stamp a digital document. Proc. 10th Annual
International Cryptology Conference – CRYPTO 1990, 437–455.

Hellman M (1980) A cryptanalytic time-memory trade-off. IEEE Transactions on Information
Theory 26(4): 401–406.

82

Hoch JJ & Shamir A (2006) Breaking the ICE - finding multicollisions in iterated concatenated
and expanded (ICE) hash functions. Proc. 13th International Workshop on Fast Software
Encryption - FSE 2006, 179–194.

ISO/IEC 18014 (2009) Information technology – security techniques – time-stamping services.
ISO/IEC 18014, International Organization for Standardization/International Electrotechnical
Commission.

ISO/IEC 9796-2 (2010) Information technology – security techniques – digital signature schemes
giving message recovery – part 2: Integer factorization based mechanisms. ISO/IEC 9796-2,
International Organization for Standardization/International Electrotechnical Commission.

Joux A (2004) Multicollisions in iterated hash functions. application to cascaded constructions.
Proc. 24th Annual International Cryptology Conference – CRYPTO 2004, 306–316.

Kayser RM (2007) NIST SHA-3 hash function competition announcement. Federal Register
Notices 72(212): 62212–62220.

Kelsey J & Schneier B (2005) Second preimages on n-bit hash functions for much less than
2n work. Proc. 24th Annual International Conference on the Theory and Applications of
Cryptographic Techniques – EUROCRYPT 2005, 474–490.

Keränen V (1992) Abelian squares are avoidable on 4 letters. Proc. 19th International Colloquium
on Automata, Languages and Programming – ICALP 1992, 41–52.

Klima V (2005) Finding MD5 collisions on a notebook PC using multi-message modifications.
Cryptology ePrint Archive, Report 2005/102. URL: http://eprint.iacr.org/. Cited
2012/08/24.

Kortelainen J, Kortelainen T & Vesanen A (2011) Unavoidable regularities in long words with
bounded number of symbol occurrences. Proc. 17th Annual International Computing and
Combinatorics Conference – COCOON 2011, 519–530.

Lai X & Massey J (1993) Hash functions based on block ciphers. Proc. 11th Annual International
Conference on the Theory and Applications of Cryptographic Techniques – EUROCRYPT
1992, 55–70.

Lamport L (1979) Constructing digital signatures from a one-way function. Technical Report
SRI-CSL-98, SRI International Computer Science Laboratory.

Lenstra AK (1997) Using cyclotomic polynomials to construct efficient discrete logarithm
cryptosystems over finite fields. Proc. Second Australasian Conference on Information
Security and Privacy – ACISP 1997, 127–138.

Lenstra AK, Lenstra, Jr HW, Manasse MS & Pollard JM (1990) The number field sieve. Proc.
22nd Annual ACM Symposium on Theory of Computing – STOC 1990, 564–572.

Lenstra AK, Page D & Stam M (2006) Discrete logarithm variants of VSH. Proc. First International
Conference on Cryptology in Vietnam – VIETCRYPT 2006, 229–242.

Lenstra AK & Verheul ER (2000) The XTR public key system. Proc. 20th Annual International
Cryptology Conference – CRYPTO 2000, 1–19.

Leurent G (2008) MD4 is not one-way. Proc. 15th International Workshop on Fast Software
Encryption – FSE 2008, 412–428.

Liskov M (2007) Constructing an ideal hash function from weak ideal compression functions.
Proc. 14th Annual Workshop on Selected Areas in Cryptography – SAC 2007, 358–375.

Lucks S (2005) A failure-friendly design principle for hash functions. Proc. 11th International
Conference on the Theory and Application of Cryptology and Information Security –
ASIACRYPT 2005„ 474–494.

83

Lysyanskaya A (2002) Signature schemes and applications to cryptographic protocol design.
Ph.D. thesis, Massachusetts Institute of Technology.

Martin JW (2008) ESSENCE: A candidate hashing algorithm for the NIST competition. Sub-
mission to NIST. URL: http://www.math.jmu.edu/~martin/essence/Supporting\
_Documentation/essence_NIST.pdf. Cited 2012/08/24.

Maurer UM, Renner R & Holenstein C (2004) Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. Proc. First Theory of
Cryptography Conference – TCC 2004, 21–39.

Menezes AJ, van Oorschot PC & Vanstone SA (1996) Handbook of Applied Cryptography. CRC
Press.

