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Abstract

Persistent key-value (KV) stores mostly build on the

Log-Structured Merge (LSM) tree for high write perfor-

mance, yet the LSM-tree suffers from the inherently high

I/O amplification. KV separation mitigates I/O amplifi-

cation by storing only keys in the LSM-tree and values

in separate storage. However, the current KV separation

design remains inefficient under update-intensive work-

loads due to its high garbage collection (GC) overhead in

value storage. We propose HashKV, which aims for high

update performance atop KV separation under update-

intensive workloads. HashKV uses hash-based data

grouping, which deterministically maps values to storage

space so as to make both updates and GC efficient.

We further relax the restriction of such deterministic

mappings via simple but useful design extensions. We

compare HashKV with state-of-the-art KV stores via

extensive testbed experiments, and show that HashKV

achieves 4.6× throughput and 53.4% less write traffic

compared to the current KV separation design.

1 Introduction

Persistent key-value (KV) stores are an integral part

of modern large-scale storage infrastructures for storing

massive structured data (e.g., [4, 6, 10, 18]). While real-

world KV storage workloads are mainly read-intensive

(e.g., the Get/Update ratio can reach 30:1 in Facebook’s

Memcached workloads [3]), update-intensive workloads

are also dominant in many storage scenarios, including

online transaction processing [37] and enterprise servers

[17]. For example, Yahoo! reports that its low-latency

workloads increasingly move from reads to writes [33].

Modern KV stores optimize the performance of writes

(including inserts and updates) using the Log-Structured

Merge (LSM) tree [29]. Its idea is to maintain sequential-

ity of random writes through a log-structured (append-

only) design [31], while supporting efficient queries

including individual key lookups and range scans. In

a nutshell, the LSM-tree buffers written KV pairs and

flushes them into a multi-level tree, in which each node

is a fixed-size file containing sorted KV pairs and their

metadata. The recently written KV pairs are stored at

higher tree levels, and are merged with lower tree levels

via compaction. The LSM-tree design not only improves

write performance by avoiding small random updates

(which are also harmful to the endurance of solid-state

drives (SSDs) [2, 27]), but also improves range scan

performance by holding sorted KV pairs in each node.

However, the LSM-tree incurs high I/O amplification

in both writes and reads. As the LSM-tree receives more

writes of KV pairs, it will trigger frequent compaction

operations, leading to tremendous extra I/Os due to

rewrites across levels. Such write amplification can reach

a factor of at least 50× [23, 39], which is detrimental

to both write performance and the endurance of SSDs

[2, 27]. Also, as the LSM-tree grows in size, reading the

KV pairs at lower levels incurs many disk accesses. Such

read amplification can reach a factor of over 300× [23],

leading to low read performance.

In order to mitigate the compaction overhead, many

research efforts focus on optimizing LSM-tree indexing

(see §5). One approach is KV separation from WiscKey

[23], in which keys and metadata are still stored in

the LSM-tree, while values are separately stored in an

append-only circular log. The main idea of KV sepa-

ration is to reduce the LSM-tree size, while preserving

the indexing feature of the LSM-tree for efficient in-

serts/updates, individual key lookups, and range scans.

In this work, we argue that KV separation itself still

cannot fully achieve high performance under update-

intensive workloads. The root cause is that the circular

log for value storage needs frequent garbage collection

(GC) to reclaim the space from the KV pairs that are

deleted or superseded by new updates. However, the GC

overhead is actually expensive due to two constraints of

the circular log. First, the circular log maintains a strict

GC order, as it always performs GC at the beginning

of the log where the least recently written KV pairs are

located. This can incur a large amount of unnecessary

data relocation (e.g., when the least recently written KV

pairs remain valid). Second, the GC operation needs to

query the LSM-tree to check the validity of each KV pair.

These queries have high latencies, especially when the

LSM-tree becomes sizable under large workloads.

We propose HashKV, a high-performance KV store

tailored for update-intensive workloads. HashKV builds

on KV separation and uses a novel hash-based data

grouping design for value storage. Its idea is to divide

value storage into fixed-size partitions and deterministi-

cally map the value of each written KV pair to a partition

by hashing its key. Hash-based data grouping supports

lightweight updates due to deterministic mapping. More

importantly, it significantly mitigates GC overhead, since
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each GC operation not only has the flexibility to select a

partition to reclaim space, but also eliminates the queries

to the LSM-tree for checking the validity of KV pairs.

On the other hand, the deterministic nature of hash-

based data grouping restricts where KV pairs are stored.

Thus, we propose three novel design extensions to relax

the restriction of hash-based data grouping: (i) dynamic

reserved space allocation, which dynamically allocates

reserved space for extra writes if their original hash parti-

tions are full given the size limit; (ii) hotness awareness,

which separates the storage of hot and cold KV pairs

to improve GC efficiency as inspired by existing SSD

designs [19,27]; and (iii) selective KV separation, which

keeps small-size KV pairs in entirety in the LSM-tree to

simplify lookups.

We implement our HashKV prototype atop LevelDB

[15], and show via testbed experiments that HashKV

achieves 4.6× throughput and 53.4% less write traffic

compared to the circular log design in WiscKey under

update-intensive workloads. Also, HashKV generally

achieves higher throughput and significantly less write

traffic compared to modern KV stores, such as LevelDB

and RocksDB [12], in various cases.

Our work makes a case of augmenting KV separation

with a new value management design. While the key and

metadata management of HashKV now builds on Lev-

elDB, it can also adopt other KV stores with new LSM

tree designs (e.g., [30, 33, 35, 39, 41, 42]). How HashKV

affects the performance of various LSM-tree-based KV

stores under KV separation is posed as future work. The

source code of HashKV is available for download at:

http://adslab.cse.cuhk.edu.hk/software/hashkv.

2 Motivation

We use LevelDB [15] as a representative example to

explain the write and read amplification problems of

LSM-tree-based KV stores. We show how KV separation

[23] mitigates both write and read amplifications, yet it

still cannot fully achieve efficient updates.

