
Hash-Partitioned Join Method
Using Dynamic Destaging Strategy

Masaya NAKAYAMA Masaru KITSUREGAWA
Mikio TAK AGI

Institute of Industrial Science, The University of Tokyo
7-22-l Fbppongi, Minato-ku, Tokyo 106, Japan

Abstract 1 Introduction

In this paper we propose a new hash-partitioned join
method using a dynamic de&aging strategy for large
scale databases.

The traditional hash-partitioned join methods such
as the Hybrid Hash Join Method assume that the size
of each bucket can be controlled by selecting a split
function, and the characteristics of the buckets are stat-
ically specified. For materializing this assumption, we
have to collect information about distributions of the
join attribute value before processing a job. In gen-
eral, however, join operations are applied to relations
in which some restrictions are applied, and so it is not
easy to collect that information before processing. If
we cannot collect the information, the tuple distribu-
tions of each bucket may differ from the estimation. An
example shows that the processing time in such a case
becomes 1.4 times worse than the ideal one.

In this paper we propose a strategy in which the
destaging buckets are selected dynamically, instead of
a static decision of them during the split phase. Us-
ing this strategy, we don’t have to collect information
before processing and this method can be applied in
many cases, which are unsuited to traditional methods.
When we apply this method to that example which we
mentioned, we can get the same performance as the
ideal one.

Permission to copy without fee d ar pIlt of this matdd is
grantaipvidcdtbatrheoopiesmnol2MdCadiStYibutcdfM
direct cxxnxnercisl edvmtage. the VLDB copyri&t notice md
the title of the public&m and its date spar, d notice is given
thatcopyingisbypmikonoftkVay~eI)ruB~
Endowment. To copy othawke, or to republish requinr a fee
and/or special permission from the BlKlowmau.

Eighteen years have passed since Dr. Codd suggested
the relational data model in 1970. Many database
systems, including commercial ones, use this data
model now. In these systems, relational algebra op-
erations, such as scfeci, project and join, are basic
operations for processing tuples of databases. Espe-
cially, it is well known that join is an expensive opera-
tion and many join methods have been proposed so far
[Sto’76,Kit83,DeW85].

Among these join methods, hash-partitioned join
methods present good performance as shown in
[Kit83,DeW84,Sha86]. In [DeW85], it is also shown
that the Nest Loop Join Method is not suitable for large
databases and the Hybrid Hash Join Method - one of
the hash-partitioned join methods - presents the best
behavior among the all of the shown algorithms in its
figure 3. We may agree with that result when we have
to handle large sized databases. But we think that
we had better use a non-split based join method, the
Hash Loop Join Method in this paper, when we han-
dle medium sized databases. ’ This phenomenon was
shown in [DeW84]. In Section 2, we reconsider this
phenomenon by using the I/O cost formula and show
our experimental results.

Second, in [ShaSS], it is shown that the Hybrid Hash
Join Method usea a split function which partitions the
source relations into the minimum number of buckets
and each bucket becomes differently sized. This parti-
tioning is optimal when the split function can separate
the source relations as it assumea. But it doesn’t seem
easy to find such a split function which can be applica-
ble in all the situations. When the split function doesn’t
suit for the data distributions of the source relations,
bucket overflows can easily occur. 9 On the other hand,

‘It meana that the medium sized dalabaea arc between the
mme size d the svaihble memory and five time3 larger.

lWhen the bucket ovdlowr occur, the performance of this

proceedings of the 14th VLDB Conference
Los Angeles, CaIifomia 1988 468

as shown in [Kit83], if we use a split function which di-
vides the source relations into a large number of small
sized buckets, the bucket overflows are reduced. And
we partition the source relations into the same sized
buckets. Using this manner, we can select the initially
processed bucket, called RI in this paper, dynamically.
In section 3, we show these two kinds of splitting strate-
gies and discuss the situations in which they are appli-
cable.