Merkle RC (1979) Secrecy, authentication, and public key systems. Ph.D. thesis, Stanford
University.

Merkle RC (1989a) A certified digital signature. Proc. 9th Annual International Cryptology
Conference – CRYPTO 1989, 218–238.

Merkle RC (1989b) One way hash functions and DES. Proc. 9th Annual International Cryptology
Conference – CRYPTO 1989, 428–446.

Mishra PK & Sarkar P (2003) Inversion of several field elements: A new parallel algorithm.
Cryptology ePrint Archive, Report 2003/264. URL: http://eprint.iacr.org/. Cited
2012/09/14.

Montgomery P (1985) Modular multiplication without trial division. Mathematics of Computation
44(170): 519–521.

Nandi M & Stinson DR (2004) Multicollision attacks on generalized hash functions. Cryptology
ePrint Archive, Report 2004/330. URL: http://eprint.iacr.org/. Cited 2012/08/24.

Nandi M & Stinson DR (2007) Multicollision attacks on some generalized sequential hash
functions. IEEE Transactions on Information Theory 53(2): 759–767.

Pomerance C (1985) The quadratic sieve factoring algorithm. Proc. 3rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques – EUROCRYPT
1984, 169–182.

Preneel B (1993) Analysis and design of cryptographic hash functions. Ph.D. thesis, Katholieke
Universiteit Leuven.

Preneel B (2008) The state of hash functions and the NIST SHA-3 competition. Proc. 4th
International Conference on Information Security and Cryptology – Inscrypt 2008, 1–11.

Preneel B, Govaerts R & Vandewalle J (1993) Hash functions based on block ciphers: A synthetic
approach. Proc. 13th Annual International Cryptology Conference – CRYPTO 1993, 773:
368–378.

Python Software Foundation (2007) Python programming language. URL: http://python.
org/. Cited 2012/08/24.

Quisquater JJ & Delescaille JP (1990) How easy is collision search. new results and applications
to DES. Proc. 9th Annual International Cryptology Conference – CRYPTO 1989, 408–415.

Rabin MO (1978) Digitalized signatures. In: DeMillo RA, Dobkin DP, Jones AK & Lipton RJ
(eds) Foundations of Secure Computation, 155–168. Academic Press.

Ristenpart T, Shacham H & Shrimpton T (2011) Careful with composition: Limitations of the
indifferentiability framework. Proc. 30th Annual International Conference on the Theory and
Applications of Cryptographic Techniques – EUROCRYPT 2011, 487–506.

Rivest RL (1991) The MD4 message digest algorithm. Proc. 10th Annual International Cryptology
Conference – CRYPTO 1990, 303–311.

84

Rivest RL (1992) The MD5 message-digest algorithm. Internet Request for Comment RFC 1321,
Internet Engineering Task Force.

Rivest RL (2005) Abelian square-free dithering for iterated hash functions. URL: http://csrc.
nist.gov/groups/ST/hash/documents/rivest-asf-paper.pdf. Cited 2012/08/24.

Rivest RL (2008) The MD6 hash function – a proposal to NIST for SHA-3. Submission
to NIST. URL: http://groups.csail.mit.edu/cis/md6/submitted-2008-10-27/
Supporting_Documentation/md6_report.pdf. Cited 2012/08/24.

Rivest RL, Shamir A & Adleman LM (1978) A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM 21(2): 120–126. See also U.S.
Patent 4,405,829.

Rogaway P & Shrimpton T (2004) Cryptographic hash-function basics: Definitions, implications,
and separations for preimage resistance, second-preimage resistance, and collision resistance.
Proc. 11th International Workshop on Fast Software Encryption – FSE 2004, 371–388.

Rubin K & Silverberg A (2003) Torus-based cryptography. Proc. 23rd Annual International
Cryptology Conference – CRYPTO 2003, 349–365.

Saarinen MJO (2006) Security of VSH in the real world. Proc. 7th International Conference on
Cryptology in India – INDOCRYPT 2006, 95–103.

Stevens M (2006) Fast collision attack on MD5. Cryptology ePrint Archive, Report 2006/104.
URL: http://eprint.iacr.org/. Cited 2012/08/24.