2.1 LevelDB

LevelDB organizes KV pairs based on the LSM-tree

[29], which transforms small random writes into sequen-

tial writes and hence maintains high write performance.

Figure 1 illustrates the data organization in LevelDB. It

divides the storage space into k levels (where k > 1)

denoted by L0, L1, · · ·, Lk−1. It configures the capacity

of each level Li to be a multiple (e.g., 10×) of that of its

upper level Li−1 (where 1 ≤ i ≤ k − 1).

For inserts or updates of KV pairs, LevelDB first stores

the new KV pairs in a fixed-size in-memory buffer called

MemTable, which uses a skip-list to keep all buffered

KV pairs sorted by keys. When the MemTable is full,

LevelDB makes it immutable and flushes it to disk at

Figure 1: Data organization in LevelDB.

level L0 as a file called SSTable. Each SSTable has a size

of around 2 MiB and is also immutable. It stores indexing

metadata, a Bloom filter (for quickly checking if a KV

pair exists in the SSTable), and all sorted KV pairs.

If L0 is full, LevelDB flushes and merges its KV

pairs into L1 via compaction; similarly, if L1 is full, its

KV pairs are flushed and merged into L2, and so on.

The compaction process comprises three steps. First, it

reads out KV pairs in both Li and Li+1 into memory

(where i ≥ 0). Second, it sorts the valid KV pairs (i.e.,

newly inserted or updated) by keys and reorganizes them

into SSTables. It also discards all invalid KV pairs (i.e.,

deleted or superseded by new updates). Finally, it writes

back all SSTables with valid KV pairs to Li+1. Note

that all KV pairs in each level, except L0, are sorted by

keys. In L0, LevelDB only keeps KV pairs sorted within

each SSTable, but not across SSTables. This improves

performance of flushing from the MemTable to disk.

To perform a key lookup, LevelDB searches from L0

to Lk−1 and returns the first associated value found. In

L0, LevelDB searches all SSTables. In each level be-

tween L1 and Lk−1, LevelDB first identifies a candidate

SSTable and checks the Bloom filter in the candidate

SSTable to determine if the KV pair exists. If so, Lev-

elDB reads the SSTable file and searches for the KV pair;

otherwise, it directly searches the lower levels.

Limitations: LevelDB achieves high random write per-

formance via the LSM-tree-based design, but suffers

from both write and read amplifications. First, the com-

paction process inevitably incurs extra reads and writes.

In the worst case, to merge one SSTable from Li−1 to

Li, it reads and sorts 10 SSTables, and writes back all

SSTables. Prior studies show that LevelDB can have an

overall write amplification of at least 50× [23, 39], since

it may trigger more than one compaction to move a KV

pair down multiple levels under large workloads.

In addition, a lookup operation may search multiple

levels for a KV pair and incur multiple disk accesses.

The reason is that the search in each level needs to

read the indexing metadata and the Bloom filter in the

associated SSTable. Although the Bloom filter is used,

it may introduce false positives. In this case, an SSTable

is still unnecessarily read from disk even though the KV

pair actually does not exist. Thus, each lookup typically
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incurs multiple disk accesses. Such read amplification

further aggravates under large workloads, as the LSM-

tree builds up in levels. Measurements show that the read

amplification reaches over 300× in the worst case [23].

2.2 KV Separation

KV separation, proposed by WiscKey [23], decouples the

management of keys and values to mitigate both write

and read amplifications. The rationale is that storing val-

ues in the LSM-tree is unnecessary for indexing. Thus,

WiscKey stores only keys and metadata (e.g., key/value

sizes, value locations, etc.) in the LSM-tree, while stor-

ing values in a separate append-only, circular log called

vLog. KV separation effectively mitigates write and read

amplifications of LevelDB as it significantly reduces the

size of the LSM-tree, and hence both compaction and

lookup overheads.

Since vLog follows the log-structured design [31],

it is critical for KV separation to achieve lightweight

garbage collection (GC) in vLog, i.e., to reclaim the

free space from invalid values with limited overhead.

Specifically, WiscKey tracks the vLog head and the vLog

tail, which correspond to the end and the beginning of

vLog, respectively. It always inserts new values to the

vLog head. When it performs a GC operation, it reads a

chunk of KV pairs from the vLog tail. It first queries the

LSM-tree to see if each KV pair is valid. It then discards

the values of invalid KV pairs, and writes back the valid

values to the vLog head. It finally updates the LSM-tree

for the latest locations of the valid values. To support

efficient LSM-tree queries during GC, WiscKey also

stores the associated key and metadata together with the

value in vLog. Note that vLog is often over-provisioned

with extra reserved space to mitigate GC overhead.

Limitations: While KV separation reduces compaction

and lookup overheads, we argue that it suffers from the

substantial GC overhead in vLog. Also, the GC overhead

becomes more severe if the reserved space is limited. The

reasons are two-fold.

First, vLog can only reclaim space from its vLog tail

due to its circular log design. This constraint may incur

unnecessary data movements. In particular, real-world

KV storage often exhibits strong locality [3], in which

a small portion of hot KV pairs are frequently updated,

while the remaining cold KV pairs receive only few or

even no updates. Maintaining a strict sequential order in

vLog inevitably relocates cold KV pairs many times and

increases GC overhead.

Also, each GC operation queries the LSM-tree to

check the validity of each KV pair in the chunk at

the vLog tail. Since the keys of the KV pairs may be

scattered across the entire LSM-tree, the query overhead

is high and increases the latency of the GC operation.

Even though KV separation has already reduced the size
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Figure 2: Write amplifications of LevelDB, RocksDB,

and vLog in the Load and Update phases.

of the LSM-tree, the LSM-tree is still sizable under large

workloads, and this aggravates the query cost.

