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Abstract 1 Introduction 

In this paper we propose a new hash-partitioned join 
method using a dynamic de&aging strategy for large 
scale databases. 

The traditional hash-partitioned join methods such 
as the Hybrid Hash Join Method assume that the size 
of each bucket can be controlled by selecting a split 
function, and the characteristics of the buckets are stat- 
ically specified. For materializing this assumption, we 
have to collect information about distributions of the 
join attribute value before processing a job. In gen- 
eral, however, join operations are applied to relations 
in which some restrictions are applied, and so it is not 
easy to collect that information before processing. If 
we cannot collect the information, the tuple distribu- 
tions of each bucket may differ from the estimation. An 
example shows that the processing time in such a case 
becomes 1.4 times worse than the ideal one. 

In this paper we propose a strategy in which the 
destaging buckets are selected dynamically, instead of 
a static decision of them during the split phase. Us- 
ing this strategy, we don’t have to collect information 
before processing and this method can be applied in 
many cases, which are unsuited to traditional methods. 
When we apply this method to that example which we 
mentioned, we can get the same performance as the 
ideal one. 
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Eighteen years have passed since Dr. Codd suggested 
the relational data model in 1970. Many database 
systems, including commercial ones, use this data 
model now. In these systems, relational algebra op- 
erations, such as scfeci, project and join, are basic 
operations for processing tuples of databases. Espe- 
cially, it is well known that join is an expensive opera- 
tion and many join methods have been proposed so far 
[Sto’76,Kit83,DeW85]. 

Among these join methods, hash-partitioned join 
methods present good performance as shown in 
[Kit83,DeW84,Sha86]. In [DeW85], it is also shown 
that the Nest Loop Join Method is not suitable for large 
databases and the Hybrid Hash Join Method - one of 
the hash-partitioned join methods - presents the best 
behavior among the all of the shown algorithms in its 
figure 3. We may agree with that result when we have 
to handle large sized databases. But we think that 
we had better use a non-split based join method, the 
Hash Loop Join Method in this paper, when we han- 
dle medium sized databases. ’ This phenomenon was 
shown in [DeW84]. In Section 2, we reconsider this 
phenomenon by using the I/O cost formula and show 
our experimental results. 

Second, in [ShaSS], it is shown that the Hybrid Hash 
Join Method usea a split function which partitions the 
source relations into the minimum number of buckets 
and each bucket becomes differently sized. This parti- 
tioning is optimal when the split function can separate 
the source relations as it assumea. But it doesn’t seem 
easy to find such a split function which can be applica- 
ble in all the situations. When the split function doesn’t 
suit for the data distributions of the source relations, 
bucket overflows can easily occur. 9 On the other hand, 

‘It meana that the medium sized dalabaea arc between the 
mme size d the svaihble memory and five time3 larger. 

lWhen the bucket ovdlowr occur, the performance of this 
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as shown in [Kit83], if we use a split function which di- 
vides the source relations into a large number of small 
sized buckets, the bucket overflows are reduced. And 
we partition the source relations into the same sized 
buckets. Using this manner, we can select the initially 
processed bucket, called RI in this paper, dynamically. 
In section 3, we show these two kinds of splitting strate- 
gies and discuss the situations in which they are appli- 
cable. 

In Section 4, we show the algorithm of our proposed 
hash-partitioned join strategy. In this strategy, the 
source relations are partitioned into a large number 
of buckets during the split phase in order to reduce 
the possibility of bucket overflows as mentioned before. 
And also, the de&aging buckets are dynamically 8e- 
lected in order to minimize the total I/O cost of the join 
processing. This strategy gives flexibility for selecting 
a split function and is applicable for most situations. 

The Hybrid Hash Join Method uses a split function 
whose split range is as small as possible [Sha86]. In 
many cases, however, a join operation has some restric- 
tion conditions. So the split function may not partition 
the source relations as expected. In such cases, our prc+ 
posed method results to be superior to the Hybrid Hash 
Join Method. We show an performance evaluation of 
unbalanced distributions of buckets in section 5. 

