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Abstract

Event-based cameras have recently drawn the attention

of the Computer Vision community thanks to their advan-

tages in terms of high temporal resolution, low power con-

sumption and high dynamic range, compared to traditional

frame-based cameras. These properties make event-based

cameras an ideal choice for autonomous vehicles, robot

navigation or UAV vision, among others. However, the

accuracy of event-based object classification algorithms,

which is of crucial importance for any reliable system work-

ing in real-world conditions, is still far behind their frame-

based counterparts. Two main reasons for this performance

gap are: 1. The lack of effective low-level representations

and architectures for event-based object classification and

2. The absence of large real-world event-based datasets. In

this paper we address both problems. First, we introduce

a novel event-based feature representation together with a

new machine learning architecture. Compared to previous

approaches, we use local memory units to efficiently lever-

age past temporal information and build a robust event-

based representation. Second, we release the first large

real-world event-based dataset for object classification. We

compare our method to the state-of-the-art with extensive

experiments, showing better classification performance and

real-time computation.

1. Introduction

This paper focuses on the problem of object classifi-

cation using the output of a neuromorphic asynchronous

event-based camera [15, 14, 53]. Event-based cameras of-

fer a novel path to Computer Vision by introducing a funda-

mentally new representation of visual scenes, with a drive

towards real-time and low-power algorithms.

Contrary to standard frame-based cameras, which rely
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Figure 1: Pixels of an event-based camera asynchronously

generate events as soon as a contrast change is detected in

their field of view. As a consequence, the output of an event-

based camera can be extremely sparse and with time resolu-

tion of order of microseconds. Because of the asynchronous

nature of the data and the high resolution of the temporal

component of the events, compared to the spatial one, stan-

dard Computer Vision methods can not be directly applied.

Top: An event-based camera (left) recording a natural scene

(right). Bottom: Visualization of the events stream gener-

ated by a moving object. ON and OFF events (Sec. 2) are

represented by yellow and cyan dots respectively. This fig-

ure, as most of the figures in this paper, is best seen in color.

on a pre-defined acquisition rate, in event-based cameras,

individual pixels asynchronously emit events when they ob-

serve a sufficient change of the local illuminance intensity

(Figure 1). This new principle leads to significant reduction

of memory usage and of power consumption and the infor-

mation contained in standard videos of hundreds megabytes

can be naturally compressed in an event stream of few

hundreds kilobytes [36, 52, 63]. Additionally, the time
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resolution of event-based cameras is orders of magnitude

higher than frame-based cameras, reaching up to hundreds

of microseconds. Finally, thanks to their logarithmic sen-

sitivity to illumination changes, event-based cameras also

have a much larger dynamic range, exceeding 120dB [52].

These characteristics make event-based cameras particu-

larly interesting for applications with strong constraints on

latency (e.g. autonomous navigation), power consumption

(e.g. UAV vision and IoT), or bandwidth (e.g. tracking and

surveillance).

However, due to the novelty of the field, the performance

of event-based systems in real-world conditions is still in-

ferior to their frame-based counterparts [28, 66]. We ar-

gue that two main limiting factors of event-based algorithms

are: 1. the limited amount of work on low-level feature rep-

resentations and architectures for event-based object classi-

fication; 2. the lack of large event-based datasets acquired

in real-world conditions. In this work, we make important

steps towards the solution of both problems.

We introduce a new event-based scalable machine learn-

ing architecture, relying on a low-level operator called Lo-

cal Memory Time Surface. A time surface is a spatio-

temporal representation of activities around an event relying

on the arrival time of events from neighboring pixels [30].

However, the direct use of this information is sensitive to

noise and non-idealities of the sensors. By contrast, we em-

phasize the importance of using the information carried by

past events to obtain a robust representation. Moreover, we

show how to efficiently store and access this past informa-

tion by defining a new architecture based on local mem-

ory units, where neighboring pixels share the same memory

block. In this way, the Local Memory Time Surfaces can

be efficiently combined into a higher-order representation,

which we call Histograms of Averaged Time Surfaces.

