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Abstract

We survey theory and applications of cryptographic hash functions, such as MD5
and SHA-1, especially their resistance to collision-finding attacks. We review defini-
tions, design principles, trace genealogy of standard hash functions, discuss generic
attacks, attacks on iterative hash functions, and recent attacks on specific functions.

1 Introduction

Hash functions, most notably MD5 and SHA-1, initially crafted for use in a handful
of cryptographic schemes with specific security requirements, have become standard
fare for many developers and protocol designers who treat them as black boxes with
magic properties. This practice had not been seriously challenged until 2004, since
both functions appeared to have withstood the test of time and intense scrutiny of
cryptanalysts. Starting last year, we have seen an explosive growth in the number and
power of attacks on the standard hash functions. In this note we discuss the extent to
which the hash functions can be thought of as black boxes, review some recent attacks,
and, most importantly, revisit common applications of hash functions in programming
practice.

The note assumes no previous background in cryptography. Parts of the text in-
tended for the more mathematically-inclined readers are marked with

∮
— the sign of

the contour integral—and typeset in a smaller font.

2 Theory of hash functions

In this section we introduce notation, define security properties of hash functions,
describe basic design principles of modern hash functions and generic attacks.

2.1 Notation

The following notation used in this note is standard in the cryptographic literature:
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{0, 1}n—the set of all binary strings of length n.
{0, 1}∗—the set of all finite binary strings.
A × B—the set of all pairs (v, w), where v ∈ A and w ∈ B.
H : A 7→ B—function H from set A to set B.
|w|—the length of string w.
w||v—concatenation of strings w and v.
w⊕v—bitwise XOR of binary strings w and v, which are presumed to be of equal
length.

For example, H : {0, 1}∗ ×{0, 1}ℓ 7→ {0, 1}n means a function H of two arguments,
the first of which is a binary string of arbitrary length, the second is a binary string of
length ℓ, returning a binary string of length n.

2.2 Definitions

The disconnect between theory and practice of cryptographic hash functions starts
right in the beginning—in the very definition of hash functions. In practice, the hash
function (sometimes called the message digest) is a fixed function that maps arbitrary
strings into binary strings of fixed length. In theory, we usually consider keyed hash
functions, as in the following definition:
Definition Let ℓ, n be positive integers. We call f a hash function with n-bit output
and ℓ-bit key if f is a deterministic function that takes two inputs, the first of arbitrary
length, the second of length ℓ bits, and outputs a binary string of length n. Formally,
H : {0, 1}∗ × {0, 1}ℓ 7→ {0, 1}n.

In this note we write the key as a subscript: Hk(x) is an expressive shorthand
for H(x, k). The key k is assumed to be known unless indicated otherwise (to avoid
confusion with cryptographic keys, which typically represent closely guarded secrets,
the hash function’s key is sometimes called the “index”).

We distinguish between three levels of security that hash functions may satisfy to
be useful in cryptographic applications. The definitions are framed as games that are
infeasible to win by a computationally-bounded adversary. The words “infeasible” and
“computationally-bounded” can be formalized in several ways, neither of which we find
entirely satisfying for the purpose of this note. Instead, we offer a semi-formal semantic
where we say that the problem is computationally infeasible if no program performing
less than T elementary operations can solve the problem with probability higher than
T/280. It corresponds to the so-called 80-bit security level, which is currently acceptable
for most applications. For further discussion on the appropriate level of security we
refer the reader to [LV01].
∮

We stress that both the game and the adversary are randomized. The probability of the

adversary’s success in winning the game is taken over all random choices, including the key of

the keyed hash function and the adversary’s own coin tosses. Usually we assume the uniform

distribution on the input, which is impossible to define when x is an arbitrary finite binary

string. In those case it is convenient to break the set of inputs into finite subsets, such as

strings of the same length.

2



Definition Hash function H is one-way if, for random key k and an n-bit string w, it
is hard for the attacker presented with k, w to find x so that Hk(x) = w.
Definition Hash function H is second-preimage resistant if it is hard for the attacker
presented with a random key k and random string x to find y 6= x so that Hk(x) =
Hk(y).
Definition Hash function H is collision resistant if it is hard for the attacker presented
with a random key k to find x and y 6= x so that Hk(x) = Hk(y).

The last definition is noticeably harder to formalize for keyless hash functions, which
explains why theorists prefer keyed hash functions.

It is easy to see that collision resistance implies second-preimage resistance. Strictly
speaking, second-preimage resistance and one-wayness are incomparable (the properties
do not follow from one another), although construction which are one-way but not
second-preimage resistant are quite contrived. In practice, collision resistance is the
strongest property of all three, hardest to satisfy and easiest to breach, and breaking
it is the goal of most attacks on hash functions.
Certificational weakness. Intuitively, a good hash function must satisfy other prop-
erties not implied by one-wayness or even collision-resistance. For example, one would
expect that flipping a bit of the input would change approximately half the bits of
the output (avalanche property) or that no inputs bits can be reliably guessed based
on the hash function’s output (local one-wayness). Failure to satisfy those or simi-
lar properties, such as infeasibility of finding a pseudo-collision, a free-start collision,
and a near-collision whose definitions are given in Section 5, is called a certificational

weakness.

Presence of certificational weaknesses does not amount to a break of a hash function
but is enough to cast doubt on its design principles.

2.3 Generic attacks

A generic attack is an attack that applies to all hash functions, no matter how good
they are, as opposed to specific attacks that exploit flaws of a particular design. The
running time of generic attacks is measured in the number of calls to the hash function,
which is treated as a black box.

It is not difficult to see that in the black box model the best strategy for inverting
the hash function and for finding a second preimage is the exhaustive search. Suppose
the problem is to invert Hk, i.e., given w, k find x, so that Hk(x) = w, where k is ℓ-bit
key and w is an n-bit string. The only strategy which is guaranteed to work for any
hash function is to probe arbitrary chosen strings until a preimage of w is hit. For a
random function H it would take on average 2n−1 evaluations of H. In the black-box
model the problem of finding a second preimage is just as hard as inverting the hash
function.

