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Preface 

This is a survey article on the theory of Hausdorff convergence. 

Classically, the Hausdorff distance between two closed subsets in a 
fixed metric space had been defined. In [ G 7], Gromov gave an abstract 
version of it. Namely he defined the Hausdorff distance between two 

(abstract) metric spaces by taking the infimum of the (relative) Haus­

dorff distances over all ambient spaces into which the two metric spaces 
are embedded by isometries. 1 There he proved two fundamental results, 
the precompactness theorem (Theorem 2.2) and the convergence theo­

rem (Theorems 3.2 and 4.1), and applied them to the study of the global 
structures of Riemannian manifolds. Global Riemannian geometry has 

long history and fruitful products. Yet, before Gromov, workers of this 
field do not have so many machineries that the proofs should be done 

by hand. Hausdorff convergence provides a powerful tool and gives us 

conceptional and simple arguments which can be applied to many prob­

lems in a uniform way. At first sight, its definition looks too naive to 
be useful. But, the simplicity of the definition makes it possible to be 
applied in various situations. 

After [G7], the studies of Hausdorff convergence have been pursued 
by many mathematicians and now we have clearer image. Especially, 

the case of bounded sectional curvature and diameter is well analyzed. 
We shall discuss mainly this case in Chapters 1 and 2. In section 1, we 

define Hausdorff convergence and prove its elementary properties. In 

section 2, We prove the precompactness theorem. (This theorem holds 

under a weaker assumption on curvature.) In sections 3 and 4, we study 
the Hausdorff convergence of Riemannian manifolds whose curvatures 

and diameters are uniformly bounded and whose volumes are uniformly 

bounded away from 0. In section 5, we discuss the approximation of 
such Riemannian metrics by those with uniform bound on higher deriva­

tives of the curvature. In section 6, we discuss some generalizations of 

Hausdorff convergence which we need in Chapter 2 and in the study of 
noncompact manifolds. 

In Chapter 2 we remove the assumption that the volume is uniformly 

bounded away from O and studies collapsing Riemannian manifolds. 2 In 

section 7, we discuss pseudo fundamental group. This notion is tedious 
but is useful to understand the local structure of Rieniannian mani­

folds with bounded sectional curvature. Sections 8 and 9 are devoted 

1The precise definition is in section 1, where we give a little different but 

equivalent definition. 
2The definition is given in 10.1. 
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to the theorem of almost flat manifold due to Gromov. It describes 
the structure of Riemannian manifold with bounded sectional curvature 

and small diameter. This is the opposite extreme to the situations in 
sections 3 and 4. The later concerns the structure of manifolds whose 

€ balls are trivial. These two results are jointed in sections 10,11,12. 
In section 10 we give various examples of Riemannian manifolds with 

bounded sectional curvature and small volume. In sections 11 and 12 

we prove that the examples in section 10 cover essentially all possible 
types of such collapsed manifolds. In section 13 we study the structure 

of the pseudo fundamental group. The first two chapters include proofs 

or sketches of proofs to most of the results. 
Chapter 3 is devoted to the applications and to the results with­

out assuming sectional curvature bound or the diameter bound. As for 

applications, there are, among others, three types of them, the finite­

ness theorems, the pinching theorems and the study of ends of com­
plete manifolds. In section 14 and partially in section 16, we discuss 

the first one, which asserts the finiteness of the number of diffeomor­
phism classes (homeomorphism classes or homotopy types) containing 
Riemannian manifolds satisfying given assumptions on curvatures e.t.c. 

In section 15 and partially in section 16, we discuss the results of the 
second type, which assert that the two Riemannian manifolds are dif­
feomorphic (homeomorphic, homotopy equivalent) if they have similar 

geometric properties. The third one is in section 18. 

The generalizations of the results of Chapters 1 and 2 have two 

directions. One is to relax the assumption on curvatures. We describe 
some of the researches toward this direction in section 14 (and a bit in 

section 15.) The other is to remove the assumption on the diameter. The 

notion of pointed Hausdorff convergence3 is essential for this purpose. 

We give various examples and results of this direction in sections 17,18 
and 19. 

The results on the topics we deal with in Chapter 3 are far from 
complete. Then, the author tries to give as many examples, conjectures 
and open problems as possible, rather than to give the proofs of the 

theorems. We give a sketch of the proof in the case when the argument 
is simple and typical or when it seems to take a lot of time for the reader 

to find and comprehend the proof in the literature. 
In this article, we discuss various results on global Riemannian ge­

ometry. But we treat them from the point of view of Hausdorff conver­

gence. So we can not mention many results which are interesting for its 

own sake and/or from the point of view of Riemannian geometry itself. 

3The definition is in section 6. 
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We do not mention either some applications of Hausdorff convergence, 

(those presented in [CGl], (F3], (G7], [KOS] etc.). 
This article is of expository nature. But the reader may find some 

results and examples which are not recorded in the literature. (For 
example Proposition 11.5, Theorem 13.1.) The part presented in section 

8 of the the proof of Theorem 8.1 is new. 

We restrict the references to those quoted in the article and then 
omit many important ones. As for the papers on global Riemannian 

geometry, the reference in [Sa2] is more complete. 

Chapter I. Hausdorff Convergence 

§1. Definition and elementary properties 

Of course, we are mainly interested in manifolds. But sometimes it 

is useful to work in wider classes of spaces ( as we use weak solusion in the 
study of partial differential equations). Hence we define our Hausdorff 

convergence on the class of all compact metric spaces. 

Definition 1.1 (Gromov (G7]). Let M&T denote the set of all 

isometry classes of compact metric spaces. Let X and Y be two elements 

of M&T. A (not necessary continuous) map rp: X-+ Y is said to be an 
1:.-Hausdorff approximation if the following two conditions are satisfied. 

(1.1.1) The 1:.-neighborhood of rp(X) in Y is equal to Y. 

(1.1.2) For each x,y in X, we have 

ld(x,y)-d(cp(x),cp(y))I < 1:. 

The Hausdorff distance, dH(X, Y), between X and Y is defined to be 

the infinimum of the positive numbers 1:. such that there exist 1:.-Hausdorff 
approximations from X to Y and from Y to X. 

Exercise 1.2. 

(1.2.1) Suppose that there exists an 1:.-Hausdorff approximation from X 

to Y. Show 

dH(X, Y) < 31:.. 

(1.2.2) Let X, Y, Z E M&T. Show 

dH(X, Z) < 2{dH(X, Y) + dH(Y, Z)}. 

Unfortunately dH(·, ·) does not satisfy triangle inequality. But 
{1.2.2) above shows that it gives a metrizable uniform structure on 

M&T. Then we treat dH(·, ·) as if it is a distance function. 
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Remark 1.3. limn--+oo dH(Xn, X) = 0 does not imply that Xn and 
X are homeomorphic for large n. For example 

lim dH((M,gM/n),point) = 0 
n--+oo 

for every compact Riemannian manifold (M,gM)-

Remark 1.4. The above definition is slightly different from one Gro­

mov introduced in [G7]. It is easy to see that they are equivalent. 

Theorem 1.5. (M£T,dH) is Hausdorff and complete. 

Proof. First we show that (M&T, dH) is Hausdorff. Let X, Y E 

M£T. Assume that dH(X, Y) = 0. We shall prove that X and Y are 

isometric. By assumption, there exists a 1/n-Hausdorff approximation 

cpn: X --+ Y for each n. By the compactness of X, we can find a dense 

countable subset { am I m E N} of X. By a standard diagonal procedure 
we may assume that limn--+oo 'Pn(am) converges to an element cp(am) of 
M for each m. It is easy to see that cp can be extended to an isometry 

from X to Y. 

Next we shall prove the completeness. We remark that (M&T, dH) 

is separable, because the set { X E M£T I UX < oo} 4 is dense in M&T. 

Hence it suffices to consider only Caucy sequences Xn. By taking a 

subsequence if necessary, we may assume that dH(Xn,Xn+i) < 4-n- 2 • 

Let 'Pn,n+1: Xn --+ Xn+1 be the 4-n- 1-Hausdorff approximation. For 

n < m, we put 'Pn,m = 'Pm-1,m o · · · o 'Pn,n+1. Then, 'Pn,m is a 2-n_ 

Hausdorff approximation. Let X 00 be the inductive limit, lim Xn, and 
----+ 

X be its completion. Then, it is easy to see that X is a compact metric 

space and that limn--+oo dH(Xn, X) = 0. 

We use also the following finer distance on M&T. 

Definition 1.6. Let X, Y E M£T and /: X --+ Y be a Lipschitz 

map. We put 

dil / = sup d(f(x), f(y)). 
z,yEX d(x,y) 

We define the Lipschitz distance, dL(X, Y), between X and Y by 

exp(dL(X, Y)) = inf{max{dil /,dil 1- 1 } 

If: X--+ Y, is a Lipschitz homeomorphism}. 

4 "X denotes the order of X. 
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(dL(X, Y) < oo if and only if X and Y are Lipschitz homeomorphic.) 

Exercise 1.7. Let Xn,X E M£Tsatisfy limn-+oodL(Xn,X) = 0. 

Show limn-+oo dH(Xn, X) = 0. 

Lemma 1.8. Let Xn,Yn,X,Y E M£T. We assume 

lim dH(Xn, X) = lim dH(Yn, Y) = 0. 
n-+oo n-+cx:> 

Then 

Proof. Put µ = liminfn-+oo dL(Xn, Yn)- By talcing a subsequence 
if necessary, we can find a Lipschitz homeomorphisms fn:Xn -+ Yn 

such that dil In, dil /;; 1 < eP. + 1/n. Let cpn: X -+ Xn,,/Jn: Yn -+ Y 

be €n·Hausdorff approximations. (Here lim€n = 0). Put Fn = "Pn o 

In o cpn: X -+ Y. Take a dense countable subset Xo of X. By a stan­
dard diagonal procedure, we may assume that limn-+oo Fn(x) converges 

to an element F(x) of Y for each x E X 0 • It is easy to see that F 

can be extended to a Lipschitz homeomorphism F: X -+ Y such that 

dil F,dil p- 1 :::; eP.. Therefore dL(X, Y):::; µ, as required. 

Finally, we remark that we can work in a smaller class of metric 

spaces than M£T. 

Definition 1.9. Let X be a metric space, l: (0, T] -+ X be a con­

tinuous map. We say that l is a minimal geodesic if d( l( t1), l( t2)) = 
!ti - t2 I holds for each O :::; t1 :::; t2 :::; T. We say that X is a length space 

if, for each p, q E X, there exists a minimal geodesic joining them. 

Proposition 1.10. Let Xi, X E M£T. Assume that Xi, i 
1,2,3, ... are length spaces and that limi-+oo dH(Xi, X) == 0. Then X is 

also a length space. 

The proof is a straightforward application of Ascoli-Arzera's Theo­
rem. 

§2. Precompactness theorem 

In this section, we shall deal with the following class of Riemannian 
manifolds. 
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Definition 2.1. We define the symbol S(n, D) by 

S(n,D)-{ M 

~ is a compact_ Riemannian manifold.} 

drm M = n, Diam M :5 D , 

RicciM > -(n - 1) 

where dim denotes the dimension, Diam the diameter, and Ricci the 

Ricci curvature. 

The main result of this section is the following : 

Theorem 2.2 {Gromov [G7] 5.3). The set S(n, D) is precompact 

in MET with respect to the Hausdorff distance. 

The proof of Theorem 2.2 is divided into the proofs of the following 

two Lemmas 2.4 and 2.5. 

Definition 2.3. Let N: [O, oo) ---+ N be a function. The symbol 

MET(N(·),D) denotes the set of all elements X of MET satisfying 
the following. For each f, there exists a finite subset Z of X such that 

the f-neighborhood of Z in X is equal to X and that the order of Z is 

smaller than N ( f). 

Lemma 2.4. For each N(·) the set MET(N(·), D) is precompact 

in MET. 

Lemma 2.5. We put 

J: sinh n-l tdt 
Nv(E) = 1 . 

f0' 
2 sinh n-l tdt 

Then we have 

S(n,D) ~ M£T(Nv(·),D) 

Proof of Lemma 2.4. We shall prove that S(n, D) is totally 

bounded. Let :FIN(N, D) denote the set of all elements X of M&T 

such that the order of X is smaller than N and that the diameter of X 

is smaller than D. {The elements of :FIN(N, D) are finite sets.) 

Sublemma 2.6. :FIN(N,D) is compact. 

The proof is an easy exercise. 
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Sublemma 2.7. For each X E MET(N(·), D) and c > 0, there 

exists YE :FI.N(N(e), D) such that dH(X, Y) < 3e. 

Proof of Sublemma 2.7. By definition, there exists Y C X, such 

that ffY ::; N(e), and that the c-neighborhood of Y is X. Then Y 

equipped with induced metric is an element of :FI.N(N(e), D), and the 

inclusion map : Y <-+ X is an e-Hausdorff approximation. Hence by 

Exercise {1.2.2), we have dH(X, Y) < 3e, as required. 

It follows immediately from Sublemmas 2.6 and 2. 7 that 

MET(N(·), D) is totally bounded. Therefore, Theorem 1.5 and the 

closedness of MET(N(·),D) imply that MET(N(·),D) is compact, as 

required. 

For the proof of Lemma 2.4 we need the following theorem. Here 

and hereafter, we put Br(p,M) = {x E Mld(p,x) < r}. 

Theorem 2.8 {Bishop [BC], Cheeger, Gromov [G7] 5.3 bis). Let 

Xe be the simply connected n-dimensional Riemannian manifold with 

Kx 0 = C. Then, for any n-dimensional Riemannian manifold M sat­

isfying RicciM ~ C · ( n - 1) we have 

Vol(Br,(p,M)) Vol(Br,(po,Xc)) 

Vol(Br(p,M)) ::; Vol(Br(Po,Xc))' 

where r1 > r > 0. 

The proof of Theorem 2.8 is in [Sa2] p.144. 

Proof of Lemma 2.5. We let M be an arbitrary element of S(n, D). 

Theorem 2.8 and Bv(p,M) = M imply 

(2.9) Vol{M) < N( e) 
Vol{B.; 2 (p,M)) -

for eachp EM, and O < e/2 < D. 

Now let M be an arbitrary element of S(n, D). We put 

Z = {Z ~MI d(p,q) > e, for eachp,q EM}. 

Let Z be a maximal element of Z . Since Z E Z , it follows that 

B,; 2 (p, M), p E Z, are disjoint to each other. Hence Formula {2.9) 

and Bv(p,M) = M imply that "Z::; N(e). The maximality of Zin 

Z implies that the e-neighborhood of Z is equal to M. Hence, M E 

S(Nv(·),D), as required. 

By a similar method we can prove the following : 
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Proposition 2.10. Let M; E S(n, D), X E MET. Assume 

limi--+oo dH(Mi, X) = 0. Then the Hausdorff dimension of X is equal to 

or smaller than n. 

When we do not assume M; E S(n, D) the conclusion does not 
necessary hold. A counter example is given in 18.6-18.11. 

§3. Rigidity theorem 

In the rest of this chapter, we will mainly study the following class 

of Riemannian manifolds. 

Definition 3.1. We define the symbol M(n, D, v) by : 

{ 

M is a compact Riemannian manifold.} 

M(n,D,v)= M dimM=n, DiamM:::;D , 

IKMI :::; 1, Vol M > v 

where KM denotes the seotional curvature. M(n, D, 0) is denoted by 

M(n,D). 

In this and the next sections we deal with Gromov's convergence 

theorem, which we divide into two parts. This section is devoted to the 

first part. It asserts that the diffeomorphism types are locally constant 

on M(n,D,v). 

Theorem 3.2 (Gromov [G7] 8.25, Katsuda [Kal] Theorem 1). If 

Mi, NE M(n, D, v) and if limi--+oo dH(Mi, N) = 0. Then Mi and N are 

diffeomorphic for sufficiently large i. Furthermore we have 

limi--+oo dL(Mi, N) = 0. 

Remark 3.3. Before Gromov, Shikata [Shl] proved that 

limi--+oo dL(Mi, N) = 0 implies that Mi and N are diffeomorphic for 

large i. 

Proof of Theorem 3.2. We first recall the following result : 

Theorem 3.4 (Cheeger [C2] Theorem 2.1, Heintze-Karcher [HK] 

Corollary 2.3.2). Let M E M(n, D, v). Then inj(M), the injectivity 

radius of M, satisfies : 

(3.4) . "(M) . ( 21rv ) 
lllJ 2': mm 1r, Vol(Sn) · sinhD 
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We omit the proof of Theorem 3.4. We put Ei = 2dH(Mi, N). Then 

there exist fi-Hausdorff approximations 'Pi: N -+ Mi. It is an easy ex­

ercise to replace 'Pi by measurable maps. Let L 2 ( N) denote the Hilbert 

space of all L2 functions on N. We will embed Mi and N to L 2 (N). We 

take a smooth function x: (0, oo) -+ (0, 1] satisfying the following : 

(3.5) { 
x(t) = 1 

x(t) = o 
x'(t) > o 

ift < µ/3. 

if t > 2µ/3. 

if2µ/3 > t > µ/3 

Then we define I: N-+ L 2 (N) and h Mi-+ L 2 (N) by: 

(3.6.1) 

(3.6.2) 

I(p)(q) = x(d(p,q)), 

Ii(Pi)(q) = x(d(Pi, <J'i(q))). 

Here p, q E N and Pi E Mi. 

By definition Ii and I are C""-maps. 5 We put 

N(N) = {(p,v) EN x L 2 (N) Iv is perpendicular to I*(Tp(N)).} 

No(N) = {(p,v) E N(N) I lvl < b} 

Exp:N(N)-+ L 2(N); (p,v) 1-+ I(p) + v 

Since I is a C 00 -embedding, it follows that there exists b > 0 such 

that Exp restricted to N0 (N) is a diffeomorphism between N0(N) and 

B5(I(N)), the 8-neighborhood of I(N). Let 1r: B 0(I(N)) -+ N be the 

composition of Exp- 1 and the projection to the first factor. 

Lemma 3.7. If 2a<:iy'Vol(N) < b, then Ii(Mi) c B 0 (I(N)). 

Here we put a= sup lxl-

Proof. By definition, II(p) - Ii('Pi(P))lco < mi. Hence 

III(p) - I,(cpi(p))IIL2 < b/2. 

On the other hand, for each q E Mi, we can find p E N such that 

d(cpi(P), q) < Ei. Hence IIIi(q) - Ii(<J'i(P))IIL2 < b/2. Therefore IIIi(q) - · 
I(p)IIL2 <bas required. 

Lemma 3. 7 implies that, for large i the map /; = 1r0Ii is well defined. 

5 I;(p;)(q) is not necessary a continuous function of q. But it is a C 00 function 
of p;, because of (3.4) and (3.5). 
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The next step is to show that /i is of maximal rank. Recall that 1r 
is a fibration and that 

(3.8) 
{w E Tr,(p,)(L 2 (N)) I 1r*(w) = O} 

= {w I wis perpendicular to I*(Tt.(p.)(N))}. 

Hence, for our purpose, it suffices to show that Ii*(Tp, (Mi)) is transversal 

to the right hand side of (3.8), for sufficiently large i and small µ. This 

fact follows from the following : 

Lemma 3.9. For each v E Tf,(p,)(N), there exists Vi E Tp,(Mi) 

such that 6 

Proof. Put 

f: [O, 1) -+ N; t f-t expf.(p,) (tv). 

Then, we have 

l*(v)(q) = ! X (d(f(t), q))lt=O. 

(Recall I* ( v) ( q) E L2 ( N).) l!ence, if q is not a cut point of /i(pi), then 

we have 

I*(v)(q) = ~~I · cos0(q). 
t=d(f; (pi) ,q) 

Here 0(q) denotes the angle at f;(p;) between f and the minimal geodesic 

connecting f;(p;) and q;. (See Figure 3.10.) 

Let f; be the minimal geodesic connecting Pi and cp;(f(µ/2)). 7 Put 

Vi= ~!· lr=o· If 'Pi(q) is not a cut point of Pi then we have 

dxl I;. ( Vi)( q) = dt · cos 0;( q), 
t=d(p;,cp;(q)) 

where 0i(q) denotes the angle between fi and the minimal geodesic con­

necting Pi and cp;(q). (See Figure 3.10.) 

Here we need the following : 

67r/10 in the formula below is not essential. Any small number goes. 
7Recall d(p;, cp;(l(µ/2))) < µ/2 + 2€; + 6 < inj(M;). 
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1 

q 

Fig. 3.10 

Theorem 3.11 (Toponogov [Tol] (See [CE] Chapter 2 or [Sa2] 

p.139)). Let Xe be as in Theorem 2.8 and M be a Riemannian man­

ifold satisfying a::; KM::; b. Let p,q,r EM satisfy d(p,q),d(p,r) < 
injM. Choose P1,q1,r1 E Xa and P2,q2,r2 E Xb such that d(p,q) = 
d(p1.q1) = d(p2,q2),d(q,r) = d(q1,r1) = d(q2,r2),d(r,p) = d(r1,P1) = 
d(r2,P2). Then we have 

It follows from Theorem 3.11 that, ifµ is small enough, we have 

a 
10 - ei I < -1 o-..J-;:::¥=01:::;::(v=) 

for each q satisfying µ/4 < d(/i(Pi), q) < 3µ/4. Hence 

7r 

II.(v)(q) - I.(vi)(q)I < l0JVol(V) 

for such q. On the other hand, if d(fi(Pi), q) ~ 3µ/4 or d(fi(Pi), q) ::; 

µ/4, then 

dxJ = dxJ = o. 
dt dt t=d(f;(p;),q) t=d(p;,<p;(q)) 
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Therefore 

as required. The proof of Lemma 3;9 is now completed. 