This results in an event-based architecture which is sig-

nificantly faster and more accurate than existing ones [30,

33, 46]. Driven by brain-like asynchronous event based

computations, this new architecture offers the perspective

of a new class of machine learning algorithms that focus the

computational effort only on active parts of the network.

Finally, motivated by the importance of large-scale

datasets for the recent progress of Computer Vision systems

[16, 28, 37], we also present a new real-world event-based

dataset dedicated to car classification. This dataset is com-

posed of about 24k samples acquired from a car driving in

urban and motorway environments. These samples were an-

notated using a semi-automatic protocol, which we describe

below. To the best of our knowledge this is the largest la-

beled event-based dataset acquired in real-world conditions.

We evaluate our method on our new event-based dataset

and on four other challenging ones. We show that our

method reaches higher classification rates and faster com-

putation times than existing event-based algorithms.

2. Event-based camera

Conventional cameras encode the observed scene by pro-

ducing dense information at a fixed frame-rate. As ex-

plained in Sec. 1, this is an inefficient way to encode nat-

ural scenes. Following this observation, a variety of event-

based cameras [36, 52, 63] have been designed over the past

few years, with the goal to encode the observed scene adap-

tively, based on its content.

In this work, we consider the ATIS camera [52]. The

ATIS camera contains an array of fully asynchronous pix-

els, each composed of an illuminance relative change de-

tector and a conditional exposure measurement block. The

relative change detector reacts to changes in the observed

scene, producing information in the form of asynchronous

address events [4], known henceforth as events. Whenever

a pixel detects a change in illuminance intensity, it emits

an event containing its x-y position in the pixel array, the

microsecond timestamp of the observed change and its po-

larity: i.e. whether the illuminance intensity was increasing

(ON events) or decreasing (OFF events). The conditional

exposure measurement block measures the absolute lumi-

nous intensity observed by a pixel [49]. In the ATIS, the

measurement itself is not triggered at fixed frame-rate, but

only when a change in the observed scene is detected by the

relative change detector.

In this work, the luminous intensity measures from the

ATIS camera were used only to generate ground-truth an-

notations for the dataset presented in Sec. 5. By contrast,

the object classification pipeline was designed to operate on

change-events only, in order to support generic event-based

cameras, whether or not they include the ATIS feature to

generate grey levels. In this way, any event-based camera

can be used to demonstrate the potential of our approach,

while leaving the possibility for further improvement when

gray level information is available [39].

3. Related work

In this section, we first briefly review frame-based ob-

ject classification, then we describe previous work on event-

based features and object classification. Finally, we discuss

existing event-based datasets.

Frame-based Features and Object Classification There

is a vast literature on spatial [40, 13, 67, 57] and spatio-

temporal [31, 73, 60] feature descriptors for frame-based

Computer Vision. Early approaches mainly focus on hand-

crafting feature representations for a given problem by

using domain knowledge. Well-designed features com-

bined with shallow classifiers have driven research in ob-

ject recognition for many decades [72, 13, 18] and helped

understanding and modeling important properties of the ob-

ject classification problem, such as local geometric invari-
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ants, color and light properties, etc. [74, 1].

In the last few years, the availability of large datasets [16,

37] and effective learning algorithms [32, 26, 68] shifted

the research direction towards data driven learning of fea-

ture representations [2, 22]. Typically this is done by opti-

mizing the weights of several layers of elementary feature

extraction operations, such as spatial convolutions, pixel-

wise transformations, pooling etc. This allowed an impres-

sive improvement in the performance of image classifica-

tion approaches and many others Computer Vision prob-

lems [28, 66, 75]. Deep Learning models, although less

easily interpretable, also allowed understanding higher or-

der geometrical properties of classical problems [8].

By contrast, the work on event-based Computer Vision is

still in its early stages and it is unclear which feature repre-

sentations and architectures are best suited for this problem.