In Section 6, we give the conclusions of this paper. 

2 Is a non-split based join 
method really so bad ? 

In [DeW84,DeW85], they said that the Hybrid Hasi. 
Join Mefiod is superior to all the other kinds of join 
methods including non-split based join methods at 
most cases. In our experiments, when medium abed 
relations are processed, non-split based join methods 
give the better performance results than split based join 
methods. Here, the medium size means that the size of 
the relation to be joined is the same as or at most five 
times greater than that of available main memory. This 
phenomenon was shown in [DeW84]. In this paper, we 
reconsider the detailed behavior of join processing in 
medium sized relations. 

In this section, we present the I/O cost formula of 
each method and show that the non-split based join 
method is superior to the split based join method for 
medium sized relations. In addition to these analytical 
formula, we show our experimental results here. 

strategy becomar worse. So we have to avoid them ao pomible aa 
we can. 

2.1 The notations of our environment 

In this paper, we assume the join operation of two 
source relations, named R and S, and that relation R 
is smaller than relation S. 
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Figure 1: Processing cost of nest loop join methods and 
hash-partitioned join methods 

When we treat relations which size are smaller than 
the available main memory, the relations may be pre 
ceased by hash-partitioned join method (Figure 1). We 
call this phase as ‘probe phase! On the other hand, 
when we treat relations larger than the available main 
memory, we cannot stage all tuples of the relation, and 
we have to separate it in sets of subrelations during the 
join processing. This separation phase is called as ‘splii 
phase ‘. 

If we divide these relations into a number of disjoint 
subrelations before processing the join operation, we 
call it a ‘splii based join method’. On the other hand, 
if we don’t divide them before processing, we call it a 
Con-split based join method’. For example, “GRACE 
Join Method” and “Hybrid Hash Join Method” de- 
scribed in [DeW85], are split based join methods and 
“Hash Loop Join Method” is a non-split based join 
method. 

As shown in Figure 2, we use two kinds of hash func- 
tions in a split based join method. In this paper, we 
distinguish the coarse hash function from the fine hash 
function by calling them splif function and hash func- 
tion respectively. The split function is used when we 
partition the source relations ( or subrelations ) into a 
number of subrelations, called buckets ( or sub-buckets 
). These partitions are based on page size because the 
split phase includes the I/O operations in it. In con- 
trast to this, the hash function is used for reducing the 
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Figure 2: Two kinds of hash functions used by split 
based join methods 

processing cost of join operation, as shown in Figure 1. 
Thii partition is based on a tuple size and there are as 
many partitions as possible. 

As shown in Figure 3, main memory contains N 
pages for staging the tuplea of the relation R and 2 
pages for input and output buffers. Totally, N+2 pages 
are available for processing a join operation. Here we 
describe the page size as B bytes. ( In our experiments 
it is 2K bytes. ) 

HI and Hh mean %plil range’ and ‘hash range’ re- 
spectively. In split phase, we partition the relations 
into H, buckets. In probe phase, we make a hash table 
which contains Hh entries and process a join operation 
by using thii table. 

In the formula below, lR1 means thenumber of pages 
of relation R. And {R} means the number of tuples of 
relation R. Each relation is composed of L bytes long 
tuples, so the relations between IRI and {R} are repre- 
sented by the following formula: 

(1) 

For relation S, we use the same notations. We use 
the notation M, meaning the available staging memory, 
in the formula. This means that iA41 is identical with 
N. 
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Figure 3: System parameters and memory usage in our 
experiments 

2.2 The cost formula of each join 
method 

In this subsection, we show the algorithms of each join 
method and express the cost formula. 

2.2.1 The cost of non-split based join method 

As shown in [DeW85], the Hash Loop Join Method pro- 
cesses the relations as follows. 