K<O K=O 
q 

'i r 

p 

Fig. 3.12 

K>O 

r 
2 
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The last step of the proof of Theorem 3.2 is to show that /i is a 
diffeomorphism. We have already proved that /i is of maximal rank. 
Hence it is a covering map. On the other hand, by construction, Ii 
is a lOei-Hausdorff approximation. The following lemma completes the 
proof of Theorem 3.2. 

Lemma 3.13. /i is injective. 

Proof. Assume that /i is not injective. Then, there exists Pi and 
qi such that /i(Pi) = fi(qi)- Since Ii is a l0e,-Hausdorff approximation, 
it follows that d(pi, qi) < lOei. Choose a minimal geodesic li in Mi 

connecting Pi and q,. Then, fi(l,) is a closed loop in N which is not 
0-homotopic. But this is impossible because Diam(/i{li)) < 20ei < 
inj(N). We omit the proof of limi-+oo dL(Mi,X) = 0.8 

8See (Kal] 
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§4. Convergence theorem 

In this section, we study the closure of the set M(n, D, v) in M£T. 

Theorem 4.1 (Gromov [G7] 8.28, Peters [Pe2], see also Greene--

Wu [GW]). Let Mi E M(n,oo,v), (X,d) E M£T. Assume 

limi-+oo ds(Mi, X) = 0. Then 

(4.1.1) X is a C 00 -manifold, 

(4.1.2) There exists a metric tensor gx of C 1•"'-class9 such that (X, d) 

is isometric to (X,gx). 

(4.1.3) X and Mi are diffeomorphic for large i. 

(4.1.4) limi_,oodL(X,Mi) = 0. 10 

Sketch of the proof. Remark that the curvature is the second 
derivative of the metric tensor. Hence we can expect that our assump­
tion IKM, I :::; 1 implies the metric tensors of Mi have a uniform bound 

on C2-norm. Hence, it is natural that its limit is of C 1•1-class. But, 
unfortunately, the situation is not so simple. Indeed the curvature de­
termines the isometry class of Riemannian manifolds but not tl_ie metric 
tensor ! The metric tensors is determined modulo coordinate change. 
Therefore, to obtain a C2-bound of the metric tensor from the uniform 
bound- of the curvature, we have to choose a good coordinate system. 
Namely: 

Theorem 4.2 (Jost-Karcher [J], [JK]). Let M E M(n, oo). Put 

µ = infinjM. Then there exists R = R(n, µ) and C = C(n, µ), satis­

fying the following. For each p E M there exists hi:BR(P,M) -+ R, 
i = 1,···,n, such that H = (hi,···,hn):BR(p,M)-+ U (cRn) is a 

diffeomorphism and that Jgi,ilc1,a :::; C, where the gi,i are metric coeffi­

cients relative to H and the c1,o.-norm is taken in the H-coordinates. 

Idea of the proof of Theorem 4.2. (We follow Green-Wu [GW].) At 
first sight, the geodesic coordinate, (which is a canonical one), is a good 

candidate for H. But in geodesic coordinate system, only the c0-bound 
of the metric tensor is available. The coordinate we use is the harmonic 
coordinate that is the coordinate system H = (h 1 , · • ·, hn) such that 
each hi is a harmonic function. To construct such functions hi we need 
to choose boundary conditions. Take an orthonormal frame (ei, ···,en) 

9This means that the first derivative of the metric tensor is a-Lipschits con­
tinuous for each a E (0, 1). 
10 The last two statements are generalizations of Theorem 3.2 
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of Tp(M). Put p;(r) = expp(re;), q;(r) = expp(-re;). Now we define 

almost linear function l;: B ,_.0 (p, M) ----+ R by 

l·( ) = (d(x,p;(r(x))) 2 - (d(x,q;(r(x))) 2 

• x 4r(x) ' 

where r(x) = d(p, x) and µo « µ. Remark that in the case when 

X =Rn, p = O, e; = a~., the function l; is the i-th coordinate. Let 

e;(x) E T.,(M) denote the parallel transform of e; along the minimal 
geodesic. Using comparison theorems we have: 

(4.3.1) 

( 4.3.2) 

lgrad., l; - e;(x)I < Cr(x) 2 

ID2 l;(x)I < Cr(x) 

We can use these formulae to show that L = (l 1 , · · ·, ln) is diffeomor­
phism. Take R « µo. Let h; be the unique solution of 

( 4.4) { 
l:::,.h;·= 0 

h;laBx(p,M) = l;laBx(p,M) · 

Then, by Formula ( 4.3.2), we have 

{ 
16.(h; ~ l;)I < Cr(:)2 

(h, - l,)laBx(p,M) - O. 

Applying an elliptic estimate to the above inequality, we obtain : 

Jgrad(h; - l;)I < CR. 

This formula implies that H = ( h1 , • • • , hn) is also a coordinate system. 
Now using Bochner technique and Nash-Moser type estimate, we obtain 
a uniform c1 ,a bound of the metric tensor. 

To continue the proof of Theorem 4.1, we need the following result. 

Lemma 4.5 (Cheeger [C2], Weinstein [Wei). There exists a pos­
itive number K = K(v, D, r) satisfying the following. For each M E 

M(n, D) there exist P1, ···,PK such that M = U{; 1 Br(Pi, M) 

The proof is similar to the proof of Lemma 2.4 and is omitted. 

Now choose r « R, and take P,,k E M, such that 

uf=1 Br(Pi,k, Mi) = M; and a harmonic coordinate H;,k: B R(Pi,k, M;) 
----+ U,,k c Rn. 
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Lemma 4.6. Suppose B3r(Pi,k, Mi) n B3r(Pi,k, Mi) i- <f>. Then the 

map Hk 1-i = Hi Io H-:-k1 : Ui k ->Rn satisfies 
' J ' i, ' 

This lemma is proved by making use of Theorem 4.2 and Schauder 

estimate for the harmonic functions. We may assume that 

Hi,k(B3r(p,Mi)) :=) B2r(O,Rn) :=) Hi,k(Br(P,Mi)). We may assume also, 

by taking a subsequence if necessary, that limi---+oo Hk,l;ilB2 ,(o,Rn) con­

verges to a c 1 ,0 -diffeomorphism Hk,l with respect to ci,a_ topology. 

Let "2:,g~\k)dxadXb be the metric on B2r(O,Rn) induced by Hi,k· Then 

we may assume furthermore that "2:,g~\k)dxadxb converges to a metric 

tensor L 9!,bdxadxb of C 1,"-class. Now we patch the Riemannian man­

ifolds (B 2r(O,Rn),"2:,g!,bdxadxb) by the isometries Ha,b and obtain a 

Riemannian manifold. It is easy to see that this manifold is isometric 

to X. We have verified (4.1.1) and (4.1.2). We remark that (4.1.3) and 

(4.1.4) will be verified if we can apply Theorem 3.2 to our situation. In 

fact, this is possible but a bit delicate because of the fact that the limit 

metric gx is not of C 2 -class. Another method of the proof of ( 4.1.3) 

and ( 4.1.4) is to use the center of mass technique. The detail of the 

argument is in [GW], [Pe2]. 

Remark 4. 7. A stronger result than theorem ( 4.14) holds. Namely 

we have diffeomorphisms /i: X -> Mi such that ft(YMJ converges to 

the Riemannian metric on X with respect to the c 1 ,a topology. (See 

Kasue [K2]). 

Remark 4.8. In sections 3 and 4, we discussed two approaches to 

the study of Hausdorff convergence in M(n, D, v). One uses an embed­

ding to the Hilbert space, and the other uses harmonic coordinate and 

the center of mass technique. Many parts of Theorem 4.1 can be proved 

also by the first approach. However the author does not know the proof 

of the C 1,"-regularity of the limit metric without using harmonic coordi­

nate. Hence the second approach yields stronger conclusions. The first 

method will come to be essential when we study collapsing Riemannian 

manifolds in section 12. 

§5. Smoothing Riemannian metrics 

When studying Hausdorff convergence of Riemannian manifolds, one 

of the difficulties we meet is that the limit space, limn---+oo Mn, is not 
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smooth enough. One of the methods to handle this difficulty is to ap­

proximate Riemannian manifolds Mn by uniformly smooth ones, ( then, 

roughly speaking, the limit space comes to be smooth). The following 

results are useful for this purpose. 

Theorem _5.1 (Bemelmans-Min'no-Ruh [BMR], Bando [Bal). 

There exists C(c) = C(n,c),r = r(n) such that, if (M,g) E M(n,oo) is 

compact, then there exists a metric g, on M satisfying 

(5.1.1) 

(5.1.2) 

lg - g,lco < E, 

l'vg - y19•1co < E 

j'vk R(g,)j 00 < C(c) k! rk. 

The most general version of the next theorem is a bit complicated. 

Hence we state somewhat weaker one. 

Theorem 5.2 (Cheeger-Gromov [CGl], Abrech [Al). For each 

complete Riemannian manifold (M,g) satisfying IK9 1 ~ 1 and a positive 

number E, there exists a Riemannian metric g, such that (5.1.1) and the 

following holds for each p EM. 

(5.2.1) 

(5.2.2) 

l'v9·R(g,)I ~ C(n,c) 

g,(p) depends only on glB (PM)· 
1/4 , 

Remark 5.3. These two theorems are almost equivalent. The esti­

-mate in Theorem 5.1 is sharper and implies the real analyticity of the 

metric. On the other hand, the construction of Theorem 5.2 is local and 

can be applied to a noncompact manifold. It will be useful if we obtain 

the result joining them. 

Remark 5.4. In both theorems, if we assume that a compact group 

G acts on (M,g) by isometry, then we can choose (M,g,) which is G 

invariant, in addition. 

Remark 5.5. Abrech proved that Theorem 5.2 holds also for c 1,1-

Riemannian manifold. This gives a kind of converse to Theorem 4.1. 

Remark 5.6. First Bemelmans, Min-no and Ruh proved this type 

of smoothing results. In their version, (5.1.2) was replaced by (5.2.1). 

Next Cheeger-Gromov found an alternative method and proved Theorem 

5.2 under the additional assumption inj(M) > const. Bando improved 
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the result of Bemelmans-Min'no-Ruh to the form stated above. Abrech 
improved Cheeger-Gromov's method and proved Theorem 5.2. 

Sketch of the proofs. The method of the proofs of Theorems 5.2 
and 5.3 are different. First we discuss one for Theorem 5.2. 

Consider the following differential equations on M x [O, oo) : 

(5.7} { 
dgt 2 Ri . dt = - CCl 9t 

Blt=O = 9 

Hamilton [Ha] proved that (5.7} has a unique solution in a neighborhood 

of M x {O}. Our assumption on KM implies the following : 

Lemma 5.8. There exists a positive number Tn such that 

if (M,g) E M(n,oo) and if M is compact, then (5.7} has a unique 

solution on M x [O, Tn]. 

The fact that Tn is independent of M is essential for our purpose. 
The lemma follows essentially from the following inequality 

sup IR(gt)(P)I < IR(go)lco · (1- Cto)- 1 , 
pEM,0<t<to 

which is proved by applying maximum principle. The detail of the proof 

is in [BMR]. The second step is 'to show (5.1.2}. This follows from a 

type of interior regularity estimate of harmonic functions. We omit the 

proof which can be found in [BMR], [Ba]. 

Next we discuss the method by Cheeger-Gromov-Abrech. First we 

assume injM > const (= µ). We can embed Minto L2 (M) by the map 
I defined by (3.6}. Then, roughly speaking, we can find a sufficiently 

smooth submanifold in a neighborhood of J(M). We can perform this 
construction in each coordinate chart of M and can patch them to­

gether to obtain the desired metric g,. In the case when we do not 

assume inj(M} > const, each small neighborhood of Mis a quotient of 
a Riemannian manifold satisfying inj > const by an action of a pseudo 

fundamental group. 11 Hence, if we can make our construction of the 

metric g, equivariant with respect to the (pseudo) group action, then 
the proof of Theorem 5.2 will be completed. This is what Abrech has 

done in his paper [A]. 

11 See section 7 for the definition of this notion and the explanation of this 

fact. 
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Finally we remark that we can not expect that the curvature of our 

metric g, is uniformly close to that of g. In other words, we can not 

obtain a metric g, satisfying IR(g,) - R(g)I < E, in addition to (5.1.1) 

and (5.1.2). In fact if we take a sequence of metrics g; on S2 such 

that IKcs2,g,) I ~ 1 but that lim; ...... °" Kcs2,g,) is not continuous, it is 
obvious that we can not obtain such an approximation g;,,. However, it 

is possible to prove the following by examining the proofs of Theorems 

5.1 and 5.2 in detail. 

Proposition 5.9. If we assume C1 < K(M,g) < C2 in Theorems 

5.1 or 5.2, then we obtain a metric g, satisfying C1 -E < K(M,g,) < C2 +E 

in addition. 12 

We close this section with the following remark. 

Proposition 5.10. Let M; E M(n,D,v), X E MET. Suppose 

that M; satisfy (5.2.1) and that lim; ...... = dH(M;, X) = 0. Then X is a 

smooth Riemannian manifold. Furthermore, we have diffeomorphisms 

f;: X ----> M; such that ft(gM.) converges to the metric tensor of X with 

respect to the C"" -topology. 

The proof is similar to and much easier than that of Theorem 4.1. 

§6. Pointed and equivariant Hausdorff distances 

In this section, we discuss generalizations of Hausdorff convergence 

to the case of open manifolds and/ or manifolds on which groups act. 

Definition 6.1. The symbol MET o denotes the set of all isometry 

classes of pointed metric spaces (X,p) such that BR(p,X) is compact 

for every R. 

Definition 6.2. Let (X,p), (Y, q) E METo and <p:X ----> Y be a 

pointed map. We say that <pis an €-pointed Hausdorff approximation if 

<.p(B1;,(P, X)) C B 1;,(q, Y) and if 1PIBif,(P,X): B1;,(P, X) ----> B1;,( q, Y) 

is an E-Hausdorff approximation. 

The pointed Hausdorff distance, dp.H((X,p), (Y, q)), stands for the 

infimum of the numbers E such that there exist E-Hausdorff approxima­

tions from X to Y and from Y to X. 

12 This fact is pointed out to the author by Banda. 
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Example 6.3. Let Xn, On,Pn, and qn be as in Figure 6.4. Then 

we see easily that 

lim (Xn,on) = (S 2 - {point},point) 
n-+oo 

lim (Xn,Pn) = (R, 0) 
n-+oo 

lim (Xn,qn) = (T 2 - {point},point) 
n-+oo 

We remark that in this example the limit space does depend on the 

choice of base points. 

n 

Fig. 6.4 

Example 6.5. Let (M,g) be a compact n-dimensional Rieman­

nian manifold andp EM. Then, limR-+oo((M,Rg),p) = (Rn,o). 

Some more examples are given in section 17. Many results in previ­

ous sections can be generalized to the case of pointed Hausdorff conver­

gence. The following is the noncompact version of Theorem 2.2. 

Theorem 6.6. Put 

Son - M,p . ( ) _ { ( ) I M is a complete Riemannian manifold,} 

dim M = n, RicciM > -(n - 1) 

Then, So ( n) is precompact in M&T o. 

The following version of Theorem 5.1 also holds. 
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Theorem 6.7. Put 

{ I 
M is a complete Riemannian manifold. } 

Mo(n, E) = (M,p) . . . . 
mJM > E, IKMI :=:; 1, drm M = n 

Let (Mn,Pn) E Mo(n, E), (X,p) E M&To, Assume 

lim dp.H((Mn,Pn), (X,p)) = 0. 
n--+oo 

Then X is a smooth Riemannian manifold with C1 ,a -metric tensor. 

We remark that the noncompact version of Theorem 3.2 does not 

hold. We gave counter examples in 6.3 and 6.5 above. 

Next we define equivariant versions of Hausdorff distances. 

Definition 6.8. Let G be a group and M&T( G) be the set of all 

isometry classes of compact metric spaces equipped with an isometric 

G-action. For X, Y E M&T( G), a map cp: X -+ Y is said to be an 

E-G-Hausdorff approximation if cp is an €-Hausdorff approximation and 

if 

d(gcp(x), cp(gx)) < E 

holds for each x EX and g E G. 

The G-Hausdorff distance between X and Y, da-H(X, Y), is the 

infimum of all positive numbers E, such that there exist €-G-Hausdorff 

approximations from X to Y and from Y to X. 

The equivariant versions of Theorems 2.2 and 3.2, hold. 

Theorem 6.9. Let S(n, D, G) be the set of isometry classes of 

all G-Riemannian manifolds M in S(n, D). If G is compact, then 

S(n, D, G) is precompact in M&T(G). 

For each n, D, and v > 0 there exists € = €( n, D, v) such that the 

following holds. Let G be a compact group, M, N be n-dimensional 

compact Riemannian G-manifolds. Suppose that M, N E M(n, D, v) 

and that da-H(M, N) = 6 < €. Then there exists a G-diffeomorphism 

f: M-+ N. Furthermore dil /, dil 1- 1 < 0(6). 

Remark 6.10. In the case when M and N are (not equivariantly) 

diffeomorphic, the second part of Theorem 6.8 is proved in Grove­

Karcher [GK]. 

We need another equivariant version of Hausdorff distance in which 

the groups need not be the same. 



164 K. Fukaya 

Definition 6.11. Let METo,eq be the set of all triples 

(X,p, G) where (X,p) is an element of MET 0 and that G is a closed 

subgroup of the group of all isometries of X. For (X,p, G), (Y, q, H) E 

MET o,eq, a pair of maps f: X -+ Y, cp: G -+ H is said to be an E-pointed 

equivariant Hausdorff approximation if f is an E-pointed Hausdorff ap­

proximation and if 

d(cp(g)f(x), f(gx)) < E 

holds for each x E X, g E G satisfying d(x,p), d(gx,p) < l/c. 13 The 

pointed equivariant Hausdorff distance, de.H( ·, · ), is defined as before. 

Theorem 6.12. The set 

{(X,p, G) E METo,eq I (X,p) E METo(n)} 

is precompact in METo,eq· 

We can not expect that an analogue of Theorem 3.2 holds, because 

there exists a continuous family of groups. We have an analogue under 

the assumption of uniformly discreteness of G. See [F2] Chapter 2 for 

detail. In a similar way, we can define pointed G-Hausdorff distance and 

(unpointed) equivariant Hausdorff distance. But we do not need them 

in this article. 

Finally we compare the equivariant Hausdorff convergence and the 

Hausdorff convergence of the quotient spaces. 

Lemma 6.13 ([F2]). Let Xi be the sequence of compact G-spaces 

satisfying limi,j-oo da-H(Xi, Xi) = 0. Then limi,j-oo dH(Xi/ G, 

Xj/G) = 0. 

Let (Xi,G;) E METo,eq such thatlimi,i-oode.H((X;,G;),(Xi,Gi)) 

= 0. Then, we have lim;,i-oo dp.H(X;/Gi,Xj/Gi) = 0. 

Chapter II. Collapsing Riemannian Manifolds 

§7. Pseudo fundamental group 

In this chapter, we study the narrow parts of Riemannian manifolds. 

Put: 

M(n,D I A)= {MI dim M = n, IKMI:::; A, Diam M < D} 

13 We do not assume that cp is a homomorphism. 
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For p EM E M(n,D I A), we put 

TBr(P,M) = {v E Tp(M)l lvl < r} 

Then the exponential map, ExpP: Tp(M) - M, is of maximal rank on 

TB1r;A(p,M). Let (TB1r;A(p,M),9M) denote the ball with the metric 

induced by ExpP. Since injTB~i,dP,M)(O) ~ 1r/A, we can apply the re­

sults in Chapter 1 to it. Hence the studies of the small neighborhood of 

p in M is reduced to the those of the map ExpP. This map is of max­

imal rank, but is not in general a covering map, because TB1r;A(P, M) 

is not complete. The covering space is investigated by using a funda­

mental group. In our case, we use, instead, the pseudo fundamental 
group, which we define in this section. We begin with the definition of 

a pseudogroup and its action. 14 

Definition 7.1. ( G, U, ·, e, · -l) is said to be a pseudogroup when 

(7.1.1) U is a symmetric subset of G x G. 

(7.1.2) ·: U - G is a map. 

(7.1.3) (91 · 92) · 93 = 91 · (92 · 93) if both sides are well defined. 
(7.1.4) eE G, {e} x Ge U, e-9=9·e=9. 

(7.1.5) -- 1 :G - G is a map. For 9 E G, we have (9,9- 1 ) EU and 

9 . 9 -1 = 9 -1 . 9 = e. 

Remark 7.2. When G is a topological space, U is an open set, and 
maps are continuous, Definition 7.1 coincides with the definition of the 
local group or the group germ. 15 But, in our main application, G has a 

discrete topology. 