Finding adequate low-level feature operations is a funda-

mental topic both for understanding the properties of event-

based problems and also for finding the best architectures

and learning algorithms to solve them.

Event-based Features and Object Classification Simul-

taneous Localization and Mapping use-cases [25, 54] drove

the majority of prior work on event-based features [11, 43]

for stable detection and tracking. Corner detectors, have

been defined in [11, 71, 43], while the works of [61, 7] fo-

cused on edge and line extraction.

Recently, [12] introduced a feature descriptor based on

local distributions of optical flow and applied it to corner de-

tection and gesture recognition. It is inspired by its frame-

based counterpart [10], but in [12] the algorithm for com-

puting the optical flow relies on the temporal information

carried by the events. One limitation of [12] is that the qual-

ity of the descriptor strongly depends on the quality of the

flow. As a consequence, it loses accuracy in presence of

noise or poorly contrasted edges.

Event-based classification algorithms can be divided in

two categories: unsupervised learning methods and super-

vised ones. Most unsupervised approaches train artificial

neural networks by reproducing or imitating the learning

rules observed in biological neural networks [21, 42, 38, 3,

65, 41]. Supervised methods [47, 29, 34, 51], similar to

what is done in frame-based Computer Vision, try to op-

timize the weights of artificial networks by minimizing a

smooth error function.

The most commonly used architectures for event-based

cameras are Spiking Neural Networks (SNN) [5, 59, 24,

17, 9, 76, 46]. SNN are a promising research field; how-

ever, their performance is limited by the discrete nature

of the events, which makes it difficult to properly train a

SNN with gradient descent. To avoid this, some authors

[50] use predefined Gabor filters as weights in the network.

Others propose to first train a conventional Convolutional

Neural Networks (CNN) and then to convert the weights

to a SNN [9, 58]. In both cases, the obtained solutions

are suboptimal and typically the performance is lower than

conventional CNNs on frames. Other methods consider a

smoothed version of the transfer function of a SNN and

directly optimize it [33, 45, 69]. The convergence of the

corresponding optimization problem is still very difficult to

obtain and typically only few layers and small networks can

be trained.

Recently, [30] proposed an interesting alternative to

SNNs by introducing a hierarchical representation based on

the definition of Time Surface. In [30], learning is unsu-

pervised and performed by clustering time surfaces at each

layer, while the last layer sends its output to a classifier.

The main limitations of this method are its high latency, due

to the increasing time window needed to compute the time

surfaces and the high computational cost of the clustering

algorithm.

We propose a much simpler yet effective feature rep-

resentation. We generalize time surfaces by introducing a

memory effect in the network by storing the information

carried by past events. We then build our representation by

applying a regularization scheme both in time and space to

obtain a compact and fast representation. Although the ar-

chitecture is scalable, we show that once a memory process

is introduced, a single layer is sufficient to outperform a

multilayer approach directly relying on time surfaces. This

reduces computation, but more importantly, adds more gen-

eralization and robustness to the network.

Event-based Datasets An issue of previous work on

event-based object classification is that the proposed solu-

tions are tested either on very small datasets [64, 30], or

on datasets generated by converting standard videos or im-

ages to an event-based representation [48, 23, 35]. In the

first case, the small size of the test set prevents an accurate

evaluation of the methods. In the second case, the dataset

size is large enough to create a valid tool for testing new

algorithms. However, since the datasets are generated from

static images, the real dynamics of a scene and the tempo-

ral resolution of event-based cameras can not be fully em-

ployed and there is no guarantee that a method tested on

this kind of artificial data will behave similarly in real-world

conditions.

The authors of [44] released an event-based dataset

adapted to test visual odometry algorithms. Unfortunately,

this dataset does not contain labeled information for an ob-

ject recognition task.