Finding collisions is a different story, the one that goes under the name of the
“birthday paradox.” The chances that among 23 randomly chosen people there are
two who share the same birthday are almost 51%. The better than even odds appear
to be much higher than the intuition would suggest, hence the name. Of course, there is
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nothing paradoxical (as in being absurd or self-contradictory) about the fact—between
23 people there are 253 pairs, each of which has a one-to-365 odds of being a hit.
The reason why the result appears counter-intuitive is because your chances of finding
among 22 people somebody with the same birthday as yours (not just someone else’s)
to split the cost of the birthday party are strongly against you. This explains why
inverting a hash function is much more difficult than finding a collision.

More careful analysis of the birthday paradox shows that in order to attain prob-
ability better than 1/2 of finding a collision in a hash function with n-bit output, it
suffices to evaluate the function on approximately 1.2 · 2n/2 randomly chosen inputs
(notice that ⌈1.2 ·

√
365⌉ = 23).

The running times of generic attacks on different properties of hash functions pro-
vide upper bounds on security of any hash function. We say that a hash function has
ideal security if the best attacks known against it are generic. Cryptanalysts consider
a primitive broken if its security is shown to be less than ideal, even though it may still
be sufficient for some applications. The generic attacks are summarized in Table 1.

Property Ideal security
One-wayness 2n−1

Second preimage-resistance 2n−1

Collision-resistance 1.2 · 2n/2

Table 1: Complexity of generic attacks on different properties of hash functions.

∮
A näıve implementation of the birthday attack would store 2n/2 previously computed el-

ements in a data structure supporting quick stores and look-ups. However, there is profound

imbalance between the cost of storage and computation. While 240 CPU cycles are dirt cheap,

capacity of high-end hard-drives is still below 240 bytes=1TB, and having commercially avail-

able computers with 1TB RAM is still several years away. It is therefore important to note

that a birthday attack can be run essentially memoryless (using Floyd’s cycle-finding algorithm)

with only a modest increase in the number of evaluations of the hash function.
∮

Another important parameter of an attack is whether the attack can be run distributively

or it requires a lengthy sequential computation. Indeed, the speed of a sequential algorithm

is limited by the frequency of the CPU, FPGA, or an integrated circuit; while the number

of units on which a parallelizable computation may be run is only limited by the adversary’s

budget. There exist collision-finding algorithms which can be efficiently parallelized.
∮

Further, it is sometimes convenient to push some of the computation to the pre-processing

stage, storing the results of the off-line computation to facilitate on-line processing. Such

rebalancing acts are called time-memory tradeoffs. They are often expressed as equations in

two variables: T—time of on-line processing, M—storage requirement. For instance, Hellman’s

time-memory tradeoff for inverting hash functions is M2T = N2, where N = 2n is the size of

the hash function’s image. Its sweet spot is M = T = 22/3n, although the preprocessing stage

takes time proportional to 2n.
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2.4 Constructions

Provably secure constructions of cryptographic hash functions consist of two ingredi-
ents, which may be studied independently of each other. The first component is a
compression function that maps a fixed-length input to a fixed-length output. The
second component of a construction is a domain extender that, given a compression
function, produces a function with arbitrary-length input.
Compression function. From the theorist’s point of view, a one-way function is the
most basic primitive, from which many other cryptographic tools can be derived. A
seminal result due to Simon [Sim98] provides strong evidence that collision-resistant
hash functions cannot be constructed based on one-way functions. Instead, we design
collision-resistant hash functions based on another cryptographic primitive—a block
cipher.

A block cipher is a keyed permutation E : {0, 1}n×{0, 1}k 7→ {0, 1}n. Technically, a
block cipher already compresses its input—it maps k+n bits to n bits. As is, however,
the block cipher is not even one-way: to invert E on w, fix any key k0 and decrypt
w under this key. If w decrypts to x, then E(k0, x) = w. Nonetheless, as many as 12
simple constructions based on a block cipher result in a collision-resistant compression
function (although there are many more that do not, see [BRS02]). Two schemes most
often used in hash functions are the following:

Davies-Meyer: H(x, y) = Ey(x) ⊕ y
Miyaguchi-Preneel: H(x, y) = Ex(y) ⊕ x ⊕ y.

Proofs of security of these and similar block cipher-based constructions assume that
the underlying cipher is indistinguishable from a certain abstraction, called the ideal
cipher, which goes beyond the standard security requirements for block ciphers.
Domain extender. The domain extender is a generic construction that transforms a
compression function with fixed-length input into a hash function with arbitrary input.
The simplest and most commonly used domain extender is called the Merkle-Damg̊ard
construction and it works as follows:

Given: compression function C : {0, 1}n × {0, 1}m 7→ {0, 1}n;
n-bit constant IV.

Input: message M
1. Break M into m-bit blocks M1,. . . ,Mk, padding if necessary;
2. Let Mk+1 be encoding of |M |;
3. Let h0 = IV;
4. For i = 1 to k + 1 let hi = C(hi−1, Mi);
5. Output hk+1.

The construction iterates the compression function C: the output of C, together
with the next block of the message, becomes the input to the next application of C.
The hash of the last block, which contains an encoding of the length of the message, is
the hash of the entire message. The temporary storage of the compression function’s
output, hi, is called the chaining variable or the internal state (see Figure 1).
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IV = h0 h1 h2 hk−1 hk hk+1 = H(M)

M1 M2 Mk Mk+1

. . . CCCC

Figure 1: Merkle-Damg̊ard construction.

