
 Open access Book Chapter DOI:10.1007/BFB0024473

Hash Functions and MAC Algorithms Based on Block Ciphers — Source link

Bart Preneel

Institutions: Katholieke Universiteit Leuven

Published on: 17 Dec 1997 - Lecture Notes in Computer Science (Springer, Berlin, Heidelberg)

Topics: Security of cryptographic hash functions, MDC-2, Hash function, Key Wrap and Cryptographic primitive

Related papers:

 Provable Security for Block Ciphers by Decorrelation

 On Hashing with Tweakable Ciphers

 Recent Developments in the Design of Conventional Cryptographic Algorithms

 Automated Design of Cryptographic Hash Schemes by Evolving Highly-Nonlinear Functions

 Double-Hashing Operation Mode for Encryption

Share this paper:

View more about this paper here: https://typeset.io/papers/hash-functions-and-mac-algorithms-based-on-block-ciphers-
2xfe8ksda0

https://typeset.io/
https://www.doi.org/10.1007/BFB0024473
https://typeset.io/papers/hash-functions-and-mac-algorithms-based-on-block-ciphers-2xfe8ksda0
https://typeset.io/authors/bart-preneel-3vie102yp4
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/journals/lecture-notes-in-computer-science-toobp8l4
https://typeset.io/topics/security-of-cryptographic-hash-functions-8mj3cag4
https://typeset.io/topics/mdc-2-1ir6c2fd
https://typeset.io/topics/hash-function-1rfatsyq
https://typeset.io/topics/key-wrap-3fok8i0x
https://typeset.io/topics/cryptographic-primitive-2qx1pgyy
https://typeset.io/papers/provable-security-for-block-ciphers-by-decorrelation-zlhv3zjzie
https://typeset.io/papers/on-hashing-with-tweakable-ciphers-1hbbegp0ic
https://typeset.io/papers/recent-developments-in-the-design-of-conventional-fc6zhs15k9
https://typeset.io/papers/automated-design-of-cryptographic-hash-schemes-by-evolving-4ip9wa1cy0
https://typeset.io/papers/double-hashing-operation-mode-for-encryption-2p83sltiui
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/hash-functions-and-mac-algorithms-based-on-block-ciphers-2xfe8ksda0
https://twitter.com/intent/tweet?text=Hash%20Functions%20and%20MAC%20Algorithms%20Based%20on%20Block%20Ciphers&url=https://typeset.io/papers/hash-functions-and-mac-algorithms-based-on-block-ciphers-2xfe8ksda0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/hash-functions-and-mac-algorithms-based-on-block-ciphers-2xfe8ksda0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/hash-functions-and-mac-algorithms-based-on-block-ciphers-2xfe8ksda0
https://typeset.io/papers/hash-functions-and-mac-algorithms-based-on-block-ciphers-2xfe8ksda0

1

Hash functions and MAC algorithms

based on block ciphers

B. Preneel⋆

Katholieke Universiteit Leuven, Department Electrical Engineering-ESAT,

Kardinaal Mercierlaan 94, B–3001 Heverlee, Belgium

bart.preneel@esat.kuleuven.ac.be, www.esat.kuleuven.ac.be/∼preneel

Abstract. This paper reviews constructions of hash functions and MAC
algorithms based on block ciphers. It discusses the main requirements
for these cryptographic primitives, motivates these constructions, and
presents the state of the art of both attacks and security proofs.

1 Introduction

Hash functions and MAC algorithms are important tools to protect information
integrity. Together with digital signature schemes, they play an important role
for securing our electronic interactions, in applications such as electronic cash
and electronic commerce. This paper discusses how to reduce the construction
of these cryptographic primitives to that of another primitive, namely a block
cipher. The focus is on the relation between the security and performance of the
primitives.

Section 2 contains (informal) definitions of hash functions and MAC algo-
rithms. Next a general model for these functions is presented in Sect. 3. Section 4
lists brute force attacks on hash functions, and overviews constructions for hash
functions based on block ciphers. This is followed by a similar treatment of MAC
algorithms in Sect. 5. Finally some concluding remarks are made.

2 Definitions

2.1 Hash functions

Hash functions were introduced in cryptography by W. Diffie and M. Hellman
together with the concept of digital signatures. The basic idea is to sign a short
‘digest’ or ‘fingerprint’ of the message rather than the message itself. Hash func-
tions are used in a more general context to replace the protection of the integrity
of a large amount of data (in principle of arbitrary size) by a short string of fixed
length (m bits), the hash result. Applications require that the evaluation of the
hash function is ‘efficient’. Moreover, the hash function should be publicly known,

⋆ F.W.O. postdoctoral researcher, sponsored by the National Fund for Scientific Re-
search – Flanders (Belgium).