In Section 4, we show the algorithm of our proposed
hash-partitioned join strategy. In this strategy, the
source relations are partitioned into a large number
of buckets during the split phase in order to reduce
the possibility of bucket overflows as mentioned before.
And also, the de&aging buckets are dynamically 8e-
lected in order to minimize the total I/O cost of the join
processing. This strategy gives flexibility for selecting
a split function and is applicable for most situations.

The Hybrid Hash Join Method uses a split function
whose split range is as small as possible [Sha86]. In
many cases, however, a join operation has some restric-
tion conditions. So the split function may not partition
the source relations as expected. In such cases, our prc+
posed method results to be superior to the Hybrid Hash
Join Method. We show an performance evaluation of
unbalanced distributions of buckets in section 5.

In Section 6, we give the conclusions of this paper.

2 Is a non-split based join
method really so bad ?

In [DeW84,DeW85], they said that the Hybrid Hasi.
Join Mefiod is superior to all the other kinds of join
methods including non-split based join methods at
most cases. In our experiments, when medium abed
relations are processed, non-split based join methods
give the better performance results than split based join
methods. Here, the medium size means that the size of
the relation to be joined is the same as or at most five
times greater than that of available main memory. This
phenomenon was shown in [DeW84]. In this paper, we
reconsider the detailed behavior of join processing in
medium sized relations.

In this section, we present the I/O cost formula of
each method and show that the non-split based join
method is superior to the split based join method for
medium sized relations. In addition to these analytical
formula, we show our experimental results here.

strategy becomar worse. So we have to avoid them ao pomible aa
we can.

2.1 The notations of our environment

In this paper, we assume the join operation of two
source relations, named R and S, and that relation R
is smaller than relation S.

ONartLaopJok
P

(b)Iiub-PutiucadJo&

Figure 1: Processing cost of nest loop join methods and
hash-partitioned join methods

When we treat relations which size are smaller than
the available main memory, the relations may be pre
ceased by hash-partitioned join method (Figure 1). We
call this phase as ‘probe phase! On the other hand,
when we treat relations larger than the available main
memory, we cannot stage all tuples of the relation, and
we have to separate it in sets of subrelations during the
join processing. This separation phase is called as ‘splii
phase ‘.

If we divide these relations into a number of disjoint
subrelations before processing the join operation, we
call it a ‘splii based join method’. On the other hand,
if we don’t divide them before processing, we call it a
Con-split based join method’. For example, “GRACE
Join Method” and “Hybrid Hash Join Method” de-
scribed in [DeW85], are split based join methods and
“Hash Loop Join Method” is a non-split based join
method.

As shown in Figure 2, we use two kinds of hash func-
tions in a split based join method. In this paper, we
distinguish the coarse hash function from the fine hash
function by calling them splif function and hash func-
tion respectively. The split function is used when we
partition the source relations (or subrelations) into a
number of subrelations, called buckets (or sub-buckets
). These partitions are based on page size because the
split phase includes the I/O operations in it. In con-
trast to this, the hash function is used for reducing the

469

W f!!. IUi i ’

Figure 2: Two kinds of hash functions used by split
based join methods

processing cost of join operation, as shown in Figure 1.
Thii partition is based on a tuple size and there are as
many partitions as possible.

As shown in Figure 3, main memory contains N
pages for staging the tuplea of the relation R and 2
pages for input and output buffers. Totally, N+2 pages
are available for processing a join operation. Here we
describe the page size as B bytes. (In our experiments
it is 2K bytes.)

HI and Hh mean %plil range’ and ‘hash range’ re-
spectively. In split phase, we partition the relations
into H, buckets. In probe phase, we make a hash table
which contains Hh entries and process a join operation
by using thii table.

In the formula below, lR1 means thenumber of pages
of relation R. And {R} means the number of tuples of
relation R. Each relation is composed of L bytes long
tuples, so the relations between IRI and {R} are repre-
sented by the following formula:

(1)

For relation S, we use the same notations. We use
the notation M, meaning the available staging memory,
in the formula. This means that iA41 is identical with
N.