There is a certain flexibility in the first two steps of the Merkle-Damg̊ard construc-
tion. Any encoding will do as long as it satisfies the following three conditions:

– M is encoded as an integral number of m-bit blocks;
– the encoding is collision-free;
– the length of M is encapsulated in the last block.

The Merkle-Damg̊ard construction is compatible with streaming APIs, where a
message is fed one block at a time into a cryptographic search engine. Its length need
not be known until the last block becomes available. On the other hand, updating
even one bit of the message may trigger recomputation of the entire hash.

If the compression function is collision-resistant, so is the resulting construction.
However, the Merkle-Damg̊ard construction produces a function with many structural
properties, creating a number of unexpected vulnerabilities as illustrated in Section 4.

In fact, the Merkle-Damg̊ard construction is the single most important reason why
it is wrong (dangerous, reckless, ignorant) to think of hash functions as black
boxes. The iterative construction was designed to meet a very modest goal, that of
extending the domain of a collision-resistant function, and should not be expected to
provide security guarantees beyond that.

2.5 Algebraic hash function
∮

Collision-resistant hash functions can be based on the same hardness assumptions as public-

key cryptography. Such functions are largely confined to theoretical papers, being algebraic

and therefore orders of magnitude slower than ad-hoc or block cipher-based hash functions.

The main reason why we discuss algebraic hash functions in this note is to correct the popular

reference [Sch95, Section 18.12], which does not give two standard constructions and describes

two incorrect ones instead.∮
Discrete logarithm problem in group G of prime order p is to solve the equation gx = h for

x given two group elements g, h ∈ G. Discrete-logarithm based hash function can be designed
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as follows:
H(x, y) = gxhy,

where g, h are elements of a group where the discrete logarithm problem is hard. It is easy to

verify that if the inputs to H are defined modulo p, finding a collision amounts to solving the

discrete logarithm problem.∮
The RSA-based hash function is defined for arbitrary strings. If N = pq is product of two

unknown primes, and g 6= 1 is an element co-prime with N , then the function defined as

H(x) = gx mod N

is collision-resistant under the hardness of factoring N .

3 Practical Hash Functions

This section covers hash functions that are most likely to be used in practice: MD5,
SHA-1, SHA-256, Whirlpool and their close relatives. For their detailed description we
refer the reader to the documents issued by standardization bodies.
MD4 and MD5. MD4 was proposed by Ron Rivest in 1990 and MD5 [Riv92] followed
shortly thereafter as its stronger version. Their design had great influence on subse-
quent constructions of hash function. The letters “MD” stand for “message digest” and
the numerals refer to the functions being the fourth and fifth designs from the same
hash-function family. MD5 follows the design principles outlined in Section 2.4: its
compression function is (implicitly) based on a block-cipher and the domain extender
is the Merkle-Damg̊ard construction.

The compression function of MD5 operates on 512-bit blocks further subdivided into
sixteen 32-bit subblocks. The size of the internal state (i. e., the chaining variable) and
its output are both 128 bits. One important parameter of the compression function
is the number of rounds—the number of sequential updates of the internal state. The
compression function of MD5 has 64 rounds organized in an unbalanced Feistel network
(for comparison, DES is a Feistel cipher with 16 rounds) each using a 32-bit message
subblock to update the internal state via a non-linear mix of boolean and arithmetic
operations. Every 32-bit subblock is used four times by the compression function.

MD5 allocates 64 bits in the last block to encode the message’s length and it pads
the message so that its length is congruent to 448 modulo 512. The padding procedure
expands the message by at least one bit, so the largest message fitting into one block
is 447 bits.
SHA-0 and SHA-1. The Secure Hash Algorithm (SHA) was initially approved for
use with the Digital Signature Standard (DSS) in 1993 [NIST00]. Two years later the
standard was updated to become what is currently known as SHA-1 [NIST95]. The
first version of SHA is referred in the cryptographic literature as SHA-0, although
it has never been its official designation. SHA-1 differs from SHA-0 by exactly one
additional instruction, which is nonetheless extremely important from the cryptanalytic
perspective. Since there were no reasons to prefer the initial version of the standard,
SHA-1 replaced SHA-0 in all but most antiquated applications.
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SHA-1 is closely modeled after MD4, taking some cues from MD5. It uses the same
padding algorithm, breaking the message into 512-bit blocks and encoding the length
as a 64-bit number. The size of its internal state and its output length are 160 bits,
which is substantially longer than MD5’s 128 bits. Although its round functions are
simpler and less varied than those of MD5, there are more of them—80 instead of 64.
SHA-1 uses a more complex procedure for deriving 32-bit subblocks from the 512-bit
message. If one bit of the message is flipped, more than a half of the subblocks get
changed (as opposed to just four in the case of MD5). It is interesting to note that
the cipher, which operates inside the compression function, has never been given any
officially recognition. It did not stop the cryptanalytic community, which dubbed the
cipher SHACAL, from isolating and studying it (no attacks have been found).
SHA-224,256,384,512. The new standard issued by NIST in August 2002 adds
three members to the SHA family of functions [NIST02], followed by one more in 2004.
The connections between the NIST-approved functions are following: SHA-256 and
SHA-512 have similar designs, with SHA-256 operating on 32-bit words and SHA-512
operating on 64-bit words. Both designs bear strong resemblance to SHA-1, although
they are much closer to each other than to their common predecessor. SHA-384 is a
trivial modification of SHA-512, which consists of trimming the output to 384 bits and
changing the initial value of the chaining variable. A change notice issued in February
2004 defined SHA-224 as a truncated version of SHA-256 with a different initial value.
The new hash function is to provide 112-bit level of security, on par with triple DES.

The most important difference between the three new functions and SHA-1 is the
new message schedule (procedure for deriving subblocks from one block of the message).
Whirlpool. Whirlpool was designed by Paulo Barreto and Vincent Rijmen (the latter
is of AES’s fame) and submitted in response to the call for cryptographic primitives
issued by NESSIE (New European Schemes for Signature, Integrity, and Encryption)
in 2000. Whirlpool was selected together with SHA-256,384,512 as part of NESSIE’s
portfolio.

