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Abstract

Background: The trade-off between current and residual reproductive values is central to life history theory, although the
possible mechanisms underlying this trade-off are largely unknown. The ‘molt constraint’ hypothesis suggests that molt and
plumage functionality are compromised by the preceding breeding event, yet this candidate mechanism remains
insufficiently explored.

Methodology/Principal Findings: The seasonal change in photoperiod was manipulated to accelerate the molt rate. This
treatment simulates the case of naturally late-breeding birds. House sparrows Passer domesticus experiencing accelerated
molt developed shorter flight feathers with more fault bars and body feathers with supposedly lower insulation capacity (i.e.
shorter, smaller, with a higher barbule density and fewer plumulaceous barbs). However, the wing, tail and primary feather
lengths were shorter in fast-molting birds if they had an inferior body condition, which has been largely overlooked in
previous studies. The rachis width of flight feathers was not affected by the treatment, but it was still condition-dependent.

Conclusions/Significance: This study shows that sedentary birds might face evolutionary costs because of the molt rate–
feather quality conflict. This is the first study to experimentally demonstrate that (1) molt rate affects several aspects of body
feathers as well as flight feathers and (2) the costly effects of rapid molt are condition-specific. We conclude that molt rate
and its association with feather quality might be a major mediator of life history trade-offs. Our findings also suggest a novel
advantage of early breeding, i.e. the facilitation of slower molt and the condition-dependent regulation of feather growth.
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Introduction

The trade-off between current reproductive effort and future

(residual) reproductive value is of outstanding concern in life

history theory [1,2]. However, the mechanisms that potentially

mediate such long-term effects remain an evolutionary conun-

drum. It was recently proposed that molt (regular replacement of

worn and torn feathers) and the quality of the feathers produced in

particular may couple events that precede and follow the molting

period via carry-over effects (‘molt constraint’ hypothesis, MCH;

[3,4]). The MCH suggests that the long-term costs of breeding are

expressed via a compromised molt, which can lead to plumage

malfunctions and hence curtailed future fitness.

The MCH integrates several lines of evidence. First, it assumes

that breeding and molt are scheduled sequentially during the

annual cycle due to the adaptive avoidance of overlapping two

costly activities [5,6], which holds for most temperate zone bird

species [7,8]. Thus, prolonged breeding due to its late onset or

higher investment evokes delayed molt [9–11]. Second, molting is

a costly process [12–14], and molting birds may encounter

elevated energetic constraints due to lower resource availability if

the initiation of molt is postponed [3]. Consequently, any delay

might manifest in the production of functionally inferior feathers.

This may be exacerbated because the approaching winter shortens

the time available for plumage exchange, which forces birds to

accelerate their rate of molt [4,8]. However, this seems a best-of-a-

bad-job strategy because the rate of molt is traded off against the

quality of flight feathers [4,15–19] and presumably the structure of

body feathers as well [3,20]. Third, poor-quality feathers might

not serve their main functions adequately, e.g. insulation, flight

and communication. These losses of function are obviously

precipitated in fitness reduction by abating future performance

[3,7]. Compromised molt (1) impinge fundamental adverse effects

on flight [21–23] and thermoregulation [3,20] due to lower-quality

feathers, (2) diminishes reproductive success because of breakage

or altered pigmentation and/or microstructure of feathers

involved in visual displays ([24] and refs therein, [25]), or (3)

might have multiple costs through starvation–predation and
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thermoregulation–predation trade-offs [26,27]. In conclusion, this

cause–effect cascade implies that the molting process might link

past (or current) and future life history events.

The MCH has mainly been studied by the correlative

approach on the flight feathers of migratory species ([16–18];

see [15] for an experiment). Exceptions include comparisons of

migratory and sedentary blackcap Sylvia atricapilla populations

(e.g. [17,28]) and two experiments with European starlings

Sturnus vulgaris in East England [4,19]. Although starlings are

sedentary or partial migrants in Britain, their annual routine

resembles that of summer-molting migrants with a short breeding

period (usually only one clutch in East England) and they shed

their plumage early (May–August) [29]. Temperate zone

migrants commonly employ the summer-molting strategy [30]