The need of large real-world datasets is a major slow-

ing factor for event-based vision [70]. By releasing a new

labeled real-world event-based dataset, and defining an ef-

ficient semi-automated protocol based on a single event-

based camera, we intend to accelerate progress toward a

robust and accurate event-based object classifier.
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Figure 2: Time surface computation around an event ei, in presence of noise. Noisy events are represented as red crosses,

non-noisy events as blue dots. For clarity of visualization only the x-t component of the event stream and a single polarity are

shown. (a) In [30] the time surface T̄ei (Eq. (2)) is computed by considering only the times t′(xi+z, q) of the last events in a

neighborhood of ei (orange dashed line). As a consequence, noisy events can have a large weight in T̄ei . This is visible from

the spurious peaks in the surface T̄ei . (b) By contrast, the definition of Local Memory Time Surface Tei of Eq. (3), considers

the contribution of all past events in a spatio-temporal windowN(z,q)(ei). In this way, the ratio of noisy events considered to

compute T is smaller and the result better describes the real dynamics of the underling stream of events. (c) The time surface

can be further regularized by spatially averaging the time surfaces for all the events in a neighborhood (Eq. (6)). Thanks to

both the spatial and temporal regularization, the contribution of noise is almost completely suppressed.

4. Method

In this section, we formalize the event-based representa-

tion of visual scenes and describe our event-based architec-

ture for object classification.

4.1. Time Surfaces

Given an event-based sensor with pixel grid size M×N ,

a stream of events is given by a sequence

E = {ei}
I
i=1, with ei = (xi, ti, pi), (1)

where xi = (xi, yi) ∈ [1, . . . ,M ]×[1, . . . , N ] are the coor-

dinates of the pixel generating the event, ti ≥ 0 the times-

tamp at which the event was generated, with ti ≤ tj for

i < j, and pi ∈ {−1, 1} the polarity of the event, with

−1, 1 meaning respectively OFF and ON events, and I is

the number of events. From now on we will refer to indi-

vidual events by ei and to a sequence of events by {ei}.
In [30], the concept of time surface is introduced to de-

scribe local spatio-temporal patterns around an event. A

time surface can be formalized as a local spatial operator

acting on an event ei by T̄ei(·, ·) : [−ρ, ρ]
2×{−1, 1} → R,

where ρ is the radius of the spatial neighborhood used to

compute the time surface.

For an event ei = (xi, ti, pi), and (z, q) ∈ [−ρ, ρ]2 ×
{−1, 1}, T̄ei is given by

T̄ei(z, q) =

{

e−
ti−t′(xi+z,q)

τ if pi = q
0 otherwise.

(2)

Where t′(xi + z, q) is the time of the last event with po-

larity q received from pixel xi + z (Fig. 2(a)), and τ is a

decay factor giving less weight to events further in the past.

Intuitively, a time surface encodes the dynamic context in

a neighborhood of an event, hence providing both temporal

and spatial information. Therefore, this compact represen-

tation of the content of the scene can be useful to classify

different patterns.

4.2. Local Memory Time Surfaces

To build the feature representation, we start by general-

izing the time surface T̄ei of Eq. (2). As shown in Fig. 2(a)

using only the time t′(xi + z, q) of the last event received

in the neighborhood of the time surface pixel xi, leads to a

descriptor which is too sensitive to noise or small variations

in the event stream.

To avoid this problem, we compute the time surface by

considering the history of the events in a temporal window

of size ∆t. More precisely, we define a local memory time

surface Tei as

Tei(z, q) =

{

∑

ej∈N(z,q)(ei)
e−

ti−tj

τ if pi = q

0 otherwise,
(3)

where

N(z,q)(ei) = {ej : xj = xi + z, tj ∈ [ti −∆t, ti), pj = q}.
(4)

As shown in Fig. 2(b), this formulation more robustly de-

scribes the real dynamics of the scene while resisting noise

and small variations of events. In the supplementary ma-

terial we compare the results obtained by using Eq. (2) or

Eq. (3) on an object classification task, showing the advan-

tage of using the local memory formulation to achieve better

accuracy.
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Figure 3: Overview of the proposed architecture. (a) The pixel grid is divided into cells C of size K ×K. When a change of

light is detected by a pixel, an event ei is generated. Then, the time surface Tei is computed and used to update the histogram

hC . The HATS representation is obtained by the concatenation of the histograms hC . (b) Detail of the Local Memory Time