Whirlpool’s design combines the Merkle-Damg̊ard domain extender with a blockcipher-
based compression function. The blockcipher is a variant of AES, which is radically
different from SHACAL, and it is converted into a compression function using the
Miyaguchi-Preneel construction (Section 2.4). Whirlpool does not target any particu-
lar architecture, although 32- or 64-bit processors permit some optimizations impossible
in 8-bit implementations.

We summarize in Table 2 parameters of the standard hash functions. Table 3
presents performance of some of the hash functions on selected processors compiled
from two studies [P+03, NM02]. The first report considered portable C implementa-
tions of the hash functions limiting optimization to a choice between different combina-
tions of the compiler’s options. The second study undertook a painstaking optimization
of the assembly language code for Pentium III, taking advantage of the MMX registers
and carefully orchestrated pipeline scheduling.
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Name Block size Word size Output size Rounds Year of the
(bits) (bits) (bits) standard

MD4 512 32 128 48 1990
MD5 512 32 128 64 1992
SHA-0 512 32 160 80 1993
SHA-1 512 32 160 80 1995
SHA-224 512 32 224 64 2004
SHA-256 512 32 256 64 2002
SHA-384 1024 64 384 80 2002
SHA-512 1024 64 512 80 2002
Whirlpool 512 — 512 10 2003

Table 2: Standard hash functions in a glance.

Name PIII Xeon PIII
C, Visual C 6.0 C, gcc 3.2 assembly, MASM 6.15

MD4 4.8 6.4 —
MD5 7.2 9.4 3.7
SHA-1 19 25 8.3
SHA-256 56 39 20.6
SHA-512 80 135 40.2
Whirlpool 82 112 36.5

Table 3: Performance in cycles/byte. Sources— [P+03] (C code) and [NM02] (assembly).
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4 Generic Attacks

In this section we discuss generic attacks against schemes that use iterative hash func-
tions based on the Merkle-Damg̊ard construction, highlighting pitfalls of using such
functions as black boxes, and review specific attacks against standard hash functions.
Black box abstraction. Software engineers and researchers alike are trained to re-
duce complexity of systems by thinking of the systems’ components as “black boxes”—
modules with well-defined interface, separating functionality from implementation de-
tails. It is also common to treat programming objects as real-life models of mathemat-
ical abstractions. For instance, we use the double type to represent real numbers, or
the rand() function as a source of randomness. This pragmatic approach is productive
as long as its limits are well understood. To continue our example, double represents
reals with a certain machine-dependent precision and rand() from the standard li-
brary has a relatively short cycle—both facts are well documented and known to most
C/C++ developers.

It is convenient (but wrong!) to think of a concrete hash function such as SHA-1
as a real-world instantiation of a random function. One important characteristic of a
random function is that the only way to learn its value on some input is to evaluate
the function on precisely this input. As we will show in this section, this is not the case
for iterative hash functions (i. e., functions based on the Merkle-Damg̊ard paradigm).

We stress that the generic attacks in this sections are attacks against schemes that
uncritically use iterative hash functions, not against hash functions themselves.

4.1 Commitment scheme

Consider an auction, where the parties submit their bids in sealed envelopes to the
auctioneer, who opens the envelopes and announces the highest bidder. If the bidder
is to pay her bid (as would be the case in a first-price auction), she is highly motivated
to bid just a tad over the runner-up. An unscrupulous auctioneer may leak the infor-
mation about the bids before the auction clears, letting an accomplice to overbid other
participants by a minimal amount. These scams are well documented in proceedings
of mafia trials [CC02].

One possible solution to this problem is to remove the trust from the auctioneer
by making the auction process more transparent. Let the parties publicly commit to
their bids, before disclosing them (also in public). A secure commitment scheme binds

the committed party to a value without leaking any information to the auctioneer or
to anyone else.

Hash functions are often suggested as a computationally efficient way of construct-
ing commitments schemes: a commitment to x is f(x), where f is a secure hash func-
tion. A security argument may go along the following lines: If f is one-way, recovering
x from f(x) is infeasible, which implies the hiding property; if f is collision-resistant,
the commitment can only be opened to x (otherwise the cheating party is able to find
a collision). The first argument is clearly inadequate. One-wayness is only guaranteed
in the absence of any prior information, which is plainly false in the case of the input
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as structured as an auction bid. In particular, a curios adversary may go through all
possibilities for the value of the bid, applying f to them and comparing the result with
the committed value.

The other problem is more subtle. Although it may not be possible to open the
same bid to a different value, what if it were possible to create another commitment
that opened to a related value? The definition of collision-resistant does not preclude
that attack, and, as we shall see, practical hash functions do have this vulnerability.

Finally, a cheating party may just copy someone else’s bid, which might be suffi-
cient in some scenarios. Therefore, the commitment scheme must be randomized to
avoid premature leaking of information by exhaustive search and it has to include the
committer’s identity.

4.2 MAC construction

A common application of cryptographic hash functions is to use them as building blocks
for message authentication code (MAC) constructions. A MAC is a keyed hash function
that may be used to verify the integrity and authenticity of information. Consider two
players, Alice and Bob, who share a secret key k. Whenever Alice transmits a message
M to Bob, she appends an authentication tag v = Hk(M), which is recomputed on
arrival and checked by Bob against the received value. The goal is to prevent the
adversary from forging a message-tag pair that would be accepted by Bob and fool
him into believing that the message originated from Alice.

A secure MAC is a keyed hash function with the property that the adversary capable
of mounting an active attack—querying the function on inputs of his own choosing—is
not able to evaluate the function on any other input with a non-negligible probability
of success.