Exercise 7 .3. Define the notion of homomorphism between pseudo­

groups. 

Example 7 .4. Let M be a Rlemannian manifold, p E M and V 

is an open connected neighborhood of p. Put 

I(M, V,p) = {9:V- MI 9 is an isometric embedding, 9(p) EV} 

For 91,92,93 E I(M, V), we put 91 · 92 = 93 if and only if there exists a 
neighborhood W of p such that 92 (W) C V and that 91 (92 ( x)) = 93 ( x) 

14 There are possibly other versions of the axiom of pseudogroups. They are 
not in general equivalent to Definition 7.1. For example it is possible to assume 

that· -l is not everywhere defined but is defined in a neighborhood of the unit. 

The author does not know how to choose one from them. 
15 See [Po] §23. 
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for each x E W. By the unique extension property of the isometries, we 

see that 91 · 92 = 93, 91 · 92 = 94 implies 93 = 94. We can prove easily 
that I(M, V,p) satisfies all the axioms of pseudogroup except (7.1.5). 16 

Definition 7.5. Let (G, U, ···)be a pseudogroup and H CG such 

that 9- 1 EH for each g EH. Then we define a pseudogroup (H, V, · · ·) 
by taking V = Un(HxH) e.t.c. This pseudogroup is called a subpseudo­

group of G. 

Definition 7.6. Let (M,p) be a pointed Riemannian manifold and 

G is a pseudogroup. An action of G to (M,p) is a homomorphism from 

G onto a subpseudogroup of I(M,B,(p,M),p). 

Definition 7.7. Let rp:G--+ I(M,B,(p,M),p) be an action of G 

to (M,p ). We define the equivalence relation "' on B,; 2 (p, M) by 

x rv y {=:::::? :lg E G rp(g)x = y. 

The quotient space ( M / G, p) is defined to be the pointed metric space 

(B,(p, M)/ "', [pl). 

Now we return to the study of the small neighborhood of pin ME 

M(n,D I A). 

Definition 7.8. Let 2cA < 'Tr. We define the pseudo fundamental 

group 1r1 (M,p; c) by 

1r1(M,p;c) = {g E I(TB2,(p,M),TB,(p,M),O) I ExpPog = Expp}. 

Clearly 1r1 (M,p; c) is a subpseudogroup of I(TB 2,(p, M), TB,(p, M), 0). 

Hence it acts on (T B2,(P, M), 0). 

Lemma 7.9. The quotient space (TB 2,(p,M),0)/1r 1(M,p;c) is 

isometric to B,(p, M). 

We give an alternative definition of the pseudo fundamental group. 

Definition 7.10. By L(p, M; c), we denote the the set of all closed 

loops l: [0, 1] --+ M such that l(0) = l(l) = p and that the length of l 

is equal to or smaller than E. We define an equivalence relation "' on 

L(p, M; c) by 

{

lo= l, 

l rv l' {=:::::? :llt such that l 1 = l' 

the length of lt ~ E 

16 Namely there may be an element without inverse. 
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Let 1r1 (p, M; t) be the set of equivalent classes. We define a product · 
on 1r1 (p, M; t) by 

[l] · [e'] = [e''] ~ 3ft such that 
{ 

{ 
l(2s) 

fo(s) = e'(2s + 1) 

f1 = e'' 

the length of ft ::; 2c. 

ifs ::; 1/2 

ifs ~ 1/2 

Lemma 7.11. The two definitions of fundamental pseudogroup 

coincide. 

The proof is similar to the corresponding statement for the funda­

mental groups and the covering spaces. The following fact is obvious 

from the first definition (but not from the second one.) 

Lemma 7.12. Let t 1 < t 2 < 21r, M E M(n, oo I A). Then 

1r1(M,p; c1) C 1r1(M,p; t2). If 91,92,93 E 1r1(M,p, t1) and if 9192 = g3 

in 1r1 (M,p, t2) then g1g2 = g3 in 1r1 (M,p; c1)-

Here we remark that the pseudogroup is not so natural object and 

several facts which seems clear at first sight does not hold. For example, 

as is remarked in Buser-Karcher [BK] Remark 3.1.6, the formula 

may not in general hold in pseudogroup even if the both sides are well 

defined. 17 Therefore we will feel more comfortable if we can embed 

fundamental pseudogroup to a group. Remark that this was always 

possible in the case of continuous pseudogroup (namely the case of local 

group (group germ).) 

Definition 7.13. Let G be a pseudogroup. We define a group G 

as follows. For each element g of G, fix a generator w 9 • When 91 · 92 = g3 

we put the relation w91 • w92 = w93 • Then we obtain a group G. 

The group G can be characterized by the following universal prop­

erty. 

Lemma 7.14. Let G be a pseudogroup, H a group, and cp: G--+ H 

be a homomorphism. Then there exists a unique homomorphism cp: G --+ 

17Because the product (91 · 92) · (93 · 94) may not be defined. 
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H such that cj5 o 1r = <p. Here 1r: G -+ G denotes the homomorphism 

defined by 1r(g) = w 9 . 

We omit the proof. By Lemma 7.14, we obtain homomorphisms 

i:'if 1(M,p; c)-+ 1r1(M.p) and 1r: 1r1(M,p; c)-+ 'if 1(M,p; c). The examples 

below show that i need not be injective. 

p 

Fig. 7.15 

Example 7.15. Let M andp be as in Figure 7.15. Then 'if 1 (M,p; c) 

=Zand 1r1 (M,p) = 1. 

Example 7.16. Let 5 2 = {(x,y,z) I x 2 +y 2 +z 2 = 1}. 

( 
cos 21r / N - sin 2Jr / N O ) 

rotN = sin21r/N cos21r/N O : 5 2 -+ 5 2 • 

0 0 1 

Put ON:52 x R-+ 5 2 x R;(x,t) f-t (rotN(x),t + 1/N 2 ), MN= 5 2 x 

R/0N, p = [((1,0,0),0)] E MN. Then, we have 

1r1(MN,P,k/N) =; { ON In= aN + b,a 2 + b2 ::; k2 } 

It follows that 'if1 (MN,P, 1/N) C::'. ZEBZ. On the other hand, 1r1 (MN,P) C::'. 

z. 

Open problem 7.17. Is the map 1r:1r1(M,p;c)-+ 'if 1(M,p;c) in­

jective ? 

We remark that the map G -+ G is not necessary injective for pseu­

dogroup G. For example let 

G = { an1 bm1 an2 • • • bmk I Ejnil + Ejmil < 10}, 
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and let rv be the equivalence relation on G generated by a 7 "' b8 and 

a8 "' b9 . We can define a pseudogroup structure on G = G / "' in an 

obvious way. Then, clearly G = 1, but a f 1. 

In the case when E is sufficiently small, we can prove that 71"1 (M, Pi E) 

is a subpseudogroup of a nilpotent Lie group. Hence, in this case, we 

have an affirmative answer to Problem 7.17. To be precise we have the 

following : 

Theorem 7.18 (Margulis' Lemma). There exists a positive num­

bers En and Wn depending only on the dimension n and satisfying the 

following. Let ME M(n, oo),p E M, E:::; En- Then there exist a nilpo­

tent Lie group N and a discrete subgroup r of Noc Aut(N), such that 

(7.18.1) 7r1(M,p;E) is a subpseudogroup off, 

(7.18.2) [r: r n NJ :::; Wn, 

(7.18.3) dim N ::; n. 

The proof of this lemma is given in section 13, where we prove 

a little more. (Namely we determine the topological type of a small 

neighborhood of p.) 

Remark 7.19. Several other versions of Margulis' lemma are known. 

(See for example [Gl], [G2], [G.6], [BK]). Most of them follow from 

Theorem 7.18 above. But there are some which are not covered by 

Theorem 7.18. For example [G6] 8.50, [GlO] 6.6.B are such ones. 

§8. Almost flat manifolds I 

In this and the next sections, we shall study the case when the 

Riemannian manifold itself is narrow. The goal is the following : 

Theorem 8.1 (Gromov [G2], Ruh [R2], Buser-Karcher [BK]). 

There exists E = En such that, if a compact Riemannian manifold M 

satisfies 

(8.2) 

then there exists a nilpotent Lie group N and a discrete subgroup A of 

N oc Aut N such that M is diffeomorphic to N / A and that [A : N n A] < 
00. 

Remark 8.3. The converse is true. (See Example 10.8). 
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Remark 8.4. An explicit estimate €n 2: exp(- exp( exp n 2 )) is 
proved in Buser-Karcher [BK]. This estimate is not optimal. It seems 

quite difficult to obtain a realistic value for €n .18 

Remark 8.5. We can prove also that the metric is almost homoge­
neous. Namely there exists a right invariant metric g on N such that g 

is A invariant and that 

(8.6.1) 

(8.6.2) 

lg- 9MI < 0(€) 

IVY - V9M I < 0(€) 

where g denotes the metric on M = N / A induced from g. Here and 

hereafter 0(€) denotes the positive number depending only on € and 

satisfying lim,-o 0(€) = 0. 

Theorem 8.1 is one of the key stones of the theory of Hausdorff 

convergence. Unfortunately its proof is long and difficult. The reader 

who is not so much interested in the proof can skip the rest of this section 
and the next section. 

First remark that the left hand side of (8.2) is invariant under 
the scale change of the metric. Hence, by rescaling, we may assume 

Diam M = £, IKMI ~ 1. Therefore, using Theorem 5.1 or 5.2, we may 

assume IVk RI < C(k, n). Then by rescaling again we have 

(8.7.1) 

(8.7.2) 

DiamM = 1 

1vk RI < C(k, n) · £2 

IKI < €2. 

In this section we shall prove the following : 

Lemma 8.8. Suppose M satisfies (8.7.1) and (8.7.2). Let p E 

M. Then, for sufficiently small £, there exists a homomorphism cp,: 
1r1(M.,p.;100)-+ O(n), such that 

(8.8.1) For each closed loop l in L(M.,p,; 100) we have 

do(n)(h(l), cpe([l])) < 0(€), 

where h: L(M,p; 100) -+ O(n) is the holonomy representation, 

and do(n)(·, ·) is the biinvariant metric on O(n). 

18 In (R2] Ruh suggests that exp(-n 2 ) is a realistic value. The author does 
not know the reason. 
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(8.8.2) <pe(7r1(M,p;lO0)) (c O(n)) is a finite group independent ofE. 

Proof. We take a family Me satisfying (8.7.1) and (8.7.2) and shall 

prove that M, satisfies (8.8.1) and (8.8.2) for sufficiently small E. Put 

B, = T B 1;,(p., M,). Let 71",: B, --+ M be the exponential map. Put 

g, = 7r;(gM,)-

Sublemma 8.9. On each compact set, g, converges to the fiat 

metric on Rn with respect to the C 00 -topology. 

This is an immediate consequence of (8.7.2). Recall 

7r1(M.,Pei 1/E) = {g:TB1;,(p.,M,)--+ TB2;,(p.,M,)I 71", og = 71",}. 

Sublemma 8.10. There exists a group G of isometries ofR n such 

that a subsequence of(B.,7r 1(M.,p,;1/t)) converges to (Rn,G) with re­

spect to the equivalent pointed Hausdorff distance. 

This sublemma follows immediately from the pseudogroup version 

of Theorem 6.12. The group G above is a closed subgroup of Isom(Rn) 

= Rn ex O(n), hence is a Lie group. 

Sub lemma 8. 11. G0 , the connected component of G, is nilpotent. 

This is a consequence of Margulis' lemma. But, for the proof of 

Margulis' lemma (Theorem 7.18), we need Theorem 8.1 ! In fact, we 

shall prove this sublemma by an induction on dimension. The proof is 

deferred to section 13. 

Sublemma 8.12. Let G be a Lie subgroup of Isom(Rn). Suppose 

that Rn/ G is compact and that G0 is nilpotent. Then there exists a finite 

subgroup H of O(n) such that G =Rn ex H. 

Proof. If the sublemma is false, then G contains a compact sub­

group of positive dimension. The nilpotency of G0 implies that it con­

tains a maximal compact subgroup T of positive dimension. T is normal 

in G. Put 

X = { X E Rn IV g E T gx = X} . 

It is easy to see that X is nonempty. Since T is a normal subgroup of 

G, it follows that X is G-invariant. Hence the function Xix ~ d(x, X) 

is G-invariant. Therefore, since X/G is compact, we conclude that xis 

bounded. But this is impossible because X is convex. 19 

19 The proof we presented above is similar to the proof of Theorem 16.14. 
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Now let (f.,'lj;,): (B.,7r 1 (M.,p,;1/E}} --+ (Rn,G) be the O(n) 

Hausdorff approximation. We may assume that f. is the natural in­

clusion. Let 71": G --+ H be the natural projection. Put (p, = 7r o 

'lj;.: 71"1 (M.,p,; 1/ E} --+ H. Then we have 

for each 11 , 12 E 7r1 (M.,p,; 1/E). Therefore, the discreteness of Him­
plies that (p, is a homomorphism for sufficiently small E. We obtain 

cp: 7!"1 (M.,p,; 100}--+ O(n}, by taking the composition of the natural in­

clusion 7r1(M.,p,; 100} '--+ 7r1(M.,p,; 1/E}, the homomorphism (p., and 

the inclusion: H '--+ O(n). We left the proof of (8.8.1} to the reader as 

an exercise. The proof of Lemma 8.8 is now complete. 

§9. Almost fl.at manifolds II 

In this section, we complete the proof of Theorem 8.1, following 

Ruh [R2]. We present here a detailed argument of the first half of the 

paper [R2] and an outline of the second part. First remark that Lemma 

7.8 implies that (T B 100(p., M,))/7r 1 (M.,p,; 100} is diffeomorphic to M •. 

We put 

M, = T B10o(P, M}/ ker cp,. 

Then, M, is a finite Galois covering of M.. The deck transformation 

group, cp,(7r1 (M.,p; 100}}, is independent of E, which we put H. 

Lemma 9.1. There exists a connection V' on M, such that the 

following holds: 

(9.1.1} 

(9.1.2} 

(9.1.3} 

R(V'}(X, Y} = Vfx,Y] - [vx, Vy] = 0 

X(g,(Y,Z)) = g, (vxY,z) + g, (x, Vxz). 

Iv· - v(O,•)I < o(E I k} 
Ck ' 

where v(o,,) is the Levi-Civita connection of (M.,g,), and o(E I k} are 

positive numbers depending only on E and k and satisfying lim,-+oo o( E I 
k} = 0, for each k. The Ck -norm is defined by g, and the geodesic 

coordinate. 

Proof. By the definition of M, and Lemma 8.8 we see that 

(9.2} d(h(f}, 1} < o(E}, 
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for each f E L(M.,p,; 100). (Here 1 E O(n) is the unit.) In other words, 

M, is of almost without holonomy. For a Riemannian manifold M, let - - -
1r: FM, -. M, be the bundle of orthonormal frames of M,. Namely 

FM,= { (x, a) la: Rn-. T.,(M,) is a linear isometry} 

Put F,,M, = 1r- 1 (x) C FM,. Fix an element (p.,a 0 ) E Fp,(M,). 

We define a section u: T B 1;,(p., M,) -. F ( T B 1;,(p., M,)), as follows. 

ao:Rn -. Tp,(Me) = To (TB 1;,(Pe,Me)) defines an element u(0) E 

Fo (TB 1;e(Pe,M,)). Then we take u, so that, for each e E Rn, the 

section 

u(e):TB 1;,(p,, Me)-. T(TB 1;,(p., M,)); x 1--t u(x)(e) 

satisfies 

where V 9• is the Levi-Civita connection of (T B 1;e(Pe, M,), g iJ), and 

%r is the unit radial vector. (when we identify T., (TB 1;,(pe,Me)) = 

Tp,(M,), we have 

Now, let 1re.:FTB 1;,(p.,M,)-. FM, be the map induced by the ex­

ponential map 1r., which is a local isometry. We take a C 00 -function 

x: [0, 1/t)-. [0, 1] such that 

(9.3.1) { 
- 1 for t E [0, l/3t) 

x(t) : o fort E [2/3t, 1/t] 

(9.3.2) lx'I < 4/t. 

Then, for each x E M., we define a function h.,: F,,M,-. R by 

( ) LvEn-; 1 (:z:) x(lvl) • do(n)(a, 1r,.(u(v))) 
(9.4) h a - ----'------'-'---------

., - LvEn-;- 1 (a:) x(lvl) . 

Here we used the isometry F.,M, ~ O(n). Formula (9.2) implies 

d(u(v), u(w)) < o(t) for v, w E 1r(x). Therefore, since do(n)(·, 1r,.(u(v))) 
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is convex in a small neighborhood of ?re,*(u(v)), it follows that h., as­

sumes its minimum at a unique point, say ,B(x).20 Thus, we obtain a 

section ,B: Me -> FM" which gives a connection V' satisfying (9.1.1) 
and (9.1.2). Next we shall briefly explain the proof of (9.1.3). Let 

'iJ;TB1;e(Me,Pe)-> FTB1;e(Me,Pe) 

be the section induced by ,B. 

Lemma 9.5. 

Here o( t:J k) stands for positive numbers depending only on € and 

k and satisfying lim,_, 0 o(t:Jk) = 0. We omit the proof. (See [F4] § 5.) 
Remark that the connection v7(o,,) corresponds to the section u and that 

the connection V' corresponds to the section ,B. Hence, it is easy to see 

that (9.1.3) follows from Lemma 9.5. The proof of Lemma 9.1 is now 

complete. 

Lemma 9.6. There exists v• such that it satisfies (9.1.1), (9.1.2) 

(9.1.3) and that it is H-invariant. 

Proof. Let r( FM,) be the set of C 00 - sections to the frame bundle. 

The structure group O(n) acts on I'(FM,) from the right, since FM, is 

the principal bundle. We can identify the quotient space r(FM,)/O(n) 

with the set of trivial connections on M. The group H acts on r(F M,) 

by 

h(o:)(x) = h(o:(h-1 (x))), 

where 0: E r(F M,), X E M., h E H. Let ,B E r(F M,) be the ele­

ment corresponding to V'. Since v7(o,,), the Levi-Ci vita connection, is 

H-invariant it follows from the Formula (9.1.3) that V' is almost H­

invariant. Hence we have a mapµ: M, x H-+ O(n) such that 

(9.7) 

(9.8) 

h(,B(x)) = ,B(hx) · µ(x, h), 

do(n)(µ(x, h), µ(y, h)) < o(t:). 

20 This is a standard center of mass technique. For detail, see for example [BK] 
Chapter 8. 
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Formula (9.7) and [BK] §8 imply that we can approximate hf---+ µ(p.,h) 

by a homomorphism µ. We define an alternative action 1/J of H on 

r(FM,) by 

1/J(h)(a)(x) = h (a(h- 1 (x))). µ(p., h- 1 ), 

Remark that 1/J induces the same action on the set of connections. By 

(9.8) we have 

(9.9) do(n)(1/J(h)(J3)(x),f3(x)) < 0(€), 

For each x EM, and h EH, we define Xx= Fx(M!) ---> R by 

( ) _ LhEH do(n)(1/J(h)(J3)(x), a) 
Xx a - UH 

Formula (9.9) implies that Xx assumes its minimum at a unique point 

f3'(x). Then, /3' is an (H,1/J) invariant section. Hence it defines an H­

invariant connection on FM,. The proof of Lemma 9.6 is now completed. 

Next, we shall deform the connection by Gauge transformation. Let 

Gl(M,) =FM, Xo(n) Gl(n, R) denotes the associated Gl(n, R) bundle. 

Using the adjoint representation, we construct the associated bundle 

Gl(M,) xAd Gl(n, R). Put 9 = r( Gl(M,) x .. d Gl(n, R)). We have a 

natural action 

g X r ( Gl(M.)) ---> r ( Gl(M.)). 

The set of trivial linear connections on M, can be identified with the 

quotient space of r(Gl(M.)) by the right action of Gl(n,R). It contains 

the set of flat O(n) connections as a subset. This inclusion map is 

identified with the map 

r (FM,) /O(n)---> r (Gl(n,R)) /Gl(n,R) 

induced from the inclusion map : FM, ---> Gl(M.). Remark that 9 acts 

on r ( Gl(M!)) /Gl(n, R). 

Lemma 9.10. For sufficiently small €, there exists an element 

g E 9 such that the connection g(V') satisfies the following. (V' is the 

connection in Lemma 9.6.) 

(9.10.1) I g - 1 J0 • < 0(€ I k), where l is the section corresponding to the 

trivial gauge transformation. 
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{9.10.2) Let 

T(g(V 0 ))(X, Y) = g(V 0 )x(Y) - g(V 0 )y(X) - [X, Y] 

be the torsion tensor. Then 

(g{V0
) )(T{V 0

)) = 0. 

{9.10.3) g(V•) is H -invariant. 

(9.10.4) g depends smoothly on v•. 

Sketch of the proof. We regard {9.10.2) as a partial differential 
equation and solve it by Newton's method. For this purpose we calculate 
the linearized equation. Let gl(n; R) be the set of all n x n matrixes. 

