
Haskell Tools from the Programatica Project

Demo Abstract

Thomas Hallgren
OGI School of Science & Engineering
Oregon Health & Science University

20000 NW Walker Rd, Beaverton, Oregon, USA

http://www.cse.ogi.edu/~hallgren/

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors; D.2.6
[Software Engineering]: Programming Environments

General Terms
Languages

Keywords
Haskell tools

1. INTRODUCTION
One of the goals of the Programatica Project is to develop

tool support for high-assurance programming in Haskell [21].
We have extended Haskell with syntax for property asser-
tions, and envision the use of various techniques to provide
evidence for the validity of assertions. We expect our tools
to assist the programmer with evidence management, us-
ing certificates to record evidence, and to provide whatever
translation of Haskell code needed to enable the use of the-
orem provers and other tools that can serve as sources of
evidence.

The Programatica Tools, while still work in progress, can
manipulate Haskell programs in various ways and have some
support for evidence management. In Section 2, we describe
a selection of the functionality provided by the tools, start-
ing with functionality that might be of interest to Haskell
programmers in general, and ending with functionality more
directly aimed at supporting the goals of the Programatica
Project. Section 3 contains some notes on the implementa-
tion.

2. TOOLS

2.1 Basic command-line tools
The functionality of our tools is available through a simple

command line interface. Some functionality is also available

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Haskell’03,August 25, 2003, Uppsala, Sweden.
Copyright 2003 ACM 1-58113-758-3/03/0008 ...$5.00.

through a graphical interface (Section 2.3). The main com-
mand is called pfe (Programatica Front-End).

The tools operate on a project, which is simply a collec-
tion of files containing Haskell source code. The command
pfe new creates a new project, while pfe add adds files and
pfe remove removes files from a project. There is also a
command pfe chase to search for source files containing
needed modules. This is the only command that assumes a
relationship between module names and file names. A wrap-
per script pfesetup uses pfe new and pfe chase to create
a project in a way that mimics how you would compile a
program with ghc --make [8] or load it in Hugs [12].

Like batch compilers, pfe caches various information in
files between runs (e.g., type information). pfe also caches
the module dependency graph, while other systems parse
source files to rediscover it every time they are run. This al-
lows pfe to detect if something has changed in a fraction of a
second, even for projects that contain hundreds of modules.

Once a project has been set up, the user can use pfe for
various types of queries. For example, pfe iface M dis-
plays the interface of module M , pfe find x lists modules
that export something called x and pfe uses M.x lists
all places where the entity called x, defined in Module M ,
is referenced.

2.2 The HTML renderer
The command pfe webpages generates web pages for a

project, with one page per module. Every identifier in the
generated HTML code is linked to its definition. Extensive
tagging is used and a reference to a style sheet is made,
allowing the user to customize the look of the resulting web
pages. An example is show in Figure 1.

While the syntax highlighting provided by editors such as
Emacs and Vim is based on a simple lexical analysis, our tool
also makes use of syntax analysis to distinguish between type
constructors and data constructors. Also, for hyperlinking
identifiers to their definition, a full implementation of the
module system and the scoping rules of Haskell are used.
Although the source code is parsed, the HTML code is not
generated by pretty-printing the abstract syntax tree, but
by decorating the output from the first pass of our lexical
analyzer [10], preserving layout and comments.

We also support a simple markup language for use in com-
ments, keeping the plain ASCII presentation of source text
readable, while, at the same time, making it possible to gen-
erate nice looking LATEX and HTML from it. This was used
in the preparation of our paper about the Haskell 98 Module

Figure 1: A sample Haskell module rendered as
HTML by the Programatica Tools.

System [7].
Our HTML renderer is a tool for documenting and pre-

senting source code, in contrast to Haddock [15], which is a
tool for producing user documentation for libraries.

2.3 The Haskell source code Browser
While HTML rendering makes it possible to use a stan-

dard web browser to browse Haskell programs, we have also
implemented a dedicated Haskell browser (Figure 2). It as-
sumes that a project has already been set up with pfe, and
is started with the command pfebrowser. It provides a syn-
tax highlighted and hyperlinked source view similar to the
one provided in the HTML rendering, but it also has some
additional functionality. For example, the user can click on
an identifier to find out what its type is. The browser can
reload and retypecheck a module after it has been edited.
Information is cached internally to make this quick. Reload-
ing and retypechecking a moderately sized (a few hundred
lines) module, takes just a second or two.1

At present, the tools type check complete modules, and
do not provide any type information when type checking
fails. In the future, we might make the type checker more
incremental, providing partial information in the presence
of type errors.

In the future, we might also turn the browser into a Haskell
editor. Another possibility is creating a dedicated proof tool
for Haskell, perhaps similar the proof tool Sparkle [6] for
Clean.

1It is nowhere near the speed of Hugs, though...

Figure 2: The Programatica Haskell Browser. The
user has clicked on a use of apply to confirm that it
applies a substitution to a list of predicates.