Huh~rwhfRWrslon~
4

Input BuSor far Rokuon 6

outpuLBurfwfarJatnlkutt8

B: PqoSirr M: Manoycpro
l.: WLcruur R: RdlalR
HE Splil Rang0 5: ltemolls

Cb:CoetdonrprOeUObolwaendhhmdmamoty

c&ioslol ha8hifJjopamlbnloonrluplobl~

CACost of tupto movomont In momofy

C&saa of compulng luy tloldn of uch lupk

Figure 3: System parameters and memory usage in our
experiments

2.2 The cost formula of each join
method

In this subsection, we show the algorithms of each join
method and express the cost formula.

2.2.1 The cost of non-split based join method

As shown in [DeW85], the Hash Loop Join Method pro-
cesses the relations as follows.

1. At first, part of relation R is staged into the avail-
able memory space, IA41 pages in our experiment. The
hash table is built at the same time.

2. Second, each page of relation S is staged into the
input buffer one by one. We apply the hash function to
the tuples of each page of relation S in the input buffer
and probe the joinability with the partially staged re-
lation R.

3. These operations are iteratively processed until all
the pages of relation R are staged in the memory.

The total cost of this method, C,,,, is expressed by
following expression:

C nr = [WI* Go + {M} l &ah
+{SI * (Chorh + Camp) + ISI * Ci,]

IRI * m + (result) * Ci* r 1

470

Cost parameters, Cio, Chorh and Ceomp, are shown
in Figure 3.

2.2.2 The cost of split based join method

We use a simple type of split based join method to
formalise it here. The whole of the source relation is
split into a number of buckets at split phe, and the
joinability of each tuple is probed at probe pbc. The
algorithm of this method is as follows:

1. The relation R is staged into the memory and
split into distinct H, bucbts. When the buffer page of
a bucket gets filled, it is written back to the disk as a
temporal relation. At the end, when the whole relation
R has been staged and split, the part of the buckets
remaining in the memory are flushed out to that tem-
poral relation.

2. The relation S is scanned and split into the same
number of buckets as relation R. As dcecribed before,
all pages are de&aged into the temporal relation dur-
ing the split phase, and all the pages remaining in the
memory are flushed out to disk at the end of this step.

3. All pages of each bucket & which were written
back to the temporal relation, are now staged into the
memory and a hash table is made. (In this algorithm,
we assume that each bucket in smaller than available
memory) .

4. And each page of the corresponding bucket Si is
staged into the input buffer separately. We apply the
hash, function to each tuple and probe the joinability
with bucket i&. Unlike non-split based join method, we
don’t have to read and probe the pages of the bucket
Sj(i # 9 .

5. Step 3 and step 4 are iteratively processed until
the rest of the temporal relation is empty.

Step 1 and step 2 correspond to the split phase, and
the others correspond to the probe phase. The total
co& of this method, C,, is given in the following ex-
pression:

G = 2*IRI*Cio

+tR) * (Chorh + Go,,)
(split phase of relation R)

+2 * ISI * Cio

+{s) * (Chorh + %w,)

(split phase of relation S)

+&RI *Cio + {&) * Chorh

+E; * Go + {si} * (Chah i- Ccomp)]
+(resuli) * Ci,

(probe phase) (3)

2.3 The I/O cost analysis for process-
ing join of the equal sized relations

The processing cost of each join method is described in
the last subsection. Here, we show the I/O cost for-
mula when applied to one of the Wisconsin benchmark
environment [BMS]. In this environment, we use equal
sised relations for processing, and the join field value
has unique value in each relation.

It is easy for the non-split based join method to ca-
timate these situations from expression (2).

CtU # IRI * Go + {R) * Chogh
+(@I * Chorh + {R) * Cm,,

IRI +IRI * Go) * m
+(reeult) * Ci, (4)

For the split baaed join method, we assume that the
buckets have the same number of tuples. From expres-
sion (3), we can derive the cost as follows.