Appeared in Cryptography and Coding, 6th IMA International Conference, Lecture
Notes in Computer Science 1355, M. Darnell (ed.), Springer-Verlag, pp. 270–282.

c©1997 Springer-Verlag

2

and should not require any secret parameter (these hash functions have also been
called MDCs or Manipulation Detection Codes). For cryptographic applications,
one imposes three security requirements, that can be stated informally as follows:

preimage resistance: for essentially all outputs, it is ‘computationally infea-
sible’ to find any input hashing to that output;

2nd-preimage resistance: it is ‘computationally infeasible’ to find a second
(distinct) input hashing to the same output as any given input;

collision resistance: it is ‘computationally infeasible’ to find two colliding in-
puts, i.e., x and x′ 6= x with h(x) = h(x′).

A hash function that is preimage resistant and 2nd-preimage resistant is called
one-way ; a hash function that satisfies the three security properties is called
collision resistant. Collision resistance may be required for digital signatures to
preclude repudiation by the sender: if she can find a collision pair (x, x′), she
can later claim that she has signed x′ rather than x. Not all applications need
collision resistance; hash functions that are only one-way are more efficient in
terms of computation and storage (cf. Sect. 4.1).

Hash functions have also been used to construct new digital signature schemes
(where the hash function is an integral part of the design). Other applications
include the commitment to information without revealing it, the protection of
pass-phrases, tick payments, key derivation, and key agreement. It should be
pointed out that hash functions have often been used in applications that require
new security properties, for which they have not been evaluated.

2.2 MAC algorithms

The banking world used MACs already in the seventies. A MAC is a hash func-
tion that takes as input a second parameter, the secret key. The sender of a mes-
sage appends the MAC to the information; the receiver recomputes the MAC and
compares it to the transmitted version. He accepts the information as authentic
only if both values are equal.

The goal is that an eavesdropper, who can modify the message, does not
know how the update the MAC accordingly. Hence the main security property
for a MAC is that for someone who does not know the key, it should be compu-
tationally infeasible to predict the MAC value for a given message. Unlike digital
signatures, MAC algorithms can only be used between mutually trusting parties,
but they are faster to compute and require less storage than digital signatures.

The attack model is as follows: an opponent can choose a number of inputs xi,
and obtain the corresponding MAC value hK(xi) (his choice of xi might depend
on the outcome of previous queries, i.e., the attack may be adaptive). Next he
has to come up with an input x (6= xi, ∀i) and the value hK(x), which has to
be correct with probability significantly larger than 1/2m, with m the number
of bits in the MAC result. If the opponent succeeds in finding such a value, he is
said to be capable of an existential forgery . If the opponent can choose the value
of x, he is said to be capable of a selective forgery . If the success probability of

Appeared in Cryptography and Coding, 6th IMA International Conference, Lecture
Notes in Computer Science 1355, M. Darnell (ed.), Springer-Verlag, pp. 270–282.

c©1997 Springer-Verlag

3

the attack is close to 1, the forgery is called verifiable. An alternative strategy is
to try to recover the secret key K from a number of message/MAC pairs. A key

recovery is more devastating than a forgery, since it allows for arbitrary selective
forgeries.

A MAC is said to be secure if it is ‘computationally infeasible’ to perform
an existential forgery under an adaptive chosen text attack. Note that in many
applications only known text attacks are feasible. For example, in a wholesale
banking application one could gain a substantial profit if one could choose a
single message and obtain its MAC. Nevertheless, it seems prudent to work with
a strong definition.

3 General model

Almost all hash functions are iterative processes, which repeatedly apply a simple
compression function f . Therefore they are called iterated hash functions. The
input x is padded to a multiple of the block size, and is divided into t blocks
denoted x1 through xt. It is then processed block by block. The intermediate
result is stored in an n-bit (n ≥ m) chaining variable denoted with Hi:

H0 = IV Hi = f(Hi−1, xi), 1 ≤ i ≤ t h(x) = g(Ht) .

Here g denotes the output transformation.

The goal of the designer is to derive the security properties of the hash
function h from those of the compression function f . In order to exclude trivial
attacks, it is important to fix the value of IV and to precode the message. The
simplest way of coding is to append an extra block at the end with the length of
the input in bits. R. Merkle and I. Damg̊ard showed that under these conditions,
collision resistance of f is sufficient for collision resistant of h [6, 23]. Note that it
is not a necessary condition, i.e., collisions for the compression function do not
necessarily lead to collisions for the hash function. X. Lai and J. Massey proved
a similar property for (2nd) preimage resistance [20]; in this case the converse
holds (in a weaker form).

Similar to hash functions, MACs are often built using a compression function.
The output transformation g is in this case often more important. The secret
key may be introduced in the IV , in the compression function f , and/or in the
output transformation g.