Surface computation using local memory units. For each input event, the time surface of Eq. (3) is computed by using the

past events ej’s stored in the cell’s local memory unitMC (Sec. 4.4). After computation, Tei is used to update the histogram

hC of the corresponding cell, while event ei is added to the memory unit. For simplicity, the polarity of the event and the

normalization of the histograms are not considered in the scheme.

The name Local Memory Time Surfaces comes from the

fact that past events {ej} in N(z,q)(ei) need to be stored in

memory units in order to prevent the algorithm from ‘for-

getting’ past information. In Sec. 4.4, we will describe how

memory units can be shared efficiently by neighboring pix-

els. In this way, we can compute a robust feature represen-

tation without significant increase in memory requirements.

4.3. Histograms of Averaged Time Surfaces

The local memory time surfaces of Eq. (3) is the ele-

mentary spatio-temporal operator we use in our approach.

In this section, we describe how this new type of time sur-

face can be used to define a compact representation of an

event stream useful for object classification.

Inspired by [13] in frame-based vision, we group adja-

cent pixels in cells {Cl}
L
l=1 of size K ×K. Then, for each

cell C, we sum the components of the time surfaces com-

puted on events from C into histograms. More precisely, for

a cell C we have:

h̄C(z, p) =
∑

ei∈C

Tei(z, p), (5)

where, with an abuse of notation, we write ei ∈ C if and

only if pixel coordinates (xi, yi) of the event belong to C.

A characteristic of event-based sensors is that the amount

of events generated by a moving object is proportional to its

contrast: higher contrast objects generate more events than

low contrast objects. To make the cell descriptor more in-

variant to contrast, we therefore normalize h̄ by the number

of events |C| contained in the spatio-temporal window used

to compute it. This results in the averaged histogram:

hC(z, p) =
1

|C|
h̄C(z, p) =

1

|C|

∑

ei∈C

Tei(z, p). (6)

Algorithm 1 HATS with shared memory units

1: Input: Events E = {ei}
I
i=1 Parameters: ρ,∆t, τ,K

2: Output: HATS representation H({ei})
3: Initialize: hCl

= 0, |Cl| = 0, MCl
= ∅, for all l

4: for i = 1, . . . , I do

5: Cl ← getCell(xi, yi)
6: Tei ← computeTimeSurface(ei,MCl

)
7: hCl

← hCl
+ Tei

8: MCl
←MCl

∪ ei
9: |Cl| ← |Cl|+ 1

10: return H = [hC1
/|C1|, . . . ,hCL

/|CL|]
⊺

An example of a cell histogram hC(z, p) is shown in

Fig. 2(c). Given a stream of events, our final descriptor,

which we call HATS for Histograms of Averaged Time Sur-

faces, is given by concatenating every hC , for all positions

z, polarities and cells 1, . . . , L:

H({ei}) = [hC1
, . . . ,hCL

]⊺. (7)

Fig. 3(a) shows an overview of our method.

Similarly to standard Computer Vision methods, we

can further group adjacent cells into blocks and perform a

block-normalization scheme to obtain more invariance to

velocity and contrast [13]. In Sec. 6, we show how this sim-

ple representation obtains higher accuracy for event-based

object classification compared to previous approaches.

4.4. Architecture with Locally Shared Memory
Units

Irregular access in event-based cameras is a well known

limiting factor for designing efficient event-based algo-

rithms. One of the main problems is that the use of standard
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hardware accelerations, such as GPU, is not trivial due to

the sparse and asynchronous nature of the events. For ex-

ample, accessing spatial neighbors on contiguous memory

blocks can impose significant overheads when processing

event-based data.