C, w 4*(R(*Ci,

+2 * {RI *Chub + 2 * {R} *&w,,

+(2 * ,Ri, * cio + 2 * {Ri} * Chorh

+{&} * Ccomp) * Ha + (reeulf) * Ci,
W 6 * IRI * Cio + 4 * {R} * Chorh

+2 * t R) * Gno,, + {R} * Camp
+(result) * Ci, (5)

Instead of analyzing the total cost of each join
method, we only analyze the I/O cost here. Since when
medium sized relations are treated, the processing cost
may be small enough compared with the I/O cost.

Here, we show the differences of each join method.

C PI nr -C, w jRJ*JMJ+Ci,-5*IRJ*Cio

(6)

When the number of pages of relation R is less than
5 * lM1, the I/O cost of non-split based join method

471

becomes lower than that of split join method. This
formula suggests that it is better to use non-split based
join method when we treat medium sized relations.

2.4 The experimental results of perfor-
mance evaluation

We construct an experimental system on SUN3/260 to
confirm our conclusion presented in the last subsection.
In our experiment, we use relations with 64 bytes long
tuples. and memory with 2M bytes for staging the rela-
tions during a join operation. It means that 1000 pages
are available for staging buffers.

The split range is determined to minimize the num
ber of buckets.

0 100 200

Number of tuplez (k tuples)

(6) Performalice results of
medium sized relaions

0 200 400 600 600

Number of tuplea (k fuples)

(b) Performsace results of
large sized relaions

Figure 4: Performance results of two kinds of join meth-
ods

In Fig 4, we show the results of join performance.
Fig 4 (a) shows the performance results of medium sized
relations, and a part of the results of Fig 4 (b). Fig 4

(b) shows the results of performance results of large
sized relations.

A non-split based join method can give superior per-
formance when treating medium sized relations. These
results show the fact that medium sized relation should
be processed by a non-split based join method. In our
experiments, available memory contains 32 K tuples
and five times larger size becomes 160 K tuplee. Our
results confirm the analytical conclusions.

3 How should we split the
source relations ?

In the Hybrid Hash Join Method, a particular kind
of bucket size distribution is assumed during the split
phase. Although this policy is very simple, the bucket
distribution is too particular and it is difficult to be
achieved by using general split functions.

The policy is as follows:

1. If the relation size is larger than that of the avail-
able main memory, they must be split into independent
and distinct buckets.

2. In such cases, we determine the number of buckets
so that the size of each bucket is smaller than the avail-
able memory. This condition means that the largest
size of a bucket is IA41 pages.

3. Generally, we don’t have to use all the memory for
buffering the splitting buckets. The unused part of the
memory is utilized for making a hash table of bucket
RI. This tuning saves the I/O cost of bucket RI (and
Sl).

Relation R

I I

t
I I
I I I

RI X X

Available Memory

I I
RI 1 1

Figure 5: Tuple distributions of each bucket in the Hy-
brid Hash Join Method

Figure 5 shows the distribution behavior in the Hy-

472

brid Hash Join Method proposal. Split range H, is
determined by the following formula.

(7)
l&l =)M/-Ha+1 (8)

I4 - JR1 I WI = HI-l
(2 5 i ,< J&) (0)

Certainly, this formula givea a guarantee that all
pages on memory are used in split phase. But it rep
resents an ideal case for the size of relation R and it
ia diflicult to find actual split function that can par-
tition the relation into such distribution for any type
of relations. In [DeW85,Ger86) , it was said that “In
GAMMA, we prepare many kinds of split functions and
select the suitable one to separate them into such dis-
tributiona.“. This implies that the selection of the split
function for any case is not easy.

For this reason, we abandon thie kind of bucket die-
tributions, and use more easier distributiona of buckets.
As shown in Figure 6, we use a split function which only
makes equal sized buckets. The mod function is a repre-
sentative function which &i&a the conditions, when
the data distribution of the relations is flat.

Relation R
I

I
X’X’X x x x x x x

Available Memory

Figure 6: Tuple distributions of each bucket in our join
method

In thii situation, the eize of the relations in which
this method ia applicable ia teduced, because the size
of each bucket must aatiefy the following constraints.