I'(Gl(M.) x .. d gl(n; R)) is identified to the Lie algebra, Lie(Q), of g_ If 
<T E Lie(Q), 6 « 1 + 6u is an element of Q. We have 

! {(1 + 6u) (V0 )x (Y)}l
5
=

0 
= :6 {(1 + 6u){Vx{(l - 6u)(Y)))}l

5
=

0 

= u(VxY) - Vx(uY) 

= Vx(u)(Y). 

Therefore 

: 6 {T({l + fo)(V 0
))} {X, Y)l

5
=

0 
= Vx(u){Y) - Vy(u){X). 

Let Ak(M 0 ;TM 0 ) denote the set ofTM 0 -valued k forms on M•. Define 

dk:Ak(M.;TM 0 )-+ Ak+1 (M.;TM.) by 

k 

(dka)(Xo, ... ,Xk) = I)-l)i{Vx,A){Xo, ... ,xi," .. ,Xk)-
i=O 

Then we have 

Therefore the linearized equation for T(g(V•)) = 0 is 

{9.11) d~ u + T(V 0
) = 0. 
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Using the first Bianchi identity, 21 we obtain 

d;T(V')(X, Y) = eye{(VxT)(Y, Z)} 

= eye{R(X, Y)Z -T(T(X, Y), Z)}, 

where eye is the cyclic sum with respect to X, Y and Z. In our case 
R = 0 and T « 1. Hence we conclude that d;T is zero of second order. 
Therefore there is some hope to solve (9.11) up to second order. We 
recall Hodge-de Rham-Kodaira decomposition 

ker dk = Im dk-1 EB harmonic forms. 

Roughly speaking, in our case, the harmonic part corresponds to the 
parallel part. Therefore we can find u such that 

{ 

d~ u + T(V') = Ti + T2 

V"(T1) = 0 

IT2 I is zero of second order. 

Iterating this construction, we obtain g E g such that (g(V 0 ))(T(g(V 0 ))) 

= 0. Of course there are various difficulties to make the above argument 
rigorous. The most essential one is the following. Indeed the norm of 
the torsion tensor goes to zero as f goes to zero. But, then, the manifold 

M, changes at the same time. Therefore all the constants appeared in 
the estimates we make during the proof should be independent of e. 

We omit the detail of the argument, which is in (R2). Finally we 
mention the proof of (9.10.3) and (9.10.4). When we solve the equation 

(9.11), we put an additional condition 22 so that the solution is unique. 23 

This condition is determined by the metric and the connection. Hence 

the condition and the equation (9.11) are both H-invariant, if so are M, 
and v•. Therefore, the solution ( which is unique) is also H-invariant. 
As the consequence, the gauge transform g is also H-invariant. The 
proof of (9.10.4) is similar. 

Now we are in the position to complete the proof of Theorem 8.1. 
Let x. be the universal covering space of M,. The connection g,(V) 

induces one, V, on X,. Put 

N. ={XE r(T(X,)) I V X = 0}. 

21 See [KN] Chapter III Theorem 5.3 . 
22 See [R2] Mainlemma. 
23 Otherwise there would be no hope to get an estimate on the solution. 
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For X, Y EN., we have, by (9.10.2), 

V([X, Y]) = V(T(X, Y) - (V xY - VyX)) 

= V(T(X,Y)) 

= (VT)(X, Y) + T(V X, Y) + T(X, VY) 

= 0. 

Hence (N., [·, ·]) is a (finite dimensional) Lie algebra. Let N. be the 

corresponding Lie group. Fix Po Ex •. Define 1: N.---+ X., by 

J(expX) = q,f (Po), 

where q,f: X. ---+ X. is the one parameter group of transformations asso­

ciated to X, and exp: N. ---+ N. is the exponential map of Lie group. It is 

easy to see that I is the diffeomorphism and that I*(V) is the canonical 

connection of N. We identify x. and N. by I. 

Recall the element 'Y E 1r1 (M.,p.; 100) is a map : T B1oo(p., M €) ---+ 

TB2oo(p.,M.), which can be extended to a map ,y:Bc.(Po,N.) 

---+ B2c. (po, N.), where lim 0 _. 0 c. = oo. This map 'Y preserves the con­

nection V. Hence it can be extended uniquely to an affine diffeomor­

phism of (N., V). Thus the elements of 1r1(M.,p.) act on N as affine 

transformations. On the other hand, the group 1r1 (M.,p.) acts on N as 

deck transformations. 24 It is easy to see that 1r1 (M.,p.; 100) generates 

1r1 {M.,p.) in the group of affine transformations of N •. Recall that the 

group of affine transformations of N. is equal to N. oc Aut N.. Hence 

1r1(M.,p.) c N. oc Aut N 0 • Put A. = 1r1{M.,p.) and let A~ be the 

group generated by kercp •. 25 Using Margulis' lemma for Lie group, 26 we 

can prove that A~ is nilpotent for sufficiently small €. Therefore N. is a 

nilpotent Lie group. It is easy to see that [A. : A. n N.] < oo. The proof 

of Theorem 8.1 is now complete. 

§10. Examples 

First we explain the title of this chapter. 

Definition 10.1. Let Mi be a sequence of n-dimensional compact 

Riemannian manifolds and XE MET. We say that Mi collapses to X 

if limi-.oo dH(Mi, X) = 0 and if the Hausdorff dimension of X is smaller 
than n. 

24 Recall that N. is identified to the universal covering space of M •. 
25 Here <p.:,r1(M.,p.)-+ O(n) is as in Lemma 8.8. 
26 See [BK] or [Rag]. 
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In sections 8 and 9, we have studied collapsing Riemannian man­

ifolds to a point. In sections 10,11,12, we shall study collapsing Rie­

mannian manifolds while keeping sectional curvatures and diameters 

bounded. The first important example was discovered by Berger. 

Example 10.2 (Berger sphere). Let 1r: S3 -+ S2 be the Hofp fi­

bration and 9can be the standard metric on S 3 • For V E T(S 3 ), we 

put 

Ue = { € • 9can(V, V) 

9can(V, V) 

if1r.V=0, 

if V is perpendicular to the fibre of 1r. 

Then we have 

sup IKcss,g,)I::; 1. 
eE{0,1] 

It follows that (S3,ge) E M(3, 1) for € ::; 1. On the other hand, it is 

easy to see 

Here g is a Riemannian metric on S 2 such that Kcs•,g) = 4. 

Remark that S 2 = S3 / S 1 in the above example. It is immediate 

to generalize Example 10.2 to the arbitrary free S1 action. In fact, the 

following more general construction is possible. 

Proposition-Example 10.3. Let (M,gM) E M(n,D) andTk be 

the k-dimensional torus acting on M by isometry. Assume, for each p, 

Then, there exists a positive number A independent of€ and a family of 

metrics 9e on M, such that 91 = 9M and that 

(10.3.1) 

(10.3.2) 

(M,ge) E M(n,D I A) 

limdH((M,ge),(M/T\g)) = 0, 
e ..... o 

where g is the metric on M /Tk induced from 9M. 

Construction. Let I: R ~ Tk be the injective homomorphism such 

that the closure of I(R) is Tk. For p E M put 

v(p) = dD I(t)(p)I . 
t t=O 



180 K. Fukaya 

Since J(R) is dense in Tk, the assumption Ip I= Tk implies that v van­

ishes nowhere. Define 9e on Tp(M) by 

( ) -{E"9M(w,w) ifw=c·v(p), 
9e W, W - ( ) ( ( )) 9M W, W if 9M W, V p = 0. 

Proof. It is easy to see (10.3.2). We shall calculate the curvature 

using a normal frame. Let p EM. We choose vector fields e1 , ... , en-k 

on a neighborhood of p, such that 

(10.4.1) 

(10.4.2) 

9M(ei, ei) = 8i,j, for i,j = 1, · · ·, n - k 

ei (i=l,···,n-k) areTk-invariant. 

Put eo = 
1
:

1
• It is easy to see that we can choose vector fields e1, ... , 

en-l on M such that ei, i = 0, ... , n - 1 are orthonormal frame in a 

neighborhood of pin (M, 9M ). We put 

(10.4.2) implies that 

(10.5) 

n-1 

[ei, eiJ = L cL(x) ek. 

k=O 

c1,,0·. = d.0 = 0. 
,1 i, 

Now, the vectors eo = eo/E, ej' = e1, ... , e~-1 = en-1 are the orthonor­

mal frame of (M,g,). When we put 

we have 

where 

{ 
0 if i /= 0, 

a(i) = 1 if i = 0. 

It follows from (10.5) that 

lc\•lkj < jck ·I 
1,1 - i,J 
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Therefore, since the curvature of {M, g,) is calculated by the symmetriza­

tion of cij k, it follows that 

for some number A independent of 1:,. The proof is now complete. 

Before proceeding further, we give two examples of infinite families 
of Riemannian manifolds constructed from torus fibrations. 

Example 10.6 (Wallach [Wal], [Wa2], [WA]). Put 

T 2 = { ( e
2
0
0
1rie e2

0
~i~ ~ ) 0, cp ER} c SU{2) 

e-21ri(e+~) 

Let 8(1 ) be the subgroup 
n,m 

{R·{n,m)) ·(ZffiZ) 

Za,Z 

ofT 2 • Let Mn= SU(2)/S[n,n+l)" It is easy to see that 

lim dH(Mn, SU{2)/T 2 ) = 0. 
n--+oo 

On the other hand, locally, Mn comes to be similar and similar to 

SU{2)/Bfi,i)• when n goes to infinity. Moreover there exists C1,C2 > 0 

such that C1 > Ksu( 2);s1 > C2. Therefore, 
(1,1) 

for large n. In other words, Mn is a sequence of uniformly positively 

curved manifolds which collapses to SU{2)/T 2 • Remark that Mn is a 

S 1 bundle over SU{2)/T 2 • 

Example 10.7 {Wang-Ziller [WZ]). Let Mi be a Kahler-Einstein 

manifold with c1{Mi) > 0. Put c1{Mi) = qia.i, where O.i is indivisible. 
Let P be the total space of a principal torus bundle over B = IIMi whose 
characteristic classes in H 2 (B; Z) are linear combination of a.i. Assume 

that P is simply connected. Then Wang and Ziller proved that P admits 
an Einstein metric with positive scalar curvature. They also proved that, 
if we normalize the metric so that the Ricci curvature is equal to the 

metric tensor, then the absolute value of the sectional curvature of P is 

estimated by a number depending only on B. We can find an infinite 
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number of Pi satisfying the above conditions. In that case we can prove 
that Pi converges to B with respect to the Hausdorff distance. 

So far, we have constructed examples by making use of the action 
of the torus (an abelian group.) Next we use a nilpotent group. 

Theorem-Example 10.8. Let N be a nilpotent Lie group, A is 

a discrete subgroup of N ex: Aut N such that N / A is compact and that 

[A: An N] < oo. Then, there exists a family of metrics g, on N / A such 

that 

(10.8.1) 

(10.8.2) 

Construction. 

(N/A,g.) E M(n,D), 

lim dH((N/A,g.),point) = 0. 
e-+O 

Let n be the Lie algebra of N. Put 

no =n 

n1 = [n,no] 

The group H = A/ An N acts on n. It preserves the stratification 

DK = {O} C ... C Dk C ... C no = n. 

Choose an H-invariant positive definite quadratic form g on n, and define 

g. by: 

g,(v,v) = i?h g(v,v) 

if v E nk, and if g( v, nk+l) = 0. Then g. is an H-invariant quadratic 
form on n. Hence, g. defines a A-invariant metric on N. It induces a 

Riemannian metric g. on N / A. 

Proof. The verification of (10.8.2) is easy. To show (10.8.1), we 
recall the formula 

(10.9) IK (VA W)I = ! · l[V, W]lg, 
g, 4 JV A WI 

g, 

for V, W E n = Te(N) = T[e](N/A). 27 Hence, it suffices to estimate 

the right hand side of (10.9). Let V E nk, W E nt, g(V, Dk+1) = 

27 For the proof of (10.9), see for example [BK] Chapter 7. 
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g(W,ne+i) = 0, g(V, W) = 0, k::; e. Then we have 

IV(\ Wig, = IVlglWlgE2•+z' ::; IVlglWlgE2•+i · 

Therefore, since [V, W] C nk+l, it follows that 

Hence 

l[V, W]lg, < l[V, W] lg < C 

IV I\ Wig, - !Vig I Wig - , 

where C is a number independent of E. It follows that 

IK(N/A,g,) I ::; C. 

By rescaling the metric if necessary, we obtain (10.8.1). 
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A similar construction is possible for solvemanifold. 

Theorem-Example 10.10. Let G be a solvable Lie group and 

r c G oc Aut G is a discrete subgroup. Suppose that G /r is compact 

and that [f : r n G] < oo. Then, there exists a family of metrics g, on 

G /r such that 

(G/r,g.) E M(n,D) 

lim dH((G/f,g,), [G, G] \ G/r) = 0 . 
...... o 

Here [G, G] \ G/r is the quotient of the abelian group G/[G, G] by a 

discrete group. Hence it is a fiat (V-}manifold. 

We omit the construction. 28 In the above example, there exists a 

fibration G/r-+ [G, G] \ G/r n [G, G], whose fibre [G, G]/r n [G, G] is 

a nilrnanifold. We can generalize Example 10.10 to such fibrations. 

Theorem-Example 10.11. Let ME M(n,D), M' E M(n',D), 

n' ::; n, and f: M-+ M' be a fibration such that 

(10.12.1) The fibre off is diffeomorphic to N / A, where N and A is as in 

Example 10.8, 

(10.12.2) The structure group is contained in 

Cent N 
C N A oc Aut A, ent n 

28 See [F4]. 
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where Cent N is the center of N. 29 

Then, there exists family of metrics g, on M such that 

(10.13.1) 

(10.13.2) 

lim dH((M,g,),M') = 0 
e-+O 

(M, g,) E M(n, D). 

Sketch of the proof. Put H =A/An NC Aut N. Recall that the 

set of locally homogeneous metrics on N / A has a one to one correspon­
dence to the set of all H-invariant quadratic forms on the Lie algebra n 

of N. Hence, we can construct a smooth family of Riemannian metrics 

on the fibres of f by defining a metric on the n vector bundle associated 

to the bundle f. (The condition (10.12.2) certifies that f has an asso­

ciated n bundle.) We can decompose T(M) to the horizontal and the 

vertical directions. Then, we can define the Riemannian metric on M 

by using the metric on M' for the horizontal direction and by using the 

family of metrics on the fibres for the vertical direction. The estimate of 

the curvature of the metric is the combination of the methods presented 

in the proofs of Examples 10.3 and 10.8. The detail of the proof is found 

in [F4] § 6. 

The examples of this section can be analyzed also from the point of 

view of F-structures. See section 19 for it. 

§11. A compactification of M(n, D) 

In this section, we shall generalize Theorem 4.1 to M(n, D). 

Theorem 11.1 (Fukaya [F6] Theorem 0.6). Let Mi E M(n, D) 
and (X, d) E M&T. Assume limi-+oo dH(Mi, (X, d)) = 0. Then we have 

the following : 

There exists a C 00 -manifold N with a c 1,a.-metric gN, on which 

there is a smooth and isometric action of the orthogonal group O(n) 

such that 

(11.1.1) (X,d) is isometric to (N,gN)/O(n). 

(11.1.2) For each p EN, the isotropy group Ip= {'y E O(n) I 'YP = p} is 

an extension of a torus Tk by a finite group. 

29 The skew product is constructed by the following action of Aut A to N : 

an element 'Y of Aut A preserves An N, and the action of 'Yon An N can be 

uniquely extended to an automorphism of N, because of the Marcev's theorem 
(see [BK] or [Rag]). 
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Open problem 11.2. Let (N,gN)/0(n) satisfy (11.1.1) and 

(11.1.2). Is (N,gN)/0(n) contained in the closure of M(n,oo)? 

Proof of Theorem 11.1. Let FMi be the frame bundle of M;. We 

define a Riemannian metric on FM; so that 1r: FM; --+ M; is a Rieman­

nian submersion, the fibres of 1r are isometric to the orthogonal group 

with the standard metric and that the horizontal and the vertical di­

rections with respect to the Levi-Civita connection are perpendicular. 

Then, 0( n) acts on FM; by isometry such that FM;/ 0( n) is isometric 

to M;. By O'Neill formula, 30 we have IKFM, I :::; C, where C is indepen­

dent of i. Hence, by Theorem 6.9, we can find a subsequence such that 

(FM;, 0(n)) converges to an element (N, 0(n)) of MET(0(n)) with 

respect to the O(n)-Hausdorff distance. Then Lemma 6.13 implies that 

_lim dH(FM;,N/0(n)) = 0. 
t->00 

Hence dH(X,N/0(n)) = 0. It follows from Theorem 1.5 that X and 

N/0(n) are isometric. 

In the rest of this section we shall prove that N is a C 00 manifold, the 

action of 0(n) is of C 00 class and that the metric on N is a Riemannian 

metric of c1 ,a class. 

First, using Theorems 5.1, 5.2, we obtain M;' such that 

( 11.3) { 
dL(FM;,FM;'):::; c 

[(vFM[f (R(FM;'))I < C(c,k). 

We may assume that FM;' converges to N' with respect to the 0( n )­
Hausdorff distance. Then, by Lemma 1.8, we have dL( N', N) :::; c. 

Hence, by Theorems 4.1 and 6.9, it suffices to show that N' is a C 00 -

Riemannian manifold. Hereafter we shall write M;, N instead of Mt, N'. 

Take a Hausdorff approximation 1/J;: N --+ M; and p0 E N. We shall 

prove that a neighborhood of p0 is a C 00 -Riemannian manifold. Put 

Pi= 1/J;(Po) and P; = 1r(p;) EM; . Then, by Lemma 7.9, we have 

By taking a subsequence if necessary, we may assume that the sequence 

of the pairs (TB 1(p;,M;),1r1(p;,M;;l)) converges to a pair (X,G) with 

30 See [OJ p.476. 
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respect to the equivariant Hausdorff distance. Since 

Proposition 5.10 implies that Xis a C 00 Riemannian manifold. Remark 

Therefore 

B1(Po, N) c FX/G. 

Since the action of G on X is effective and isometric, it follows that 

the action of G on F X is free. We conclude that B1 (Po, N) is a C 00 -

Riemannian manifold. 

Next we shall verify (11.1.2). First we remark that if p E F X, 

p = p mod GE B1(Po, N), p = 1r(p) EX, then 

Ip= {'y E O(n) I 'YP = p} ~ {g E GI gp = p} = 1;. 

On the other hand, Ip is a compact subgroup of G. Theorem 7.18 implies 

that the connected component of G is nilpotent. Therefore the connected 

component of r; is nilpotent. The compactness of Ip implies that Ip and 

Ip satisfy (11.1.2). The proof of Theorem 11.1 is now completed. 

Finally we remark : 

Definition 11.4. A metric space X is said to be a Riemannian 

orbifold (V-manifold) if for each p E X there exists a neighborhood U 

of p such that U is isometric to the quotient of a Riemannian manifold 

by an action of a finite group. 

Proposition 11.5. If we assume dim X = n-1 in Theorem 11.1, 

then the group Ip is finite. In other words, X is a Riemannian orbifold. 

Proof. We use the notation in the proof of Theorem 11.1. Since 

dim X = n - 1, it follows that dim G = 1. Therefore, there exists 

'Yi E 7r1 (Mi,Pii 1) such that 'Yi -1-1 and that limi--,00 d('Yi(Pi),p;) = 0. 
Let 8 be an arbitrary small positive number. We can choose ni such 

that 

By taking a subsequence it necessary, we may assume that -yf• converges 

to an element g5 of G. Then 

(11.6) 0 < d(g5(p),p)::; 8. 
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Since (11.6) holds for arbitrary small 8, we can find a subgroup A of G 

of positive dimension such that p is not a fixed point of any nontrivial 

elements of A. Therefore, since dim G = 1, it follows that the group 

Iii = {g E G I gp = p} is discrete. 

§12. Fibre bundle theorem 

In this section we shall combine Theorems 3.2 and 8.1 and prove the 

following : 

Theorem 12.1 (Fukaya [F4], [F5]). Let Mi E M(n, D) and N 

be compact manifolds. Assume that limi-+oo dH(Mi, N) = 0. Then, for 

each large i, there exists Ii : Mi -. N such that 

(12.1.1) /i is a fibration. 

(12.1.2) The fibre of Ii is diffeomorphic to Nd Ai, where Ni and Ai are 

as in Example 10.8. 

(12.1.3) The structure group of fi is contained in 

CentNi A A 
----- ex ut ;. 
Cent Nin A; 

(12.1.4) /i is an almost Riemannian submersion. In other words, for 

each V E T Mi perpendicular to the fibre off;, we have 

e-o(i) < 1/i .(V)I < eo(i) 

IVI ' 

where o( i) satisfies limi-+cx, o( i) = 0. 

Remark 12.2. We can replace the assumption by: N is a complete 

Riemannian manifold such that IKNI ~ C < oo, injN > c > 0 : M; is 

a sequence of complete Riemannian manifolds such that IKM, I ~ 1. In 

other words, N is of bounded geometry, and M; has uniformly bounded 

curvature. 