To validate the limitations of KV separation, we im-

plement a KV store prototype based on vLog (see §3.8)

and evaluate its write amplification. We consider two

phases: Load and Update. In the Load phase, we insert

40 GiB of 1-KiB KV pairs into vLog that is initially

empty; in the Update phase, we issue 40 GiB of updates

to the existing KV pairs based on a Zipf distribution with

a Zipfian constant of 0.99. We provision 40 GiB of space

for vLog, and an additional 30% (12 GiB) of reserved

space. We also disable the write cache in our prototype

(see §3.2). Figure 2 shows the write amplification results

of vLog in the Load and Update phases, in terms of

the ratio of the total device write size to the actual

write size due to inserts or updates. For comparison, we

also consider two modern KV stores, LevelDB [15] and

RocksDB [12], based on their default parameters. In the

Load phase, vLog has sufficient space to hold all KV

pairs and does not trigger GC, so its write amplification is

only 1.6× due to KV separation. However, in the Update

phase, the updates fill up the reserved space and start to

trigger GC. We see that vLog has a write amplification

of 19.7×, which is close to LevelDB (19.1×) and higher

than RocksDB (7.9×).

To mitigate GC overhead in vLog, one approach is

to partition vLog into segments and choose the best

candidate segments that minimize GC overhead based

on the cost-benefit policy or its variants [26, 31, 32].

However, the hot and cold KV pairs can still be mixed

together in vLog, so the chosen segments for GC may

still contain cold KV pairs that are unnecessarily moved.

To address the mixture of hot and cold data, a better

approach is to perform hot-cold data grouping as in

SSD designs [19, 27], in which we separate the storage

of hot and cold KV pairs into two regions and apply

GC to each region individually (more GC operations are

expected to be applied to the storage region for hot KV

pairs). However, the direct implementation of hot-cold

data grouping inevitably increases the update latency in

KV separation. As a KV pair may be stored in either

hot or cold regions, each update needs to first query the

LSM-tree for the exact storage location of the KV pair.

Thus, a key motivation of our work is to enable hotness

awareness without LSM-tree lookups.
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3 HashKV Design

HashKV is a persistent KV store that specifically targets

update-intensive workloads. It improves the management

of value storage atop KV separation to achieve high

update performance. It supports standard KV operations:

PUT (i.e., writing a KV pair), GET (i.e., retrieving the

value of a key), DELETE (i.e., deleting a KV pair), and

SCAN (i.e., retrieving the values of a range of keys).

3.1 Main Idea

HashKV follows KV separation [23] by storing only

keys and metadata in the LSM-tree for indexing KV

pairs, while storing values in a separate area called the

value store. Atop KV separation, HashKV introduces

several core design elements to achieve efficient value

storage management.

• Hash-based data grouping: Recall that vLog incurs

substantial GC overhead in value storage. Instead,

HashKV maps values into fixed-size partitions in the

value store by hashing the associated keys. This design

achieves: (i) partition isolation, in which all versions

of value updates associated with the same key must

be written to the same partition, and (ii) deterministic

grouping, in which the partition where a value should

be stored is determined by hashing. We leverage this

design to achieve flexible and lightweight GC.

• Dynamic reserved space allocation: Since we map

values into fixed-size partitions, one challenge is that

a partition may receive more updates than it can hold.

HashKV allows a partition to grow dynamically be-

yond its size limit by allocating fractions of reserved

space in the value store.

• Hotness awareness: Due to deterministic grouping, a

partition may be filled with the values from a mix of

hot and cold KV pairs, in which case a GC operation

unnecessarily reads and writes back the values of

cold KV pairs. HashKV uses a tagging approach to

relocate the values of cold KV pairs to a different

storage area and separate the hot and cold KV pairs,

so that we can apply GC to hot KV pairs only and

avoid re-copying cold KV pairs.

• Selective KV separation: HashKV differentiates KV

pairs by their value sizes, such that the small-size KV

pairs can be directly stored in the LSM-tree without

KV separation. This saves the overhead of accessing

both the LSM-tree and the value store for small-size

KV pairs, while the compaction overhead of storing

the small-size KV pairs in the LSM-tree is limited.

Remarks: HashKV maintains a single LSM-tree for

indexing (instead of hash-partitioning the LSM-tree as in

the value store) to preserve the ordering of keys and the

range scan performance. Since hash-based data grouping

spreads KV pairs across the value store, it incurs random

writes; in contrast, vLog maintains sequential writes with

Figure 3: HashKV architecture.

a log-structured storage layout. Our HashKV prototype

(see §3.8) exploits both multi-threading and batch writes

to limit random write overhead.

3.2 Storage Management

Figure 3 depicts the architecture of HashKV. It divides

the logical address space of the value store into fixed-

size units called main segments. Also, it over-provisions

a fixed portion of reserved space, which is again divided

into fixed-size units called log segments. Note that the

sizes of main segments and log segments may differ; by

default, we set them as 64 MiB and 1 MiB, respectively.

For each insert or update of a KV pair, HashKV

hashes its key into one of the main segments. If the main

segment is not full, HashKV stores the value in a log-

structured manner by appending the value to the end of

the main segment; on the other hand, if the main segment

is full, HashKV dynamically allocates a free log segment

to store the extra values in a log-structured manner.

Again, it further allocates additional free log segments

if the current log segment is full. We collectively call a

main segment and all its associated log segments a seg-

ment group. Also, HashKV updates the LSM-tree for the

latest value location. To keep track of the storage status

of the segment groups and segments, HashKV uses a

global in-memory segment table to store the current end

position of each segment group for subsequent inserts or

updates, as well as the list of log segments associated

with each segment group. Our design ensures that each

insert or update can be directly mapped to the correct

write position without issuing LSM-tree lookups on the

write path, thereby achieving high write performance.

Also, the updates of the values associated with the same

key must go to the same segment group, and this sim-

plifies GC. For fault tolerance, HashKV checkpoints the

segment table to persistent storage.