{&} = 9

(15 i I H,) (10)

IRil < IMJ-J&+1
(1 s i I Ha) (11)

These two reIationships lead to the following con-
straint.

H,1-#fi+l)*H,+IRI < 0 (12)

This constraint shows that the maximum applica-
ble size of the relations with this bucket distribution
becomes ((IA41 + 1)/2}z when H, = ()M) + 1)/2. z
As H, becomes larger, the applicable size of the rela-
tion becomea larger for H, < (IMI + 1)/2, however for
(IA41 + 1)/2 < H, ,<)M), each bucket size becomes
smaller because the rest of available memory for mak-
ing a hash table of R(ia reduced. The total size of
applicable relations becomea small in such cases,

When the source relation R ia given, ’ how doee one
decide the size of the split range H, ? Like the Hy-
brid Hash Join Method, should it be determined as the
minimum one ?

By equation (3) or (5), it seema that there ia no rela-
tion between the split range H, and the coat of the join
operations. But actually, the split range H, reflects the
total proceasing time of join operation. Figure 7 shows
the response time varying according as the split range
HI change.

200,

10 30 10 70 90

Number of tuples (k tuples)

Figure 7: Performance results of changing the split
range HI

Thii result comee from the fact that the initialization
co& of the hash table cannot be ignored. To avoid this
overhead, we can process a aet of buckets at once. If we
aplit the relations into a large number of buckets, each

SThe maximum apfic&a rise ol rdatii with Hybrid Huh
Join Method becoma lMlz - IMI + 1 when H. = IMI.

‘In the following dircussicm, we amuma thbttheeiscorthe
relation in applicable with our method

473

bucket may have fewer tuples than {M}. Therefor they
can be grouped in a set to be processed. This technique
is used in our split based join method. It is originally
suggested in [Kit83], where it is called Suckci tuning”.
Using a large number of split range, we can easily re-
duce the abuckcf overflow% shown in [Kit83,DeW84].

In addition to this, we can dynamically determine
the staged bucket by using fair bucket distributions.
For the Hybrid Hash Join Method or other split based
join methods discussed in [DeW84,DeW85], the staging
buckets are statically decided, that is, they are decided
before the split phase.

On the other hand, we determine the staging bucket
dynamically during the split phase. The detailed strat-
egy is shown in the next section.

We think that the selection of split functions is not
easy for any situation. From this point of view, it is
better to partition the relation into as many buckets as .
possible. When we use this kind of split range H,, the
possibility of bucket overflow becomes the lowest, and
we can select the staging buckets dynamically instead
of statically. If we select the de&aging bucket as the
one containing the largest number of tuples when we
need an extra page, we can guarantee that the other
buckets are kept on the available memory. It gives the
system the flexibility for the selection of split function.

4 A new type of split based join
method using the dynamic se-
lection strategy of paged out
bucket

In this section, we show a new type of split based join,
method. In this method, the paging out bucket is cho-
sen dynamically during the split phase, and we collect
a set of buckets which can be processed at the same
time during the split phase. Following in thii section,
we show the algorithms of this method. At first, we
show the staging strategy of relation R in split phase.
And the end of staging of the relation R, we schedule
the cluster for all buckets and make the hash table for
staged buckets on memory. These buckets on memory
are treated as RI in Hybrid Hash join Method. Af-
ter this staging, the relation S is partitioned into the
same number of buckets and probe the joinability of RI
buckets. Now, split phase is finished. In probe phase,
each cluster of relation R is staged into memory, and
probe the joinability with the cluster of relation S re-
spectively. When the siae of the i-th cluster exceeds
the size of available memory, this cluster is treated as
original relation and is applied this strategy recursively.

4.1 Dynamic selection strategy of
paged out bucket

As shown in Figure 3, the available memory is com-
posed of N + 2 pages, and N pages are used as staging
area for relation R during the split phase. Concerning
the other two pages, one is used as the input buffer of
initial staging of both relations, and the other is not
used during the split phase. All pages used for staging
area, N pages, are initially linked to the free pages list.