Sketch of the proof. First we construct h The construction is a 

modification of one in section 3. We define the map I: N-. L 2 (N) by 

Formula (3.6.1). We modify 31 the definition (3.6.2) of I;: M; -. L 2 (N) 

31 This modification is necessary because, in our case, l; in (3.6.2) is no longer 

of C 1 class since we have no estimate from below of the injectivity radius of 

M;. 
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to 

(12.3) 
r( ·)( ) = (fxEB,(p,,M;) d(x, 'Pi(q)) dx) 
'p, q X Vol(B.(pi,Mi)) . 

Recall that cpi: N -+ Mi is a Hausdorff approximation. Roughly speak­

ing, If is an average of Ii over a small ball. Then, If is of C1-class since 

Ii is almost everywhere smooth and is uniformly Lipschits. 32 

Now 1r: B 5 (I(N)) -+ N is defined as in section 3. The proof of 
Lemma 3. 7 works without any change. Hence we obtain a map fi: Mi -+ 

N. 

To show that /i is a fibration, it suffices to see that /i is of maximal 

rank. Hence it suffices to show Lemma 3.9 in our case. Unfortunately, 
the argument of the proof of Lemma 3.9 itself is not enough in our 

situation, because we used Toponogov's Theorem there, which does not 
necessarily hold for Mi. Hence we have to prove a version of triangle 
comparison theorem. We omit the detail, which can be found in sections 

2 and 3 of [F4]. 

Next we shall verify (12.1.2) and (12.1.3). For this, first we have to 

replace /i by f I which has uniform estimate on higher derivatives. As 

we remarked before the function Ii is not.of C2 class. Hence the map /i 
which we have constructed has no estimate on higher derivatives. This 
difficulty is somewhat similar to one we met at section 5, where the 

normal coordinate is not enough smooth as we need. Here the maps /i, 
which we constructed by using distance function, are not. smooth. The 

method we used in section 5 is to use the harmonic coordinate, namely 
the solutions of Laplace equations. In our case, we can use eigenfunctions 

of Laplace operator instead of distance function and can construct an 

embedding similar to If. In order to make use of this embedding to our 

purpose, we have to know C 1-convergence of eigenfunctions. We omit 

those arguments and refer [F3] and [F5]. The result we obtain is the 
following: 

Lemma 12.4 ([F5] Lemma 1.6). Let Mi and N be as in Theorem 

12.1. Assume 

(12.5) 

32 Remark that we can not expect that Il or any such smoothing of l; has 

uniform bound on C 2-norm, because the second derivative of l; has the same 
size as the volume of the cut locus, which we can not control in our situation. 
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in addition. Then we have f;: M; -. N such that f; satisfies (12.1.1) 

and that 

(12.6) 

where exp,,,r:B(r)-----> Mis the normal coordinate centered at x EM;, 

and 'lj;i: Rn-----> N is a coordinate system independent of i. 

Here we remark that we can assume (12.5) without loss of generality. 

In fact by Theorems 5.1 and 5.2, we can find M;,. satisfying (12.5) 

and dL(M;, M;,.) < E. Let N. be the Hausdorff limit of M;,.. Then, 

by Lemma 1.8, dL(N,N.) ::; c. Hence by Theorem 4.1, N and N, are 

diffeomorphic for small E. We can use M;,. and N. instead of M; and 

N. 

Now using Lemma 12.4, we see that the second fundamental forms 

of the fibres of f; are uniformly bounded. It follows that their sectional 

curvatures are uniformly bounded. On the other hand, since f; are c;­

Hausdorff approximations for some E; with lim;_, 00 E; = 0. It follows 

that 

;~1! IK,,-1({point})I · Diam(f;- 1 ({point}) 2 = 0. 

This formula and Theorem 8.1 imply (12.1.2). 

To prove (12.1.3), we need to recall the proof of Theorem 8.1. In 

section 9, we constructed, for each M satisfying (8.2), a connection V 

such that R(V) = 0, V(T(V)) = 0. We use the following parametrized 
version of this construction. 

Lemma 12. 7 (Fukaya [F5] Theorem 1. 1 ). Let f;: M; -----> N be as 

above. Then we have : 

(12.7.1) For each p E N there exists a fiat connection VP on f;- 1 (p) 

depending smoothly on p. 

(12. 7.2) There exists a nilpotent Lie group N; and a discrete subgroup A 

of N; ex: Aut N; satisfying the conditions of Example 10.8 such 

that (f;- 1 (p ), VP) is affinely diffeomorphic to N;/ A; for each p. 

Sketch of the proof. In section 9, we gave a method to construct 

a flat connection on a given almost flat manifold. If the connection 

constructed there depends smoothly on the given almost flat metric, 
then there is nothing to show. But we used a fixed base point on the 

manifold in the construction of Lemmas 9.1 and 9.6. Therefore, if the 

fibration f; has a section then we have a smooth family of connections 
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satisfying the conclusion of Lemma 9.6. In general case, we can estimate 

the difference of the two connections determined by the distinct base 

points and show that the difference is very small with respect to the 

C 00 -topology. Hence using a rigidity of the structure we can patch the 

connections and obtain a family satisfying the conclusion of Lemma 9.6. 

Next using (9.10.4) we can modify this family and obtain the desired 

family of connections. 33 

Now using Lemma 12.7 we can prove (12.1.3). We can prove that 

the group of affine diffeomorphisms of N;/ Ai is equal to 

Ni 
C N A <X AutAi. 

ent in i 

Hence Lemma 12.7 implies that the structure group can be reduced 

to this group. On the other hand, the maximal compact subgroup of 

CentNN,nA is c~:t_~tAA. Therefore the structure group can be reduced to 

CentN; 
N A <X AutA;, 

ent in ; 

as required. We omit the proof of (12.1.4). 

Next we study the case when the limit space is not necessary a 

manifold. 

Theorem 12.8 (Fukaya [F6] Theorem 10.1). Let Mi E M(n, D), 

X E MeT. Assume limi-+oo dH(M;,X) = 0. Theorem 11.1 implies 

X = N/O(n). Then, for each sufficiently large i, there exists f;: Mi-+ X 

and J;: FM; -+ N such that 

(12.8.1) J; satisfies (12.1.1), ... ,(12.1.4). 

(12.8.2) J; is O(n) map. The fiat connections constructed in Theorem 

12.7 on the fibres on J; are O(n)-invariant. 

(12.8.3) The following diagram commutes : 

FM; 

33 The detail of the proof is in [F5]. 

f; -
N 

X = N/O(n) 
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This theorem follows from the following equivariant version of The­
orem 12.1. (We apply Theorem 12.1' to FMi = Mi and N = N.) 

Theorem 12.1'. Let Mi and N be as in Theorem 12.1. As­

sume that a compact group G acts on Mi and N by isometry, and 

limi--+oo da-H(Mi, N) = 0. Then we have }i: Mi -+ N which satisfies 

(12.1), ... ,(12.4). Furthermore Ii is a G-map and the affine structures 

of the fibres are G-invariant. 

Sketch of the proof. We recall the construction of the map in the 
proof of Theorem 12.1. Our map will be a G-map if so is the embedding 

It: Mi-+ L2 (N) . We replace It by 

Ii(pi)(q) = X ( r J,,EB,(p;,M;) d(gx, 'Pi(gq)) dx dg) ' 
}gEG Vol(B.(pi,Mi)) 

which is a G-map. Then the same construction as Theorem 3.2 works 
and we obtain a G-fibration. To make the affine structure G-invariant, 
we use the method of proof of Lemma 9.6. We omit the detail. 

§13. Margulis' Lemma 

The purpose of this section is to show the following : 

Theorem 13.1. There exists a positive number fn depending only 

on n, the dimension, and satisfying the following. 

Suppose that M E M(n,oo), p E M. Then there .exists an open 

neighborhood U of p in M such that 

(13.1.1) U is diffeomorphic to a vector bundle (in the categery of orbifold} 

over N / A, where A C N ex Aut N is as in Example 10.8. 

(13.1.2) U contains B,,. (p, M). 

Remark 13.2. We have dim N < n unless Diam M < fn. 

Remark 13.3. It is easy to see that Theorem 7.18 follows from 
Theorem 13.1. 

Proof. The proof is by contradiction. We assume that there exists 
M, E M(n,oo),p. EM, such that B 0 (p.,M.) is not contained in any 
neighborhood U satisfying (13.1.1) and (13.1.2). By Theorem 6.6, we 

may assume that there exists (X, q) E M&To such that 

lim0 dp.H.((M.,p.), (X, q)) = 0. 
<--+ 
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Then we can find V. 2 B 1(p.,M.), V 2 B1(q,X), Y, J.: V.-+ V, and 

f. : FM. -+ Y such that :34 

(13.4.1) V = Y/O(n), 

(13.4.2) f. is an O(n)-map, 

(13.4.2) f. satisfies (12.1.1),· · ·,(12.1.4). 
(13.4.3) The following diagram commutes. 

FV. 
,. 

y ---+ 

~1 ~1 
v. _!:_ V 

Since, V = Y/O(n), we can choose a small neighborhood U of q in 

V, such that 

U-==. 8U x [O, 1] / '"", 

where (x,t) '""(y,s) {:::::::} t = s = 1. Hence, by (13.4), there exists 

such that 

J; 1(U)-==. f.- 1(8U) x [O, 1]/ '"", 

where 

(x,t) '""(y,s) {:::::::} {t (=)s .:= 1() 
7rX -7ry. 

Hence J,-1 (q) is a deformation retract of J; 1 (U). Therefore, since 

J; 1 (q)-==. N/A where N and A is as in Example 10.8, it follows easily 

that J,-1(U) satisfies (13.1.1). On the other hand, J; 1(U)::) B.(p.,M.). 
This is a contradiction. 

Finally, we prove Sublemma 8.11. The proof is by induction on 

dimension. We assume that Sublemma 8.11 (and hence all the results 

of this chapter) is valid when dimension is smaller than n. Let M, be 

a family of n-dimensional Riemannian manifolds satisfying (8.7.1) and 

(8.7.2). We are to show that the connected component G0 of the group 

G = lim 1r1(M.,p.; t:n) 
E--+0 

34 (13.4) is a pointed version of Theorem 12.1, and can be proved in a same 

way. 
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is nilpotent. This fact is immediate if Theorem 7.18 (or 13.1) holds for 

M,. Recall that Diam M, = l. Hence, as we remarked in 13.2, we need 

to apply Theorem 8.1 to a manifold with dimension smaller than n in 

order to prove Theorem 13.1 for M,. Therefore, by induction hypothesis, 

the conclusion of Theorem 13.1 holds for M,. The proof of Sublemma 

8.11 is now complete. 

Chapter III. Applications 

§ 14. Finiteness theorems 

The following result is first proved without using Hausdorff conver­

gence. The proof we give below is due to Gromov [G7]. 

Theorem 14.1 (Cheeger [C2], Peters [Pell). For each n, D, v > 0, 

the number of diffeomorphism classes contained in M(n,D,v) is finite. 

Proof. By Theorem 4.1, there exists E = E(n, D, v) such that M, N 

E M(n, D,v) and dH(M, N) < E imply that Mand N are diffeomorphic. 

On the other hand, since M(n, D, v) is totally bounded (Theorem 2.2), 

there exist a finite number of elements M 1 , ···,Mk such that, if Mis an 

element of M(n, D, v), then dH(M, M;) < E for some i :s; k. Hence M 

is diffeomorphic to M;. Therefore the number of diffeomorphism classes 

contained in M(n, D, v) is not greater thank. 

For the class M(n, D), we have the following : 

Theorem 14.2 (Fukaya [F6] Theorem 0.15). For each n,D, there 

exists a finite set I: of closed manifold such that the following holds. 

If M E M(n, D), then there exists N E I: and a map f: FM --+ N 

satisfying (12.1.1), ... , (12.1.4). 

The proof is an application of Theorems 12.8 and 2.2 and is given 

in [F6]. Theorem 14.2 gives an alternative proof of a weaker version of 

the following : 

Theorem 14.3 (Gromov [G4]). 

Cn(D) 35 such that the following folds. 

mannian manifold satisfying 

There exists a positive number 

Let M be an n-dimensional Rie-

(14.4.1) 

(14.4.2) 

KM:::: -1 

DiamM :SD 

35 Gromov gave a huge but explicit number. 
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then we have 

I: rank Hi(M; K) :S Cn(D), 

where K is an arbitrary field. 

Remark 14.5. It seems to the author that the conclusion of Theo­

rem 4.2 does not hold under the weaker assumption 

RicciM 2 -(n - 1). 

Theorem 14.3 does not follow from 14.2. To apply Theorem 14.2 

we have to assume KM :S 1, in addition. We have few informations 

on the limit of a sequence of manifolds satisfying (14.4). If we assume 

VolM 2 v in addition to (14.4), an interesting result has recently been 

obtained by K.Grove, P.Petersen and J.Wu. 

Theorem 14.6 (Grove-Petersen-Wu [GPW], [GPl]). Let Mi be a 

sequence of Riemannian manifolds satisfying (14.4.1), (14.4.2), dim Mi 

> 4, and Vol Mi 2 v > 0 for a number v independent of i. Suppose that 

Mi converges to an element X of MET with respect to the Hausdorff 

distance. Then, X is a topological manifold and is homeomorphic to Mi 

for large i. 

Open problem 14. 7. In the situation of Theorem 14.6, does Mi 

converges to X with respect to the Lipschits distance ? 

Example 14.8. Let pn be a boundary of an n + I-dimensional 

convex polyhedron in Rn+i. We can find a sequence of n-dimensional 

Riemannian submanifolds Mi C Rn+l such that 

(14.8.1) 

(14.8.2) 

KM, 20, 

_lim dH(Mi, P) = 0, 
t->00 

where we give the induced Riemannian metric to Mi and the induced 

inner metric to P. Then we have a homeomorphism Mi -+ P, but it 

seems that P has no natural differentiable structure. 

Grove, Petersen and Wu used Theorem 14.6 to show the following : 

Theorem 14.9 (Grove-Petersen-Wu [GPW], [GPl]). For each 

D, n > 4 and v > 0, There exist only a finite number of diffeomor­

phism classes containing n-dimensional Riemannian manifolds satisfy­

ing (14.4) and Vol M 2 v. 
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Sketch of the proof of Theorem 14.6. We use the following criteria 

for a metric space to be a topological manifolds due to Edwards and 

Quinn. 36 A compact metric space is a topological manifold if : 

(14.10.1) Xis an ANR. 

(14.10.2) Xis a homology manifold. In other words, H*(X, X - {p}) -:::= 

H *(Rn, Rn - { 0}), for each p E X. 

(14.10.3) X satisfies disjoint disk property. Namely for each fi, h: D 2 -, 

M and€> 0, there exists fi., /2: D 2 -, M such that 

d(fi(x),f:(x)) < E 

d(h(x), N(x)) < € 

J;(D2) n N(D2) = ¢. 

The verification of these properties for our limit space, X, is based 

on the following result in Grove-Petersen [GPl]. We assume 

(14.11.1) 

(14.11.2) 

(14.11.3) 

KM> -1 

Diam Ms; D 

Vol M:::: v > 0. 

Lemma 14.12 (Grove-Petersen [GPl] 1.3). There exists a(D, v) 

> 0 and r(D, v) > 0 such that for each x, y E M with d(x, y) < r we 

have one of the following : 

(14.12.1) There exists v E T.,(M) such that L vi(o) > 1r + a, for each 

minimal geodesic l joining x and y. 

(14.12.2) There exists v E Ty(M) such that Lv i(O) > 1r + a, for each 

minimal geodesic l joining y and x. 

Lemma 14.12 is proved by a volume comparison argument. It implies 

the following. Put 

U = {(x,y) EM x MI d(x,y) < r}, 

Uo = {(x, y) E U I xi- y}. 

Lemma 14.13. There exists a vector field V on Uo such that 

V(d) < -{3 for a positive number {3 depending only on v and n. Here 

d: M x M -, R is the distance. 

36 See [Ed] and [Q). 
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Using this vector field V, we can construct a deformation retract 

ft= U ---> U. Namely 

Therefore we have 

{ 
/o(x,y) = (x,y), 

ft(x,x) = (x,x), 

fi(x,y) E {(z,z) I z EM}. 

Lemma 14.14. Suppose that M satisfies (14.11.1), (14.11.2), 

(14.11.3). Let fi,'2:X ---> M be continuous maps satisfying 

d(f 1 (x), '2(x)) < 1: for each x EX. Then, Ji and '2 are homotopic. 

Lemma 14.15. There exists a continuous map r: (0, t] ---> (0, oo) 

such that r(0) = 0 and that the inclusion map: Br(P, M) '---> B-r(r)(P, M) 
is 0-homotopic for each r E (0, t] and p EM. 

Now let Mi and X be as in Theorem 14.6. We can prove that not 

only Mi but also X satisfies the conclusions of Lemmae 14.14 and 14.15. 

Proposition 2.10 implies that the Hausdorff dimension of Xis not greater 

than dim M. It follows that X can be embedded into Rn by a Lipschitz 

map. Let 1: be a positive number satisfying 

r(Cr(Cr(· .. r(C1:) .. ,) <r. 

N times 

Where C is a number determined later. Let W be the 1:-neighborhood 

of I(X) in RN. W - I(X) has a triangulation P such that 

Diam A< C · d(A,I(X)), 

holds for each simplex A of P. Let p(k) be the k-skeletons of P. We can 

find j( 0): p(o) ---> I(X) such that d(f( 0>(x),x) = d(x,I(X)), and that 

d(!(D)(x),f( 0)(y)) < Cd(x,y). Then by using Lemma 14.15, we can 

extend f(O) to a map f( 1): p(l) ---> I(X) satisfying the same condition. 

Thus, by induction, we can construct a retraction f: W ---> I(X). We 

have proved (14.10.1). The proof of (14.10.2) is based on Lemma 14.15. 

The author does not know the proof of (14.10.3). 

Next we remark that we can not replace Condition (14.4.1) by 

Ricci~ -(n - 1). 

Example 14.16 (Kobayashi-Todorov [KT]). Put r: T 4 ---> T4; [x] 

1-+ [-x], X 4 = T 4 / {1, r}. X 4 is an algebraic variety with sixteen isolated 
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singular points. We obtain the Kummer surface M --+ X by blowing up 

those singular points. Let CPl C M, i = 1, · · ·, 16 denote the inverse 

image of the singular points. By the solution of Calabi conjecture [Ya], 
we have a Kahler metric g, on M such that : 

(14.16.1) 

(14.16.2) 

{14.16.3) 

Ricci(M,g,) = 0, 

!M w;. = 1, 

r Wg, = €1 

lcP;' 

where w9• is the Kahler form of (M, g,). Kobayashi-Todorov proved that 

(14.16.4) lim dH((M, g,), X) = 0. 
<--+0 

Here we give the flat orbifold metric to X. In fact, the convergence in 

(14.16.4) is stronger than the Hausdorff converges. Namely the Rieman­

nian metric on Mi converges to the flat metric on X in the C 00 -topology 

outside uCPl. 

More examples of this kind are discussed in [Koh]. In the case of 

Kahler-Einstein 4 manifolds, the limit space has at worst the orbifold 

singularity. 

Theorem 14.17 (Nakajima [NJ, Bando-Kasue-Nakajima [BKN], 

Anderson [An]). Let Mi E S( 4, D) be a sequence of Kahler-Einstein 

manifolds. Assume that limi--+oo dH(Mi,X) = 0, VolMi ~ v > 0. Then 

X is a Kahler Einstein orbifold and the metric converges for C 00 

topology outside the singular point. 

Finally we remark that Kodani [Kod] generalize Theorems 4.1 and 

14.1 to manifolds with boundary. Yamaguchi [Y3] and Petersen [Pet] 

proved some finiteness theorems for manifolds satisfying a condition sim­

ilar to the conclusion of Lemma 14.15. 

§15. Pinching Theorems 

We begin with the following simplest case. 

Theorem 15.1. For each n, D, v > 0 there exists e = e(n, D, v) > 
0 such that the following holds. 
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If M is an n-dimensional Riemannian manifold satisfying 

(15.2.1) 

(15.2.2) 

(15.2.3) 

u+E~ KM~ u-f. 

Vol M ~ v 

DiamM~D, 

then M admits a Riemannian metric go such that K(M,go) = u. Here 

u = +1,-1 or 0. 

There are various generalizations of Theorem 15.1. Before discussing 

them we shall give: 

Outline of the proof of Theorem 15.1. If the theorem is false, then 
there exists a sequence Mi such that Mi satisfies (15.2.2),(15.2.3), and 

{15.2.1)' u + 1/i ~ KM, ~ u - 1/i 

(15.2.2) Mi does not admit a metric 90 with K(M,,go) = u. 

In view of Theorem 2.2, we may assume, by talcing a subsequence, 

that Mi converges with respect to the Hausdorff distance to a space M 00 • 

Theorem 4.1 implies that M 00 is a Riemannian manifold of C1,"-class. 

The next step is to show : 

Lemma 15.3. M 00 is a smooth Riemannian manifold and KM 00 

:=U. 

Using Lemma 15.3, it is easy to complete the proof of Theorem 15.1. 

In fact, Theorem 3.2 implies that M 00 and Mi are diffeomorphic for large 

i. Therefore KM 00 = u contradicts (15.2.4). 