that spans a shorter period and results in the production of

lighter feathers compared with sedentary birds [17,18]. In

contrast, sedentary birds partition their annual cycle into fewer

costly activities (lacking migration), which allows more time for

plumage renewal [8,31]. An open question is whether the inter-

individual variation in molt rate and duration in a less time-

constrained sedentary population is sufficiently large to generate

variation in feather quality. Furthermore, only one correlative

study of sedentary great tits Parus major dealt with molt

constraints on body feather quality [20]. To the best of our

knowledge, no experimental studies have explored whether the

accelerated molt rate can represent one of the proximal

underpinnings of altered body feather structure, which is one

of the cornerstones of the MCH [3,20]. Altogether, this topic

clearly deserves further investigation. The house sparrow Passer

domesticus is a ‘typical’ sedentary bird; it is multi-brooded (up to

four clutches in Central and Eastern Europe; [29]), consequently

its reproductive period is much longer and hence it molts later

(August–early November in our wild-living population; Pap PL,

Vágási CI, Barta Z unpublished data) than similar-sized

migratory species. This makes it an ideal candidate for testing

this hypothesis.

Body condition is a phenotypic trait, which refers to size-

adjusted, non-skeletal mass and it was defined by Peig and Green

[32] as ‘‘the energy capital accumulated in the body … assume[d]

to be an indicator of an animal’s health and quality.’’ Variation in

body condition has a substantial heritable component in a wide

range of taxa ([33] and refs therein) including the house sparrow

[34]. Thus, body condition might have broad evolutionary

implications because it shapes a plethora of life history and

fitness-related traits [2,33,35–37]. Molt is not an exception; a

trade-off has been documented between body mass (i.e. mass

unadjusted to size) and molt rate, and body mass also mediates the

molt–immunity trade-off [14]. Further, body mass and body

condition are also relevant to the MCH because body mass can

predict molt initiation [5], while body condition can predict speed

of molt [38]. However, body mass does not correlate with feather

growth rate [39]. Each metabolically costly activity has recourse to

finite stores, so birds in a better condition can afford higher

investment due to their higher amount of resources available for

supporting demanding activities and/or their more efficient

replenishment of stores after allocation (higher turnover rate).

Embedded in the molt constraint scenario, fitness accrual can be

mediated by body condition if birds with greater energy capital

can better fuel the demands of molting to grow better-quality

feathers, even if molt is compromised (i.e. show higher develop-

mental homeostasis). Yet this aspect has only been addressed

indirectly [17] or investigations have been limited to feather

growth rate [39,40] and molt–immunity trade-off [14].

Our previous study showed that house sparrows subjected to a

photoperiod regime that simulated a late molting season

experienced an accelerated molt of flight feathers, wing coverts

and body feathers of the melanin-based throat patch (badge of

status) [24]. These indicated that the overall plumage molting

program was affected by the treatment. Fast-molting birds

renewed their plumage approximately two weeks earlier than

controls, although molt initiation was similar in the two groups,

and grew a smaller badge and a less bright wing-bar. The current

study continued this experimental investigation of the molt pattern

in the same birds, but the aim was to determine whether life

history trade-offs might be mediated by molt rate. The following

predictions were tested. First, the speed of molt should have no

effect on feather attributes if the longer molting period of

sedentary birds permits cost-spreading. Second, Broggi et al.

[20] found that northern great tits, which face time constraints

grew shorter, more densely structured body feathers with fewer

plumulaceous barbs. It is suggested that such feather architecture

may provide less efficient heat conservation ([3,20] and refs

therein). If the MCH of Nilsson and Svensson [3] stands, the body

feather structure of fast-molting experimental sparrows should

resemble that of northern great tits. This is a missing piece of the

MCH. Third, an interaction between treatment and body

condition is predicted if good-quality birds can cope better with

a faster molt rate.

Materials and Methods

Ethics Statement
Birds were handled in strict accordance with animal care,

wellbeing and ethical prescriptions [41]. The protocol for bird care

and experimentation adhered to the current Romanian laws and

was approved by the Romanian Academy of Sciences (permit

number: 2257).

General Procedures
We caught 50 non-molting adult male house sparrows at a cattle

farm near Cluj Napoca (46u469N, 23u339E, Transylvania,

Romania) on 25 July 2008. Birds were transferred to the Campus

of Babeş-Bolyai University, Cluj Napoca and randomly assigned in

equal numbers into two indoor aviaries (each 4 m L63.5 m

W64 m H). Birds allocated to the aviaries did not differ in any

measured aspect (one-way ANOVA, pre-molt wing length:

F1,47 = 0.09, P = 0.76; pre-molt tail length: F1,43 = 0.22, P = 0.64;

body mass: F1,44 = 1.47, P = 0.23; tarsus length: F1,47 = 0.14,

P = 0.71). During confinement, birds had ad libitum access to

protein-rich food (seed mixture supplemented with grated boiled

eggs or mealworms on odd days; [13,24]), sand and daily

exchanged drinking water. Aviaries contained bushes, perches

and nest boxes. Coccidian parasites that emerge spontaneously in

captive populations were purged by an anticoccidial drug

(toltrazuril) administered in the drinking water [24]. Except one

sparrow from the control group that died for unknown reasons, the

rest of the birds were released back to the population of origin in

good body condition after the termination of the experiment (on

15 November 2008).

Aggressive behavior can determine resource acquisition and has

physiological bases (e.g. steroid hormones) that are recognized to

influence keratin synthesis. Still, group housing was issued because

free-ranging house sparrows are gregarious in the molting period

[29]. To preclude the possible confounding effects caused by

male–male interactions, we recorded within flock agonistic

behavior of individually marked sparrows from a hide, calculated
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fighting success (% fights won out of total) and included this in all

subsequent statistical analyses (see [24] for details).

Photoperiod Treatment
Birds were subjected to a photoperiod treatment consisting of

two different lighting regimes. At capture, the local natural

photoperiod was 15L:9D (light:dark). The lighting regime of

control group birds was a steadily decreasing photoperiod that

conformed the natural photoperiod characteristic to study latitude

(control photoperiod, hereafter ‘CP’ group). This meant a decrease

in day-length by in average 3 min per day. Birds of the

experimental group experienced an accelerated seasonal decrease

in photoperiod (experimental photoperiod, hereafter ‘EP’ group;

8 min decrease in day-length per day) until reaching 9L:15D

photoperiod at the 46th day of experimentation and then held it

constantly at this level (Fig. 1). This setup simulates photoperiod

conditions met by early-molting (CP) and late-molting (EP)

sparrows. We concomitantly followed the molting pattern of the

field population and found this to be similar to that of CP birds

(personal observation), indicating that captivity did not alter their

normal molting pattern.

Measurements
Wing and tail length (60.5 mm) were measured with a ruler

both pre- and post-molt. At capture and on every 10th day of the

110-day-long experimentation, body mass (60.1 g) was measured

with a Pesola spring balance and molt status was scored (see

below). Hereafter, ‘mass’ is shorthand for ‘‘mean body mass

averaged over the 11 measurement sessions’’. Adult house

sparrows perform one post-breeding molt per year, thus feathers

developed in a given year are retained until the end of breeding in

the next year. Only the molting status of primaries was scored

because it gives a good general picture about the complete post-

breeding molt [13]. The molt status of each primary on both wings

was scored on a 0–5 scale according to Ginn and Melville [8] from

which the molting index was derived as the sum of 9 primaries’

scores per wing (range 0–45). Note that the outermost primary is

rudimentary in sparrows. Molt of flight feathers starts with the

innermost primary. Molt was considered to be started on the day

when the molt index was first .0. The reaching of a molt score of

45 marks the end of molt. The duration of molt is the number of

days elapsed between molt onset and molt termination.

Once molt was completed, we plucked the 5th and 7th

primaries (henceforth P5 and P7) of both wings. We use

descendant primary numbering, i.e. the 1st primary, P1, is the

innermost. The rationale behind choosing these feathers stems

from the followings: (1) P5s were grown when groups started to

diverge in molt speed, whereas P7s when the difference in molt

speed was the largest between groups (see Fig. 1 in [24]), and (2)

P5s grow at the highest rate, whereas P7s are the longest primaries

thus necessitating the most keratin, though developing at a slower

pace [13]. We further removed 4–5 contour body feathers from

the mantle region. All feathers were stored dry in zip-lock plastic

bags. The quality of flight feathers was quantified through 4

parameters (mass, length, the width of the rachis and the number

of fault bars; [4,13,21,42,43]), whereas that of body feathers

through 5 parameters (barbule density, total number of barbs,

proportion of plumulaceous barbs, length and area; [20]). The

rachis is the solid upper part of the feather shaft from which barbs

are branching. Barbs have further branches, called barbules that

connect the adjacent barbs to form together the feather vane of

pennaceous body and flight contour feathers. The measures of left

and right wing primaries and that of 2–3 randomly chosen body

feathers were averaged to increase measurement accuracy. To

reduce measurement error, each trait was assessed by one author

(CIV, Z. Benkő or AM) without knowledge on group identity of

samples.