At first, relation R is scanned and their pagea are
staged into the input buffer. The split function is ag
plied on the join key fields for each tuple in this buffer.
According to the returned value of this split function,
each tuple is copied into the buffer of the appropri-
ate bucket. If there is no room to in this buffer, a new
page is allocated from the free pages list. When the free
pages list becomes empty, dynamic de&aging strategy
works as follows.

1. Scan the split table and search for a bucket which
has already been paged out. If found, go to step 2. And
if there are no paged out buckets, go to step 3.

2. Check the number of tuples staged on memory
for this bucket. If the number exceeds one page, mark
it as the bucket to be paged out again and go to step
4. Otherwise go back to stepl. We choose the bucket
to be paged out again as the one whose number of
pages on the memory exceeds ones, to avoid the writ-
ing and reading of useless area of a page. These extra
accesses would lead to a worse performance, and should
be avoided if possible.

3. When there are no paged out buckets, the largest
bucket is preferably selected as the paged out bucket,
because it has, generally, the highest possibility of
bucket overflow among all the buckets.

4. When the paging out bucket is determined, all of
its filled pages are de&aged into the temporal relation.
As described in step 2, we don’t page out the partial
filled pages.

If the distributions of tuples are known before the
staging is processed, we can determine the paged out
bucket optimally. But usually, join operation follows
some restriction operations, and it is impossible to
know these distributions, so we choose a strategy which
can delay the selection of the paged out bucket as later
ss possible. Using this strategy, we can get an optimal
paged out bucket at each paging out time. In Figure 8,
we show some examples of this strategies.

474

Split Tsble *Psged out flsg

0

1 *

w

2

3

need additional -block @Selected bucket
for dertrging

(a) Initial state
of this strategy (b) Exam 1 (c) &am 2

Figure 8: Example of dynamic destaging strategy

4.2 The scheduling of the processing
buckets

When the relation R is seanned, we can classify all
the buckets into two kinds: one in which all tuples are
staged on the memory and the other in which some/all
tuples are destaged into the temporal relation.

The bucket Ri in the Hybrid Hash Join Method be
longs to the former kind. And each tuple belongs to
this kind of buckets is applied hash function to make
the hash table. As shown in Figure 7, the initializing
cost of the hash table cannot be ignored. It is the reason
why we choose this kind of collection. So All buckets
staged on the memory are processed at the 5ame time
in our join method.

For the buckets which contain paged out tuplee, we
make a schedule of their processing sequence and gather
these buckets. We call a set of buckete, ‘clusfer’. For
the total cost optimization, we have to check the whole
combination of buckets. It is easily shown that the com-
plexity of this schedule become5 N-P complete. And
when the total number of buckets becomes larger and
larger, it become5 more difficult to search the best
scheduling. To reduce the scheduling co5t, we use the
simple bucket tuning method described below.

At first, check the number of tuples of each cluster. If
the difference from {M} is more than the tuple number
of the scheduled bucket, add that bucket a5 a member
of the cluster. When no cluster can hold that bucket,
make a new cluster and add that bucket a5 the member
of the cluster.

4.3 Overlap the probing of the RI
buckets with staging the relation
S

A5 mentioned in the last two subsections, we split the
relation R into H, buckets, and make a schedule of the
clusters. After that, we split the other relation S into
H, buckets.

Scan the relation S and stage each page into the in-
put buffer. For each tuple in this buffer, the same split
function used for the relation R is applied. If the tu-
ple is a member of the staged buckets on the memory,
probe the joinability immediately. Otherwise, that tu-
ple is copyed into the staging buffer of each bucket in
the 5ame way as was done to relation R. When the
whole relation S is scanned, the split phase is finished.

4.4 Processing strategy for the over-
flow buckets

Now we have a set of clusters in temporal relations.
Usually each cluster is a set of bucket5 where total size
fit5 in the available main memory. When the distribu-
tion of each bucket doe5 not fit to this situation, some
bucket5 may overflow the available memory. For exam-
ple, if all tuples in the relation R have the same split
value, we cannot guarantee the safety of this method.
In such a ca5e, we select the following strategy.