Constructing a MAC given an ideal hash function I is a no-brainer—define Hk(M) :=
I(k||M), where || denotes string concatenation. It is easy to verify that Hk is a perfect
MAC. Indeed, unless the adversary gets hold of the key k, he is not able to evaluate Hk

himself, and no amount of valid MACs output by Alice and Bob helps the adversary
to find k faster than by exhaustive search.

What if we instantiate the ideal function I with SHA-1? Assume for concreteness
that the length of the key k is 80 bits and the adversary intercepts a message M of
length 256 bits with a valid 512-bit tag t. By definition the tag is equal to

t = SHA1(k||M) = C(k||M || 10 . . . 0
︸ ︷︷ ︸

112 bits

|| 0 . . . 0101010000
︸ ︷︷ ︸

64 bits

),

where C is the compression function of SHA-1. To forge a valid MAC tag, construct
a new message M ′, which includes M , 112 bits of padding, the 64-bit encoding of
336 followed by arbitrary text T . The new message M ′ is thus defined as M ′ =
M ||10 . . . 0101010000||T . Recall the Merkle-Damg̊ard construction and consider its
effect on k||M ′:

SHA1(k||M ′) = C(C(k||M ||10 . . . 0101010000), T ||padding + length) =

C(t, T ||padding + length).
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In other words, we may compute a valid tag on M ′ by applying the compression
function to t, T and some padding, all of which are known! Therefore, the näıve MAC
construction based on an iterative hash function is totally broken, although it may be
proved secure using the black box abstraction.

4.3 Security of cascaded hash functions

A generic collision-finding attack takes time of the order of 2n/2, where n is the length
of the hash output. Suppose we have two functions G, H : {0, 1}∗ 7→ {0, 1}n, each
having ideal security 2n/2, and we would like to construct a collision-resistant function
with security 2n. An obvious solution is to consider the function

F (M) := G(M)||H(M),

which has output length 2n. Indeed, if G and H are ideal, so is F , hence it has 2n

security against a collision-finding attack. We claim that this reasoning fails if one of
the two functions is iterative.

Assume that one of the two hash functions, say G, is based on the Merkle-Damg̊ard
construction. Let C be the compression function of G. Consider a generic collision-
finding attack on one application of the compression function (Section 2.3). In time

2n/2 it finds two messages M
(0)
1 and M

(1)
1 so that h1 = C(h0, M

(0)
1 ) = C(h0, M

(1)
1 ),

where h0 = IV. Repeat the process, using h1 instead of h0. After k iterations we have
a list of k pairs satisfying

C(hi, M
(0)
i+1) = C(hi, M

(1)
i+1) = hi+1, where 1 ≤ i ≤ k.

The total running time of this attack is k2n/2, as expected. More remarkably, however,
is that we now possess a treasure trove of collisions. Any message that has the form

M
(b1)
1 ||M (b2)

2 || . . . ||M (bk)
k , where b1, . . . , bk ∈ {0, 1}, hashes down to hk (see Figure 2).

There are 2k such messages, many times more than one would be able to find in time
k2n/2 had the function G been an ideal hash.

Let k = n/2. Making no assumptions about the internal structure of function H, the
birthday paradox (Section 2.3) guarantees that with high probability there is a collision

under function H among 2k = 2n/2 messages of the form M
(b1)
1 ||M (b2)

2 || . . . ||M (bk)
k . By

construction, all of these messages already collide under G (they all hash to hk), hence
the pair colliding under H is also a collision in F .

We demonstrated that a cascading hash function has security less than n2n/2, if
one of the two functions it is composed of is iterative. The attack was published by
Antoine Joux in 2004 [Jou04].

Although the attack is strikingly elegant, it is fairly straightforward. A collection
of several messages hashing to the same value is called a multi-collision. The ideal
security of a hash function with an n-bit output against m-way collision finding attack is
proportional to 2n(m−1)/m. The argument above demonstrates that the multicollision-
resistance of an iterative hash function is much smaller than the ideal security—for
m = 2k we produced an m-way collision in time k · 2n/2. Joux’s ingenuity was turn
this observation into an efficient attack on a well-known construction.
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IV = h0 h1 h2 hk−1 hk hk+1

M
(0)
1 ,M

(1)
1 M

(0)
2 ,M

(1)
2 M

(0)
k ,M

(1)
k Mk+1

. . .

CCCC

Figure 2: Joux attack.

4.4 Meaningful collisions

Although hash functions are expected to be collision resistant, an actual collision-
finding attack is often written off as “theoretical” and “irrelevant in practice,” since
the colliding strings are almost always meaningless and most certainly would be rejected
by any natural protocol. It is therefore reasoned that should the adversary prevail in
finding a collision, he would have hard time compromising any real system. We disagree
with this argument.

In this section we describe two scenarios in which collision-finding attacks on the
compression function of an iterative hash function may be converted into collisions of
perfectly meaningful messages.
Poisoned block attack. Recall that the Merkle-Damg̊ard construction iterates the
compression function of the form C : {0, 1}n ×{0, 1}m 7→ {0, 1}n. Suppose there exists
an algorithm that given x of length n bits finds two m-bit strings M and M ′ such
that C(x, M) = C(x, M ′). Most attacks on the real world hash functions do just that:
since the Merkle-Damg̊ard construction starts with setting h0 := IV, where IV is a
constant hard-wired into the scheme, the attacker essentially has no control over the
first argument of the function C.

Consider a message M = M1||M2|| . . . ||Mk formatted into m-bit blocks. Set h0 :=
IV and hi := C(hi−1, Mi). Fix some j ∈ {0, . . . , k} and find two strings N and N ′ such
that C(hj , N) = C(hj , N

′). It is easy to check that the two messages that differ in the
jth block

M = M1|| . . . ||Mj−1||N ||Mj+1|| . . . ||Mk,

M = M1|| . . . ||Mj−1||N ′||Mj+1|| . . . ||Mk

collide under the hash function built based on C.
Notice that although N and N ′ may be complete gibberish, they are now part of

much longer messages that can be carefully constructed in order to inconspicuously
accommodate them.
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We call this attack the “poisoned block attack” to emphasize the fact that it works
in the block level, which is an artifact of the Merkle-Damg̊ard construction.