2.4 Program Slicing
Viewing a program as a set of definitions, the slicer com-

putes, given an identifier, the subset of the definitions that
are referenced, directly or indirectly, from that identifier.
For example, by slicing with Main.main as the starting point,
you can remove dead code from a program. This functional-
ity is provided by the command pfe slice M.x. The out-
put is a set of valid Haskell modules that, for example, can
be loaded in Hugs. (It will not be a complete Haskell pro-
gram if slicing starts from something other than Main.main.)

The dependency analysis is performed on type-checked
code, allowing unused instance declarations to be eliminated.
However, to keep the slicer simple, top-level declarations
are treated as atomic units2 and this can make the slicing
coarse, for example including definitions of default methods
(and everything they depend on) in class declarations, even
if they aren’t needed by any instance declarations.

The slicer preserves the module structure of the source
program. Import and export declarations are adjusted ap-
propriately.

Because of the annoying monomorphism restriction, elim-
inating a definition that is not used can change the meaning
of a declaration that is used. Dependencies caused by this
side effect are currently not taken into account by our slicer.

2.5 Translation to Structured Type Theory
The translation to Structured Type Theory [5] allows as-

serted properties to be proved formally in the proof editor
Alfa [9]. The translation is based on type checked code.
Polymorphic functions are turned into functions with ex-
plicit type parameters and overloading is handled by the

2Actually, type signatures and fixity declarations with more
than one identifier are split up.

usual dictionary translation, turning class declarations into
record type declarations and instance declarations into record
value definitions.

The syntax of Structured Type Theory is simpler than
that of Haskell, so a number of simplifying program trans-
formations are performed as part of the translation. This
affects, for example, list comprehensions, the do-notation,
pattern matching, derived instances and literals. There are
also various ad-hoc transformations to work around syntac-
tic restrictions and limitations of the type checker used in
Alfa. Apart from this, the translated code looks fairly sim-
ilar to the original Haskell code. (An example can be seen
in Figure 4.)

While Haskell has separate name spaces for types/classes,
values and modules, Structured Type Theory has only one,
so some name mangling is required to avoid name clashes.
This is done in a context-independent way, so that when
some Haskell code is modified, the translation of unmodified
parts remains unchanged, allowing proofs about unmodified
parts to be reused unchanged.

While type theory formally only deals with total functions
over finite data structures, the translator allows any Haskell
program to be translated. Alfa contains a syntactic termi-
nation checker [1] that can verify that a set of structurally
recursive function definitions are total. When the transla-
tion falls outside that set, any correctness proofs constructed
in Alfa entail only partial correctness, and we leave it to the
user to judge the value of such proofs. In the future, we
might use a more sophisticated termination checker and/or
change the translation to use domain predicates [2] to make
partiality explicit and to make the user responsible for pro-
viding termination proofs.

While the type system of plain Haskell 98 can be mapped
in a straight-forward way to the predicative type system of
Structured Type Theory, we foresee problems extending the
translation to cover existential quantification in data types
and perhaps also higher rank polymorphism.

2.6 Evidence management
At the moment, the command line tools and the browser

support the creation and validation of certificates for three
basic forms of evidence: informal claims (“I say so”), tests
run with QuickCheck [4], and formal proofs in Alfa [9].
There is work in progress on support for other forms of ev-
idence, and our implementation has an extensible architec-
ture to make it easy to plug them in using certificate servers
to act as bridges between our code and external tools.

When source code is changed, the validity of existing cer-
tificates can be affected. Revalidating certificates might re-
quire some work by the user. To help identify those changes
that can actually influence the validity of a certificate, de-
pendencies are tracked on the definition level (rather than
the module level). Changes are detected by comparing hash
values computed from the abstract syntax. As a result, we
avoid false alarms trigged by changes to irrelevant parts of
a module, and changes that only affect comments or the
layout of code.

Just to give a simple example, Figure 3 shows a Haskell
module containing three valid certificates, two Alfa certifi-
cates and one QuickCheck certificate. Figure 4 shows the
translation of the module to Alfa and the proofs of the two
Alfa certificates.

Figure 3: The module Simple containing three valid
certificates, viewed in the Programatica Haskell
Browser.

Figure 4: Translation of module Simple in Figure 3
to Structured Type Theory and proofs of the two
Alfa certificates.

3. IMPLEMENTATION NOTES
Not surprisingly, our implementation has a lot in common

with a Haskell compiler front-end, and is likely to be reusable
in many contexts outside the Programatica project. For
example, it has already been used in the refactoring project
at the University of Kent [22].

Our tools are implemented in Haskell, including the browser,
which uses Fudgets [3] for the user interface. Amongst other
things, our implementation contains an abstract syntax; a
lexer and a parser; a pretty printer; some static analyses, in-
cluding inter-module name resolution; some program trans-
formations; a type checker and definition-level dependency
tracking.