Stevens M, Lenstra AK & de Weger B (2007) Chosen-prefix collisions for MD5 and colliding
X.509 certificates for different identities. Proc. 26th Annual International Conference on the
Theory and Applications of Cryptographic Techniques – EUROCRYPT 2007, 1–22.

Suzuki K, Tonien D, Kurosawa K & Toyota K (2008) Birthday paradox for multi-collisions.
IEICE Transactions 91-A(1): 39–45.

Une M (2001) The security evaluation of time stamping schemes: The present situation and
studies. IMES Discussion Papers Series 2001-E-18.

van Oorschot P & Wiener M (1996) Improving implementable meet-in-the-middle attacks by
orders of magnitude. Proc. 16th Annual International Cryptology Conference – CRYPTO
1996, 229–236.

Van Rompay B (2004) Analysis and design of cryptographic hash functions, mac algorithms and
block ciphers. Ph.D. thesis, Katholieke Universiteit Leuven.

Wang X, Yin YL & Yu H (2005) Finding collisions in the full SHA-1. Proc. 25th Annual
International Cryptology Conference – CRYPTO 2005, 17–36.

Wang X & Yu H (2005) How to break MD5 and other hash functions. Proc. 24th Annual
International Conference on the Theory and Applications of Cryptographic Techniques –
EUROCRYPT 2005, 19–35.

Wiener MJ (2004) The full cost of cryptanalytic attacks. Journal of Cryptology 17: 105–124.
Yu H & Wang X (2007) Multi-collision attack on the compression functions of MD4 and 3-pass

HAVAL. Proc. The 10th International Conference on Information Security and Cryptology –
ICISC 2007, 206–226.

85

86

Original articles

I Halunen K, Rikula P & Röning J (2008) On the Security of VSH in Password Schemes.
Proceedings of the Third International Conference on Availability, Reliability and Security
(ARES 2008): 828–833.

II Halunen K, Rikula P & Röning J (2009) Finding Preimages of Multiple Passwords Secured
with VSH. Proceedings of the Fourth International Conference on Availability, Reliability
and Security (ARES 2009): 499–503.

III Halunen K, Kortelainen J & Kortelainen T (2010), Combinatorial Multicollision Attacks and
Generalized Iterated Hash Functions. Proceedings of Australasian Information Security
Conference 2010 (AISC 2010): 86–93.

IV Kortelainen T, Kortelainen J & Halunen K (2010) Variants of Multicollision Attacks on
Iterated Hash Functions. Proceedings of the Sixth China International Conference on
Information Security and Cryptology (Inscrypt 2010): 139–154.

V Kortelainen J, Halunen K & Kortelainen T (2010) Multicollision Attacks and Generalized
Iterated Hash Functions. Journal of Mathematical Cryptology 4(3): 239–270.

VI Halunen K & Röning J (2010) Preimage Attacks Against Variants of Very Smooth Hash.
Proceedings of the Fifth International Workshop on Security (IWSEC 2010): 251–266.

VII Halunen K (2011) Multicollisions and Graph-based Hash Functions. Proceedings of the
Third International Conference on Trusted Systems (INTRUST 2011): 156–167.

Reprinted with permission from IEEE (I and II), ACS (III), Springer (IV, VI and
VII) and De Gruyter (V).

Original publications are not included in the electronic version of the dissertation.

87

88

A C T A U N I V E R S I T A T I S O U L U E N S I S

Book orders:
Granum: Virtual book store
http://granum.uta.fi/granum/

S E R I E S C T E C H N I C A

417. Ruuska, Jari (2012) Special measurements and control models for a basic oxygen
furnace (BOF)

418. Kropsu-Vehkaperä, Hanna (2012) Enhancing understanding of company-wide
product data management in ICT companies

419. Hietakangas, Simo (2012) Design methods and considerations of supply
modulated switched RF power amplifiers

420. Davidyuk, Oleg (2012) Automated and interactive composition of ubiquitous
applications

421. Suutala, Jaakko (2012) Learning discriminative models from structured multi-
sensor data for human context recognition

422. Lorenzo Veiga, Beatriz (2012) New network paradigms for future multihop
cellular systems

423. Ketonen, Johanna (2012) Equalization and channel estimation algorithms and
implementations for cellular MIMO-OFDM downlink