The architecture computing the HATS representation al-

lows to overcome this memory access issue (Fig. 3). From

Eq. (5) we notice that for every incoming event ei, we need

to iterate over all events in a past spatio-temporal neighbor-

hood. Since, for small values of ρ, most of the past events

would not be in the neighborhood of ei, looping through

the entire temporally ordered event stream would be pro-

hibitively expensive and inefficient. To avoid this, we no-

tice that, for ρ ≈ K, the events falling in the same cell

C, will share most of the neighbors N(z,q) used to compute

Eq. (3). Following this observation, for every cell, we de-

fine a shared memory unitMC , where past events relevant

for C are stored. In this way, when a new event arrives in

C, we update Eq. (5) by only looping throughMC , which

contains only the relevant past events to compute the Local

Memory Time Surface of Eq. (3) (Fig. 3(b)).

Algorithm 1 describes the computation of HATS with

memory units. Although this was not the scope of this pa-

per, we notice that Algorithm 1 can be easily parallelized

and implemented in dedicated neuromorphic chips [62].

5. Datasets

We validated our approach on five different datasets:

four datasets generated by converting standard frame-

based datasets to events (namely, the N-MNIST [48],

N-Caltech101 [48], MNIST-DVS [63] and CIFAR10-

DVS [35] datasets) and a novel dataset, recorded from

real-world scenes and introduced for the first time in

this paper, which we call N-CARS. We made the

N-CARS dataset publicly available for download at

http://www.prophesee.ai/dataset-n-cars/.

5.1. Datasets Converted from Frames

N-MNIST, N-Caltech101, MNIST-DVS and CIFAR10-

DVS are four publicly available datasets created by convert-

ing the popular frame-based MNIST [32], Caltech101 [20]

and CIFAR10 [27] to an event-based representation.

N-MNIST and N-Caltech101 were obtained by display-

ing each sample image on an LCD monitor, while an ATIS

sensor (Section 2) was moving in front of it [48]. Similarly,

the MNIST-DVS and CIFAR10-DVS datasets were created

by displaying a moving image on a monitor and recorded

with a fixed DVS sensor [63].

In both cases, the result is a conversion of the images

of the original datasets into a stream of events suited for

evaluating event-based object classification. Fig. 4(a,b)

shows some representative examples of the datasets gener-

ated from frames, for the N-MNIST and N-Caltech101.

5.2. Dataset Acquired Directly as Events: NCARS

The datasets described in the previous section are good

datasets for a first evaluation of event-based classifiers.

However, since they were generated by displaying images

on a monitor, they are not very representative of data from

real-world situations. The main shortcoming results from

the limited and predefined motion of the objects.

To overcome these limitations, we created a new dataset

by directly recording objects in urban environments with an

event-based sensor. The dataset was obtained with the fol-

lowing semi-automatic protocol. First, we captured approx-

imately 80 minutes of video using an ATIS camera (Section

2) mounted behind the windshield of a car. The driving was

conducted in a natural way, without particular regards for

video quality or content. In a second stage, we converted

gray-scale measurements from the ATIS sensor to conven-

tional gray-scale images. We then processed them with a

state-of-the-art object detector [55, 56], to automatically ex-

tract bounding boxes around cars and background samples.

Finally, the data was manually cleaned to ensure that the

samples were correctly labeled.

Since the gray-scale measurements have the same time

resolution of the change detection events, the gray-level im-

ages can be easily synchronized with the change detection

events. Thus, the positions and timestamps of the bound-

ing boxes can be directly used to extract the correspond-

ing event-based samples from the full event stream. Thanks

to our semi-automated protocol, we generated a two-class

dataset composed of 12,336 car samples and 11,693 non-

cars samples (background). The dataset was split in 7940

car and 7482 background training samples, and 4396 car

and 4211 background testing samples. Each example lasts

100 milliseconds. More details on the dataset can be found

in the supplementary material.

We called this new dataset N-CARS. As shown in

Fig. 4(c) the N-CARS is a challenging dataset, containing

cars at different poses, speeds and occlusions, as well as a

large variety of background scenarios.