1. At first, part of relation R is staged into the avail- 
able memory space, IA41 pages in our experiment. The 
hash table is built at the same time. 

2. Second, each page of relation S is staged into the 
input buffer one by one. We apply the hash function to 
the tuples of each page of relation S in the input buffer 
and probe the joinability with the partially staged re- 
lation R. 

3. These operations are iteratively processed until all 
the pages of relation R are staged in the memory. 

The total cost of this method, C,,,, is expressed by 
following expression: 

C nr = [WI* Go + {M} l &ah 
+{SI * (Chorh + Camp) + ISI * Ci,] 

IRI * m + (result) * Ci* r 1 
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Cost parameters, Cio, Chorh and Ceomp, are shown 
in Figure 3. 

2.2.2 The cost of split based join method 

We use a simple type of split based join method to 
formalise it here. The whole of the source relation is 
split into a number of buckets at split phe, and the 
joinability of each tuple is probed at probe pbc. The 
algorithm of this method is as follows: 

1. The relation R is staged into the memory and 
split into distinct H, bucbts. When the buffer page of 
a bucket gets filled, it is written back to the disk as a 
temporal relation. At the end, when the whole relation 
R has been staged and split, the part of the buckets 
remaining in the memory are flushed out to that tem- 
poral relation. 

2. The relation S is scanned and split into the same 
number of buckets as relation R. As dcecribed before, 
all pages are de&aged into the temporal relation dur- 
ing the split phase, and all the pages remaining in the 
memory are flushed out to disk at the end of this step. 

3. All pages of each bucket & which were written 
back to the temporal relation, are now staged into the 
memory and a hash table is made. ( In this algorithm, 
we assume that each bucket in smaller than available 
memory ) . 

4. And each page of the corresponding bucket Si is 
staged into the input buffer separately. We apply the 
hash, function to each tuple and probe the joinability 
with bucket i&. Unlike non-split based join method, we 
don’t have to read and probe the pages of the bucket 
Sj(i # 9 . 

5. Step 3 and step 4 are iteratively processed until 
the rest of the temporal relation is empty. 

Step 1 and step 2 correspond to the split phase, and 
the others correspond to the probe phase. The total 
co& of this method, C,, is given in the following ex- 
pression: 

G = 2*IRI*Cio 

+tR) * (Chorh + Go,,) 
( split phase of relation R ) 

+2 * ISI * Cio 

+{s) * (Chorh + %w,) 

( split phase of relation S ) 

+&RI *Cio + {&) * Chorh 

+E; * Go + {si} * (Chah i- Ccomp)] 
+(resuli) * Ci, 

( probe phase ) (3) 

2.3 The I/O cost analysis for process- 
ing join of the equal sized relations 

The processing cost of each join method is described in 
the last subsection. Here, we show the I/O cost for- 
mula when applied to one of the Wisconsin benchmark 
environment [BMS]. In this environment, we use equal 
sised relations for processing, and the join field value 
has unique value in each relation. 

It is easy for the non-split based join method to ca- 
timate these situations from expression (2). 

CtU # IRI * Go + {R) * Chogh 
+(@I * Chorh + {R) * Cm,, 

IRI +IRI * Go) * m 
+(reeult) * Ci, (4) 

For the split baaed join method, we assume that the 
buckets have the same number of tuples. From expres- 
sion (3), we can derive the cost as follows. 

C, w 4*(R(*Ci, 

+2 * {RI *Chub + 2 * {R} *&w,, 

+(2 * ,Ri, * cio + 2 * {Ri} * Chorh 

+{&} * Ccomp) * Ha + (reeulf) * Ci, 
W 6 * IRI * Cio + 4 * {R} * Chorh 

+2 * t R) * Gno,, + {R} * Camp 
+( result) * Ci, (5) 

Instead of analyzing the total cost of each join 
method, we only analyze the I/O cost here. Since when 
medium sized relations are treated, the processing cost 
may be small enough compared with the I/O cost. 