Sketch of the proof of Lemma 15.3. Let p E M 00 • Choose Pi E Mi 

such that limi-,oo dp.H((Mi,Pi), (Moo,Poo)) = 0. Define Ip: Br(P, Moo) 

--+ Br(p,M 00 ) by Ip(expp(v)) = expp(-v). And define Ip,:Br(Pi,Mi) 

--+ Br(Pi, Mi) in a similar way. Using (15.2.1'), we can prove that Ip, 

becomes closer and closer to be an isometry as i goes to infinity. . It 

follows that Ip is an isometry. Using this fact, we can show that the 

group ofisometries, I(M 00 ), of the universal covering space M 00 of M 00 

acts transitively on M 00 • Hilbert's fifth problem 37 implies that I(M 00 ) 

is a Lie group. Hence, it is easy to show that M 00 is a homogeneous 
Riemannian manifold. In particular the metric on M 00 is smooth. The 

rest of the proof is easy and is omitted. The detailed argument can be 

found in [F2] section 10. 

We shall give remarks to Theorem 15.1. 

37 See [MZ]. 
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Remark 15.4. First we consider the case a= -1. 

(1) In this case, Condition (15.2.2) is automatically satisfied for some 

v = v(n). In fact, Heintze [He] (see also Gromov [Gl]) proved that 

-1 <KM< 0} 
. - =} VolM > v(n). 

d1mM = n 

(2) (15.2.3) can be replaced by 

Vol(M) :s; V and Mis complete. 

In fact, Gromov [Gl] proved 

DiamM :s; Cn · VolMPn 

for compact manifold M with -1 :s; KM < O, dim M = n > 3. 

In the case when M is not compact but complete, we can use the 

argument of [Fl]. In the case when dim M = 3, we can use the 
result Thurston [T] volume 2. The detailed arguments are omitted. 

(3) We can not remove the condition VolM < V when dimM > 3. 
Counter examples are given in Gromov-Thurston [GT]. When 

dim M = 3, we conjecture that KM < 0 implies that there exists a 
metric with constant negative curvature on M. 

(4) In the case, a= -1, Theorem 15.1 is first obtained in Gromov [Gl], 
[G2].3s 

Remark 15.5. In the case when a= 0, Remarks 15.4 (1) and (2) 

do not hold. In fact almost flat manifold (Example 10.8) shows that 

we can not remove Condition (15.2.2). The example, (Sn,N9can) x 
(S 1 , N-n9can), shows that we can not replace (15.2.3) by Vol M < V. 

In a sense, Theorem 8.1 is a generalization of the a= 0 case of Theorem 

15.1. 

Remark 15.6. Let a= 1. 

(1) (15.2.3) holds automatically in this case. In fact, Myers [My] proved 
that 

RicciM ~ n - 1 =} Diam M :s; 1r. 

(2) (15.2.2) is also unnecessary. In fact, when n is even, Klingenberg 
[Kl] proved that 

1 ~KM~€> 0 =} VolM ~ Vn(E) > 0. 

38 The author guess that Gromov had already an idea of Hausdorff convergence 

when he wrote [Gl] and the proof we gave above is essentially the same as one 

he had at that time. 
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In the case when n is odd, Cheeger-Gromoll [CGr2] and Klingenberg­

Sakai (KSl] proved that 

1 >KM> 1/4} 
- - ===} Vol(M) ~ Vn > 0. 

1r1(M) = 1 

Hence, by taking a universal cover and working with equivariant 

Hausdorff convergence, we can prove Theorem 15.1 in this case with­

out assuming (15.2.2) 

For odd dimensional manifolds with uniformly positively curvature, 

there is no uniform lower bound on their volumes. 39 In fact, Exam­

ple 10.6 gives a collapsing sequence of such manifolds. However all 

the known examples of such sequences are constructed by using S1-

fibrations. 

Conjecture 15.7. Let Mi E M(n,D),X E MET. Assume 

(15.8.1) 

(15.8.2) 

(15.8.3) 

Then 

1 ~ KM, ~ e > 0, where e is independent of i. 

1r1Mi = 1 

limi-+oo dH(Mi,X) = 0. 

dim X ~ n-1. 

If this is valid, then Proposition 11.5 implies that X is a Riemannian 

orbifold. In the case when dim X = n - 1, we have a S 1 {singular) 

fibration. Let ei E H 2 (X; R) be the Euler class of this fibration. Then 

(15.9) _lim leil -+ oo. 
i-+oo 

Remark 15.10. Ifwe assume 1r2 Mi = 1 in addition, then (15.9) can 

not occur. Hence, in this case, the conjecture is that X = Mi for large 

i, that is Mi can not collapse. 

Remark 15.11. Conjecture 15.7 is closely related to a conjecture by 

Klingenberg. See (KS2]. 

In the case when a= 1, Theorem 15.1 is a version of the celebrated 
differential sphere theorem. Our proof of Theorem 15.1 uses indirect 

argument, hence we can not get an explicit bound for e from our proof. 

39 even for simply connected manifolds 
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Assumption Conclusio_n Assumption Conc~usion 

i.. 
1?:K?:¼ 

lb 
l>K>!-, Mc:S" 

Mc:S" - - 4 
or 

lrJ = 1 or .-1 = 1 rp· { CP' M= HP' 
M= HP' 

c.P2 
C0 P 2 

2a 2b Ried?: n -1 M=S"/r 
Ricci?: n-1 M = S"/r 

K>-K 2 r c O(n+l) 
V > -3!._ r c O(n+l) 

V>w"-• -#,,.1 
- k 

#ir1 =k 

•=•(n,k,K) 

3a. 3b 
A2 ?: K?: 1 a.) Mc:S" 

K?: 1 Mc:S" ,,. b) M = s•tr ,,. 
D>--< 

D=2 or -2 =CPl/r 
lrJ = 1 M={CP' V > <o > 0 

c) .. 1 =1 
HP' < = <(n,A,<o) 

HM- Z[z] or 

H,M=H,C 0 P' 
• - (zk) 

4a. 4b 
Ricci?:n-1 Mc:RP' K?: 1 {: =S"/r ,,. 

D=i C O(n+l) D<-
- 2 

ir1 /l 
or 

K?: -K 2 

M=CP'/Z 2 1 
V;?: 2w.-< 

< = <(n,K) 

Table 15.12 

Explicit bound is obtained in the original proof in Gromoll [Gr], Shikata 
[Sh2], Sugimoto-Shiohama [SS] and some other papers. 

For positively curved manifolds, there are various versions of sphere 
theorems. Hausdorff convergence yields 1:-versions of most of them. They 
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are summarized in Table (15.12). 40 

Notation of the table 15.12. D = Diam M, n = dim M, V = 

Vol(M), Wn = Vol(Sn), K = the sectional curvature, Ricci= the Ricci 

curvature, M = N <==> M is isometric to N, M = N <==> M is diffeo­

morphic to N, M '.'.::'. N <==>Mis homeomorphic to N. 

References and remarks to table 15.12. 

(la) Berger [Bl] (See also [CE]). This result is a generalization of Rauch 

[Ra] and Klingenberg [Ki]. 

(1 b) This theorem is in Berger [B2]. At the time when [B2] was published, 

those results we presented in sections 5 and 6 were not yet well 

established, then, at that time, though all the essential ideas are in 

[B2], it was impossible to work out the detail of some parts of the 

proof, ( which is related to the regularity of the limit metric.) The 

detailed proof can be found in Durumeric [D2]. 

(2a) Myers [My]. 

(2b) Katsuda [Kal] proved 

A2 >K>-A 2
} 

Ricci ~ n - 1 =* 

V ~ Wn - E(A) 

M=Sn. 

Brittain announced the same result. Their arguments are based 

on Hausdorff convergence. Shiohama [Sl] ( without using Hausdorff 

convergence) showed 

K ~ -A
2 

} 

Ricci ~ n - 1 =* 

V > Wn - E(A) 

M'.'.::'.Sn. 

Otsu-Shiohama-Yamaguchi [OSY] proved M = sn under the above 

assumption. Theorem (2b) is due to Yamaguchi [Y2]. 

(3a) This result is due to Gromoll-Grove [GG]. The case D > 1r/2 is due 

to Grove-Shiohama [GS]. 

(3b) This result is due to Durumeric [D1], [D2]. He conjectured that (c) 

can be replaced by M = cpn/ 2 ,HPn/4, or CaP 2 • In case (c) some 

restrictions on deg x and k are proved in [D2]. 

(4a) This result is due to Gromoll-Grove [GG]. Before [GG], Sakai [Sal] 

and Sakai-Shiohama [SaS] gave partial results. 

40 The author is sorry that this table is not the complete list of such results. 
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( 4b) This result is due to Otsu-Shiomaha-Yamaguchi [ OSY]. Under the 

same assumption Grove-Petersen [GP2] proved M -:::c sn /Z2 . 

Remark 15.13. There are also Pinching theorems using first eigen­

values of Laplace operator. For them, see Croke [Cr], Katsuda [Kal] 

and Kasue [Kl]. 

Next we shall give a part of the ideas of the proofs of ( 1 b), ... , 

(4b). The proofs of (lb) and (3b) are similar. We explain one for (lb). 

The argument is by contradiction and is similar to the proof of Theorem 

15.1. Assume that Mi satisfy 1r1 = 1, Vol(Mi) > 8, 1 2 KM; 2 1/4. Let 

M be the limit of Mi for the Hausdorff distance. It suffices to show that 

M = CP*, HP*, CaP 2 , or M -:::c sn. By assumption it seems natural to 

expect that 1 2 KM 2 1/4. If so, then (la) implies desired conclusion. 

But it is not so immediate to prove the inequality 1 2 KM 2 1/4. The 

difficulty is that M is only of c 1 ,"'-class and hence the curvature of M 

is not well defined. Therefore, instead of using (la) itself, we have to 

imitate its proof. Roughly speaking, we shall prove that the cut locus 

of M has the same property as the symmetric spaces. (For example the 

cut locus of cpn is cpn- 1 .) The detail is in [B2]. 

We discuss the idea of the proof of (2b) and ( 4b ). They are proved 

in a similar way. We explain the proof of (2b) in the case 1r1 = 1. The 

first step, which is essentially due to Katsuda [Kall, is to show : 

V > Wn - c(A) ==? dH(M, sn) < o(c) 

Ricci> n - 1 } 

K > -A 2 

The Hausdorff approximation r.p: sn -. M is the composition of the 

inverse of the exponential map : Tp ( sn) -. sn, the linear isometry : 

Tp(Sn) -. Tq(M), and the exponential map :Tq(M) -. M. The as­

sumption on the volumes is used to verify that this map is a Hausdorff 

approximation. The second step is to show that M is diffeomorphic 

to sn under the above assumption. Remark that we can not directly 

apply Theorem 3.2 in this case, because we do not assume KM < A2 • 

Instead we shall use the idea of its proof. In our situation the following 

embedding is useful. Let 

sn = { x E R n+l I lxl = 1} 

i 

ei = (0,···,0,1,0,···,0). 

Define I-. Rn+l by I(x) = (I1(x), · · ·, ln+i(x)), Ik(x) = cosds .. (ei, x). 

It is easy to see that I is the standard embedding. Using the o( € )-
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Hausdorff approximation cp: sn ----+ M, we define I': M ----+ Rn+l by 

I'(x) = (I{,···,I~+ 1 ), II(x) = cosdM(cp(ei),x). We modify I' as in 

(12.3). Then we can construct a diffeomorphism between M and sn 
using the above embeddings in a way similar to section 3. 

We turn to the other kinds of Pinching theorems. 

Theorem 15.14 (Katsuda [Ka2], Min-no - Ruh [MRl], [MR2] 

gave a related results). There exists E = E( n, v, D) such that M E 

M ( n, D, v), 1 v' RM I < E implies that M is diffeomorphic to a locally 

symmetric space. 

Katsuda also proved a pinching theorem which is an E-version of the 

theorem of Ambrose-Singer [AS].41 The scheme of the proof of Those 

results are similar to one of Theorem 15.1. He also asked if there exists 

a similar pinching theorem for Einstein manifolds. 

Next we review the results for almost nonnegatively curved mani­

folds. Bochner proved that 

RicciM ~ 0 ===> b1 (M) ~ dim M, 

where b1 (M) is the first Betti number. The equality holds if and only if 

M is a flat torus. Gromov and Gallot [Ga] generalized this result to 

RicciM ~ -E(n, D)} 
===> b1(M) < n. 

DiamM~D -

Yamaguchi proved 

Theorem 15 .15 (Yamaguchi [Yl]). There exists E = E( n, D), 

such that M E M(n,lJ);-RicciM > -E, b1 (M) = k implies that M 

is a fibre bundle over the k-dimensional torus Tk. 

Conjecture 15.16 (Yamaguchi [Yl]). The same conclusion holds 

without assuming IKMI ~ 1. 

Open problem 15.17. Is the fibre in Theorem 15.15 admits a 

metric with nonnegative curvature ? 

Sketch of the proof of Theorem 15.13. Let w1 , ···Wk be the basis of 

harmonic I-forms on M. Define f: M ----+ Tk by 

41 Ambrose-Singer theorem gives a characterization of the locally homogeneous 

space. 
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where we identify Tk with 

{ ( f, W1, · · • , f, Wk) I , E ?r1 ( M)} . 

In other words, Tk is the Albanese Torus and f is the Albanese map. 

Yamaguchi proved that f is a fibration if RicciM > -E. 

In the case when k ~ dim M - 1 the conclusion of Theorem 15.15 is 

that M is diffeomorphic to a torus or a S1 bundle over a torus. In this 

case we can determine the limit of those spaces. 

Theorem 15.18 (Yamaguchi [Yl]). Let X E MET, M; E 

M(n, D). Assume b1(M;) ~ n -1, RicciM, ~ -1/i, limi-+oo dH(M;, X) 

= 0. Then X is a fiat torus Tk or its quotient Tk /Z2 . 

When we try to use the theory of Hausdorff convergence to improve 

Theorem 15.15, we need more informations on the limit of the spaces 

with almost nonnegative Ricci curvature. In the case when b1 = n-1 this 

was easier essentially because the space is aspherical in that case. 42 We 

cannot expect that the limit of almost nonnegatively curved manifolds 

are manifolds or orbifolds. This does not hold even for positively curved 

manifolds. 43 In the case when we assume that the manifold is aspherical 

we have: 

Theorem 15.19 (Fukaya-Yamaguchi [FY]). There exists 1; = 
En(D) such that the following holds. Let M be an n-dimensional Rie­

mannian manifold. Assume 

{ 

1 >KM> -1; 

1rk M = 1 for k ~ 2 

Diam M :SD. 

Then, M is diffeomorphic to N /r. Where N and r is as in Example 

10.8. 

We close this section with remarking the following natural but quite 

difficult problem. 

42 See the next section to find the reason why the aspherical manifolds are 

easier to study. 
43 See the examples in section 10. 
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Open problem 15.20. Suppose that M admits a metric with 
strictly positive curvature. Put 

60 = sup{ 6 I :lg g is a metric on M satisfying 1 2:: K 9 2:: 6}. 

Does there exists a metric g0 on M such that 1 2:: K90 2:: 60 ? If exists 
is it unique ? What kind of good properties does it have ? How about 
the similar 

problems for negatively curved manifolds ? 

§16. Aspherical manifolds 

An aspherical manifold stands for a manifold M such that 1r,.M = 1 

for k > l. In other words, a manifold whose universal covering space 
is contractible. Typical examples of aspherical manifolds are a locally 
symmetric space r \ G / K, a solvmanifold and a nilmanifold r \ G. Then, 
the study of aspherical manifolds can be regarded as a generalization 
of the theory of discrete subgroups of Lie groups. The notion of the 
convergence of discrete subgroups or deformation of it is one of the 
motivations of the definition of the Hausdorff convergence. In the case 
of aspherical manifolds, the application of the results of Chapters 1 and 
2 becomes simpler. A reason is the following : 

Theorem 16.1 {Fukaya [F7]). Let Mi E M(n, D), X E MeT. 
Assume that Mi is aspherical and that limi-+oo dH(Mi, X) = 0. Then 

X is isometric to a quotient Y /r, where Y is a smooth contractible 

manifold with C1•°' Riemannian metric and r is a properly discontinuous 

group of isometries of Y. 

Remark 16.2. If we assume that Mi is diffeomorphic to R" in ad­
dition, then Y is also diffeomorphic to an Euclidean space 

Remark 16.3. If we assume KM, ::; 0 in addition. Then we also 
have Ky::; 0. 

Sketch of the proof of Theorem 16.1. Let Mi be the universal cov­

ering space of Mi. Fix Pi E Mi. The first step is to show that 

injM, (Pi) 2 € > 0, 

where € is independent of i. Then the limit, Z, of (Mi,Pi) is an n­

dimensional Riemannian manifold with C1•°'-metric. We consider the 

limit G of the deck transformation group 1r1 (Mi,Pi). G acts on Z by 
isometry. The second step is to show that the isotropy group Ip = {g E 
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G I gp = p} is finite for each p E Z. Then X = Z / G is a Riemannian 
orbifold. Then, using the results of section 12, we can construct the 

fibration f: Mi --+ X. Hence the asphericality of M; implies that the 
universal covering orbifold Y of X is contractible. 

For the arguments of steps 1 and 2, the following results due to 
Gromov are essential. 

Definition 16.4. A metric space Y is said to be geometrically 

contractible if, for each r, there exists R(r) such that the inclusion map 

: Br(P, Y) '----+ BR(r)(P, Y) is null homotopic for each p E Y. 44 

Lemma 16.5 (Gromov [G9] 4.5 D). Let Y be a complete and 

contractible Riemannian manifold, K c Y a compact subset and G a 

group of isometries of Y. Assume GK = Y. Then Y is geometrically 

contractible. 

The assumption of Lemma 16.5 implies that Y is homogeneous mod­

ulo a compact factor. Hence the uniformity of the geometry implies the 

geometrically contractiblity. 

Theorem 16.6 (Gromov [G10],[G9] Appendix I E3 ). Let Y be a 

geometrically contractible complete Riemannian n-manifold, P a poly­

hedron, f: Y --+ P be a continuous map. Assume dim P < n. Then 

sup{Diam f- 1 (p) Jp E P} = oo. 

l 
Fig. 16.7 

44 The fact that R(r) is independent of pis essential. 
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If we take Y, p E P = R+, and f as in Figure 16.7, we have 

sup{Diarn f- 1 (p) IP E P} < oo. 

But in this case Y is not geometrically contractible. The proof of Theo­

rem 16.6 uses minimal surface theory in an infinite dimensional Banach 

space, L 00 (Y). 

Outline of the step 1 of the proof of Theorem 16.1. Let (Z,p) be the 

limit of (Mi,Pi) with respect to the pointed Hausdorff distance. Assume 

limi---,00 inj M; (Pi) = 0. Then we have dim Z < n. On the other hand, 

we have a map k Mi - Z such that 

(16.8) _lim Diam f- 1(p) = 0. 
i--->oo 

On the other hand, since Mi/1r1 (Mi) = Mi is compact, if follows from 

Theorem 16.5 that Mi is geometrically contractible. Hence (16.8) con­

tradicts Theorem 16.6. 

Outline of the step 2 of the proof of Theorem 16.1. Let Go be the 

connected component of G. Margulis' lemma implies that Go is nilpo­

tent. Hence Go has a maximal compact subgroup K ~ Tk contained 

in the center. By Smith theory 45 K has a fixed point on Z. Using 

Diam X/G = D < oo, and the fact that K is normal in G, we see that 

sup{Diam Kp Ip E Z} < oo. 

Hence by the geometrically contractiblity of Z, we can apply Theorem 

16.6 to the map Z - Z / K and conclude dim K = 0. It follows that Go 

contains no compact subgroup. Therefore Go acts freely on Z. Conse­

quently Z / G is a Riemannian orbifold as required. 

Theorem 16.1 has the following immediate applications. 

Corollary 16.9. For each n, D there exists v = v(n, D) such that 

the following holds. Let M E M(n, D) be an aspherical manifold. As­

sume that 1r1 (M) is not solvable and does not contain a group isomorphic 

to Z2 • Then Vol M ~ v. 

Corollary 16.10. For each n, D, there exists a finite set ~ of 

orbifolds such that, for each aspherical manifold in M( n, D), there exists 

45 See [Bo]. 
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an element X of ~ and a fibration f: M -+ X satisfying (12.1), ... , 
(12.4). 

The following result is closely related to Theorem 16.1. 

Theorem 16 .11 (Fukaya-Yamaguchi [FY]). For each n, D there 

exists a positive number f = c:(n, D) such that KM < f and M E 

M(n, D) imply that the universal covering space of M is diffeomorphic 

to the Euclidean space. 

Remark 16.12. The condition -1 < KM in Theorem 16.11 cannot 

be removed. In fact Gromov [G2], Buser-Gromoll [BG]46 constructed a 

family of metrics g. on S3 such Diam(M, g.) = 1 and that KM. ::; c:. 

Sketch of the proof of Theorem 16.11. The proof is by contradic­

tion. Suppose that KM; < 1/i, Mi E M(n, D) and that the universal 
covering space of Mi is not diffeomorphic to the Euclidean space. By 

taking a subsequence, we may assume that Mi converges to a metric 

space X. 