Some parts – the abstract syntax, the parser and the
pretty printer – were inherited from another source [16] and
modified, while most other parts were written from scratch.
Some parts – the lexer [10] and the module system [7] –
are implemented in pure Haskell 98 and can serve as refer-
ence implementations, while others make use of type sys-
tem extensions, in particular multi-parameter classes with
functional dependencies [13]. Together with a two-level ap-
proach to the abstract syntax [19] and other design choices,
this makes the code more modular and reusable, but perhaps
also too complicated to serve as a reference implementation
of Haskell.

The fact that the first pass of our lexer preserves white
space and comments made it easy to implement the HTML
renderer. The modular structure of the lexer also allowed
us to quickly create a simple tool that someone asked for on
the Haskell mailing list: a program that removes comments
and blank lines from Haskell code [11].

While implemented from scratch, key design choices in
the type checker were influenced by the simplicity of Typing
Haskell in Haskell [14], the efficiency of the type checkers in
HBC and NHC, and the constraint based approach used in
one of Johan Nordlander’s type checkers for O’Haskell [17].
It performs the dictionary translation and inserts enough
type annotations to make the output suitable for translation
to an explicitly typed language like Structured Type Theory
or System F.

4. CONCLUSION
More information on the Programatica Project is available

from our web pages [18]. Preliminary versions of the tools
and user documentation can be downloaded from [20].

Acknowledgments.The author would like to thank Johan
Jeuring, Mark Jones and John Matthews for suggesting im-
provements to this abstract. Also, although this abstract
has one author, many people contributed to the work it de-
scribes.

5. REFERENCES
[1] Andreas Abel. foetus – Termination Checker for

Simple Functional Programs. www.tcs.informatik.
uni-muenchen.de/~abel/foetus/, 1998.
Programming Lab Report.

[2] Ana Bove. General Recursion in Type Theory. PhD
thesis, Department of Computer Science and
Engineering, Chalmers University of Technology,
Gteborg, Sweden, 2002. www.cs.chalmers.se/~bove/
Papers/phd_thesis.ps.gz.

[3] Magnus Carlsson and Thomas Hallgren. Fudgets.
www.cs.chalmers.se/Fudgets/, 1993-2003.

[4] Koen Claessen and John Hughes. Quickcheck: a
lightweight tool for random testing of haskell
programs. In International Conference on Functional
Programming, pages 268–279. ACM, 2000.
citeseer.nj.nec.com/claessen99quickcheck.html.

[5] Thierry Coquand. Structured type theory.
www.cs.chalmers.se/~coquand/STT.ps.Z, June 1999.
Preliminary version.

[6] Maarten de Mol. Sparkle. www.cs.kun.nl/Sparkle/,
2003.

[7] Iavor S. Diatchki, Mark P. Jones, and Thomas
Hallgren. A Formal Specification for the Haskell 98
Module System. In Proceedings of the 2002 Haskell
Workshop, Pittsburgh, USA, October 2002.
www.cse.ogi.edu/~diatchki/hsmod/.

[8] The Glasgow Haskell Compiler, 2002.
www.haskell.org/ghc/.

[9] Thomas Hallgren. Home Page of the Proof Editor
Alfa. www.cs.chalmers.se/ hallgren/Alfa/, 1996-2003.

[10] Thomas Hallgren. A Lexer for Haskell in Haskell.
www.cse.ogi.edu/~hallgren/Talks/LHiH, 2002.

[11] Thomas Hallgren. stripcomments.
www.cse.ogi.edu/~hallgren/stripcomments/, 2002.

[12] Hugs Online. www.haskell.org/hugs/, 2002.

[13] Mark P. Jones. Type Classes with Functional
Dependencies. In Proceedings of the 9th European
Symposium on Programming, ESOP 2000, number
1782 in LNCS, Berlin, Germany, March 2000.
Springer-Verlag.

[14] M.P. Jones. Typing Haskell in Haskell. In Proceedings
of the 1999 Haskell Workshop, Paris, France,
September 1999. www.cse.ogi.edu/~mpj/thih/.

[15] Simon Marlow. Haddock. www.haskell.org/haddock/,
2003.

[16] Simon Marlow et al. The hssource library. Distributed
with GHC [8].

[17] Johan Nordlander. O’haskell.
www.cs.chalmers.se/~nordland/ohaskell/, 2001.

[18] The Programatica Project home page.
www.cse.ogi.edu/PacSoft/projects/programatica/,
2002.

[19] Tim Sheard. Generic unification via two-level types
and parameterized modules. In International
Conference on Functional Programming, pages 86–97,
2001. citeseer.nj.nec.com/451401.html.

[20] The Programatica Team. Programatica Tools. www.
cse.ogi.edu/~hallgren/Programatica/download/,
August 2003.

[21] The Programatica Team. Programatica Tools for
Certifiable, Auditable Development of High-assurance
Systems in Haskell. In Proceedings of the High
Confidence Software and Systems Conference.
National Security Agency, April 2003. Available via
[18].

[22] Simon Thompson, Claus Reinke, et al. Refactoring
Functional Programs.
www.cs.kent.ac.uk/projects/refactor-fp/, 2003.