Dry mass of primaries was measured with a SCALTEC (SBA

32) balance (60.1 mg). Maximum length of primaries (from the

proximal end of calamus to tip) was measured with a ruler

(60.5 mm) by stretching the feather straight. Rachis width of

primaries was measured at the base of the vane with a digital

caliper (60.01 mm). The measurement of primary mass, length

and rachis width proved to be highly repeatable within individuals

(R.0.8) in a previous study with the same methodology [13]. Fault

bars are abnormalities that appear in form of translucent bands

quasi perpendicular to the rachis where feathers are prone to

break [21]. These were counted on all 4 plucked primaries and

summed up. Barbule density of body feathers was measured by

taking digital photographs under a stereomicroscope (Olympus

SZ61, Tokyo, Japan; camera: Cool SNAP-Pro cf) at 506
magnification. Feathers were placed in a frame fixed to

microscope platform aspiring to expose the same feather region.

Feathers were sandwiched between two microscope slides to

flatten the naturally curved feathers rendering possible planar

measurements. Barbules were counted at the three longest barbs

along 1.5 mm length of barb starting from the rachis. The

standardized 1.5 mm lengths, calibrated from a stage micrometer

scale, were traced in ImageJ [44]. When counting the number of

barbs we progressed along the shaft at 306 magnification and

made a distinction between pennaceous and plumulaceous barbs

according to Broggi et al. [20]. Pennaceous barbs are compact,

closer to each other, have shorter barbules and often form vanes.

Plumulaceous barbs are fluffy, with long barbules and do not

create vanes, hence trap air for insulation. We recorded the total

number of barbs and that of pennaceous ones and calculated the

proportion of plumulaceous barbs (%) as (total barbs – pennaceous

barbs)/total barbs. For length and area, mantle feathers were

photographed (Nikon D80 on tripod) on a grey-card with metric

template and sandwiched between two microscope slides. Feather

length (60.01 mm) was measured by tracing a line along the shaft

(calamus included), whereas area (60.01 cm2) by encircling the

feather in ImageJ.

Figure 1. Photoperiod regime at which male house sparrows
undertook their molt. Photoperiod treatment groups: ‘CP’ control
(broken line), ‘EP’ experimental (continuous line). 28 July 2008 = day 1,
25 November 2008 = day 110. Male house sparrow drawing credit:
Márton Zsoldos.
doi:10.1371/journal.pone.0040651.g001
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Statistical Procedures
All statistical analyses were performed in the R statistical

environment version 2.14.1 [45]. We built linear models (LMs)

separately for each response variable except the total number of

fault bars, which was analyzed by generalized linear model (GLM)

with Poisson error distribution. Treatment was entered as factor

and the correlated trait, if any, of focal variables as covariate to

deal with the few inter-correlations between response variables. In

addition, scaled mass index (SMI; [32]) and square root-

transformed fighting success were also entered as covariates.

SMI (M̂Mi) is a size-corrected body condition index calculated as

M̂Mi~Mi
L0

Li

� �bSMA

,

where Mi and Li are the mass and tarsus length of ith individual,

respectively, L0 is the mean tarsus length of the sample and

exponent bSMA is the slope of log-log model II standardized major

axis (SMA) regression of mass on tarsus length (‘lmodel2’ package

for R; [46]). To test whether treatment has a condition-dependent

effect, the treatment 6 SMI interaction term was also entered.

Because the widely used condition proxy computed as residuals

from mass on skeletal length ordinary least squares regression

violates certain statistical assumptions [37], we calculated SMI (g)

as this more accurately indicates non-skeletal mass. SMI was

scaled to mean = 0 in each model by subtracting the sample’s

mean SMI from each individual’s value in order to gain

meaningful parameter estimates. Entering both SMI and fighting

success as continuous predictors is reasonable because they are

unrelated (Pearson’s product-moment correlation, r = 0.01, n = 49,

P = 0.98). We first built saturated models that were simplified to

minimum adequate models (MAMs) by backward stepwise

procedure dropping the predictor with lowest improvement of

model fit. For this selection we chose the P,0.1 criteria to retain

confounding variables with weaker influence. MAMs were not

allowed to differ from the saturated model in explanatory power.

The treatment main effect was always kept in the model, while

SMI only when it was significant itself or non-significant itself but

significantly interacted with treatment. We adopt stepwise

elimination as it performs similarly as information theory

approach [47]. The requirements of MAMs were checked by plot

diagnosis. Each model suited the requirements of linearity,

residual’s variance and distribution, and no outliers (i.e. standard-

ized residuals . |3|) were detected.

Only the MAMs are presented. Tests are two-tailed and type I

error probabilities were set to 0.05. Mean 6 SE of raw data and

model estimate b 6 SE for covariates are reported throughout.