4 Hash functions

This section first discusses generic attacks on hash functions, i.e., attacks that
depend only on the size of the hash result, and not on the internal structure of
the hash function. Then constructions of hash functions based on block ciphers
are reviewed.

Appeared in Cryptography and Coding, 6th IMA International Conference, Lecture
Notes in Computer Science 1355, M. Darnell (ed.), Springer-Verlag, pp. 270–282.

c©1997 Springer-Verlag

4

4.1 Generic attacks

Two brute force attacks on hash functions can be identified.

(2nd) preimage attack. In order to find (2nd) preimages, one can pick an
arbitrary input and evaluate h. The success probability of a single trial is
1/2m, with m the number of bits in the hash result, which implies that on
average 2m−1 attempts are required. This attack can be applied off-line and
in parallel. If it is sufficient to find a (2nd) preimage for one out of t given
values, the success probability is increased with a factor of t. This can be
avoided by parameterising the hash function for each input. This attack can
be precluded by choosing values of m between 64 bits (marginally secure) to
128 bits (security for 20 years or more even against a determined opponent).

collision attack. Finding collisions is much easier than finding preimages: one
needs only about

√
2m = 2m/2 evaluations of the hash function (as this

results in about 2m pairs of hash values) [36]. This phenomenon is related
to the ‘birthday paradox,’ which states that in a group of 23 people, the
odds are 1:2 that there are two people with the same birthday. Note that
it is easy to impose that the colliding message are restricted to a small set
with a prescribed format, and that one can implement this attack in parallel
with minimal storage requirements [34]. Collision resistance requires that m
is between 128 bits (marginally secure) and 160 bits (15 years or more).

4.2 Constructions

Hash functions based on block ciphers have been popular in part for historical
reasons, as designers tried to use the Data Encryption Standard (DES, [9]) also
for hashing. This reduces the design and evaluation effort, and results in compact
implementations. It also allows to transfer the trust in DES (or in any other block
cipher) to a hash function. This is quite important since many hash functions
have been broken.

However, this approach has some disadvantages. First, the use of a block ci-
pher may create additional export problems. Moreover, the use of a block cipher
in this application requires stronger properties from the block cipher. Indeed,
it might be that the block cipher has certain properties that do not affect its
security level for encryption, but create serious problems in hashing modes. Ex-
amples are the (semi-)weak keys of DES [7, 25] and the quasi weak keys and
weak hash keys [15]. Another problem is that differential cryptanalysis can be
adopted to this setting; for DES this has been explored in [32].

This construction is only efficient if the key scheduling of the block cipher is
not too slow, as every iteration typically requires a key change. Note that current
dedicated hash functions (such as RIPEMD-160 [8] and SHA-1 [10]) run at about
50 Mbit/s on a 90 MHz Pentium. DES achieves 17 Mbit/s on the same machine;
other block ciphers are up to twice as fast. However, the performance including
key schedule is about 2 to 10 times slower, and some constructions need more
than one encryption to process a single block. As a consequence, dedicated hash

Appeared in Cryptography and Coding, 6th IMA International Conference, Lecture
Notes in Computer Science 1355, M. Darnell (ed.), Springer-Verlag, pp. 270–282.

c©1997 Springer-Verlag

5

functions are for the time being 5. . . 10 times faster than hash functions based
on block ciphers with a comparable security level.

In the rest of this section (except for Sect. 4.6) it will be assumed that the
block cipher has block length and key length of m bits. The hash rate of a
hash function based on an m-bit block cipher is defined as the number of m-bit
message blocks hashed per encryption.

4.3 Single block length hash functions

For these hash functions the size of the hash result is equal to the block size of the
block cipher. All these schemes have rate 1. The first cryptographic hash function
was probably the construction proposed by M.O. Rabin [31]: Hi = Exi

(Hi−1).
Here EK(x) denotes the encryption of plaintext x using the key K. The fact that
this hash function is not collision resistant when used with DES (m = 64) was
pointed out by G. Yuval in [36]. R. Merkle showed that finding a (2nd) preimage
requires only 2m/2 operations (using a meet-in-the-middle attack).