424. Macagnano, Davide (2012) Multitarget localization and tracking : Active and
passive solutions

425. Körkkö, Mika (2012) On the analysis of ink content in recycled pulps

426. Kukka, Hannu (2012) Case studies in human information behaviour in smart
urban spaces

427. Koivukangas, Tapani (2012) Methods for determination of the accuracy of surgical
guidance devices : A study in the region of neurosurgical interest

428. Landaburu-Aguirre, Junkal (2012) Micellar-enhanced ultrafiltration for the
removal of heavy metals from phosphorous-rich wastewaters : From end-of-pipe
to clean technology

429. Myllymäki, Sami (2012) Capacitive antenna sensor for user proximity recognition

430. Jansson, Jussi-Pekka (2012) A stabilized multi-channel CMOS time-to-digital
converter based on a low frequency reference

431. Soini, Jaakko (2012) Effects of environmental variations in Escherichia coli
fermentations

432. Wang, Meng (2012) Polymer integrated Young interferometers for label-free
biosensing applications

C433etukansi.kesken.fm Page 2 Tuesday, October 16, 2012 3:19 PM

A
B
C
D
E
F
G

UNIVERS ITY OF OULU P.O.B . 7500 F I -90014 UNIVERS ITY OF OULU F INLAND

A C T A U N I V E R S I T A T I S O U L U E N S I S

S E R I E S E D I T O R S

SCIENTIAE RERUM NATURALIUM

HUMANIORA

TECHNICA

MEDICA

SCIENTIAE RERUM SOCIALIUM

SCRIPTA ACADEMICA

OECONOMICA

EDITOR IN CHIEF

PUBLICATIONS EDITOR

Senior Assistant Jorma Arhippainen

University Lecturer Santeri Palviainen

Professor Hannu Heusala

Professor Olli Vuolteenaho

University Lecturer Hannu Heikkinen

Director Sinikka Eskelinen

Professor Jari Juga

Professor Olli Vuolteenaho

Publications Editor Kirsti Nurkkala

ISBN 978-951-42-9965-0 (Paperback)
ISBN 978-951-42-9966-7 (PDF)
ISSN 0355-3213 (Print)
ISSN 1796-2226 (Online)

U N I V E R S I TAT I S O U L U E N S I SACTA
C

TECHNICA

U N I V E R S I TAT I S O U L U E N S I SACTA
C

TECHNICA

OULU 2012

C 433

Kimmo Halunen

HASH FUNCTION SECURITY
CRYPTANALYSIS OF THE VERY SMOOTH HASH
AND MULTICOLLISIONS IN GENERALISED
ITERATED HASH FUNCTIONS

UNIVERSITY OF OULU GRADUATE SCHOOL;
UNIVERSITY OF OULU, FACULTY OF TECHNOLOGY,
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING;
INFOTECH OULU

C
 433

AC
TA

K
im

m
o H

alunen
C433etukansi.kesken.fm Page 1 Tuesday, October 16, 2012 3:19 PM

	Abstract
	Tiivistelmä
	Acknowledgements
	Abbreviations and notation
	List of original articles
	Contents
	1 Introduction
	1.1 Contributions of this thesis

	2 Applications of hash functions
	2.1 Data integrity
	2.2 Authentication and encryption
	2.3 Applications as one-way functions
	2.4 Digital signatures
	2.5 Digital timestamping

	3 Basic concepts
	3.1 Words, relations and basic algebra
	3.2 Finite fields and groups
	3.3 Graphs
	3.4 Hash functions
	3.5 Constructions
	3.6 Practical implementations and results
	3.7 Security models for hash functions

	4 Cryptanalysis of the Very Smooth Hash
	4.1 The Very Smooth Hash algorithm
	4.2 Collision resistance of the VSH
	4.3 Preimage resistance of the VSH
	4.3.1 Saarinen’s method for finding preimages
	4.3.2 Improvements and practical results

	4.4 Discrete logarithm variants of the VSH

	5 Multicollisions and iterated hash functions
	5.1 Multicollisions on iterated hash functions
	5.2 Countermeasures against Joux’s multicollisionattack
	5.2.1 Wide pipe and double pipe hashing
	5.2.2 Checksums
	5.2.3 Dithering
	5.2.4 Generalised iterated hash functions

	5.3 The Nested Multicollision Attack Schema
	5.4 Multicollisions on graph-based hash functions
	5.4.1 Tree-based hash functions
	5.4.2 Graph-based hash functions and multicollisions

	6 Summary and conclusions
	References
	Original articles