Sample sizes are nCP = 24 and nEP = 25 for each variable except for

post-molt tail length for which nCP = 21 and nEP = 24. We were

unable to measure post-molt tail length for some birds because of

broken feathers. Repeatability calculations were performed as per

Nakagawa and Schielzeth [48] using the ‘rptR’ package for R and

restricted maximum likelihood method.

Results

Measured body feather parameters were highly repeatable

(n = 7 randomly remeasured individuals; barbule density: R = 0.87,

95% CI = 0.67–0.91, P = 0.0002; total number of barbs: R = 0.74,

95% CI = 0.26–0.89, P = 0.007; proportion of plumulaceous

barbs: R = 0.73, 95% CI = 0.26–0.92, P = 0.006; length:

R = 0.92, 95% CI = 0.70–0.99, P = 0.0002; area: R = 0.80, 95%

CI = 0.22–0.91, P = 0.0002). Further, the within-individual values

of the 2–3 feathers were significantly correlated (Pearson’s

product-moment correlation, all n = 49; barbule density: r = 0.36,

P,0.01; total number of barbs: r = 0.57, P,0.0001; proportion of

plumulaceous barbs: r = 0.45, P,0.001; length: r = 0.70,

P,0.0001; area: r = 0.63, P,0.0001).

Tarsus length (mm) in our study population was 19.3860.09

and the slope of log-log mass on tarsus length SMA regression was

1.17. Thus, SMI (g) was computed as massi 6 (19.38/tarsus

lengthi)
1.17 and averaged 29.0060.16. Groups did not differ in

SMI (LM, F1,47 = 0.10, P = 0.76), indicating that photoperiod

manipulation had influenced molt speed [24] without deteriorat-

ing the mean body condition of birds.

Post-molt Wing and Tail Length, and Fault Bars
Treatment had no effect on post-molt length (mm) of wing (CP:

80.2560.29; EP: 79.5260.35) and tail (CP: 57.3360.43; EP:

56.4460.50), but interacted significantly with SMI (Table 1)

indicating that CP bird’s wing and tail length is unrelated to

condition (wing: b = –0.4060.26, t = –1.54, P = 0.13; tail:

b = 0.0360.40, t = 0.08, P = 0.94), whereas in the EP group only

birds in good condition grew long wings and tail (wing:

b = 1.1460.43, t = 3.61, P = 0.0008; tail: b = 1.3160.65, t = 2.08,

P = 0.04) (Fig. 2). Fighting success was dropped from all models.

Total number of fault bars was significantly higher in the EP

(1.5260.24, median = 1.0, range = 0–5) than in the CP group

(0.3860.12, median = 0.0, range = 0–2; GLM, x2
1 = 18.08,

P,0.0001). None of the other predictors were retained in the

MAM.

Flight Feathers
Because feather mass and length were strongly positively

correlated (P5: b = 0.3960.06, t = 6.70, P,0.0001; P7:

b = 0.3660.08, t = 4.65, P,0.0001) and treatment had qualita-

tively similar results on these two parameters, we show only results

concerning feather length. Groups did not differ in the length

(mm) of P5 (CP: 65.7960.37; EP: 65.0460.28) and P7 (CP:

69.7760.27; EP: 68.7860.30), but treatment interacted with SMI

(Table 1). This indicates that feather length was unrelated to

condition in the CP group (P5: b = –0.2760.28, t = –0.98,

P = 0.33; P7: b = –0.3560.23, t = –1.50, P = 0.14), whereas a

positive association was found in the EP group (P5:

b = 0.9460.46, t = 2.62, P = 0.01; P7: b = 0.9860.46, t = 3.46,

P = 0.001) (Fig. 3). The rachis width (mm) of P5 was not affected

by treatment (CP: 0.9760.01; EP: 0.9660.01), but was positively

related to body condition (b = 0.0260.01; Table 1, Fig. 3C). The

rachis width of P7 was unaffected either by treatment (CP:

1.0660.01; EP: 1.0460.01) or by other predictors (Table 1,

Fig. 3D). Fighting success was never retained in the MAMs.