The first secure construction was the hash function of Matyas, Meyer, and
Oseas: Hi = EHi−1

(xi)⊕ xi. This scheme has been included in ISO/IEC 10118–
2 [14], with an additional mapping from the ciphertext space to the key space
(cf. Sect. 4.4 for an example). Its dual is known as the Davies-Meyer scheme,
although it probably should be attributed to S.M. Matyas and C.H. Meyer:
Hi = Exi

(Hi−1) ⊕ Hi−1. A variant of the two schemes was proposed by the
author (in ’89) and by Miyaguchi et al. [24]: Hi = EHi−1

(xi) ⊕ xi ⊕ Hi−1.
In [27], the author has analyzed all 64 schemes of this general form, and came

to the conclusion that 12 of these are secure. They can be constructed from the
Matyas-Meyer-Oseas scheme and the Preneel-Miyaguchi scheme by applying an
affine transformation to the inputs. It is conjectured that for these schemes no
shortcut attacks exist, which implies that a collision attack requires about 2m/2

operations and a (2nd) preimage attack about 2m operations. However, since
most block ciphers have a block length of m = 64 bits, collisions can be found
in only 232 operations. Therefore hash functions with a larger hash result are
needed.

4.4 Double block length hash functions

The aim of double block length hash functions is to achieve a higher security
level against collision attacks. Ideally a collision attack on such a hash function
should require 2m operations, and a (2nd) preimage attack 22m operations. An
important class of proposals is of the following form:

H1
i = EA1

i

(B1
i) ⊕ C1

i

H2
i = EA2

i

(B2
i) ⊕ C2

i ,

where A1
i , B1

i , and C1
i are binary linear combinations of H1

i−1, H2
i−1, x1

i , and
x2

i and where A2
i , B2

i , and C2
i are binary linear combinations of H1

i−1, H2
i−1,

Appeared in Cryptography and Coding, 6th IMA International Conference, Lecture
Notes in Computer Science 1355, M. Darnell (ed.), Springer-Verlag, pp. 270–282.

c©1997 Springer-Verlag

6

x1
i , x2

i , and H1
i . The hash result is equal to the concatenation of H1

t and H2
t .

Several hash functions in this class have been published as individual proposals
between ’89 and ’93. First it was shown by Hohl et al. that the security level of
the compression function of these hash functions is at most that of a single block
length hash function [11]. Next L. Knudsen, X. Lai, and B. Preneel showed that
for all hash functions in this class, a (2nd) preimage attack requires at most 2m

operations, and a collision attack requires at most 23m/4 operations (for most
schemes this can be reduced to 2m/2) [17].

Several schemes of rate less than 1 have been proposed. From the few that
have survived, the most important ones are MDC-2 and MDC-4 with hash rate
1/2 and 1/4 respectively. MDC-2 can be described as follows:

T 1
i = EH1

i−1

(xi) ⊕ xi = LT 1
i ‖ RT 1

i H1
i = LT 1

i ‖ RT 2
i

T 2
i = EH2

i−1

(xi) ⊕ xi = LT 2
i ‖ RT 2

i H2
i = LT 2

i ‖ RT 1
i .

MDC-2 has been included in Part 2 of ISO/IEC 10118-2 [14]. The standard does
not specify the block cipher; it also requires the specification of two mappings
u, v from the ciphertext space to the key space such that u(IV 1) 6= v(IV 2). For
DES, these mappings from 64 to 56 bits drop the parity bits in every byte and
fix the second and third key bits to 01 and 10 respectively (to preclude attacks
based on (semi-)weak keys).

One iteration of MDC-4 consists of two MDC-2 steps, where the plaintexts
in the second instance are equal to respectively H2

i−1 and H1
i−1; the keys are the

same for both instances. The security level of the hash functions MDC-2 and
MDC-4 (with fixed IV ’s) and of their compression functions is listed in Table 1.
These attacks are described in [19, 20]. Note that the compression function is
not very strong and that the protection of the hash function against collision
attacks is not very high if DES is used.

Table 1. Security level for MDC-2 and MDC-4 based on a block cipher with equal
block and key length and based on DES.

hash function compression function
collision (2nd) preimage collision (2nd) preimage

MDC-2 2m 23m/2 2m/2 2m

MDC-4 2m 27m/4 23m/4 23m/2

MDC-2 (DES) 255 283 228 254

MDC-4 (DES) 256 2109 241 290

4.5 Schemes with a ‘security proof’

Two constructions have a ‘proof of security’ for the collision resistance of the
compression function. They both start from the assumption that the Matyas-
Meyer-Oseas single block length hash function (or one of its variants) is secure.

Appeared in Cryptography and Coding, 6th IMA International Conference, Lecture
Notes in Computer Science 1355, M. Darnell (ed.), Springer-Verlag, pp. 270–282.

c©1997 Springer-Verlag

7

R. Merkle describes several constructions that achieve a security level of 2m

(255 for DES) against collision attacks [23]. The fastest version has rate 0.27
for DES. The simplest scheme (with rate 1/18.3 for DES) can be described as
follows:

Hi = chop16

[

E0‖H1

i−1

(H2
i−1‖xi) ⊕ (H2

i−1‖xi) ‖ E1‖H1

i−1

(H2
i−1‖xi) ⊕ (H2

i−1‖xi)
]

.