The effectiveness of the attack was demonstrated by Magnus Daum and Stefan
Lucks in 2005, who produced two valid Postscript files with identical MD5 hashes [DL05].
Their attack makes use of the following Postscript construction:

(R1) (R2) eq {instruction set 1} {instruction set 2} ifelse

This Postscript code executes the first instruction set if R1 = R2, otherwise the second
instruction set is run. To launch the attack, align the message so that the poisoned
block is inside R1, and set the constant R2 to contain the other element of the colliding
pair. By switching between R1 and R2 in the first argument of the boolean formula,
the attacker controls the execution path, while keeping the value of the hash function
unchanged.
∮

X.509 certificate. The attack of Arjen Lenstra et el. [LWW05] allows one to construct

two X.509 public key certificates [H+02] that collide under MD5. Normally, a certificate issued

by a trusted certification authority (CA) binds a subject’s public key to its identity, and

guarantees that the subject owns the associated private key. The binding is asserted by having

the CA digitally sign a specially formatted message that includes, among other things, the

subjects’s identity and its public key. Even though the standard does not specify an exact

signature scheme, most common signature standards hash the message using some dedicated

hash function as their first step (see Section 6.1). Therefore, if one is able to produce two X.509

messages that collide under the hash function used by the signature scheme, the semantic of

the certificate is compromised: the CA effectively issues a certificate on two public keys, one

it has examined and one it has not. Although the attack does to a certain extent undermine

credibility of the certification process, it is less damaging than it would appear, since both

public keys must be created by the same entity (hence the binding property is still preserved).
∮

At a technical level, the attack works by constructing two RSA moduli with known factor-

ization that share a common postfix. The poisoned block, as in the attack above, consists of

one of the two distinct prefixes, computed by a collision-finding algorithm. The attack allows

to efficiently find such moduli of length 2048 bits together with their prime factors. The prime

factors are unbalanced, i.e., in contrast with regular RSA, where p and q have the same length

(for 2048-bit RSA it would be 1024 bits each), the prime factors generated by the attack are

512- and 1536-bit long. RSA with unbalanced factors is still believed to be secure.

5 Specific Attacks

Table 4 summarizes attacks on standard hash functions that appeared in the public
literature as of October 2005. Some of the attacks are trivial to interpret, as they
expose collisions in the hash function, some call for more definitions.
Definition We say that (h, x) and (h′, x′) is a pseudo-collision for compression function
C : {0, 1}n × {0, 1}m 7→ {0, 1}n if C(h, x) = C(h′, x′) and (h, x) 6= (h′, x′).

A pseudo-collision for a compression function C invalidates the proof of the Merkle-
Damg̊ard construction (Section 2.4) that states that if the compression function C is
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collision-resistant, so is the hash function H based on C. It does not, however, translate
into an attack on H, since the attacker does not directly control the value of the chaining
variable (first argument of the compression function).
Definition We say that (h, x) and (h, x′) is a free-start collision for compression func-
tion C : {0, 1}n × {0, 1}m 7→ {0, 1}n if C(h, x) = C(h, x′) and x 6= x′.

Notice that a free-start attack is stronger than a pseudo-collision attack, since the
attacker is forced to use the same value of the chaining variable for both colliding
arguments in the free-start attack. This attack still falls short of a collision-finding
attack on C-based hash function H for the same reason as before—the Merkle-Damg̊ard
paradigm fixes the initial value of the chaining variable, which is unlikely to coincide
with the value anticipated by the adversary, and subsequent values of the chaining
variables cannot be easily chosen either.
Definition We say that x and x′ is a near-collision for the hash function H if the
Hamming distance between H(x) and H(x′) is small (typically, a few bits).

Once again, this attack is not as strong as a collision finder, although it sometimes
serves as a precursor to a full attack (as was the case of SHA-0).

Reduced-round hash functions are weaker primitives that share important charac-
teristics with their full-round variants. Cryptanalysts often attack reduced-round hash
functions first since such attacks may provide insight into potential attack vectors and
can be tested using modest computational resources.

hash
attack

author type complexity year

MD4
Dobbertin collision 222 1996
Wang et. al collision 28 2005

MD5
dan Boer & Bosselaers pseudo-collision 216 1993
Dobbertin free-start 234 1996
Wang et. al collision 239 2005

SHA-0

Chabaud & Joux collision 261 (theory) 1998
Biham & Chen near-collision 240 2004
Biham et. al collision 251 2005
Wang et. al collision 239 2005

SHA-1

Biham et. al collision (40 rounds) very low 2005
Biham et. al collision (58 rounds) 275 (theory) 2005
Wang et. al collision (58 rounds) 233 2005
Wang et. al collision 263 (theory) 2005

Table 4: Attacks on standard hash functions.
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6 Applications

Applications of hash functions are abundant in cryptography and programming prac-
tice. We describe several scenarios, which can be used as models for assessing security
of real-life applications.

6.1 Digital signatures

Historically, digital signatures were the first application of cryptographically secure
hash functions. Hash functions serve a dual role in practical signature schemes: they
expand the domain of messages that can be signed by a scheme and they are an essential
element of the scheme’s security.

The first role arises from the fact that it is much easier to design a signature scheme
which is secure for signing messages of a fixed length. Consider, for example, the RSA
scheme, where the signature of a message 0 ≤ M < N is σ(M) = Md mod N . Notice
that the restriction that 0 ≤ M < N is necessary, since σ(M) = σ(M +N). A collision-
resistant hash function that hashes arbitrary-length strings into numbers between 0 and
N lets the signer sign any message M by exponentiating (raising to a secret power)
the hash of the message σ(H(M)) = H(M)d mod N .