To facilitate GC, HashKV also stores the key and

metadata (e.g., key/value sizes) together with the value

for each KV pair in the value store as in WiscKey [23]

(see Figure 3). This enables a GC operation to quickly

identify the key associated with a value when it scans the

value store. However, our GC design inherently differs

from vLog used by WiscKey (see §3.3).

1010    2018 USENIX Annual Technical Conference USENIX Association



To improve write performance, HashKV holds an in-

memory write cache to store the recently written KV

pairs, at the expense of degrading reliability. If the key of

a new KV pair to be written is found in the write cache,

HashKV directly updates the value of the cached key

in-place without issuing the writes to the LSM-tree and

the value store. It can also return the KV pairs from the

write cache for reads. If the write cache is full, HashKV

flushes all the cached KV pairs to the LSM-tree and

the value store. Note that the write cache is an optional

component and can be disabled for reliability concerns.

HashKV supports hotness awareness by keeping cold

values in a separate cold data log (see §3.4). It also

addresses crash consistency by tracking the updates in

both write journal and GC journal (see §3.7).

3.3 Garbage Collection (GC)

HashKV necessitates GC to reclaim the space occupied

by invalid values in the value store. In HashKV, GC

operates in units of segment groups, and is triggered

when the free log segments in the reserved space are

running out. At a high level, a GC operation first selects a

candidate segment group and identifies all valid KV pairs

(i.e., the KV pairs of the latest version) in the group. It

then writes back all valid KV pairs to the main segment,

or additional log segments if needed, in a log-structured

manner. It also releases any unused log segments that

can be later used by other segment groups. Finally, it

updates the latest value locations in the LSM-tree. Here,

the GC operation needs to address two issues: (i) which

segment group should be selected for GC; and (ii) how

the GC operation quickly identifies the valid KV pairs in

the selected segment group.

Unlike vLog, which requires the GC operation to

follow a strict sequential order, HashKV can flexibly

choose which segment group to perform GC. It currently

adopts a greedy approach and selects the segment group

with the largest amount of writes. Our rationale is that

the selected segment group typically holds the hot KV

pairs that have many updates and hence has a large

amount of writes. Thus, selecting this segment group for

GC likely reclaims the most free space. To realize the

greedy approach, HashKV tracks the amount of writes

for each segment group in the in-memory segment table

(see §3.2), and uses a heap to quickly identify which

segment group receives the largest amount of writes.

To check the validity of KV pairs in the selected

segment group, HashKV sequentially scans the KV pairs

in the segment group without querying the LSM-tree

(note that it also checks the write cache for any latest

KV pairs in the segment group). Since the KV pairs are

written to the segment group in a log-structured manner,

the KV pairs must be sequentially placed according to

their order of being updated. For a KV pair that has

multiple versions of updates, the version that is nearest

to the end of the segment group must be the latest one

and correspond to the valid KV pair, while other versions

are invalid. Thus, the running time for each GC operation

only depends on the size of the segment group that needs

to be scanned. In contrast, the GC operation in vLog

reads a chunk of KV pairs from the vLog tail (see §2.2).

It queries the LSM-tree (based on the keys stored along

with the values) for the latest storage location of each KV

pair in order to check if the KV pair is valid [23]. The

overhead of querying the LSM-tree becomes substantial

under large workloads.

During a GC operation on a segment group, HashKV

constructs a temporary in-memory hash table (indexed

by keys) to buffer the addresses of the valid KV pairs

being found in the segment group. As the key and address

sizes are generally small and the number of KV pairs in a

segment group is limited, the hash table has limited size

and can be entirely stored in memory.

3.4 Hotness Awareness

Hot-cold data separation improves GC performance in

log-structured storage (e.g., SSDs [19, 27]). In fact, the

current hash-based data grouping design realizes some

form of hot-cold data separation, since the updates of the

hot KV pairs must be hashed to the same segment group

and our current GC policy always chooses the segment

group that is likely to store the hot KV pairs (see §3.3).

However, it is inevitable that some cold KV pairs are

hashed to the segment group selected for GC, leading to

unnecessary data rewrites. Thus, a challenge is to fully

realize hot-cold data separation to further improve GC

performance.

HashKV relaxes the restriction of hash-based data

grouping via a tagging approach (see Figure 4). Specif-

ically, when HashKV performs a GC operation on a

segment group, it classifies each KV pair in the segment

group as hot or cold. Currently, we treat the KV pairs

that are updated at least once since their last inserts

as hot, or cold otherwise (more accurate hot-cold data

identification approaches [16] can be used). For the hot

KV pairs, HashKV still writes back their latest versions

to the same segment group via hashing. However, for the

cold KV pairs, it now writes their values to a separate

storage area, and keeps their metadata only (i.e., without

values) in the segment group. In addition, it adds a tag

in the metadata of each cold KV pair to indicate its

presence in the segment group. Thus, if a cold KV pair

is later updated, we know directly from the tag (without

querying the LSM-tree) that the cold KV pair has already

been stored, so that we can treat it as hot based on

our classification policy; the tagged KV pair will also

become invalid. Finally, at the end of the GC operation,

HashKV updates the latest value locations in the LSM-
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(meta, key, value)

(meta (tagged), key)

(meta (tagged), key)

Segment

(meta, key, value)

Log (cold KV pairs)

...

Figure 4: Tagging in HashKV.

tree, such that the locations of the cold KV pairs point to

the separate area.

With tagging, HashKV avoids storing the values of

cold KV pairs in the segment group and rewriting them

during GC. Also, tagging is only triggered during GC,

and does not add extra overhead to the write path. Cur-

rently, we implement the separate storage area for cold

KV pairs as an append-only log (called the cold data log)

in the value store, and perform GC on the cold data log as

in vLog. The cold data log can also be put in secondary

storage with a larger capacity (e.g., hard disks) if the cold

KV pairs are rarely accessed.

3.5 Selective KV Separation

HashKV supports workloads with general value sizes.