Here, we show the differences of each join method. 

C PI nr -C, w jRJ*JMJ+Ci,-5*IRJ*Cio 

(6) 

When the number of pages of relation R is less than 
5 * lM1, the I/O cost of non-split based join method 
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becomes lower than that of split join method. This 
formula suggests that it is better to use non-split based 
join method when we treat medium sized relations. 

2.4 The experimental results of perfor- 
mance evaluation 

We construct an experimental system on SUN3/260 to 
confirm our conclusion presented in the last subsection. 
In our experiment, we use relations with 64 bytes long 
tuples. and memory with 2M bytes for staging the rela- 
tions during a join operation. It means that 1000 pages 
are available for staging buffers. 

The split range is determined to minimize the num 
ber of buckets. 

0 100 200 

Number of tuplez ( k tuples ) 

(6) Performalice results of 
medium sized relaions 

0 200 400 600 600 

Number of tuplea ( k fuples ) 

(b) Performsace results of 
large sized relaions 

Figure 4: Performance results of two kinds of join meth- 
ods 

In Fig 4, we show the results of join performance. 
Fig 4 (a) shows the performance results of medium sized 
relations, and a part of the results of Fig 4 (b). Fig 4 

(b) shows the results of performance results of large 
sized relations. 

A non-split based join method can give superior per- 
formance when treating medium sized relations. These 
results show the fact that medium sized relation should 
be processed by a non-split based join method. In our 
experiments, available memory contains 32 K tuples 
and five times larger size becomes 160 K tuplee. Our 
results confirm the analytical conclusions. 

3 How should we split the 
source relations ? 

In the Hybrid Hash Join Method, a particular kind 
of bucket size distribution is assumed during the split 
phase. Although this policy is very simple, the bucket 
distribution is too particular and it is difficult to be 
achieved by using general split functions. 

The policy is as follows: 

1. If the relation size is larger than that of the avail- 
able main memory, they must be split into independent 
and distinct buckets. 

2. In such cases, we determine the number of buckets 
so that the size of each bucket is smaller than the avail- 
able memory. This condition means that the largest 
size of a bucket is IA41 pages. 

3. Generally, we don’t have to use all the memory for 
buffering the splitting buckets. The unused part of the 
memory is utilized for making a hash table of bucket 
RI. This tuning saves the I/O cost of bucket RI ( and 
Sl ). 

Relation R 

I I 

t 
I I 
I I I 

RI X X 

Available Memory 

I I 
RI 1 1 

Figure 5: Tuple distributions of each bucket in the Hy- 
brid Hash Join Method 

Figure 5 shows the distribution behavior in the Hy- 
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brid Hash Join Method proposal. Split range H, is 
determined by the following formula. 

(7) 
l&l = )M/-Ha+1 (8) 

I4 - JR1 I WI = HI-l 
(2 5 i ,< J&) (0) 

Certainly, this formula givea a guarantee that all 
pages on memory are used in split phase. But it rep 
resents an ideal case for the size of relation R and it 
ia diflicult to find actual split function that can par- 
tition the relation into such distribution for any type 
of relations. In [DeW85,Ger86) , it was said that “In 
GAMMA, we prepare many kinds of split functions and 
select the suitable one to separate them into such dis- 
tributiona.“. This implies that the selection of the split 
function for any case is not easy. 

For this reason, we abandon thie kind of bucket die- 
tributions, and use more easier distributiona of buckets. 
As shown in Figure 6, we use a split function which only 
makes equal sized buckets. The mod function is a repre- 
sentative function which &i&a the conditions, when 
the data distribution of the relations is flat. 

Relation R 
I 

I 
X’X’X x x x x x x 

Available Memory 

Figure 6: Tuple distributions of each bucket in our join 
method 

In thii situation, the eize of the relations in which 
this method ia applicable ia teduced, because the size 
of each bucket must aatiefy the following constraints. 