This is a generic mechanism that transforms any signature scheme good for signing
messages of a fixed length and a collision-resistant hash function into a signature scheme
that can handle arbitrary-length messages. The mechanism is called the hash-and-sign
paradigm and is the basis for all modern practical signature schemes.

It is also quite remarkable that virtually all practical signature schemes are either
outright insecure or lack proof of security in any reasonable model for signing even
fixed-length messages if the message is not hashed. For instance, there is a trivial
attack against the RSA signature scheme without a hash: any valid signature C =
Md mod N enables the attacker to compute a signature on M2 mod N , which is
C2 mod N = (M2)d mod N . The second role of hash functions is to prevent this or
similar attacks. It is not well understood which properties of the hash function (akin
to one-wayness or collision-resistance) are sufficient to fulfil this role.

A rare example of a signature scheme that uses a hash function only for domain
extension (i.e., it does not require a hash function for signing short messages) is the
Cramer-Shoup signature scheme [CS00].

For any hash-and-sign signature scheme, such as FIPS-approved RSA, DSA, and
ECDSA [NIST00], a practical collision-finding attack on the underlying hash function
is devastating. Indeed, if the attacker can prepare two documents M1 and M2, whose
hashes are identical, then a hash-and-sign signature on M1 is also a valid signature on
M2: σ(H(M1)) = σ(H(M2)). It means that if the attacker can obtain a signature on
M1, he automatically gets a signature on M2, which the signer has never examined and
certainly did not expect to sign.∮

The hash-and-sign paradigm can be symbolically represented as σ(H(M)), where H is a
hash function and σ(·) is the output of a signature scheme. It is imperative that the hash
function be collision-resistant if we are to stay within this paradigm. Alternatively, we may
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combine a signature scheme with a keyed hash function satisfying the following definition:
Definition We say that the keyed function H : {0, 1}∗ × {0, 1}ℓ 7→ {0, 1}n is target-collision

resistant (TCR) if it is hard for the attacker to win the following game:

1. The attacker chooses x ∈ {0, 1}∗.
2. A random key k is chosen from {0, 1}ℓ.
3. The attacker outputs y ∈ {0, 1}∗. The game is won if and only if Hk(x) = Hk(y).

∮
Consider the following signature scheme, symbolically represented by (k, σ(k||Hk(M)).

To sign a message M , the signer generates a random key k and signs the concatenation of

k||Hk(M). The signature is then constructed as a pair that consists of k and σ(k||Hk(M)). It

is easy to verify that such a signature scheme is secure as long as the hash function is TCR

and σ(·) is unforgeable for messages of length n.
∮

There is compelling theoretical evidence that TCR hash functions might be easier to con-

struct than keyless collision-resistant hash functions in the mold of MD5 or SHA-1, although

no standard TCR functions currently exist.

6.2 MAC

Message-authentication code (MAC), introduced in Section 4.2, is a keyed hash function
satisfying certain cryptographic properties. Not surprisingly, a MAC can be based on
a collision-resistant keyless hash function (although a näıve way of doing so can be
easily broken, as described in Section 4.2). In fact, the most commonly used MAC
construction, called HMAC, falls into this category. Both TLS and IPSec standards
suggest using HMAC based on either MD5 or SHA-1. Assuming that H is a collision-
resistant hash function, HMAC with secret key k ∈ {0, 1}ℓ is defined as follows:

HMACk(M) = H(k ⊕ c1||H(k ⊕ c2||M)),

where c1 and c2 are two ℓ-bit constants.
HMAC is provably secure under the assumption that H is collision-resistant and

the compression function C(h, x) is pseudo-random if h is unknown. None of the
existing attacks on hash functions works if the initial part of the hash function’s input
is unknown, although such attacks are impossible to rule out in the future.

It is important to note that MAC can be based on other primitives than collision-
resistant hashes. One recently standardized construction, CMAC, proposes to use a
block cipher, such as AES, in the CBC mode [NIST05]. Another construction, which
can be as fast as 1.5 cycles/byte (cf. Table 3), is called UMAC and currently exists in
the form of an Internet draft; its RFC is forthcoming [B+05].

6.3 Password tables

A common method of client authentication is to require the client to present a password
previously registered with the server. Storing passwords of all users on the server poses
an obvious security risk. Fortunately, the server need not know the passwords—it may
store their hashes (together with some salt to frustrate dictionary attacks) and use the
information to match it with the hashes of alleged passwords [MT79].
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With this scheme in place, the adversary succeeds in breaking into the system if he
is able to construct any string that has the same hash as any of the original passwords.
This should be difficult even if the adversary has access to the password file. It is
easy to see that if the hash function is one-way on the set of potential passwords (say,
alpha-numeric strings of some reasonable length concatenated with salt), the attacker
is forced to do exhaustive search.

Inverting a hash function is harder (and quite different) from finding a collision in
the same function. With the exception of MD4, whose reduced-round version has been
shown to be invertible, one-wayness of other standard hash functions has not been
compromised.

6.4 Key derivation, GUID, hash tables

One common use of hash functions is to “destroy” any structure that may exist in the
input, while preserving most of its entropy. Validity of using hash functions for entropy
extraction is not based on their cryptographic properties but rather on our belief that
a good hash function destroys most of the dependencies that may exist in the bits of
its input.
Key derivation. Consider, for example, the Diffie-Hellman key exchange protocol.
Alice and Bob exchange values of ga and gb for some g, which is an element of a
group G of order p. Both Alice and Bob can now compute their shared secret gab,
sometimes called the premaster secret. Under some well-defined hardness assumptions,
any eavesdropper does not know anything about gab other than the fact that gab ∈ G.
Can Alice and Bob use gab directly as their shared secret key? The answer depends on
the group representation, and likely to be no. Indeed, for many cryptographic groups
(such as the first two Oakley groups [HC98]) the length of a group element is much
longer than its order p. Security of most keyed cryptographic primitives is argued under
the assumption that the key is a truly random binary string of some fixed length. An
element of group G cannot possibly satisfy the assumption if the size of the group is
smaller than its representation.