6. Experiments

6.1. Eventbased Object Classification

Once the features have been extracted from the events

sequences of the database, the problem reduces to a con-

ventional classification problem. To highlight the contribu-

tion of our feature representation to classification accuracy,

we used a simple linear SVM classifier in all our experi-

ments. A more complex classifier, such as non-linear SVM

or Convolutional Neural Networks, could be used to further

improve the results.

The parameters for all methods were optimized by split-

ting the training set and using 20% of the data for valida-

tion. Once the best settings were found, the classifier was
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Figure 4: Sample snapshots from the datasets used for the experiments of Sec. 6. The snapshots are obtained by cumulating

100ms of events. Black pixels represents OFF events, white pixels ON events. (a) N-MNIST Dataset. (b) N-Caltech101

dataset. (c) N-CARS Dataset. Left: positive samples; Right: negative samples. Notice that the N-MNIST and N-Caltech101

datasets have been generated by moving an event-based camera in front of a LCD screen displaying static images. By

contrast, our dataset has been acquired in real-world conditions, therefore it fully exploits the temporal resolution of the

camera by capturing the real dynamics of the objects.

retrained on the whole training set.

We noticed little influence of the ρ and τ parameters to

accuracy, while small K’s improved performance for low

resolution inputs. When the input duration is larger than the

value of ∆t used to compute the time surfaces (Eq. 4), we

compute the features every ∆t and then stack them together.

The baselines methods we consider are HOTS [30], H-

First [50] and Spiking Neural Networks (SNN) [33, 46].

For H-First we used the code provided by the authors on-

line. For SNN we report the results previously published,

when available, while for HOTS we used our implementa-

tion of the method described in [30]. As with HATS fea-

tures, we used a linear SVM on the features extracted with

HOTS. Notice that this is in favour of HOTS, since linear

SVM is a more powerful classifier than the one used by the

authors [30].

Given that no code is available for SNN, we also com-

pared our results with those of a 2-layer SNN architecture

we implemented using predefined Gabor filters [6]. We then

again train a linear SVM on the output of the network. We

call this approach Gabor-SNN. This allowed us to obtain the

results for SNN when not readily available in the literature.

Results on the Datasets Converted from Frames The

results for the N-MNIST, N-Caltech101, MNIST-DVS and

CIFAR10-DVS datasets are given in Tab. 1. As it is usually

done, we report the results in terms of classification accu-

racy. The complete set of parameters used for the methods

are reported in the supplementary material.

Our method has the highest classification rate ever re-

ported for an event-based classification method. The per-

formance improvement is higher for the more challenging

N-Caltech101 and CIFAR10-DVS datasets. HOTS and a

predefined Gabor-SNN have similar performance, while the

H-First learning mechanism is too simple to reach good per-

formance.

Results on the N-CARS Datasets For the N-CARS

dataset, the HATS parameters used are K = 10, ρ = 3 and

τ = 109µs. In this case, block normalization was not ap-

plied because it did not improve results. Since the N-CARS

dataset contains only two classes, cars and non-cars, we can

consider it as a binary classification problem. Therefore,

we also analyze the performance of the methods using ROC

curves analysis [19]. The Area Under the Curve (AUC) and

the accuracy (Acc.) for our method and the baselines are

shown in Tab. 2, while the ROC curves are presented in the

supplementary material.

From the results, we see that our method outperforms the

baselines by a large margin. The variability contained in a

real-world dataset, such as the N-CARS one, is too large for

both the H-First and HOTS learning algorithms to converge

to a good feature representation. A predefined Gabor-SNN

architecture has better accuracy than H-First and HOTS, but

still 11% lower than our method. The spatio-temporal regu-

larization implemented in our method is more robust to the

noise and variability contained in the dataset.