Here Hi−1 is a string consisting of 112 bits, the leftmost 55 bits of which are
denoted H1

i−1, and the remaining 57 are denoted H2
i−1; xi consists of 7 bits only.

This hash function is similar to MDC-2, but has a secure compression function
at the cost of a low speed. Note that in fact additional measures have to be taken
to preclude attacks based on weak keys.

The constructions proposed by L.R. Knudsen and B. Preneel [18, 19] offer
better trade-offs between rate and security level; moreover the security level
can be higher than 2m. They have the disadvantage that they require a larger
internal memory, and an output transformation to preclude partial collisions
i.e., collisions where only part of the outputs collide. The security proof assumes
that the best attack on a number of ‘coupled’ single block length hash functions
(i.e., with dependent inputs) is a brute force attack. This coupling is achieved by
encoding the input bits to the compression function with a code over GF (22) (or,
in general GF (2t), t ≥ 2) to obtain the plaintext and key input of the individual
single block length hash functions. For an [n, k, d] code, the number of parallel
instances of a single block length hash function equals n and a collision requires
at least 2(d−1)/2 encryptions. Table 2 gives the properties of the constructions
using codes over GF (24).

Table 2. Parameters of constructions for hash functions based on codes over GF (24).

code rate collision

[6, 4, 3] 1/4 ≥ 2m

[8, 6, 3] 1/2 ≥ 2m

[12, 10, 3] 2/3 ≥ 2m

[9, 6, 4] 1/3 ≥ 23m/2

[16, 13, 4] 5/8 ≥ 23m/2

4.6 Block ciphers with longer key lengths

R. Merkle observed already in [22] that if the key length of a block cipher is
larger than the block size, it can be used as the compression function of a sin-
gle block length hash function by just fixing the plaintext, and considering the
mapping from key to ciphertext: Hi = EHi−1 ‖ xi

(C), with C a constant. X. Lai
and J. Massey have extended these constructions in [20] to double block length
hash functions. L. Knudsen and the author provide improved constructions with
security proof for this case as well [19].

Appeared in Cryptography and Coding, 6th IMA International Conference, Lecture
Notes in Computer Science 1355, M. Darnell (ed.), Springer-Verlag, pp. 270–282.

c©1997 Springer-Verlag

8

5 MAC algorithms

As in the previous section, first generic attacks are discussed, and then an
overview of constructions for MAC algorithms is given.

5.1 Generic attacks

The attacks discussed in this section depend only on the size of the parameters
of the MAC, and not on its internal structure: brute force key search, guessing
of the MAC, and a birthday forgery attack.

An exhaustive key search consists of running through the key space and
checking whether a key corresponds to the known message-MAC pairs. About
k/m values are sufficient to determine the key uniquely; for most applications
this value lies between 1 and 4. The expected computational effort is 2k−1 MAC
evaluations, where k is the number of (effective) key bits.

Brute force key search can be precluded by choosing a sufficiently large key.
A value of 56 bits offers only marginal security, while 75 to 90 bits is sufficient for
15 years or more. Currently finding a 56-bit key in a period of 1 year requires an
investment of 50 000$, and it can be done in a few months by using idle cycles on
the Internet, as was demonstrated in the Spring of 1997; with a 1 million US$
investment, the search time can be reduced to a few hours [5, 35]. Moreover,
one also has to take into account the empirical observation that the computing
power for a given cost is multiplied by four every 3 years (Moore’s ‘Law’).

It is important to recover a MAC key within its active lifetime, which can be
very short in communications applications. After that period, the key is com-
pletely useless. However, one can mount the attack during the complete lifetime
of the system; it is sufficient to feed to the search machine the current text/MAC
pairs. In order to assess the feasibility of this attack, one has to compare the
cost of an attack with the profit which can be made by recovering one or more
keys during the lifetime of the system.

Another attack strategy is to pick an arbitrary input and guess the MAC
value by choosing an m-bit string uniformly at random. For a good MAC algo-
rithm, one expects that the success probability equals 1/2m (here the probability
is taken over all keys). A related strategy consists in guessing the value of the
key, and computing the MAC value. Its success probability is 1/2k. The success
probability of the combined attacks is equal to 1/2min(k,m). The value of k is
typically larger than that of m to preclude a brute force key search. This forgery
attack is clearly not verifiable. However, one should take it into account when
selecting a MAC algorithm. The value of m depends on the expected profit of a
successful attempt, as well as on the number of trials that are allowed by the sys-
tem, i.e., the way the system reacts to wrong MAC values. For most applications
m = 32 . . . 64 is sufficient to render this attack uneconomical.