Lemma 16.13. X is a c 1 ,a-Riemannian manifold with nonposi­

tive curvature. 47 

The proof is a modification of the argument of step 2 of the proof 

of Theorem 16.1. We omit the detail. 
Now Lemma 16.13 and an orbifold version of Theorem 12.1, (which 

can be proved by using Theorem 12.7), imply that there exists a fibration 
: M -+ X whose fibre is an almost flat manifold. Then, both the base, 

X, and the fibre have the Euclidean space as their universal covering 

spaces. Hence by a simple argument we can prove that the universal 
covering space of M is also an Euclidean space. 

By studying the fibration in the above argument more closely we 

can prove the following : 

Theorem 16.14 (Fukaya-Yamaguchi [FY]). Let M be as in The­

orem 16.11, then there exists a fibration f: N / A -+ M -+ Y /r. Such 

that the following holds. 

(16.15.1) The fibre N / A is as in Example 10.8. 

46 See also Bavard [Bav]. 
47We have to be careful to say that X is of nonpositive curvature, because 

the curvature tensor of 0 1•"'-Riemannian manifold is not well defined. The 

definition of nonpositivity in this case is in [FY]. 
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(16.15.2) Y is a c 1 ,a-Riemannian manifold with nonpositive curvature. 

(16.15.3) The structure group of the fibration is contained in 

Cent N L 
ex: ' Cent N n A 

where L is a subgroup of Aut N satisfying Condition 16.16 below. 

Condition 16.16. There exists a stratification 1 = A1 C · · · Ak = 

A n N such that 

(16.16.1) Each A; is L invariant. 

(16.16.2) A;/ A;_ 1 is contained in the center of Ak/ A;_ 1 . 

(16.16.3) The image of the homomorphism : 

L _. IIAut(A;/A;_i) 

' 
defined by conjugation is finite. 

We omit the proof. 

Conjecture 16.17. There exists a positive number en depending 

only on the dimension n such that the following holds. If M is a Rie­

mannian manifold satisfying -1 :::; KM :::; c, Diam M · c:::; En, then the 
universal covering space of M is diffeomorphic to the Euclidean space. 

Example 17.12 is related to this conjecture. 

§ 17. Minimal volume 

Definition 17.1 (Gromov [G9]). Let M be a closed manifold. We 

define the minimal volume, MinVol M, by 

Min Vol M = inf{ Vol(M, g) I IK(M,g) I :::; 1 }. 

The D-minimal volume, MinVolv Mis defined by 

MinVolv M = inf{Vol(M,g) I (M,g) E M(n,D)}. 

Minimal volume provides an obstruction to collapsing Riemannian 

manifolds. The study of the minimal volume leads us to the consider­

ation of the phenomena that the manifold splits into many parts, (in 

other words we have to study pointed Hausdorff convergence). Before 

discussing it, we give an application of Theorem 16.1 to the proof of a 

gap theorem for Minvolv. 
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Theorem 17.2 (Fukaya [F5]). For each n and D, there exists a 

positive number v(n, D) such that if an n-dimensional aspherical mani­

fold M satisfies MinVoln M < v(n,D) then MinVoln M = 0. 

Proof. Suppose the theorem is false. Then we have a sequence of el­

ements Mi of M(n, D) such that Mi is aspherical, limi--+oo Vol(Mi) = 0, 
and that Minvoln Mi -:j:. 0. We may assume that Mi converges to an 
element X of MET. Theorem 16.1 implies that Xis a Riemannian orb­

ifold. Then the orbifold version of Theorem 12.1 implies that there exists 

a fibration Mi -4 X satisfying Conditions (12.1.1),· · · ,(12.1.4).Therefore 
the orbifold version of Example 10.11 implies that there exists a fam­

ily of metrics g. on Mi such that lim.--+0 (Mi, g.) = X. It follows that 
Minvoln Mi = 0. This is a contradiction. 

Now we consider the case when the diameter is not necessarily 

bounded. We have various examples and conjectures but not so many 
theorems, yet. Those are closely related to the following : 

Conjecture 17.3. There exists Vn such that MinVol M < Vn im­

plies Min Vol M = 0, for an n-dimensional manifold M. 

Theorem 17.2 gives an affirmative answer to the same conjecture 
for Min Voln in the case when M is aspherical. We can remove this 

condition, if we can generalize Theorem 10.11 to the case when the base 

space is not necessary an orbifold. The conjecture for MinVol is more 
difficult as is illustrated in the following examples. 

Example 17.4 (Gromov [GI], see also [E], [Sehl). Let f > 0. We 

can find a metric g. on T 2 - Int B 2 such that 

(17.5.1) K 9 • ,::;o. 
(17.5.2) 8(T 2 - B 2) is isometric to (S 1 , fgo), the circle with radius f. 

(17.5.3) A neighborhood of 8 (T2 - B 2 ) is isometric to a direct product 

(S1, fgo) x [0, 8). 

(17.5.4) Vol(T 2 - B 2 ,g.) < C, where C is a number independent off. 

We can attach two copies of (T 2 - B 2 , g.) x ( S 1 , f9o) by the isometry 

r: 8(T 2 - B 2 ) x S1 -4 (T 2 - B 2 ) x S1 ; r( a, b) = (b, a). Then the resulting 

Riemannian manifold (M 3 , g.) satisfies 

(17.6.1) -1 _::; K(M,g.) < 0, 

(17.6.2) Vol(M,g.) < Cf, where C is a number independent off. 
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{17.6.3) Mis not the total space of a nontrivial fibration. When 1: goes 

to O, the diameter of {M,g.) goes to infinity.48 

In this example the manifold splits into two manifolds with totally 

geodesic boundary. More generally we can construct examples which 

split into manifolds with corners. 

Example 17.7 {Fukaya-Januszkiewicz). Take six copies of (T 2 -

B 2 ,g.) x (T 2 - B 2 , g.) x (S1, 1:90 ). Call them M 1 , ···,Ma. Attach them 

according to Figure 17.8. Here {}Mi and 8Mi+i are identified by S 1 x 

(T 2 - B 2 ) X S1 --+ (T 2 - B 2 ) X S1 X S1; (a, x, b) - (x, b, a). Then we 
have a 5 dimensional manifold M with a singular nonpositively curved 

Riemannian metric g~. The singular set of the metric is T 3 = nMi. A 
small neighborhood of this singular set is isometric to the direct product 

of T 3 and the union of six copies of {(x, y) I 6 > x ~ 0, 6 > y ~ O}. 

Then we can modify the metric in this neighborhood so that the metric 

g. satisfies 

(17.7.1) -1 $; K(M,g,) $; O, 

(17.7.2) Vol(M,g.) $; Ct, 

(17.7.3) M has no nontrivial fibration structure. 

(T 2- B2 )xS 1xS1 

Fig. 17.8 

(T 2-B 2 )xS 1xS1 

(T 2-B 2 )xS 1xS' 

48 Schroeder [Sch] classified the nonpositively curved metric on this manifold 
M. 
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Conjecture 17.9. If a manifold M has nonpositive curvature and 

small volume, then M splits iqto manifolds with totally geodesic corners 
and boundaries, each of which has nontrivial product structure. 

The following result is an evidence. 

Theorem 17 .10 (Buyalo [Bu]). There exists Vn such that if -1 ~ 

KM~ 0 and if Vol M < Vn, then Z2 C 7r1 M. 

Conjecture 17 .11. There exists Vn such that if an n-dimensional 

aspherical Riemannian manifold M satisfies IKMI ~ 1, Vol M ~ Vn, 

then Z2 C 1r1M. 

If we assume Diam M ~ D in addition, Corollary 16.9 is the affir­
mative answer. 

By modifying Example 17.4 we obtain the following example pro­
viding an evidence to Conjecture 16.17. 

Example 17.12. Put CH 2 = {(z1,z2) E C 2 I lz112 + lz212 < 
1}. CH 2 has a Kahler metric g with constant negative bisectional 

curvature.(-1 ~ Kg ~ -1/4.) Let r be a discontinuous group of isome­

tries of CH 2 such that Vol CH 2 /r < oo, and that CH 2 /r is noncom pact 
with one end. Then the end is diffeomorphic to N / A, where 

is the Heisenberg group, A c N ex Aut N, [A: A n N] < oo. As in 

Example 17.4 we can attach two copies of CH 2 /r x N/ A along their 
boundaries N / A x N / A by the diffeomorphism : (p, q) f-+ ( q, p) and 

obtain a 7 dimensional manifold M. We can verify that M has a family 
of Riemannian metrics g. such that 

{

-1 ~ Kg. ~ 8. 

lim 8. = 0 
E-+0 

lim Diam(M, g.) 2 • 80 = 0. 
E-+0 

So far we have treated the case when Minvol M = 0. More generally 

we have the following : 
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Problem 17.13. Let M be a closed Riemannian manifold. Does 

there exists a metric g on M, such that IK(M,g)I ~ 1 and that Vol(M,g) 

= Min Vol M. 

Open problem 17.14. Determine the set 

A..= {MinVolM IM is a closed n-manifold}. 

The answer to Problem 17.13 is negative in the case Min Vol M = 0. 
It seems that the answer is negative also in some of the other cases.49 

Example 17. 15 (Heintze). Let M1 = H 3 /r 1, M2 = H 3 /r 2 be two 
Riemannian manifolds. Here H3 is a three dimensional simply connected 
Riemannian manifold with constant curvature -1. Assume that M1 and 
M2 are noncompact and of finite volume. Assume also that the end of Mi 

is diffeomorphic to T 2 x R. The torus at the end of Mi has a conformal 
structure induced from the metric of Mi. We assume also that the two 
conformal structures on T 2 comcide. Let M = M1 U M2 be the closed 
3-manifolds attaching M1 to M2 along their boundaries. We can define 
a family of Riemannian metrics g. on M such that 

(17.15.1) 

(17.15.2) 

(17.15.3) 

0 ~ K(M,g,) ~ -.1 

lim Vol(M,9 0 ) = Vol M1 + VolM2 
E--+0 

{ 
~ dp.H.((M,g.,p),(M1,P)) = 0 

~ dp.H.((M, g.,p), (M2,P)) = 0 

Open problem 17.16. 

Min Vol M = Vol M1 + Vol M2? 

Here the volume of the right hand side is one for the metric with 
constant negative curvature. The inequality ~ follows from the the 
above construaction. This problem seems very difficult. In fact we can 
not even prove the following : 

Conjecture 17.17. Let M be a closed manifold. Assume that M 

admits a metric go such that K 90 = -1. Then MinVol M = Vol(M,g 0 ). 

49 The exact value of the minimal volume is known in few cases, that are the 

cases when Minvol = 0 or when dim M = 2. 
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Theorems 17.23 and 26 below implies 

(17.18) Vol(M,go) :S MinVolM < (n - Itn!Vol(M,go)/Rn, 

where Rn is the minimum of the volumes of all ideal simplices 50 in Hn. 51 

For Problem 17.14 we have the following : 

Conjecture 17.19. Put 

V = {Vol(H 3 /r) Ir is a lattice of Isom(H 3 )}. 

Then 

A3 = {a1 + · · · + ak I a; EV}. 

The reader can easily see that this conjecture is closely related to 
Problem 17.16 and the Thurston's geometrization conjecture for three 

manifold. 52 Recall that Thurston (T] proved that Vis isomorphic to ww··· 

as ordered set. The study of the set An, n > 3, is much harder and the 

author has no idea on it. We remark that the results of Cheeger-Gromov 
[CG5] gives a proof of Conjecture 17.3 for 3 dimensional manifolds. 

In (G9], Gromov defined a topological invariant, ll(M]II, the Gromov 

invariant. 53 This invariant can be regarded as a topological version of 
minimal volume and provides an obstruction to collapsing Riemannian 

manifolds. 

Definition 17.20. Let X be a topological space and h E 

Hk(M; R). We define the simplicial norm, 11h11, by 

{ I 
:E a;er; represents h } 

11h11 = inf :Ela;I 
a; E R, er; are singular simplices 

The Gromov invariant, ll(M]II, is the simplicial norm of the fundamental 

class. 

Example 17.21. ll(S1]11 = 0. In fact let erk:[0,1]--+ S 1 be the 

map with degree k. Then (S1 ] = ¼(erk]· 

50that is the simplices all of whose vertices are situated at infinity 
51 R2 = 1r, R3 = ½:Ef=1 k- 2 sin 21rk/3, and asymptotically Rn ~ yne/n!. See 

[M],[HM]. 
52 See [Sc]. 
53 Gromov called it the simplicial volume. 
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Theorem 17.22 (Gromov [G9] 0.5). Let M be an oriented Rie­

mannian manifold satisfying RicciM ? -(n - 1) then 

1 
Vol M > (n - l)n. n! ll[M)II· 

Corollary 17.23. 

Min Vol M > (n _ 1\n. n! ll(M)II-

Theorem 17.24 (Thurston [G9] 0.3). If-l::; KM::;-€, then 

II [M) II > C(f) Vol(M). 

Corollary 17.25. If -1 ::; KM 5 -€ then 

Minvol(M) > Cn(f) · Vol(M). 

Gromov [G.10) 6.6 C' implies that Cn(€) is independent of€. 

Theorem 17.26 (Gromov [G9] 0.4). If KM= -1 then 

ll[M]II = Rn Vol(M), 

where Rn is as in Formula (17.17). 

Gromov proved also the following weak version of Conjecture 17.13. 

Theorem 17.27 (Gromov [G9] 0.5). There exists fn such that the 

following holds. Assume that M E M( n, oo) and that Vol( B1 (p, M)) < 
fn for eachp EM, then ll[M)II = 0. 

The proof is a combination of Margulis' Lemma (Theorem 13.1) and 
the following : 

Theorem 17.28 (Gromov [G9] §3). If 1r1M contains an index 

finite nilpotent subgroup then ll[M)II = 0.54 

More generally 

54 It suffices to assume the amenability of 1r1M. 

,, 
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Theorem 17.29 (Gromov [G9] p.41). Let M be an n-dimensional 

Riemannian manifold, P a simplicial complex of dimension smaller that 

n, and f: M ---+ P a continuous map. Suppose that, for each p E P, 

there exists an open neighborhood U of 1- 1 (p) such that the image of 

the homomorphism : 7l'1 (U) ---+ 7l'1 (M) contains an index finite nilpotent 

subgroup.55 Then ll[M]II = 0. 

We omit the proof. Example 7.21 illustrates the situation. 

As an application, we can show that, in each dimension there exists 

at least one manifold for which Problem 17.13 is affirmative. 

Theorem 17.30 (Gromov [G9] p.74). For each n, there exists a 

complete n-dimensional c 1,a-Riemannian manifold (M,g) such that the 

following holds : 

(17.30.1) g is a limit with respect to the C 1,a-topology of the metrics g; 

on M such that IK(M,g,) I :::; 1. 

(17.30.2) Let g' be a Riemannian metric on M such that IK(M,g') I :::; 1 

and that dL((M,g),(M,g')) < oo.56 Then we have: 

Vol(M,g):::; Vol(M,g'). 

Sketch of the proof. The proof is an application of pointed Haus­

dorff convergence. We need also a noncompact version of Gromov in­

variant. 

Definition 17.31. Let X E M£T 0 • Let Sk(X; size ---+ 0) be the 

set of all countable formal sums a = :Ea;O'i satisfying the following : 

(17.32.1) O'; is a singular simplex, a; ER. 

(17.32.2) For each compact subset K of X, the number of the simplices 

O'i which intersects with K is finite. In other words, a is locally 

finite. 

(17.32.3) limi----,=Diam(o-i) = 0. 

(17.32.4) :Elail is finite. We put llo:11 = :Elail· 

S k ( X; size ---+ 0) is a chain complex. Let H * ( X; size ---+ 0) be its 

homology. For h E Hk(X; size---+ 0) we put 

11h11 = inf{llo:111 [a]= h}. 

55 It suffices to assume the amenability of 1r1M. 

56 This second condition is automatically satisfied if M is compact. Then, in 

that case, Vol(M, g) = Minvol M. But, unfortunately we do not know if there 

exists a compact manifold satisfying (17.30.1) and (17.30.2). 
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LeIDilla 17 .33. If M is an orientable complete Riemannian man­

ifold satisfying IKMI :S 1 and if Vol(M) < oo, then the fundamental 

class [M] of M is well defined as an element of Hn(M; size--+ 0). 

We omit the proof, which uses a local version of Theorem 17.29. 

Now we fix h > 0 and put 

C ={MI IKMI ~ 1, Vol(M) < oo, ll[M}II ~ h} 

And set 

µ = inf{Vol(M) I M E C}. 

LeIDilla 17.34. If M E C satisfies Vol(M) = µ, then each con­

nected component of M satisfies (17.30.2).57 

The proof is easy.58 Thus we are only to find (M,g) whose volume 
assumes the infimum µ. We can find Mi EC such that lim Vol(Mi) = µ. 

LeIDilla 17.35. By taking a subsequence if necessary we have D > 
0, N < oo, and points {pi,1, · · · ,Pi,N} on Mi such that the following holds 

(17.35.1) Ifp E Mi - UBv(pi,i,Mi), then injM,(P) < En, where En is as 

in Theorem 13.1. 

(17.35.2) limi--+oo(Mi,Pi,i) converges to an element (X;,p;) of ME'To 
with respect to the pointed Hausdorff distance. 

(17.35.3) limi--+oo d(Pi,i,Pi,i') = oo, if j =/. j' .59 

We omit the proof. Roughly speaking, the lemma says that Mi splits 
into N pieces X1 , • · ·, XN as i goes to infinity. (See Figure 17.36). 

57 Remark that we do not assume the connectivity of M in the definition of C. 
58 Remark that the condition dL((M, g), (M, g')) < oo implies that 

H.((M,g);size--+ 0) = H.((M,g');size-+ 0). 
59This condition is a technical one. 
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Fig. 17.36 

Now put X = UX;. By Theorem 6.7, X is a c 1 ,a Riemannian 
manifold satisfying (17.30.1). Hence it suffices to show 

Lemma 17.37. 

(17.37.1) 

(17.37.2) 

µ = lim Vol Mi::; Vol(X) 

ll[X]II ~ h. 

Sketch of the proof of Lemma 17.37. We discuss only one for 
(17.37.2). (The proof of (17.37.1) is similar and easier.) By Theo­

rem 3.2 and (17.35.2), we have diffeomorphisms Hi,i: B2D(P;,X;) ---+ 

Bav(Pi,i, Mi)· Let 0t.; = :E ak,i<Tk,i E Sn(X;; size ---+ 0) be the cycle rep­
resenting [X;] and satisfying llall < ll[X;]II + o, where o is an arbitrary 
small positive number. By (17.32.3), we may assume that 

<Tk,i n Bv(P;,M;)-:/:- </> ==> <Tk,i C Bav(P;,M;). 

For each uk,i contained in B2D(P;, X; ), we take a singular simplex 

<Tk,i,i = Hi,i o <Tk,i of Mi. We can find bk,i and Pk,i such that 

N oo 

L L a;,k<Ti,k,i + L bi,kPk,i 
j=1k=1 k=l 

represents the fundamental class [Mi] and that Pk,i does not intersect 

with Bv(P;,X;). (See Figure 17.38). Then in view of (17.35.1) and 
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Theorem 17.29,60 we may assume that 

Therefore we have 

Hence II [X] II ~ h as required. 

M, 

) H,; 

Fig. 17.38 

Finally we remark that the invariant defined and studied by 

O.Kobayashi [Ko] seems closely related to the minimal volume. 

§18. Telescope 

Hausdorff convergence can be applied to the study of the ends of 

noncompact complete Riemannian manifolds. In this section, we shall 

see briefly some of those applications. 

Let ((M,g),p) be a complete pointed Riemannian manifold. We 

consider the limit, lim,-o((M, €9),p) = (X, q) in (M£T 0 , dp.H ). On the 

other hand, we define an (inner) metric on 8BD(P, M) by 

d(x, y) = inf{ Ill I l: [O, 1] --t 8BD(P, M), f(O) = x, f(l) = y }, 

60 More precisely the local version of it 
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and study the limit, limn_, 00 ( 8B n(P, M), d/ D) = M( oo ), with respect 
to the Hausdorff distance. Then it is natural to expect that X is iso­

metric to the cone CM(oo) of M(oo), and that M(oo) is closely related 
to the structure of the ends of M. 

Problem 18.1. 

(1) Urider what condition on M, do lim._, 0 ((M, eg),p) and 

limv--, 00 (8Bn(p, M), d/ D) exist ? 

(2) What kind of metric space can M(oo) = limn_, 00 (8Bv(P, M), d/ D) 

be? 

( 3) Describe the relation between M ( oo) and the structure of the ends 
of M. 

Kasue studied the case of asymptotically flat manifolds. 