Body Feathers
Structure of mantle feathers was determined chiefly by

treatment (Table 2). Fast-molting EP birds produced feathers

with higher barbule density per 1.5 mm barb length (CP:

34.4460.71; EP: 36.8760.41; Fig. 4A). The total number of

barbs was marginally positively related to mantle feather length

(b = 0.5060.27; Table 2), hence we controlled for feather length in

the model. Groups were similar in total number of barbs (CP:

63.7860.73; EP: 64.4160.64; Fig. 4B). The results remained

unchanged when the control for the marginal effect of feather

length was omitted (not shown). Fast-molting EP birds had lower

proportion (%) of plumulaceous barbs (CP: 65.8360.40; EP:

64.5360.52; Fig. 4C). Those sparrows developed shorter mantle

feathers (mm) that were in the EP group (CP: 29.5860.32; EP:

28.3660.41; Fig. 4D) and were in lower condition (b = 0.5160.26;

Table 2). The area (cm2) of mantle feathers was strongly positively

Condition and Molt Rate-Feather Quality Trade-Off
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predicted by its length (b = 0.1660.02, t = 6.49, P,0.0001).

Treatment influenced mantle feather area by EP birds having

smaller feathers (CP: 3.5160.09; EP: 3.1260.08; Fig. 4E) even

after controlling for length (Table 2). Thus, EP birds had smaller

feathers in terms of both length and width. None of the body

feather parameters were related to fighting success.

Discussion

We showed that a simulated time-constraint was effective in

triggering different molting patterns [24] within the bounds found

in free-living birds ([29] and personal observation). The more

rapid molt of experimental birds was detrimental for flight and

body feather quality, which might ultimately have fitness costs (see

Introduction). Moreover, the fitness costs of lower quality flight

and body feathers may be exacerbated over time because the non-

living tissue of poor-quality feathers deteriorates to a greater extent

between molts [4,16,43]. Note that these results were obtained

using a relatively mild photoperiod treatment (confer with [4]) and

a sedentary model organism. We conclude that the sedentary

lifestyle does not equate to release from the molt rate–feather

quality trade-off. The experimental birds harbored more fault bars

(also known as stress bars), which might indicate that accelerated

molting was stressful [49]. This suggests that corticosterone (‘stress

hormone’) may be a mediator of the molt rate–feather quality

trade-off, as corticosterone is known to affect a wide range of

feather attributes [50]. Importantly, these results were not

confounded by aggression between birds housed in flocks in

accordance with our previous work [24] where groups did not

differ in the frequency of fighting, and fighting success did not

affect plumage ornament expression.

Birds that underwent an accelerated molt developed shorter

flight feathers. These results agree with and complement previous

studies on the molt rate–feather quality trade-off in migratory or

partially migratory species [4,15–19]. An experimentally acceler-

ated molt resulted in shorter and lighter primaries in starlings, and

shorter primaries and wings in lesser whitethroats Sylvia curruca

[4,15,19]. A faster molt resulted in less durable primaries and a

greater loss of wing length between molts in grey plovers Pluvialis

squatarola [16], lighter feathers in summer-molting passerines

[17,18], and thinner, but surprisingly more rigid (stiffer), rachis

in blackcaps [28]. The molt rate is not the only driver of feather

quality because other challenges during molt alter the same feather

traits in a similar direction, e.g. infestation [42]. Given that

investment in molt and immune function interfere [14], sup-

pressed immunity and consequent higher susceptibility to parasites

may indirectly connect molt with feather quality. The rachis width

was not influenced by molt rate per se or its interaction with body

condition. The second moment of the cross-sectional area of the

rachis is related to its material rigidity [51], so we infer that this

was probably less likely to be affected by the molt rate of a

sedentary species as opposed to a more time-constrained migratory

species ([4]; but see [28] for how selection on migratory species

that rely on assiduous long-distance flights might have led to the

evolution of high flexural stiffness).

This study is the first, as far as we are aware, to test the effects of

molt speed on body feather structure using an experimental

approach that enables the inference of causality. Rapid molting

resulted in shorter and smaller feathers with a higher barbule

density and a lower proportion of plumulaceous barbs [20]. This

feather architecture is proposed to have a lower capacity for heat

conservation because it captures less air due to inferior coverage

by small feathers and its less fluffy structure (fewer plumulaceous

barbs and a higher barbule density; [20] and refs therein). Thus,

this study provides experimental support for the underlying

mechanism proposed by Nilsson and Svensson [3] and the

supposition of Dawson et al. [4] and Broggi et al. [20] that the

MCH might also apply to body feathers. Our results entirely

corroborate those found by Broggi et al. [20] and highlight that

merely an accelerated molt rate could be sufficient to produce the

inter-population differences in contour body feather structure

found in great tits. Thus, great tits living on the northern margins

of their European distribution might develop feathers with an

impaired insulation capacity because of a time-constrained molt.