Recently a birthday forgery attack has been developed that applies to all
iterated MAC algorithms (B. Preneel and P.C. van Oorschot, [29]). The basic
idea behind the attack is the birthday paradox. Its feasibility depends on the
bitsizes n of the chaining variable and m of the MAC result, and the nature

Appeared in Cryptography and Coding, 6th IMA International Conference, Lecture
Notes in Computer Science 1355, M. Darnell (ed.), Springer-Verlag, pp. 270–282.

c©1997 Springer-Verlag

9

of the output transformation g. If n = m, and g is a permutation, the attack
requires one chosen text and about 2n/2 known message-MAC pairs. If n > m,
an additional number of about 2n−m chosen message-MAC pairs is required.
The attack requires at least one chosen text, hence in applications where any
access to the MAC algorithm with the correct key is precluded, it should not
be considered a problem. Also, the forged message is of a special form: if the
MAC is known for three messages of the form x, x′, and x‖y, one can forge the
MAC for x′‖y. Note that further optimisations of the attack are possible, that
reduce the number of known texts. A more serious concern is that for certain
MAC algorithms, the forgery attack can be extended to a key recovery attack.

This attack motivates the use of a MAC result that is smaller than the size
of the internal memory n. It can be precluded by appending a sequence number
at the end of every message. Such a sequence number if useful to prevent replay
attacks as well [7]. An alternative is to randomise the output transformation.

5.2 Constructions for MACs

MAC algorithms based on block ciphers have been proposed already in the late
seventies. Together with DES, CBC-MAC based on DES became very popular,
especially in the banking world. It has been standardized in several documents
comprising ANSI X9.9 [1], ANSI X9.19 [2], ISO 8731 [12], and ISO/IEC 9797
[13]. Only during the last years, a thorough security analysis has been performed.
The compression function of CBC-MAC has the following form:

Hi = EK(Hi−1 ⊕ xi) , 1 ≤ i ≤ t ,

with H0 = 0. An output transformation is needed to preclude the following
simple forgery: given hK(x), hK(x‖y), and hK(x′), one knows that hK(x′‖y′) =
hK(x‖y) if y′ = y ⊕ hK(x) ⊕ hK(x′).

One approach is for g to select the leftmost m bits. However, L.R. Knudsen
has shown that the simple attack can be extended to this case [16]. It requires
then approximately 2(n−m)/2 chosen texts and 2 known texts.

A stronger and widely used alternative is to replace the processing of the last
block by a two-key triple encryption (with keys K1 = K and K2); this is com-
monly known as the ANSI retail MAC, since it first appeared in ANSI X9.19:

g(Ht) = EK1
(DK2

(Ht)) .

Here D denotes decryption. This mapping requires little overhead, and has the
additional advantage that it precludes an exhaustive search against the 56-bit
DES key.

All these variants are vulnerable to the birthday forgery attack, that requires
a single chosen message and about 232 known messages (if DES is used with
m = 64). If m = 32, an additional 232 chosen messages are required. Note that
with a fast DES implementation on a PC, this number of texts can be collected
in a single day. Bellare et al. provide a proof of security for CBC-MAC [3], i.e.,
they establish a lower bound to break the system under certain assumptions on

Appeared in Cryptography and Coding, 6th IMA International Conference, Lecture
Notes in Computer Science 1355, M. Darnell (ed.), Springer-Verlag, pp. 270–282.

c©1997 Springer-Verlag

10

the block cipher. It almost matches the upper bound provided by the birthday
forgery attack.

For the ANSI retail MAC, 232 known texts allow for a key recovery requiring
3 ·2k encryptions, compared to 22k encryptions for exhaustive search [30]. If DES
is used, this implies that key recovery may become feasible. Another key recovery
attack needs only a single known text, but requires about 2k MAC verifications.
Moreover, it reduces the effective MAC size from min(m, 2k) to min(m, k). It
seems possible to preclude these key recovery attacks by introducing also a triple-
DES encryption in the first iteration, but further research is necessary to confirm
this.

An alternative to CBC-MAC is RIPE-MAC, that adds a feedforward [33]:

Hi = EK(Hi−1 ⊕ xi) ⊕ xi , 1 ≤ i ≤ t .

It has the advantage that the round function is harder to invert (even for someone
who knows the secret key). An output transformation is needed as well.

XOR-MAC is another scheme based on a block cipher [4]. It is a randomized
algorithm and its security can again be reduced to that of the block cipher. It
has the advantage that it is parallellisable and that it is incremental, i.e., small
modifications to the message (and to the MAC) can be made at very low cost.
The use of random bits clearly helps to improve security, but it has a cost in
practical implementations. Also, the performance is typically 30% to 50% slower
than CBC-MAC.