Our rationale is that KV separation reduces compaction

overhead especially for large-size KV pairs, yet its ben-

efits for small-size KV pairs are limited, and it incurs

extra overhead of accessing both the LSM-tree and the

value store. Thus, we propose selective KV separation,

in which we still apply KV separation to KV pairs with

large value sizes, while storing KV pairs with small value

sizes in entirety in the LSM-tree. A key challenge of

selective KV separation is to choose the KV pair size

threshold of differentiating between small-size and large-

size KV pairs (assuming that the key size remains fixed).

We argue that the choice depends on the deployment

environment. In practice, we can conduct performance

tests for different value sizes to see when the throughput

gain of selective KV separation becomes significant.

3.6 Range Scans

One critical reason of using the LSM-tree for indexing

is its efficient support of range scans. Since the LSM-

tree stores and sorts KV pairs by keys, it can return the

values of a range of keys via sequential reads. However,

KV separation now stores values in separate storage

space, so it incurs extra reads of values. In HashKV,

the values are scattered across different segment groups,

so range scans will trigger many random reads that

degrade performance. HashKV currently leverages the

read-ahead mechanism to speed up range scans by

prefetching values into the page cache. For each scan

request, HashKV iterates over the range of sorted keys

in the LSM-tree, and issues a read-ahead request to each

value (via posix fadvise). It then reads all values and

returns the sorted KV pairs.

3.7 Crash Consistency

Crashes can occur while HashKV issues writes to persis-

tent storage. HashKV addresses crash consistency based

on metadata journaling and focuses on two aspects: (i)

flushing the write cache and (ii) GC operations.

Flushing the write cache involves writing the KV pairs

to the value store and updating metadata in the LSM-tree.

HashKV maintains a write journal to track each flushing

operation. It performs the following steps when flushing

the write cache: (i) flushing the cached KV pairs to the

value store; (ii) appending metadata updates to the write

journal; (iii) writing a commit record to the journal end;

(iv) updating keys and metadata in the LSM-tree; and

(v) marking the flush operation free in the journal (the

freed journaling records can be recycled later). If a crash

occurs after step (iii) completes, HashKV replays the

updates in the write journal and ensures that the LSM-

tree and the value store are consistent.

Handling crash consistency in GC operations is differ-

ent, as they may overwrite existing valid KV pairs. Thus,

we also need to protect existing valid KV pairs against

crashes during GC. HashKV maintains a GC journal

to track each GC operation. It performs the following

steps after identifying all valid KV pairs during a GC

operation: (i) appending the valid KV pairs that are over-

written as well as metadata updates to the GC journal; (ii)

writing all valid KV pairs back to the segment group; (iii)

updating the metadata in the LSM-tree; and (iv) marking

the GC operation free in the journal.

3.8 Implementation Details

We prototype HashKV in C++ on Linux. We use Lev-

elDB v1.20 [15] for the LSM-tree. Our prototype con-

tains around 6.7K lines of code (without LevelDB).

Storage organization: We currently deploy HashKV

on a RAID array with multiple SSDs for high I/O per-

formance. We create a software RAID volume using

mdadm [22], and mount the RAID volume as an Ext4

file system, on which we run both LevelDB and the

value store. In particular, HashKV manages the value

store as a large file. It partitions the value store file into

two regions, one for main segments and another for log

segments, according to the pre-configured segment sizes.

All segments are aligned in the value store file, such

that the start offset of each main (resp. log) segment is a

multiple of the main (resp. log) segment size. If hotness

awareness is enabled (see §3.4), HashKV adds a separate

region in the value store file for the cold data log. Also,

to address crash consistency (see §3.7), HashKV uses

separate files to store both write and GC journals.
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Multi-threading: HashKV implements multi-threading

via threadpool [36] to boost I/O performance when

flushing KV pairs in the write cache to different segments

(see §3.2) and retrieving segments from segment groups

in parallel during GC (see §3.3).

To mitigate random write overhead due to determin-

istic grouping (see §3.1), HashKV implements batch

writes. When HashKV flushes KV pairs in the write

cache, it first identifies and buffers a number of KV

pairs that are hashed to the same segment group in a

batch, and then issues a sequential write (via a thread) to

flush the batch. A larger batch size reduces random write

overhead, yet it also degrades parallelism. Currently, we

configure a batch write threshold, such that after adding a

KV pair into a batch, if the batch size reaches or exceeds

the batch size threshold, the batch will be flushed; in

other words, HashKV directly flushes a KV pair if its

size is larger than the batch write threshold.

4 Evaluation

We compare via testbed experiments HashKV with sev-

eral state-of-the-art KV stores: LevelDB (v1.20) [15],

RocksDB (v5.8) [12], HyperLevelDB [11], PebblesDB

[30], and our own vLog implementation for KV sepa-

ration based on WiscKey [23]. For fair comparison, we

build a unified framework to integrate such systems and

HashKV. Specifically, all written KV pairs are buffered

in the write cache and flushed when the write cache

is full. For LevelDB, RocksDB, HyperLevelDB, and

PebblesDB, we flush all KV pairs in entirety to them;

for vLog and HashKV, we flush keys and metadata to

LevelDB, and values (together with keys and metadata)

to the value store. We address the following questions:

• How is the update performance of HashKV compared

to other KV stores under update-intensive workloads?

(Experiment 1)

• How do the reserved space size and RAID config-

urations affect the update performance of HashKV?

(Experiments 2 and 3)

• What is the performance of HashKV under different

workloads (e.g., varying KV pair sizes and range

scans)? (Experiments 4 and 5)

• What are the performance gains of hotness awareness

and selective KV separation? (Experiments 6 and 7)

• How does the crash consistency mechanism affect the

update performance of HashKV? (Experiment 8)

• How do parameter configurations (e.g., main segment

size, log segment size, and write cache size) affect the

update performance of HashKV? (Experiment 9)

In our technical report [5], we present results of ad-

ditional experiments on the storage space usage, update

performance, and range scan performance of HashKV

and state-of-the-art KV stores.