As a consequence, fast-molting birds might expend more energy

during thermal challenges [3,52]. These molt rate-mediated costs

could influence population processes and be responsible for the

sink population attributes (e.g. lower survival rate) in the northern

margins of the distribution range of the great tit [20].

An interesting aspect we found is that body condition was

positively associated with feather traits either irrespective of the

treatment (primaries’ rachis width and mantle feather length) or

only in the experimental group (wing, tail and primary lengths).

Therefore, feather traits could be honest indicators of the bearer’s

Table 1. Minimum adequate models (MAMs) on the
significant or marginally significant predictors of several
morphological and flight feather traits.

Response/predictor MS F df P

Post-molt wing length

SMI a 1.60 0.79 1,45 0.38

TREAT 6.25 3.09 1,45 0.09

SMI 6 TREAT 26.36 13.03 1,45 0.0008

MAM: error MS = 2.02, F3,45 = 5.64, P = 0.002, R2 = 0.27

Post-molt tail length

SMI 14.91 3.30 1,41 0.08

TREAT 7.42 1.64 1,41 0.21

SMI 6 TREAT 19.46 4.31 1,41 0.04

MAM: error MS = 4.51, F3,41 = 3.09, P = 0.04, R2 = 0.18

Length of P5

SMI 1.64 0.70 1,45 0.41

TREAT 6.63 2.82 1,45 0.10

SMI 6 TREAT 16.18 6.88 1,45 0.01

MAM: error MS = 2.35, F3,45 = 3.46, P = 0.02, R2 = 0.19

Length of P7

SMI 1.25 0.76 1,45 0.39

TREAT 11.70 7.16 1,45 0.01

SMI 6 TREAT 19.59 11.99 1,45 0.001

MAM: error MS = 1.63, F3,45 = 6.64, P = 0.0008, R2 = 0.31

Rachis width of P5

SMI 0.01 4.65 1,46 0.04

TREAT 0.01 0.06 1,46 0.81

MAM: error MS = 0.01, F2,46 = 2.35, P = 0.11, R2 = 0.09

Rachis width of P7

TREAT 0.01 2.06 1,47 0.16

MAM: error MS = 0.01, R2 = 0.04

aPhotoperiod treatment (‘TREAT’) effects are shown even if not significant,
whereas condition (‘SMI’, scaled mass index (g)) was retained only when
significant but also when interacted with TREAT.
doi:10.1371/journal.pone.0040651.t001
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condition (Figs. 2,3) in concert with Moreno-Rueda’s [14]

proposal. Birds can achieve functionally adequate plumage by

starting to molt early in the season, but only birds with a good

body condition can buffer against a compromised molt (interac-

tions on Figs. 2,3) if they ‘‘miss the boat’’ of early molt. Nestling

growth and body condition have been under scientific siege in

Figure 2. Photoperiod treatment effects on post-molt morphology. Panels show the treatment by condition (scaled mass index) interaction
on post-molt length (mm) of (A) wing and (B) tail. Photoperiod treatment groups: ‘CP’ control (open circles, broken line), ‘EP’ experimental (filled
circles, continuous line).
doi:10.1371/journal.pone.0040651.g002

Figure 3. Photoperiod treatment effects on flight feather traits. Left side figures depict the effects of the treatment by condition (scaled mass
index) interaction on length (A) and rachis width (C) of P5, whereas the right side figures (B, D) show the same attributes of P7. Photoperiod
treatment groups: ‘CP’ control (open circles, broken line), ‘EP’ experimental (filled circles, continuous line).
doi:10.1371/journal.pone.0040651.g003
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avian evolutionary ecology for a long while. Early-life growth costs