{&} = 9 

(15 i I H,) (10) 

IRil < IMJ-J&+1 
(1 s i I Ha) (11) 

These two reIationships lead to the following con- 
straint. 

H,1-#fi+l)*H,+IRI < 0 (12) 

This constraint shows that the maximum applica- 
ble size of the relations with this bucket distribution 
becomes ((IA41 + 1)/2}z when H, = ()M) + 1)/2. z 
As H, becomes larger, the applicable size of the rela- 
tion becomea larger for H, < (IMI + 1)/2, however for 
(IA41 + 1)/2 < H, ,< )M), each bucket size becomes 
smaller because the rest of available memory for mak- 
ing a hash table of R( ia reduced. The total size of 
applicable relations becomea small in such cases, 

When the source relation R ia given, ’ how doee one 
decide the size of the split range H, ? Like the Hy- 
brid Hash Join Method, should it be determined as the 
minimum one ? 

By equation (3) or (5), it seema that there ia no rela- 
tion between the split range H, and the coat of the join 
operations. But actually, the split range H, reflects the 
total proceasing time of join operation. Figure 7 shows 
the response time varying according as the split range 
HI change. 

200, 

10 30 10 70 90 

Number of tuples ( k tuples ) 

Figure 7: Performance results of changing the split 
range HI 

Thii result comee from the fact that the initialization 
co& of the hash table cannot be ignored. To avoid this 
overhead, we can process a aet of buckets at once. If we 
aplit the relations into a large number of buckets, each 

SThe maximum apfic&a rise ol rdatii with Hybrid Huh 
Join Method becoma lMlz - IMI + 1 when H. = IMI. 

‘In the following dircussicm, we amuma thbttheeiscorthe 
relation in applicable with our method 
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bucket may have fewer tuples than {M}. Therefor they 
can be grouped in a set to be processed. This technique 
is used in our split based join method. It is originally 
suggested in [Kit83], where it is called Suckci tuning”. 
Using a large number of split range, we can easily re- 
duce the abuckcf overflow% shown in [Kit83,DeW84]. 

In addition to this, we can dynamically determine 
the staged bucket by using fair bucket distributions. 
For the Hybrid Hash Join Method or other split based 
join methods discussed in [DeW84,DeW85], the staging 
buckets are statically decided, that is, they are decided 
before the split phase. 

On the other hand, we determine the staging bucket 
dynamically during the split phase. The detailed strat- 
egy is shown in the next section. 

We think that the selection of split functions is not 
easy for any situation. From this point of view, it is 
better to partition the relation into as many buckets as . 
possible. When we use this kind of split range H,, the 
possibility of bucket overflow becomes the lowest, and 
we can select the staging buckets dynamically instead 
of statically. If we select the de&aging bucket as the 
one containing the largest number of tuples when we 
need an extra page, we can guarantee that the other 
buckets are kept on the available memory. It gives the 
system the flexibility for the selection of split function. 

4 A new type of split based join 
method using the dynamic se- 
lection strategy of paged out 
bucket 

In this section, we show a new type of split based join, 
method. In this method, the paging out bucket is cho- 
sen dynamically during the split phase, and we collect 
a set of buckets which can be processed at the same 
time during the split phase. Following in thii section, 
we show the algorithms of this method. At first, we 
show the staging strategy of relation R in split phase. 
And the end of staging of the relation R, we schedule 
the cluster for all buckets and make the hash table for 
staged buckets on memory. These buckets on memory 
are treated as RI in Hybrid Hash join Method. Af- 
ter this staging, the relation S is partitioned into the 
same number of buckets and probe the joinability of RI 
buckets. Now, split phase is finished. In probe phase, 
each cluster of relation R is staged into memory, and 
probe the joinability with the cluster of relation S re- 
spectively. When the siae of the i-th cluster exceeds 
the size of available memory, this cluster is treated as 
original relation and is applied this strategy recursively. 