4.1 Setup

Testbed: We conduct our experiments on a machine

running Ubuntu 14.04 LTS with Linux kernel 3.13.0. The

machine is equipped with a quad-core Xeon E3-1240v2,

16 GiB RAM, and seven Plextor M5 Pro 128 GiB SSDs.

We attach one SSD to the motherboard as the OS drive,

and attach six SSDs to the LSI SAS 9201-16i host bus

adapter to form a RAID volume (with a chunk size of

4 KiB) for the KV stores (see §3.8).

Default setup: For LevelDB, RocksDB, HyperLevelDB,

and PebblesDB, we use their default parameters. We

allow them to use all available capacity in our SSD RAID

volume, so that their major overheads come from read

and write amplifications in the LSM-tree management.

For vLog, we configure it to read 64 MiB from the

vLog tail (see §2.2) in each GC operation. For HashKV,

we set the main segment size as 64 MiB and the log seg-

ment size as 1 MiB. Both vLog and HashKV are config-

ured with 40 GiB of storage space and over-provisioned

with 30% (or 12 GiB) of reserved space, while their key

and metadata storage in LevelDB can use all available

storage space. Here, we provision the storage space of

vLog and HashKV to be close to the actual KV store

sizes of LevelDB and RocksDB based on our evaluation

(see Experiment 1).

We mount the SSD RAID volume under RAID-0 (no

fault tolerance) by default to maximize performance. All

KV stores run in asynchronous mode and are equipped

with a write cache of size 64 MiB. For HashKV, we set

the batch write threshold (see §3.8) to 4 KiB, and config-

ure 32 and 8 threads for write cache flushing and segment

retrieval in GC, respectively. We disable selective KV

separation, hotness awareness, and crash consistency in

HashKV by default, except when we evaluate them.

4.2 Performance Comparison

We compare the performance of different KV stores

under update-intensive workloads. Specifically, we gen-

erate workloads using YCSB [7], and fix the size of each

KV pair as 1 KiB, which consists of the 8-B metadata

(including the key/value size fields and reserved infor-

mation), 24-B key, and 992-B value. We assume that

each KV store is initially empty. We first load 40 GiB

of KV pairs (or 42 M inserts) into each KV store (call it

Phase P0). We then repeatedly issue 40 GiB of updates

over the existing 40 GiB of KV pairs three times (call

them Phases P1, P2, and P3), accounting for 120 GiB or

126 M updates in total. Updates in each phase follow a

heavy-tailed Zipf distribution with a Zipfian constant of

0.99. We issue the requests to each KV store as fast as

possible to stress-test its performance.

Note that vLog and HashKV do not trigger GC in P0.

In P1, when the reserved space becomes full after 12 GiB

of updates, both systems start to trigger GC; in both P2
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Figure 5: Experiment 1: Performance comparison of KV

stores under update-intensive workloads.

and P3, updates are issued to the fully filled value store

and will trigger GC frequently. We include both P2 and

P3 to ensure that the update performance is stable.

Experiment 1 (Load and update performance):

We evaluate LevelDB (LDB), RocksDB (RDB), Hy-

perLevelDB (HDB), PebblesDB (PDB), vLog, and

HashKV (HKV), under update-intensive workloads. We

first compare LevelDB, RocksDB, vLog, and HashKV;

later, we also include HyperLevelDB and PebblesDB

into our comparison.

Figure 5(a) shows the performance of each phase. For

vLog and HashKV, the throughput in the load phase is

higher than those in the update phases, as the latter is

dominated by the GC overhead. In the load phase, the

throughput of HashKV is 17.1× and 3.0× over LevelDB

and RocksDB, respectively. HashKV’s throughput is

7.9% slower than vLog, due to random writes introduced

to distribute KV pairs via hashing. In the update phases,

the throughput of HashKV is 6.3-7.9×, 1.3-1.4×, and

3.7-4.6× over LevelDB, RocksDB, and vLog, respec-

tively. LevelDB has the lowest throughput among all

KV stores due to significant compaction overhead, while

vLog also suffers from high GC overhead.

Figures 5(b) and 5(c) show the total write sizes and the

KV store sizes of different KV stores after all load and

update requests are issued. HashKV reduces the total

write sizes of LevelDB, RocksDB and vLog by 71.5%,

66.7%, and 49.6%, respectively. Also, they have very

similar KV store sizes.

For HyperLevelDB and PebblesDB, both of them

have high load and update throughput due to their low

compaction overhead. For example, PebblesDB appends
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Figure 6: Experiment 2: Impact of reserved space size.

fragmented SSTables from the higher level to the lower

level, without rewriting SSTables at the lower level [30].

Both HyperLevelDB and PebblesDB achieve at least

twice throughput of HashKV, while incurring lower

write sizes than HashKV. On the other hand, they incur

significant storage overhead, and their final KV store

sizes are 2.2× and 1.7× over HashKV, respectively. The

main reason is that both HyperLevelDB and PebblesDB

compact only selected ranges of keys to reduce write am-

plification, such that there may still remain many invalid

KV pairs after compaction. They also trigger compaction

operations less frequently than LevelDB. Both factors

lead to high storage overhead. We provide more detailed

analysis on the high storage costs of HyperLevelDB

and PebblesDB in [5]. In the following experiments, we

focus on LevelDB, RocksDB, vLog, and HashKV, as

they have comparable storage overhead.

Experiment 2 (Impact of reserved space): We study

the impact of reserved space size on the update per-

formance of vLog and HashKV. We vary the reserved

space size from 10% to 90% (of 40 GiB). Figure 6

shows the performance in Phase P3, including the update

throughput, the total write size, and the latency break-

down. Both vLog and HashKV benefit from the increase

in reserved space. Nevertheless, HashKV achieves 3.1-

4.7× throughput of vLog and reduces the write size

of vLog by 30.1-57.3% across different reserved space

sizes. As shown in Figure 6(c), the queries to the LSM-

tree during GC incur substantial performance overhead

to vLog. We observe that HashKV spends less time on

updating metadata during GC (“Meta-GC”) in the LSM-

tree with the increasing reserved space size due to less

frequent GC operations.
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Figure 7: Experiment 3: Different RAID configurations.