6.2. Latency and Computational Time

Latency is a crucial characteristic for many applications

requiring fast reaction time. In this section, we compare

HATS , HOTS and Gabor-SNN in terms of their computa-

tional time and latency on the N-CARS dataset. All meth-

ods are implemented in C++ and run on a laptop equipped

with an Intel i7 CPU (64bits, 2.7GHz) and 16GB of RAM.

Tab. 3 compares the average computational times to pro-

cess a sample. Average computational time per sample was

computed by dividing the total time spent to compute the

features on the full training set by the number of training

samples. As we can see, our method is more than 20x faster

than HOTS and almost 40x times faster than a 2-layer SNN.

In particular our method is 13 times faster than real time.

We also report the average number of events processed per

second in Kilo-events per second (Kev/s).
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Table 1: Comparison of classification accuracy on datasets converted from frames. Our method has the highest classification

rate ever reported for an event-based classification method.

N-MNIST N-Caltech101 MNIST-DVS CIFAR10-DVS

H-First [50] 0.712 0.054 0.595 0.077

HOTS [30] 0.808 0.210 0.803 0.271

Gabor-SNN 0.837 0.196 0.824 0.245

HATS (this work) 0.991 0.642 0.984 0.524

Phased LSTM [46] 0.973 - - -

Deep SNN [33] 0.987 - - -

Table 2: Comparison of classification results on the N-

CARS dataset. The table reports the global classification

accuracy (Acc.) and the AUC score (the higher the better).

Our method outperforms the baselines by a large margin.

N-CARS Acc. AUC

H-First [50] 0.561 0.408

HOTS [30] 0.624 0.568

Gabor-SNN 0.789 0.735

HATS (this work) 0.902 0.945

Latency represents the time period used to accumulate

evidence in order to reach a decision on the object class. In

our case, this time period is given by the time window used

to compute the features, as longer time windows results in

higher latency. Notice that with this definition, the latency

is independent from both the computational time and the

classification accuracy.

There is a trade-off between latency and classification

accuracy: on one side longer time periods yield more infor-

mation at the cost of higher latency, on the other side they

lead to risk of mixing dynamics from separate objects or

even different dynamics from the same object. We study

this trade-off by plotting the accuracy as a function of the

latency for the different methods (Fig. 5). The results were

averaged over 5 repetitions. By using only 10ms of events,

HATS has higher performance than the baselines applied to

the full 100ms events stream. The performance of HATS

does not completely saturate, probably due to the presence

of cars with really small apparent motion in the dataset.

We also notice that the performance of Gabor-SNN is un-

stable, especially for low latency. This is due to the spiking

architecture of Gabor-SNN for which small variations in the

input of a layer can cause large differences at its output.

7. Conclusion and Future Work

In this work, we presented a new feature representation

for event-based object recognition by introducing the no-

tion of Histograms of Averaged Time Surfaces. It validates

the idea that information is contained in the relative time

between events, provided a regularization scheme is intro-

Table 3: Average computational times per sample (the lower

the better) and average number of events processed per sec-

ond, in Kilo-events per second Kev/s (the higher the bet-

ter), on the N-CARS dataset. Since each sample is 100ms

long, our method is more than 13 times faster than real time,

while HOTS and Gabor-SNN are respectively 1,5 and 2,8

times slower than real time.

N-CARS Average Comp. Kev/s

Time per Sample (ms)

HOTS [30] 157.57 25.68

Gabor-SNN 285.95 14.15

HATS (this work) 7.28 555.74
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Figure 5: Accuracy as a function of latency on the N-CARS

dataset. Our method is consistently more accurate than the

baselines and already reaches better performance by using

only events contained in the first 10ms of the samples.

duced to limit the effect of noise. The proposed architecture

makes efficient use of past information by using local mem-

ory units shared by neighboring pixels, outperforming exist-

ing spike based methods in both accuracy and efficiency.

In the future, we plan to extend our method by using

a feature representation also for the memory units, instead

of using raw events. This could be done for example by

training a network to learn linear weights to apply to the

incoming time surfaces.
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