4.1 Dynamic selection strategy of 
paged out bucket 

As shown in Figure 3, the available memory is com- 
posed of N + 2 pages, and N pages are used as staging 
area for relation R during the split phase. Concerning 
the other two pages, one is used as the input buffer of 
initial staging of both relations, and the other is not 
used during the split phase. All pages used for staging 
area, N pages, are initially linked to the free pages list. 

At first, relation R is scanned and their pagea are 
staged into the input buffer. The split function is ag 
plied on the join key fields for each tuple in this buffer. 
According to the returned value of this split function, 
each tuple is copied into the buffer of the appropri- 
ate bucket. If there is no room to in this buffer, a new 
page is allocated from the free pages list. When the free 
pages list becomes empty, dynamic de&aging strategy 
works as follows. 

1. Scan the split table and search for a bucket which 
has already been paged out. If found, go to step 2. And 
if there are no paged out buckets, go to step 3. 

2. Check the number of tuples staged on memory 
for this bucket. If the number exceeds one page, mark 
it as the bucket to be paged out again and go to step 
4. Otherwise go back to stepl. We choose the bucket 
to be paged out again as the one whose number of 
pages on the memory exceeds ones, to avoid the writ- 
ing and reading of useless area of a page. These extra 
accesses would lead to a worse performance, and should 
be avoided if possible. 

3. When there are no paged out buckets, the largest 
bucket is preferably selected as the paged out bucket, 
because it has, generally, the highest possibility of 
bucket overflow among all the buckets. 

4. When the paging out bucket is determined, all of 
its filled pages are de&aged into the temporal relation. 
As described in step 2, we don’t page out the partial 
filled pages. 

If the distributions of tuples are known before the 
staging is processed, we can determine the paged out 
bucket optimally. But usually, join operation follows 
some restriction operations, and it is impossible to 
know these distributions, so we choose a strategy which 
can delay the selection of the paged out bucket as later 
ss possible. Using this strategy, we can get an optimal 
paged out bucket at each paging out time. In Figure 8, 
we show some examples of this strategies. 
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Figure 8: Example of dynamic destaging strategy 

4.2 The scheduling of the processing 
buckets 

When the relation R is seanned, we can classify all 
the buckets into two kinds: one in which all tuples are 
staged on the memory and the other in which some/all 
tuples are destaged into the temporal relation. 

The bucket Ri in the Hybrid Hash Join Method be 
longs to the former kind. And each tuple belongs to 
this kind of buckets is applied hash function to make 
the hash table. As shown in Figure 7, the initializing 
cost of the hash table cannot be ignored. It is the reason 
why we choose this kind of collection. So All buckets 
staged on the memory are processed at the 5ame time 
in our join method. 

For the buckets which contain paged out tuplee, we 
make a schedule of their processing sequence and gather 
these buckets. We call a set of buckete, ‘clusfer’. For 
the total cost optimization, we have to check the whole 
combination of buckets. It is easily shown that the com- 
plexity of this schedule become5 N-P complete. And 
when the total number of buckets becomes larger and 
larger, it become5 more difficult to search the best 
scheduling. To reduce the scheduling co5t, we use the 
simple bucket tuning method described below. 

At first, check the number of tuples of each cluster. If 
the difference from {M} is more than the tuple number 
of the scheduled bucket, add that bucket a5 a member 
of the cluster. When no cluster can hold that bucket, 
make a new cluster and add that bucket a5 the member 
of the cluster. 

4.3 Overlap the probing of the RI 
buckets with staging the relation 
S 

A5 mentioned in the last two subsections, we split the 
relation R into H, buckets, and make a schedule of the 
clusters. After that, we split the other relation S into 
H, buckets. 