were addressed frequently by means of brood size manipulation

experiments (e.g. [53]). A general pattern emerged where growth-

related costs were masked under good environmental condition

(brood size reduction), whereas they were ubiquitous in the

opposite situation (brood size enlargement). To the best of our

knowledge, this is the first report of the body condition-dependent

costs of somatic growth during adulthood using a manipulative

tool. Under good environmental condition (relaxed molt),

sparrows were capable of growing good-quality feathers indepen-

dent of their body condition. However, only birds with a good

body condition were capable of doing so in a challenging situation

(rapid molt). In other words, good condition birds had narrower

reaction norms (Figs. 2,3); they could withstand challenging

environmental circumstances better and by virtue of their higher

quality they endure the increased demands of molt (i.e. show

higher developmental homeostasis). These conclusions agree with

de la Hera et al.’s [17] graphical model, as well as the molt–mass

trade-off and mass-mediated molt–immunity trade-off reported by

Moreno-Rueda [14]. We argue that the link between feather

quality and body condition persists outside the molting period

owing to a positive feedback loop across years. That is, the growth

of low-quality feathers in a given year is followed by lower

condition and breeding performance in the next year, which

compromises the molt once again as a consequence (this is referred

to as the ‘running wheel’ effect because of the predictable cycle of

states in sequential life stages). At least two lines of empirical

evidence support this reasoning. First, feather quality depended on

condition-indicator traits throughout the entire annual cycle of

great tits [43]. Second, feather traits were repeatable over years

within individual blackcaps [54]. Low-quality birds in particular

are most probably trapped in this ‘running-wheel’ because they

are often late breeders and thus have deferred molt onset [55,56].

Understanding how individuals carry over effects from one season

to the next has crucial importance, e.g. for population dynamics

[57], and molt appears to be a potent modulator of such inter-

season connectivity.

Our results have implications for (1) the evolution of feather trait

diversity among avian taxa and (2) selective forces acting on

annual routines. These results may stimulate future inquiry. First,

based on current knowledge, we argue that constrained molt could

be a more general mechanism at least among small-sized birds that

molt their whole plumage once each year. Poor-quality flight and

body feathers might have a marked imprint on the residual fitness,

which provides a substrate for evolution [58] given the inheritance

of feather traits, molt timing and the feather growth rate

[34,39,59–62]. Consequently, species that thrive in different

environmental conditions and have diverse annual routines may

be exposed to species-specific selective forces, which act on molt

Table 2. Minimum adequate models (MAMs) on the
significant or marginally significant predictors of several body
(mantle) feather traits.

Response/predictor MS F df P

Barbule density

TREAT a 72.25 9.05 1,47 0.004

MAM: error MS = 7.99, R2 = 0.16

Total number of barbs

Length of mantle feather 27.15 2.46 1,46 0.07

TREAT 16.96 1.54 1,46 0.22

MAM: error MS = 11.02, F2,46 = 2.00, P = 0.15, R2 = 0.08

Proportion of plumulaceous barbs

TREAT 20.77 3.84 1,47 0.05

MAM: error MS = 5.41, R2 = 0.08

Length

SMI 13.65 4.33 1,46 0.04

TREAT 16.75 5.31 1,46 0.03

MAM: error MS = 3.16, F2,46 = 4.82, P = 0.01, R2 = 0.17

Area corrected to length

Length of mantle feather 5.25 57.73 1,46 ,0.0001

TREAT 0.43 4.77 1,46 0.03

MAM: error MS: 0.09, F2,46 = 31.25, P,0.0001, R2 = 0.58

aPhotoperiod treatment (‘TREAT’) effects are shown even if not significant,
whereas condition (‘SMI’, scaled mass index (g)) was retained only when
significant but also when interacted with TREAT.
doi:10.1371/journal.pone.0040651.t002

Figure 4. Photoperiod treatment effects on body feather traits. Panels show the effect of treatment on the density of barbules (A), total
number of barbs (B), proportion of plumulaceous barbs (C), length (D) and area (E) of mantle feathers (mean 6 SE). Photoperiod treatment groups:
‘CP’ control, ‘EP’ experimental. ‘ns’ non-significant, ‘*’ P#0.05, ‘**’ P,0.01.
doi:10.1371/journal.pone.0040651.g004
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rate- and condition-mediated feather quality, and this could have

led to the perplexingly high diversity in feather shape, structure

and their material properties (e.g. [63]). Second, the mismatch

between the timing of parental labor and food peaks due to climate

change could drive population declines [64,65]. Besides this

climate-driven selection, our results suggest that there may be an

additional selective advantage of early breeding to acquire better

quality feathers via a slower molting rate. Sedentary birds may

benefit in terms of molting due to the progressive advancement of

spring. By contrast, this may have a highly negative impact on

summer-molting migrants due to the mismatch of the timing of

breeding and food abundance, which might be followed by

compromised condition and molting. These aspects suggest that

pluralistic approaches are needed by also looking through the

prism of molting to better understand eco-evolutionary processes.
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39. Gienapp P, Merilä J (2010) Genetic and environmental effects on a condition-

dependent trait: feather growth in Siberian jays. J Evol Biol 23: 715–723.

40. Grubb TC, Jr (2006) Ptilochronology: feather time and the biology of birds. New

York: Oxford University Press.

41. Animal Behavior Society (2012) Guidelines for the treatment of animals in
behavioural research and teaching. Anim Behav 83: 301–309.
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