Note that cryptanalysis of the underlying block cipher can often be extended
to an attack on the MAC, in spite of the fact that an attacker obtains less
information than in conventional cryptanalysis on the ECB mode. Examples can
be found in the literature for linear and differential cryptanalysis of CBC-MAC
based on DES [26, 28].

6 Concluding remarks

The construction of a new cryptographic primitive (hash function, MAC algo-
rithm) based on an existing primitive (a block cipher) is a common paradigm in
cryptography. This requires a very good understanding of the security of both
primitives, and of additional assumptions that have to be made. For MAC al-
gorithm, significant progress has been made, both from the side of the attacks
(upper bound on the security level) and from the side of the constructions (lower
bound on the security level based on certain assumptions). For hash functions,
the cryptanalytic side has achieved some successes, and has resulted in new
constructions with some provable properties. However, important open prob-
lems remain such as the formalization of the security of single block length hash
functions.

It is likely that DES will be replaced in a few years by the AES (with a 128-
bit block size). It will then be possible to achieve a higher security level using
the existing constructions. However, it is an interesting open problem to improve
the security and performance of constructions that use the DES or other 64-bit
block ciphers.

Appeared in Cryptography and Coding, 6th IMA International Conference, Lecture
Notes in Computer Science 1355, M. Darnell (ed.), Springer-Verlag, pp. 270–282.

c©1997 Springer-Verlag

11

References

1. ANSI X9.9 (revised), “Financial Institution Message Authentication (Wholesale),”
American Bankers Association, April 7, 1986.

2. ANSI X9.19 “Financial Institution Retail Message Authentication,” American
Bankers Association, August 13, 1986.

3. M. Bellare, J. Kilian, P. Rogaway, “The security of cipher block chaining,” Ad-
vances in Cryptology, Proc. Crypto’94, LNCS 839, Y. Desmedt, Ed., Springer-
Verlag, 1994, pp. 341–358.

4. M. Bellare, R. Guérin, P. Rogaway, “XOR MACs: new methods for message authen-
tication using block ciphers,” Advances in Cryptology, Proc. Crypto’95, LNCS 963,
D. Coppersmith, Ed., Springer-Verlag, 1995, pp. 15–28.

5. M. Blaze, W. Diffie, R.L. Rivest, B. Schneier, T. Shimomura, E. Thompson,
M. Wiener, “Minimal key lengths for symmetric ciphers to provide adequate com-
mercial security. A Report by an Ad Hoc Group of Cryptographers and Computer
Scientists,” January 1996.

6. I.B. Damg̊ard, “A design principle for hash functions,” Advances in Cryptology,
Proc. Crypto’89, LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990, pp. 416–427.

7. D. Davies, W. Price, Security for Computer Networks, 2nd ed., Wiley, 1989.
8. H. Dobbertin, A. Bosselaers, B. Preneel, “RIPEMD-160: a strengthened version of

RIPEMD,” Fast Software Encryption, LNCS 1039, D. Gollmann, Ed., Springer-
Verlag, 1996, pp. 71–82.

9. FIPS 46, Data encryption standard, NBS, U.S. Department of Commerce, Wash-
ington D.C., Jan. 1977.

10. FIPS 180-1, Secure hash standard, NIST, US Department of Commerce, Washing-
ton D.C., April 1995.

11. W. Hohl, X. Lai, T. Meier, C. Waldvogel, “Security of iterated hash functions
based on block ciphers,” Advances in Cryptology, Proc. Crypto’93, LNCS 773,
D. Stinson, Ed., Springer-Verlag, 1994, pp. 379–390.

12. ISO 8731:1987, Banking – approved algorithms for message authentication, Part 1,
DEA, Part 2, Message Authentication Algorithm (MAA).

13. ISO/IEC 9797:1993, Information technology - Data cryptographic techniques - Data
integrity mechanisms using a cryptographic check function employing a block cipher
algorithm.

14. ISO/IEC 10118:1994, “Information technology – Security techniques – Hash-
functions, Part 1: General and Part 2: Hash-functions using an n-bit block cipher
algorithm,”.

15. L.R. Knudsen, “New potentially ‘weak’ keys for DES and LOKI,” Advances in
Cryptology, Proc. Eurocrypt’94, LNCS 950, A. De Santis, Ed., Springer-Verlag,
1995, pp. 419–424.

16. L.R. Knudsen, “Chosen-text attack on CBC-MAC,” Electronics Letters, Vol. 33,
No. 1, 1997, pp. 48–49.

17. L.R. Knudsen, X. Lai, B. Preneel, “Attacks on fast double block length hash func-
tions,” Journal of Cryptology, in print.

18. L.R. Knudsen, B. Preneel, “Hash functions based on block ciphers and quaternary
codes,” Advances in Cryptology, Proc. Asiacrypt’96, LNCS 1163, K. Kim and
T. Matsumoto, Eds., Springer-Verlag, 1996, pp. 77–90.