As shown in section 2, it is better to use the non-
split based join method when the size of the bucket is
between the size of the available main memory and five
times larger.

Otherwise, we apply our split based join method re-
cursively. In this ca5e, another split function is used
during the recursive split phase. During this recursive
phase, meet of the overflow ca5es can be solved.

Even though we apply these strategies, they cannot
be solved all the situations. As mentioned before, when
all of the tuples have the same value in the join field,
we cannot separate them by any kind of split functions.
So, in our method, this recursion finishes when the re-
cursive nests reach a level which is defined before we
process the join operation. In such cases, we will change
the strategy to the non-split based join method.

Using this strategy, higher performance than that of
the Hybrid Hash Join Method can be obtained, in many
ca5e5. The next section shows an example in which
our method works better than the Hybrid Hash Join
Method. This example is only a sample case, but it is
believed that in many casee these situations occur.

475

5 An example of unbalanced
bucket distribution

In this section, we show an example situation in which
the Hybrid Hash Join Method does not perform so well.

An described in section 3, the Hybrid Hash Join
Method usea a strategy in which the number of buckets
becomes as small aa possible. It is assumed that a euit-
able eplit function for the given relations can be found.
In this section, we consider a situation where this suit-
able split functions cannot be found. In general, it is an
usual case because join operationa follow Borne reetric-
tion operations and we cannot guess the distributions
of each bucket.

For example, consider the following situations. The
relation R has two attributes, Name and Address. Here,
assume that Name field ia the primary key of the re-
lation R, and we can keep the information about total
tuple distributions. In this situation, when we want to
join all tuplea in the relation R with another relation S,
we can split it as we expected by using such informa-
tion. However, when we want to join fne person who
liver in Z’o)yo with another relation S, we cannot eplit
it 88 we expected. Because the tuple distribution which
satisfies the condition ia not identical with that of whole
relation.

We apply the join operation for such relations in this
section. We prepare the source relations which have
unbalanced distributions of buckets before any reetric-
tions are given. It is to simplify the situation.

Here we ahow two relations which have the same
characteristics. Each relation is made of 64 bytes long
tup1e8, a and the join attribute of our experiments ia a
4 bytea integer field. The value of each tuple is unique
in the relation. One relation P has the sequential value
in the join attribute, and the other relation Q has a
particular distributions in the join attribute. In our
experiments we use a simple mod functions to split
the relation and to probe the joinability. Each hash
function sees the different bit fields of join attribute
and returna the modulus value. We can separate each
bucket uniformly, when we process the relation P. On
the other hand, if we process the relation Q using this
function, the distribution of each bucket becomes un-
balanced. Figure 9 shows this result of 300 K tuplerr. In
this situation, the split range H, becomes 10 by using
the Hybrid Hash Join Method. However, by using our
proposed join method it becomes 500, determined by
WI + w2.

In such situations, we cannot determine the split

bPractically, the tuple length or the number of attributea am
not a problem in generd. Only the value and dirtributionm of
join attributea are a matter of concern.

01234567SS

hcket ID

(a) balanced tuple distribution
relation P

01234SS7S9

Bucket ID

(b) unbalanced tuple distribution
relation Cl

Figure 9: The tuple distributions of each relation

functions and the split range H, so easily. Though
the Hybrid Hash Join Method haa advantages when
the split function is suited to the data distributions of
target relation, the total cost becomea worse when it
isn’t suited to the distributions.

On the other hand, our proposed join method uses
additional buckets for adjusting their sizes. This may
avoid the bucket overflows in many cases as mentioned
before, however it needs additional buffers for those
extra buckets during split phase.

Here, we will consider this overhead by using an ex-
ample. When we treat 300 K tuplea long relations, the
I/O number for scanning each relation becomes 9375
pages. If we can apply the optimal split function to
those relations, the split range H, becomes 10, as de-
scribed before. To join them, including the output of
the result, we have to read or write them four times at
least. It means that, even though in an optimal case,
9375 * 4 * 2 - 991* 2 l 2 = 71036 pages I/O occurs. In

476

such a case, our join method needs 490 additional I/O’s
for each scanning. The 490 * 2 * 2 pages I/O is merely
2.8 % of the total I/O cost.