Scan the relation S and stage each page into the in- 
put buffer. For each tuple in this buffer, the same split 
function used for the relation R is applied. If the tu- 
ple is a member of the staged buckets on the memory, 
probe the joinability immediately. Otherwise, that tu- 
ple is copyed into the staging buffer of each bucket in 
the 5ame way as was done to relation R. When the 
whole relation S is scanned, the split phase is finished. 

4.4 Processing strategy for the over- 
flow buckets 

Now we have a set of clusters in temporal relations. 
Usually each cluster is a set of bucket5 where total size 
fit5 in the available main memory. When the distribu- 
tion of each bucket doe5 not fit to this situation, some 
bucket5 may overflow the available memory. For exam- 
ple, if all tuples in the relation R have the same split 
value, we cannot guarantee the safety of this method. 
In such a ca5e, we select the following strategy. 

As shown in section 2, it is better to use the non- 
split based join method when the size of the bucket is 
between the size of the available main memory and five 
times larger. 

Otherwise, we apply our split based join method re- 
cursively. In this ca5e, another split function is used 
during the recursive split phase. During this recursive 
phase, meet of the overflow ca5es can be solved. 

Even though we apply these strategies, they cannot 
be solved all the situations. As mentioned before, when 
all of the tuples have the same value in the join field, 
we cannot separate them by any kind of split functions. 
So, in our method, this recursion finishes when the re- 
cursive nests reach a level which is defined before we 
process the join operation. In such cases, we will change 
the strategy to the non-split based join method. 

Using this strategy, higher performance than that of 
the Hybrid Hash Join Method can be obtained, in many 
ca5e5. The next section shows an example in which 
our method works better than the Hybrid Hash Join 
Method. This example is only a sample case, but it is 
believed that in many casee these situations occur. 
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5 An example of unbalanced 
bucket distribution 

In this section, we show an example situation in which 
the Hybrid Hash Join Method does not perform so well. 

An described in section 3, the Hybrid Hash Join 
Method usea a strategy in which the number of buckets 
becomes as small aa possible. It is assumed that a euit- 
able eplit function for the given relations can be found. 
In this section, we consider a situation where this suit- 
able split functions cannot be found. In general, it is an 
usual case because join operationa follow Borne reetric- 
tion operations and we cannot guess the distributions 
of each bucket. 

For example, consider the following situations. The 
relation R has two attributes, Name and Address. Here, 
assume that Name field ia the primary key of the re- 
lation R, and we can keep the information about total 
tuple distributions. In this situation, when we want to 
join all tuplea in the relation R with another relation S, 
we can split it as we expected by using such informa- 
tion. However, when we want to join fne person who 
liver in Z’o)yo with another relation S, we cannot eplit 
it 88 we expected. Because the tuple distribution which 
satisfies the condition ia not identical with that of whole 
relation. 

We apply the join operation for such relations in this 
section. We prepare the source relations which have 
unbalanced distributions of buckets before any reetric- 
tions are given. It is to simplify the situation. 

Here we ahow two relations which have the same 
characteristics. Each relation is made of 64 bytes long 
tup1e8, a and the join attribute of our experiments ia a 
4 bytea integer field. The value of each tuple is unique 
in the relation. One relation P has the sequential value 
in the join attribute, and the other relation Q has a 
particular distributions in the join attribute. In our 
experiments we use a simple mod functions to split 
the relation and to probe the joinability. Each hash 
function sees the different bit fields of join attribute 
and returna the modulus value. We can separate each 
bucket uniformly, when we process the relation P. On 
the other hand, if we process the relation Q using this 
function, the distribution of each bucket becomes un- 
balanced. Figure 9 shows this result of 300 K tuplerr. In 
this situation, the split range H, becomes 10 by using 
the Hybrid Hash Join Method. However, by using our 
proposed join method it becomes 500, determined by 
WI + w2. 