19. L.R. Knudsen, B. Preneel, “Fast and secure hashing based on codes,” Advances in
Cryptology, Proc. Crypto’97, LNCS 1294, B. Kaliski, Ed., Springer-Verlag, 1997,
pp. 485–498.

Appeared in Cryptography and Coding, 6th IMA International Conference, Lecture
Notes in Computer Science 1355, M. Darnell (ed.), Springer-Verlag, pp. 270–282.

c©1997 Springer-Verlag

12

20. X. Lai, J.L. Massey, “Hash functions based on block ciphers,” Advances in Cryp-
tology, Proc. Eurocrypt’92, LNCS 658, R.A. Rueppel, Ed., Springer-Verlag, 1993,
pp. 55–70.

21. S.M. Matyas, C.H. Meyer, J. Oseas, “Generating strong one-way functions with
cryptographic algorithm,” IBM Techn. Disclosure Bull., Vol. 27, No. 10A, 1985,
pp. 5658–5659.

22. R. Merkle, “Secrecy, Authentication, and Public Key Systems,” UMI Research
Press, 1979.

23. R. Merkle, “One way hash functions and DES,” Advances in Cryptology, Proc.
Crypto’89, LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990, pp. 428–446.

24. S. Miyaguchi, M. Iwata, K. Ohta, “New 128-bit hash function,” Proc. 4th Interna-
tional Joint Workshop on Computer Communications, Tokyo, Japan, July 13–15,
1989, pp. 279–288.

25. J.H. Moore, G.J. Simmons, “Cycle structure of the DES for keys having palin-
dromic (or antipalindromic) sequences of round keys,” IEEE Trans. on Software
Engineering, Vol. SE–13, No. 2, 1987, pp. 262–273.

26. K. Ohta, M. Matsui, “Differential attack on message authentication codes,” Ad-
vances in Cryptology, Proc. Crypto’93, LNCS 773, D. Stinson, Ed., Springer-
Verlag, 1994, pp. 200–211.

27. B. Preneel, R. Govaerts, J. Vandewalle, “Hash functions based on block ciphers: a
synthetic approach,” Advances in Cryptology, Proc. Crypto’93, LNCS 773, D. Stin-
son, Ed., Springer-Verlag, 1994, pp. 369–379.

28. B. Preneel, M. Nuttin, V. Rijmen, J. Buelens, “Cryptanalysis of the CFB mode
of the DES with a reduced number of rounds,” Advances in Cryptology, Proc.
Crypto’93, LNCS 773, D. Stinson, Ed., Springer-Verlag, 1994, pp. 212–223.

29. B. Preneel, P.C. van Oorschot, “MDx-MAC and building fast MACs from hash
functions,” Advances in Cryptology, Proc. Crypto’95, LNCS 963, D. Coppersmith,
Ed., Springer-Verlag, 1995, pp. 1–14.

30. B. Preneel, P.C. van Oorschot, “A key recovery attack on the ANSI X9.19 retail
MAC,” Electronics Letters, Vol. 32, No. 17, 1996, pp. 1568–1569.

31. M.O. Rabin, “Digitalized signatures,” in “Foundations of Secure Computation,”
R. Lipton, R. DeMillo, Eds., Academic Press, New York, 1978, pp. 155–166.

32. V. Rijmen, B. Preneel, “Improved characteristics for differential cryptanalysis of
hash functions based on block ciphers,” Fast Software Encryption, LNCS 1008,
B. Preneel, Ed., Springer-Verlag, 1995, pp. 242–248.

33. RIPE, “Integrity Primitives for Secure Information Systems. Final Report
of RACE Integrity Primitives Evaluation (RIPE-RACE 1040),” LNCS 1007,
A. Bosselaers and B. Preneel, Eds., Springer-Verlag, 1995.

34. P.C. van Oorschot, M.J. Wiener, “Parallel collision search with application to hash
functions and discrete logarithms,” Proc. 2nd ACM Conference on Computer and
Communications Security, ACM, 1994, pp. 210–218. Final version to appear in
Journal of Cryptology.

35. M.J. Wiener, “Efficient DES key search,” Technical Report TR-244, School of Com-
puter Science, Carleton University, Ottawa, Canada, May 1994. Presented at the
rump session of Crypto’93.

36. G. Yuval, “How to swindle Rabin,” Cryptologia, Vol. 3, No. 3, 1979, pp. 187–189.

Appeared in Cryptography and Coding, 6th IMA International Conference, Lecture
Notes in Computer Science 1355, M. Darnell (ed.), Springer-Verlag, pp. 270–282.

c©1997 Springer-Verlag