We need a method that would “extract” entropy in the following scenario: given
an element x chosen uniformly at random from S ⊂ {0, 1}n, where 2m ≤ |S| < 2n,
compute a string h(x) ∈ {0, 1}m such that h(x) is near-uniform in {0, 1}m. If the
size of S is sufficiently close (but no less than) 2m, h(·) transforms a high-entropy but
unusable distribution (S may be only a small fraction of {0, 1}n) into a much more
useful distribution with almost the same entropy.

Although there exists a provable method (see the end of the section) for entropy
extraction with near-optimal parameters, in practice we content with applying a hash
function. That a concrete hash function extracts entropy is a heuristic, unprovable
in theory but extremely reliable in practice. For example, the TLS protocol [DA99]
takes a conservative approach of XORing together outputs of MD5- and SHA-1-based
HMACs (Section 6.2) to derive a master secret from the premaster secret and public
randomness.
UUID/GUID. A Universally Unique Identifier (UUID), also known as Globally Unique
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Identifier (GUID), is a 128-bit long string which is unique (with extremely high proba-
bility) across space and time [LMS05]. Early versions of the standard encapsulated an
accurate clock reading for temporal uniqueness and an IEEE 802 address for spacial
uniqueness. This approach was rightfully criticized for unnecessarily exposing the time
and place of the identifier’s generation, which can lead to a privacy compromise (as it
did on at least one occasion, when the Melissa worm was traced back to its origin via
a GUID it carried).

The current version of the standard allows using a hash function (such as MD5
or SHA-1) for privacy protection as well as for UUID generation in the absence of a
unique network address. In order to generate a UUID, one can compose a “node ID”
from a variety of sources, each of which may be guessable or repetitive, but possessing
together enough entropy to ensure both privacy and uniqueness. The UUID is based
on the output of the hash function applied to the node ID.
Hash tables. A hash table is a data structure that supports efficient store and look-up
operations. Many variants of hash tables exist [CLRS01, Chapter 11]; here we discuss
one of the simplest. Internally the hash table is an array of pointers of size N . To
store a key-value pair (k, v), the hash table computes H(k) = i that maps the key to a
number between 0 and N − 1, and stores the pair in the ith entry of the array. If the
entry is already occupied, the pair is added to the list associated with the entry (other
collision-resolution strategies are possible and work well in practice).

The only requirement for the hash function H is that it should minimize the number
of collisions (keys mapped to the same array’s entry) on a typical input. The output of
a hash function is a number between 0 and N − 1 (since the array must fit in memory,
N is likely to be less than 240). If H is based on a cryptographic hash function, such
as in this example:

H(k) = MD5(k) mod N,

then finding collisions in H is only marginally harder than doing so for a non-cryptographic
function with similar parameters. Because cryptographically strong hash functions im-
pose a substantial computational overhead without adding any tangible performance
guarantees, we do not recommend using them in hash tables implementations.
∮

A non-cryptographic solution to the problem of designing a hash function that “random-

izes” its input, which was hinted at earlier in this section, is based on the following definition:
∮

Definition A keyed function F : A × K 7→ B is called 2-universal family if for any two

nonequal x, y ∈ A and any (not necessary nonequal) a, b ∈ B the probability over random

k ∈ K that Fk(x) = a and Fk(y) = b is exactly 1/|B|2.
∮

In other words for a randomly chosen key k ∈ K and any x, y ∈ A the function Fk behaves

like a truly random function on the pair (Fk(x), Fk(y)).∮
There are two well-known practical methods of constructing 2-universal families.

Method 1. Let K be the set of all m × n binary matrices. For any x ∈ {0, 1}n and M ∈
K, let HM (x) = Mx, which is the usual matrix-vector product of M and (transposed) x.
Let A = {0, 1}n \ (0, . . . , 0) (set of all n-bit non-zero strings). We claim without proof that
H : A × K 7→ {0, 1}m is a 2-universal family of functions.
Method 2. Let A = {0, 1, . . . , n − 1} and B = {0, 1, . . . ,m − 1}. Choose any prime number
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p ≥ n. Let K = {(a, b) | a, b ∈ {0, 1, . . . , p − 1}, a 6= 0}. For any (a, b) ∈ K and x ∈ A define

Ha,b(x) = ((ax + b) mod p) mod n.

Again, it is not difficult to prove that the family of functions H : A × K 7→ B is 2-universal.
∮

Entropy extraction given a family of 2-universal functions is straightforward: if x is uni-

formly distributed in a set S ⊂ {0, 1}m of size at least 2n and Hk : {0, 1}m 7→ {0, 1}n is a

2-universal function, then for a random k ∈ K the value Hk(x) is going to be near-uniform on

{0, 1}n even if k is public. This result is known as the “leftover hash lemma.”
∮

Consider the hash table example. Rather than applying an expensive cryptographic hash

function, such as SHA-1, generate at random two numbers a and b and compute in advance

a prime number p. The number of collisions for Ha,b(x) defined as above for any incoming

stream of keys will be on average (over choices of a and b) exactly the same as for SHA-1.

7 Further reading

As a good starting point for basic theory of hash functions and classic results we recom-
mend “Handbook of Applied Cryptography” [MOV96, Chapter 9], currently available
on-line.

Research in cryptographic hash functions has been active and, in recent years,
explosive. We will undoubtedly see new proposals, tweaks of existing designs, and
attacks in years to come. There is no single source to track new development in
the field, although many new results first appear on-line on cryptology ePrint archive
maintained by IACR: eprint.iacr.org.
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