In such situations, we cannot determine the split 

bPractically, the tuple length or the number of attributea am 
not a problem in generd. Only the value and dirtributionm of 
join attributea are a matter of concern. 

01234567SS 

hcket ID 

(a) balanced tuple distribution 
relation P 

01234SS7S9 

Bucket ID 

(b) unbalanced tuple distribution 
relation Cl 

Figure 9: The tuple distributions of each relation 

functions and the split range H, so easily. Though 
the Hybrid Hash Join Method haa advantages when 
the split function is suited to the data distributions of 
target relation, the total cost becomea worse when it 
isn’t suited to the distributions. 

On the other hand, our proposed join method uses 
additional buckets for adjusting their sizes. This may 
avoid the bucket overflows in many cases as mentioned 
before, however it needs additional buffers for those 
extra buckets during split phase. 

Here, we will consider this overhead by using an ex- 
ample. When we treat 300 K tuplea long relations, the 
I/O number for scanning each relation becomes 9375 
pages. If we can apply the optimal split function to 
those relations, the split range H, becomes 10, as de- 
scribed before. To join them, including the output of 
the result, we have to read or write them four times at 
least. It means that, even though in an optimal case, 
9375 * 4 * 2 - 991* 2 l 2 = 71036 pages I/O occurs. In 
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such a case, our join method needs 490 additional I/O’s 
for each scanning. The 490 * 2 * 2 pages I/O is merely 
2.8 % of the total I/O cost. 

Figure 10 shows our experimental results varying ac- 
cording to the size of relations. This figure shows that 
our method does not reduce the performance for unbal- 
anced bucket distributions. Thus, this method is more 
flexible than the Hybrid Hash Join Method. 

* Unbalanced Bucket ( Proposed Join Method ) 
* Unbalanced Bucket ( Hybrid Hash Join Method ) 
+ Balanced Bucket ( Reposed Join Method ) 
+ Balanced Bucket ( Hybrid Huh Join Method ) 

-I 
100 300 600 700 000 

Numba of tuples ( K tuples ) 
Figure 10: Join performance of unbalanced tuple dis- 
tributions 

This figure also shows that the processing cost of 
additional bucket is mere, and the processing cost of 
applying the recursive split phase cannot be ignored. It 
means that it is better to use a large number of buckets 
during split phase. 

6 Conclusions 

In this paper, we pointed out the disadvantages of the 
traditional split based join method, concentrating our 
analysis on the Hybrid Hash Join Method. 

In most of the split based join methods, the number 
of buckets is statically determined by a split function, 
assuming that the result bucket size is uniformly dis- 
tributed. 

However, we think that such cases are actually rare 
because join operations generally follow some restric- 
tions and there is no guarantee that the split function 
is suitable for any kind of data distribution of the source 
relation. 

Especially in the Hybrid Hash Join Method, the split 
function has to deal with two kinds of bucket distribu- 
tions: one is for the first staged hash bucket and the 
other is for the de&aging buckets. In both cases, un- 
balanced distributions of tuplee in the buckets lead to 
a worse performance than the estimated one. 

We proposed a more flexible method, suited for many 
kinds of data distribution. In our proposed method, 
the source relations are split into a larger number of 
buckets. Whenever necessary, a dynamical selection 
strategy for the determination of the page out bucket 
is performed. This dynamical strategy decreases the 
possibility of overflows or underflows of the first staging 
hash bucket. Aiming at increasing the efficiency of the 
memory space and decreasing the overhead due to the 
hash table initialization, the buckets are gathered in 
clusters before processing. The clusters are determined 
so as to fill up the memory. 

This strategy was shown to be efficient for large sized 
relations. For medium sized relations, instead of apply- 
ing this strategy, we use a non-split based join method, 
whose estimated I/O cost shows to improve the join 
operation performance. 

Our experimental results show that the method pr* 
posed in this paper presents higher performance than 
the Hybrid Hash Join Method in many cases. 
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