Experiment 3 (Impact of parity-based RAID): We

evaluate the impact of the fault tolerance configuration of

RAID on the update performance of LevelDB, RocksDB,

vLog, and HashKV. We configure the RAID volume to

run two parity-based RAID schemes, RAID-5 (single-

device fault tolerance) and RAID-6 (double-device fault

tolerance). We include the results under RAID-0 for

comparison. Figure 7 shows the throughput in Phase

P3 and the total write size. RocksDB and HashKV are

more sensitive to RAID configurations (larger drops in

throughput), since their performance is write-dominated.

Nevertheless, the throughput of HashKV is higher than

other KV stores under parity-based RAID schemes, e.g.,

4.8×, 3.2×, and 2.7× over LevelDB, RocksDB, and

vLog, respectively, under RAID-6. The write sizes of KV

stores under RAID-5 and RAID-6 increase by around

20% and 50%, respectively, compared to RAID-0, which

match the amount of redundancy of the corresponding

parity-based RAID schemes.

4.3 Performance under Different Workloads

We now study the update and range scan performance of

HashKV for different KV pair sizes.

Experiment 4 (Impact of KV pair size): We study the

impact of KV pair sizes on the update performance of

KV stores. We vary the KV pair size from 256 B to

64 KiB. Specifically, we increase the KV pair size by

increasing the value size and keeping the key size fixed

at 24 B. We also reduce the number of KV pairs loaded

or updated, such that the total size of KV pairs is fixed at

40 GiB. Figure 8 shows the update performance of KV

stores in Phase P3 versus the KV pair size. The through-

put of LevelDB and RocksDB remains similar across

most KV pair sizes, while the throughput of vLog and

HashKV increases as the KV pair size increases. Both

vLog and HashKV have lower throughput than LevelDB

and RocksDB when the KV pair size is 256 B, since

the overhead of writing small values to the value store

is more significant. Nevertheless, HashKV can benefit

from selective KV separation (see Experiment 7). As

the KV pair size increases, HashKV also sees increas-

ing throughput. For example, HashKV achieves 15.5×

and 2.8× throughput over LevelDB and RocksDB, re-
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Figure 8: Experiment 4: Performance of KV stores under

different KV pair sizes.
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Figure 9: Experiment 5: Range scan performance of

different KV stores.

spectively, for 4-KiB KV pairs. HashKV achieves 2.2-

5.1× throughput over vLog for KV pair sizes between

256 B and 4 KiB. The performance gap between vLog

and HashKV narrows as the KV pair size increases,

since the size of the LSM-tree decreases with fewer KV

pairs. Thus, the queries to the LSM-tree of vLog are less

expensive. For 64-KiB KV pairs, HashKV has 10.7%

less throughput than vLog.

When the KV pair size increases, the total write sizes

of LevelDB and RocksDB increase due to the increasing

compaction overhead, while those of HashKV and vLog

decrease due to fewer KV pairs in the LSM-tree. Over-

all, HashKV reduces the total write sizes of LevelDB,

RocksDB, and vLog by 43.2-78.8%, 33.8-73.5%, and

3.5-70.6%, respectively.

Experiment 5 (Range scans): We compare the range

scan performance of KV stores for different KV pair

sizes. Specifically, we first load 40 GiB of fixed-size

KV pairs, and then issue scan requests whose start keys

follow a Zipf distribution with a Zipfian constant of 0.99.

Each scan request reads 1 MiB of KV pairs, and the total

scan size is 4 GiB. Figure 9 shows the results. HashKV

has similar scan performance to vLog across KV pair

sizes. However, HashKV has 70.0% and 36.3% lower

scan throughput than LevelDB for 256-B and 1-KiB KV

pairs, respectively, mainly because HashKV needs to

issue reads to both the LSM-tree and the value store and

there is also high overhead of retrieving small values

from the value store via random reads. Nevertheless,

for KV pairs of 4 KiB or larger, HashKV outperforms

LevelDB, e.g., by 94.2% for 4-KiB KV pairs. The lower
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Figure 10: Experiment 6: Hotness awareness.

scan performance for small KV pairs is also consistent

with that of WiscKey (see Figure 12 in [23]). Note that

the read-ahead mechanism (see §3.6) is critical to en-

abling HashKV to achieve high range scan performance.

For example, the range scan throughput of HashKV

increases by 81.0% for 256-B KV pairs compared to

without read-ahead. We also evaluate the range scan

performance of HashKV after we issue update-intensive

workloads in [5].

4.4 HashKV Features

We study the two optimizations of HashKV, hotness

awareness and selective KV separation, and the crash

consistency mechanism of HashKV. We report the

throughput in Phase P3 and the total write size. We con-

sider 20% of reserved space to show that the optimized

performance of smaller reserved space can match the

unoptimized performance of larger reserved space.

Experiment 6 (Hotness awareness): We evaluate the

impact of hotness awareness on the update performance

of HashKV. We consider two Zipfian constants, 0.9

and 0.99, to capture different skewness in workloads.

Figure 10 shows the results when hotness awareness

is disabled and enabled. When hotness awareness is

enabled, the update throughput increases by 113.1% and

121.3%, while the write size reduces by 42.8% and

42.5%, for Zipfian constants 0.9 and 0.99, respectively.

Experiment 7 (Selective KV separation): We evaluate

the impact of selective KV separation on the update

performance of HashKV. We consider three ratios of

small-to-large KV pairs, including 1:2, 1:1, and 2:1. We

set the small KV pair size as 40 B, and the large KV

pair size as 1 KiB or 4 KiB. Figure 11 shows the results

when selective KV separation is disabled or enabled.