Theorem 18.2 (Kasue [K2], [K3]). Let M be a complete n-dimen­

sional Riemannian manifold and p E M. Suppose 

(18.3.1) KM>koro, wherero(x)=d(p,x), J~tk(t)dt<oo, 

(18.3.2) K-M = limsup t2 ·sup{K,r I 1r C T.,(M),d(x,p) > t} < oo. 
t-+oo 

Then lim,__,o((M,eg),p) = (X,q) and limn-+o(8Bn(p,M),d/D) = 
M(oo) converge. X is isometric to the cone of M(oo). Furthermore 

there exists a sequence of Riemannian manifolds SD such that SD E 

M(n, CI A)61 for some A and C independent of D and that 

lim dL((8Bv(p,M),d/D),Sn) = 0. 
D-+oo 

If we assume K-M = 0 and 

(18.4) li Vol(Bn(p,M)) O 
msup nn > ' 
D-+oo 

in addition, then X - {q} is a fiat Riemannian manifold and M(oo) is 

isometric to sn-l /r for some finite subgroup r of O(n). 

Kasue applied this theorem to the studies of the total curvature of 

complete Riemannian manifolds ([K2] Theorem 3.2), of the Gap phe­
nomena for asymptotically nonpositively curved manifolds ((K2] Theo­

rem 4.1), and of the Busemann function of nonnegatively curved mani­
folds ((K3] Theorem 4.3). Recently Bando-Kasue-Nakajima (BKN] used 

61 The definition of this symbol is given at the beginning of section 7. 
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Theorem 18.2 to show that asymptotically flat Ricci flat Kahler man­

ifold satisfying (18.4) is asymptotically Euclidean 62 and applied it to the 
proof of Theorem 14.17. If we remove the assumption (18.4), 

(8Bn(P, M), d/ D) collapses. For example Taub-Nut 63 corresponds to 

the Berger sphere. 64 

Next we consider the case when M is a locally symmetric space of 

noncompact type. This case was studied in detail by Gromov-Schroeder 
[BGS]. We can define a boundary 8M = sn-l such that MU8M = Bn. 

For p E 8M, we put 

{ 
n-l I There exists a flat totally geodesic submanifold F } 

Lp = VE s -
of M such that v E Tp(F n 8M). 

Remark that dim LP does depend on p. For example, in the case when 

M = H2 x H2 , dim Lp = 2 if and only if p = limt___,00 (l(t), c) or = 

limt---,00 ( c, l( t)) for some c E H2 and some geodesic l: [O, oo) -+ H2 . 

Otherwise dim Lp = 1. Roughly speaking LP is determined by the Tits 

geometry of M. We define a Tits metric, dT, on 8M by 

dT(x,y)=inf Ill D , { 
l: [0,1]-+ 8M,l(0) = x,l(l) = y,} 
Vt E [O, 1] dt l(t) E Lt(t) 

where Ill denotes the length of l with respect to the standard Rieman­
nian metric on sn-i. We have 

Diam(sn-i, dT) < oo ~ rank M ~ 2. 

Theorem 18.5 (Gromov-Schroeder [BGS]). Let M be a symmet­

ric space of noncompact type. Assume rank M ~ 2. Then, 

lim (8Bn(p,M),d/D) = (sn- 1 ,dT) 
D---+oo 

lim((M,eg),p) = The cone of (sn- 1 ,dT) 
•---+O 

In [BGS], they defined a Tits metric on the boundaries of non­
positively curved manifolds in more general class. Using it, Ballman­

Gromov-Schroeder proved a beautiful generalization ofMostow's rigidity 
theorem and some other results. 

62 For the definition of these notation see [BKN]. 
63 See [Per] p 621 - 623. 
6iExample 10.2 
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In the case when rank M = 1, the limit, limv___,=(8Bn(P, M), d/ D), 
does not exist. Symbolically we can imagine that lim,___,0 ((M, 1:g) is 

equal to the cone of the sphere, sn-l, equipped with the discrete topol­

ogy.65 Rigorously speaking lim,___,0 ((M, 1:g),p) does not converge. How-

ever limn---,= ( 8Bn(P, M), Diam({rn!(p,M),d)) does. To describe its limit 

we need a notation. 

Definition 18.6. Let M be a connected Riemannian manifold and 

L c TM be a subbundle. Assume that the sections r(L) of L generate 

r(T M) as Lie algebra. We define a metric de on M by 

de= inf { Ill \e: [O, 1] --+ M, Vt i(t) EL} . 

Our assumption on L implies that de(P, q) < oo for each p and q. 

Lemma 18.7. Let M and L be as in 18.6. Define a Riemannian 

metric g, on M by 

( ) -{l/1:·g(V,V) 
g, V, V - ( ) 

g v,v 

Then we have 

if V is perpendicular to L 

ifV EL. 

lim dH((M, g,), (M, de))= 0. ,___,a 

Example 18.8. Let 1r: s2n+ 1 --+ cpn, 54n+3 --+ HPn, S15 --+ 

CaP 2 , be Hofp fibrations. Put 

L = {V E T sN I V is perpendicular to the fibre of 1r }. 

Then L satisfies the condition in 18.6. 

Remark 18.9. Gromov called de the Carnot metric. This metric 

had been used in the studies of pseudo convex domain and of Hypoel­

liptic operator. 66 There it is called control metric. Various properties of 

de is proved in [St]. 

Remark 18.10. In [Mil, Mitchel calculated the Hausdorff dimension 

of (M, de) in generic cases and proved dim (M, de) > dim M. In the 

65 The author guess that this fact is one of the motivations of the definition of 

hyperbolic group in Gromov (G12]. 
66 See for example (FL] 
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case of the Carnot metric constructed in Example 18.8, the Hausdorff 

dimension is 2n + 2, 4n + 6, 22, respectively. 

We return to the case when M is a rank one nonpositively curved 

symmetric space. 

Proposition 18.11. 

J~= ( oBD(P, M), Diam(aB!(p, M), d)) 

is isometric to sn-l equipped with Carnot metric associated to the fi­

bration sn-l -+ P, where P is the compact dual of M. 

This fact is implicit in the proof by Mostow of his celebrated Rigidity 

theorem [Mo]. The recent paper [Pa2] by Pansu is closely related to 

Proposition 18.11. 

Finally we mention a little different way of application presented in 

Gromov [Gl1]. 

Theorem 18.12 (Gromov [G11] pp.113,114). Let M be a com­

plete n-dimensional Riemannian manifold of nonnegative curvature. 

Then Assumption (18.13.1) implies (18.13.2). 

(18.13.1) For each n - 1 dimensional polyhedron P and each continuous 

map f:M-+ P, we have 

sup{Diam f- 1 (p) Ip E P} = oo. 

(18.13.2) For each D > 0, we have 

sup{Vol(Bv(P, M)) Ip EM}= Vol(BD(0, Rn)). 

Remark 18.14. (18.13.1) is satisfied if M is geometrically con­

tractible or has a compact quotient. 67 

As an example, let us consider the manifolds in Figures 16.7 and 

18.15. The manifold in Figure 16.7 does not satisfy (18.13.2) but it does 

not satisfy (18.13.1) either. On the other hand, the manifold in Figure 

18.15 has both properties. 

Outline of the proof. Let p; E M be a sequence such that (M,Pi) 

converges to an element (X, q) of M£T 0 • We decompose X into a direct 

product Rd x V. 68 

67 See Theorem 16.6. 
68 d may be equal to 0. 
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Fig. 18.15 

Lemma 18.16. Assume that, for each sequence qi of M, the limit 

of ( M, qi) does not have R d+l as a direct factor. Then V is compact. 

Sketch of the proof. For simplicity we assume that V is a Rieman­

nian manifold. 69 Then V has nonnegative curvature. Suppose that Vis 
noncompact. Then we can find an isometric embedding l: [0, oo) ___, 

V. We can find a sequence ti E [0, oo) such that lim ti = oo and 

that (M,l(ti)) converges to an element (Y,q) of M£T 0 with respect 

to the pointed Hausdorff distance. We can find qi E M such that 

lim;_, 00 dp.H((M,qi),(X,(l(ti),0)) = 0.70 By construction it is easy 

to see that there exists an isometric embedding l. R ___, Y. Then, in the 

case when Y is a Riemannian manifold, [To2], [CGrl], or [CE] Theorem 
8.16 implies that Y can be decomposed into a direct product Y = Z x R, 
because Y has nonnegative curvature. In the case when Y is not neces­

sary a manifold, we can prove Y = R x Z also by a similar argument. 
As a consequence we have lim;_, 00 (M, qi) = Z x R d+i. This contradicts 

the assumption. 

We take an integer d satisfying the assumption of Lemma 18.16 and 

consider all the sequences Pi such that limi_, 00 (M,pi) converges and 

that the limit has Rd as the direct factor. Let Rd x V be the limit. 

Lemma 18.17. There exists a numberD such that Diam V < D. 

Here D is independent of the sequences Pi satisfying the above condition. 

Proof. If the lemma is false, then there exists p{ such that 

limi_, 00 (M,p{) = (½ x Rd, (q1, 0)), and that lim 1_, 00 Diam½ = oo. 

Then it is easy to find Pi E M; such that lim(M;, p;) = V x Rd and that 

V is noncompact. This contradicts Lemma 18.16. 

69 This does not hold in general. 
70 Recall X = V x Rd. 
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Lemma 18.18. There exists C such that 

dp.H((BR(P, M),p), (BR(0, Rd), 0)) < C 

for each p E M and R > 0. Here C is independent of p and R. 

Sketch of the proof. We shall prove by induction on dim M. We 

assume that the Lemma is true for the spaces of dimension < n = dim M 

and is false for M. Then we can find a sequence Pi E M such that 

(18.19) 

We may assume that (M,pi) converges to an element (X,q) of METo. 

Let us decompose X into a direct product Rk x V. 

If k = d then Diam V < D. Therefore dp.H((BR(q,X), q), 

(BR(0,Rd),0)) < D. This contradicts (18.19). 

If k < d, we can apply the induction hypothesis to V and can prove 

that dp.H((BD(q, V), q), (BD(0, Rd-k), 0)) < oo. This also contradicts 

(18.19). 

Using Lemma 18.18 we can construct ad-dimensional polyhedra P 

and a continuous map/: M--+ P such that 

sup{Diam 1- 1 (p) Ip E P} < oo. 

Then by Assumption 18.11.1, we have d = n. Therefore we can find a 
sequence Pi E M such that (M,pi) converges to Rn with respect to the 

pointed Hausdorff distance. It follows that 

_lim Vol(BD(Pi, M)) = Vol{BD(0, Rn)) 
i--+oo 

for each D. (18.13.2) follows immediately. 

§19. T- and F- structures 

In this section we discuss the approach due to Cheeger-Gromov 

[CG4], [CG5] e.t.c. to the studies of collapsing Riemannian manifolds. 

Definition 19.1. Let M be a C 00 -manifold. A T-structure on M 

stands for a triple ( {Ui}, {Tk• }, {'Pi}) such that 

(19.1.1) {Ui} is an open covering of M, 

(19.1.2) Tk• is a ki-dimensional torus, 

(19.1.3) cpi:Tk•--+ Diff(Ui) is an effective and-smooth action, 
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(19.1.4) if Ui n Ui -/-</>,then Ui n Ui is (Tk,, 'Pi) and (Tk;, 'Pi) invariant, 

(19.1.5) 

F-structure is defined replacing open covering in Definition 19.1 by 

etale covering. Namely : 

Definition 19.2. An F-structure on M stands for the collection 

({Ui},{Ui},{Tk·},{cpi},{1/1;}) such that 

(19.2.1) {U;} is an open covering, 

(19.2.2) 1r;: iJi-----, U; is a finite Galois covering with Galois (deck trans-

formation) group = G;, 

(19.2.3) Tk• is a k;-dimensional torus, 

(19.2.4) cp;:Tk, -----, Diff(U;) is an effective and smooth action, 

(19.2.5) ¢i: Gi-----, Aut (Tk•) is a homomorphism satisfying 

g;(cpi(--f;)(x)) = cp;(('lj!;(g;)(,;))(x)), 

k· -for each g; E G;, 1; ET •,x EU;, 

(19.2.6) if U; n Ui -/-</>, then 1r- 1 (U; n Ui) is (Tk,, cp;)-invariant, 

(19.2. 7) let ¼,i be the fibre product in Diagram 19.3. Finite covers fk, 

and fk; of Tk• and Tk; act on ¼,i· Then we have 

where 'Yi E fk,, 'Yi E fk;, x E ¼,i, and <p;: fk, _____, Diff(¼,i ), 

'Pi= fk; _____, Diff(¼,i ), are induced actions. 

Diagram 19.3 
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Remark 19.4. Cheeger-Gromov [CG4] used more sophisticated ter­
minology (sheaf of groups and their actions) to define F-structure. 

Remark 19.5. In Thanks to (19.2.5) the orbit of the action on Ui 

through x E Ui is well defined. 

Definition 19.6. A polarization of the F-structure is a collection 

of connected subgroups H. c Tk• such that the following holds. 71 

(19.7.1) H. is invariant by the adjoint action of Wi(Gi)-

(19.7.2) The Hi-orbit in Ui throughp E Uinui, (which is well defined by 

(19.7.1)), contains the H;-orbit through pin Uj or is contained 

in it. 

(19.7.3) The dimension of each H.-orbit is equal to dim H •. In other 
words the action of H. is locally free. 

A polarization H. E Tk• is a pure polarization if 

(19. 7.4) the Hi-orbit in U. through p E u. n Uj coincides to the H;-orbit 

in Ui through p. In other words, dim Hi = dim Hi for each i 

andj. 

An F-structure is said to be polarized if it has a polarization and is 
said to be pure polarized if it has a pure polarization. 

An F-structure ({Ui},{U.},{Tk•},{rpi},{tP.}) is said to be pure if, 

for each p E Ui n U; the orbit of Tk• through p coincides to the orbit of 

Tk; through p. 

An F-structure is said to be of positive dimension, if all orbits are 

of positive dimension. 

Examples 19.8. 

(1) Any effective action of a torus Tk on M defines a T-structure on 

M. If Ip= {g E Tk I g(p) = p} is discrete for each p, then H = Tk 

is a pure polarization of this T-structure. Next, suppose that Ip is 

not necessarily discrete but Ip -/= Tk for each p. Let H ~ R be a 

dense subgroup of Tk. Then H defines also a pure polarization of 

this T-structure.(Compare Example 10.3.) 

(2) Let Tk - M - N be a fibration. This fibration defines a T­

structure on M if the structure group is reduced to Tk ex Aut(Tk). 

This T-structure is pure polarized. 

71 We do not assume that H; is compact. 
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(3) More generally let M be a manifold, Nan orbifold, and Tk-----> M-----> 

N be a Zeifert fibration. 72 This fibration defines an F-structure 

on M if the structure group is reduced to Tk ex Aut(Tk). This 
F-structure is pure polarized. 

(4) Let /:M-----> N be as in Example 10.11. Put Tk = c~:;t'J:...A. Then, 

using the action of Tk to the fibres, we can define a pure polarized 

F-structure on M. 

( 5) Let /: M -----> X, f: FM -----> Y be as in the conclusion of Theorem 

12.7. By {4}, FM has a pure polarized F-structure, which is invari­
ant by the action of O(n). Hence it induces a pure F-structure of 

positive dimension on M. The author does not know whether this 

F-structure admits a polarization or not. 

(6) Let M 3 = (T 2 -B 2 ) x S 1 UT2 S 1 x {T2 -B 2 ) be as in Example 17.4. 

We take an open covering M = U1 U U2 U U3 such that U1 ~ U3 ~ 

(T 2 - B 2 ) X S 1 , U2 ~RX T 2 • We put k1 = k3 = l,k2 = 2. Then 

Tk• acts on Ui in an obvious way. These actions give a T-structure 

on M 3 • Hi= Tk, is a polarization of this T-structure. We can prove 

that this structure is not pure polarized. A similar example can be 

constructed from Examples 17.7, 17.12. 

(7) (Januszkiewicz 73 ) Let T 2n act on CP 2n by 

(ei91, •.. 'ill2n)[zo, ... ,Z2n] = [zo, eill1z1, •• •' eill2,. Z2n], 

where [z1 , · · · , Zn] is a homogeneous coordinate. This action has 

2n + 1 fixed points Pi = [O, · · ·, ~' · · ·, O], i = O, · · ·, 2n. Put Bi = 
• 

B.(p, CP 2n ). Take two copies M1, M2 of CP 2n - UBi. Define 

/: 8M1 -----> 8M2 by 

if [zo, ... 'Z2n] E 8Bi, i =J 2n 
f([zo,·· ·,Zn])= ! [zo, · · ·, Zi,~Zi+i / Zi) · Zi, · · ·, Z2n] . 

[(zo/ Z2n)·Z2n, Z1, · · ·, Z2n] 

if [zo, ... 'Z2n] E 8B2n• 

We obtain an orientable manifold M by attaching M1 and M2 by f. 
Put U1 = M 1, U3 = M2, U2 = a neighborhood of 8M1 in M. Then 
T 2n acts on U1 , U3 and T 2n+1 acts on U2. These actions define a T­

structure on M. We can prove that this F-structure does not admit 

a polarization, as follows. By a simple calculation we see that. the 

72 See [Or] 5.1. 
73 See [CG4] Example 1.9. 
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signature of M is equal to 2. Hence by generalized Gauss-Bonnet 
formula the minimal volume of M is not 0.74 On the other hand, 
Theorem 19.10 below shows that if a manifold admits a polarized 
F-structure then its minimal volume is 0. 

Remark 19.9. Example 19.8 (7) shows that signature is not an ob­
struction for the existence of an F -structure of positive dimension. On 
the other hand, (CG 4] proved that the Euler number of M vanishes if 
it has an F-structure of positive dimension. 

Theorem 19.10. (Cheeger-Gromov [CG4]). Let M be a C 00 -

manifold. Suppose that M admits an F-structure of positive dimension. 

Then there exists a family of metrics g. on M such that 

(19.10.1) 

(19.10.2) 

supini(M,g.) < e, 

IK(M,g.)I::; 1. 

If we assume that the F-structure is polarized, then we have 

(19.10.3) lim Vol(M, g.) = 0. 
e-+0 

If we assume that the F-structure is pure polarized, then we have 

(19.10.4) sup Diam(M, g.) < oo. 
•E(0,1) 

Idea of the proof. Using the .proof of Proposition 10.3, we can find 
a desired family of metrics on each chart Ui. The problem is how to 
patch them together while keeping Condition (19.10.1). On Ui n U; we 
have two families of metrics, one is obtained by shrinking each orbit of 
T'"· and the other is obtained by shrinking each orbit of T'"; . Hence if 

we patch the metrics directly, then the curvature goes to infinity. To 
avoid this, we expand the direction normal to both T'"· and T'"; orbits. 
The detail is found in (CG4]. 

Theorem 19.11. (Cheeger-Gromov (CG5]). There exists a posi­

tive number En depending only on the dimension n satisfying the follow­

ing. Let M be a complete Riemannian manifold with IKMI ::; 1. Then 

there exists an open set U of M such that 

(19.11.1) Ifp EM - U then injM(P) > e, 

74 See [G9]. 



Hausdorff Convergence 231 

(19.11.2) There exists an F-structure of positive dimension on U. 

Remark 19.12. Theorem 19.11 gives a converse to the first part 

of Theorem 19.10. Namely if we assume injM < En, then M has an 
F-structure of positive dimension. 

Open Problem 19.13. Suppose that M admits a family of met­

rics g, satisfying (19.10.1), ... , (19.1.3). Does M admit a polarized 

F-structure of positive dimension ? 

Suppose that M admits a family of metrics g, satisfying (19.1.1), 

... , (19.1.4). Does M admit a pure polarized F-structure of positive 

dimension? 

The question we suggested in Examples 19.8 (5) is closely related to 

the second problem. 

Sketch of the proof of Theorem 19.11. We prove by contradiction. 

Let (M,, g,) be a family such that jK(M.,g,) I ~ 1 but M, does not satisfy 

the conclusion of Theorem 19.11 for En = E. Take points p, E M, such 

that inj(M.,g,)(P,) = b, < E. By Theorem 6.6, we may assume that 

((M.,g,/b,),p,) converges to a space (X,p) with respect to the pointed 

Hausdorff distance. Since inj(M.,g,/o,)(P,) = 1 and since jK(M.,g,/o,) I ~ 
b, --+ 0, it follows that ( X, p) is a flat Riemannian manifold and that 

injx(p) = 1. Therefore the soul theorem 75 for nonnegatively curved 

manifolds implies that X is diffeomorphic to a vector bundle over a 

totally geodesic compact submanifold, the soul, S, of X. Since X is 

flat, so is S. It follows that a finite covering of X admits an action of 

a torus. On the other hand, by the proof of Theorem 3.2 we see that 

a neighborhood of p, in M, is diffeomorphic to a neighborhood of p in 

X. Hence we can find a neighborhood U of p., its finite cover fJi and 

an action of a torus Tk• on fJi. Thus, it suffices to make these actions 

compatible in the sense of Definition 19.2. We omit the detail of the 

argument of this part, which can be found in [CG5]. Essentially this 

follows from the topological rigidity of compact group action. 76 

In [CGl], [CG2], [CG3], [CG6], Cheeger-Gromov gave interesting 

applications of Theorem 19.11 to the study of Gauss-Bonnet type the­

orems for open manifolds with finite volume. Unfortunately this article 

is already so long that we have no room for mentioning them. 

75 (CGrl], (CE] Chapter 8 
76 See Theorem.6.9. 
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Note added in proof. Grove-Petersen-Wu said that they proved 

Theorem 14.9 but not 14.6. 14.6 is now a conjecture. 
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