Figure 10 shows our experimental results varying ac-
cording to the size of relations. This figure shows that
our method does not reduce the performance for unbal-
anced bucket distributions. Thus, this method is more
flexible than the Hybrid Hash Join Method.

* Unbalanced Bucket (Proposed Join Method)
* Unbalanced Bucket (Hybrid Hash Join Method)
+ Balanced Bucket (Reposed Join Method)
+ Balanced Bucket (Hybrid Huh Join Method)

-I
100 300 600 700 000

Numba of tuples (K tuples)
Figure 10: Join performance of unbalanced tuple dis-
tributions

This figure also shows that the processing cost of
additional bucket is mere, and the processing cost of
applying the recursive split phase cannot be ignored. It
means that it is better to use a large number of buckets
during split phase.

6 Conclusions

In this paper, we pointed out the disadvantages of the
traditional split based join method, concentrating our
analysis on the Hybrid Hash Join Method.

In most of the split based join methods, the number
of buckets is statically determined by a split function,
assuming that the result bucket size is uniformly dis-
tributed.

However, we think that such cases are actually rare
because join operations generally follow some restric-
tions and there is no guarantee that the split function
is suitable for any kind of data distribution of the source
relation.

Especially in the Hybrid Hash Join Method, the split
function has to deal with two kinds of bucket distribu-
tions: one is for the first staged hash bucket and the
other is for the de&aging buckets. In both cases, un-
balanced distributions of tuplee in the buckets lead to
a worse performance than the estimated one.

We proposed a more flexible method, suited for many
kinds of data distribution. In our proposed method,
the source relations are split into a larger number of
buckets. Whenever necessary, a dynamical selection
strategy for the determination of the page out bucket
is performed. This dynamical strategy decreases the
possibility of overflows or underflows of the first staging
hash bucket. Aiming at increasing the efficiency of the
memory space and decreasing the overhead due to the
hash table initialization, the buckets are gathered in
clusters before processing. The clusters are determined
so as to fill up the memory.

This strategy was shown to be efficient for large sized
relations. For medium sized relations, instead of apply-
ing this strategy, we use a non-split based join method,
whose estimated I/O cost shows to improve the join
operation performance.

Our experimental results show that the method pr*
posed in this paper presents higher performance than
the Hybrid Hash Join Method in many cases.

References

[Bit831 Bitton, D., Dewitt, D. J. and Turbyfill, C.
Benchmarking database systems - a system-
atic approach. In Proceedings of VLDB ‘83,
1983.

[DeW84] Dewitt, D. J., Katz, R. H., Olken, F.,
Shapiro, L. D., Stonebraker, M. R.. and
Wood, D. Implementation techniques for
main memory database systems. In ACM
SIGMOD ‘84, pages 1-8, ACM, 1984.

[DeW85] Dewitt, D. J. and Gerber, R. Multiprocessor
hash-based join algorithms. In Proceedings of
VLDB ‘85, pages 151-164, 1985.

[Ger86] Gerber, R. H. DatajTow Query Processing
Using Multiprocessor Hash-partitioned Algo-
rithms. Technical Report 672, University of
Wisconsin, 1986.

[Kit831 Kitsuregawa, M., Tanaka, H. and Moto-oka,
T. Application of hash to data base machine
and its architecture. New Generation Com-
puting, 1(1):66-74, 1983.

477

[Sha86] Shapiro, L. D. Join proceeeing in
database systems with large main memo-
ries. ACM Il)rrnsactions on Daiabase Sys-
terns, 11(3):239-264, 1986.

[Sto76] Stonebraker, hf., Wang, E., Kreps, P. and
Held, G. The design and implementation of
ingree. ACM Tkansaciio~ on Daiabasc Sya-
icme, 1(3):189-222, 1976.

478