When selective KV separation is enabled, the through-

put increases by 23.2-118.0% and 19.2-52.1% when the

large KV pair size is 1 KiB and 4 KiB, respectively. We

observe higher performance gain for workloads with a

higher ratio of small KV pairs, due to the high update

overhead of small KV pairs stored under KV separation.

Also, selective KV separation reduces the total write size

by 14.1-39.6% and 4.1-10.7% when the large KV pair

size is 1 KiB and 4 KiB, respectively.
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Figure 11: Experiment 7: Selective KV separation.

Disabled Enabled

Throughput (KOPS) 58.0 54.3

Total write size (GiB) 454.6 473.7

Table 1: Experiment 8: Performance of HashKV with

crash consistency disabled and enabled.

Experiment 8 (Crash consistency): We study the im-

pact of the crash consistency mechanism on the perfor-

mance of HashKV. Table 1 shows the results. When

the crash consistency mechanism is enabled, the update

throughput of HashKV in Phase P3 reduces by 6.5%

and the total write size increases by 4.2%, which shows

that the impact of crash consistency mechanism remains

limited. Note that we verify the correctness of the crash

consistency mechanism by crashing HashKV via code

injection and unexpected terminations during runtime.

4.5 Parameter Choices

We further study the impact of parameters, including

the main segment size, the log segment size, and the

write cache size on the update performance of HashKV.

We vary one parameter in each test, and use the de-

fault values for other parameters. We report the update

throughput in Phase P3 and the total write size. Here, we

focus on 20% and 50% of reserved space.

Experiment 9 (Impact of main segment size, log seg-

ment size, and write cache size): We first consider the

main segment size. Figures 12(a) and 12(d) show the

results versus the main segment size. When the main

segment size increases, the throughput of HashKV in-

creases, while the total write size decreases. The reason

is that there are fewer segment groups for larger main

segments, so each segment group receives more updates

in general. Each GC operation can now reclaim more

space from more updates, so the performance improves.

We see that the update performance of HashKV is more

sensitive to the main segment size under limited reserved

space. For example, the throughput increases by 52.5%

under 20% of reserved space, but 28.3% under 50% of

reserved space, when the main segment size increases

from 16 MiB to 256 MiB.

We next consider the log segment size. Figures 12(b)
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Figure 12: Experiment 9: Throughput and total write size

of HashKV versus the main segment size ((a) and (d)),

the log segment size ((b) and (e)), and the write cache

size ((c) and (f)).

and 12(e) show the results versus the log segment size.

We see that when the log segment size increases from

256 KiB to 4 MiB, the throughput of HashKV drops

by 16.1%, while the write size increases by 10.4%

under 20% of reserved space. The reason is that the

utilization of log segments decreases as the log segment

size increases. Thus, each GC operation reclaims less

free space, and the performance drops. However, when

the reserved space size increases to 50%, we do not

see significant performance differences, and both the

throughput and the write size remain almost unchanged

across different log segment sizes.

We finally consider the write cache size. Figures 12(c)

and 12(f) show the results versus the write cache size. As

expected, the throughput of HashKV increases and the

total write size drops as the write cache size increases,

since a larger write cache can absorb more updates. For

example, under 20% of reserved space, the throughput

of HashKV increases by 29.1% and the total write size

reduces by 16.3% when the write cache size increases

from 4 MiB to 64 MiB.

5 Related Work

General KV stores: Many KV store designs are pro-

posed for different types of storage backends, such as

DRAM [1, 13, 14, 21], commodity flash-based SSDs

[8,9,20,23], open-channel SSDs [34], and emerging non-

volatile memories [25, 40]. The above KV stores and

HashKV are designed for a single server. They can serve

as building blocks of a distributed KV store (e.g., [28]).

LSM-tree-based KV stores: Many studies modify the

LSM-tree design for improved compaction performance.

bLSM [33] proposes a new merge scheduler to pre-

vent compaction from blocking writes, and uses Bloom

filters for efficient indexing. VT-Tree [35] stitches al-

ready sorted blocks of SSTables to allow lightweight

compaction overhead, at the expense of incurring frag-

mentation. LSM-trie [39] maintains a trie structure and

organizes KV pairs by hash-based buckets within each

SSTable. It also organizes large Bloom filters in clustered

disk blocks for efficient I/O access. LWC-store [41]

decouples data and metadata management in compaction

by merging and sorting only the metadata in SSTables.

SkipStore [42] pushes KV pairs across non-adjacent

levels to reduce the number of levels traversed during

compaction. PebblesDB [30] relaxes the restriction of

keeping disjoint key ranges in each level, and pushes par-

tial SSTables across levels to limit compaction overhead.

KV separation: WiscKey [23] employs KV separation

to remove value compaction in the LSM-tree (see §2.2).

Atlas [18] also applies KV separation in cloud storage,

in which keys and metadata are stored in an LSM-tree

that is replicated, while values are separately stored and

erasure-coded for low-redundancy fault tolerance. Cocy-

tus [43] is an in-memory KV store that separates keys

and values for replication and erasure coding, respec-

tively. HashKV also builds on KV separation, and takes

one step further to address efficient value management.

Hash-based data organization: Distributed storage sys-

tems (e.g., [10, 24, 38]) use hash-based data placement

to avoid centralized metadata lookups. NVMKV [25]

also uses hashing to map KV pairs in physical address

space. However, it assumes sparse address space to limit

the overhead of resolving hash collisions, and incurs

internal fragmentation for small-sized KV pairs. In con-

trast, HashKV does not cause internal fragmentation as

it packs KV pairs in each main/log segment in a log-

structured manner. It also supports dynamic reserved

space allocation when the main segments become full.

6 Conclusion

This paper presents HashKV, which enables efficient

updates in KV stores under update-intensive workloads.

Its novelty lies in leveraging hash-based data grouping

for deterministic data organization so as to mitigate GC

overhead. We further enhance HashKV with several

extensions including dynamic reserved space allocation,

hotness awareness, and selective KV separation. Testbed

experiments show that HashKV achieves high update

throughput and reduces the total write size.
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