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Abstract. We shall measure how thick a basic set of a C1 axiom A diffeomorphism
of a surface is by the Hausdorff dimension of its intersection with an unstable
manifold. This depends continuously on the diffeomorphism. Generically a C2

diffeomorphism has attractors whose Hausdorff dimension is not approximated by
the dimension of its ergodic measures.

0. Introduction
The Smale horseshoe [16] is an invariant set A (a 'basic set') of a certain axiom A
diffeomorphism of a surface. It behaves like a saddle in that many orbits approach
for a while and then leave a neighbourhood of A. Bowen and Ruelle [2], [5], showed
that, for C2 diffeomorphisms / satsifying axiom A, the set WS(A) of points that do
approach A has Lebesgue measure zero. However, [3] exhibits a C 1 diffeomorphism
where WS(A) has positive Lebesgue measure. Here we consider a more delicate
way to describe how substantial the basic set A is. The unstable manifold Wu(x)
of a point x of A meets it in a Cantor set. We calculate the Hausdorff dimension
of this set and show that it is independent of x and varies continuously with the
C1 diffeomorphism /. We also show that, generically, a C2 diffeomorphism has
attractors whose Hausdorff dimension is not approximated by the dimension of its
ergodic measures! Finally we consider the bifurcation from Anosov to DA and
show that the Hausdorff dimension of the attractor is continuous across the
bifurcation.

1
X

FIGURE 1

1. Hausdorff dimension in an unstable manifold
Let M = M2 be a compact surface without boundary and let /eDiff1 (M) satisfy
axiom A and the No Cycle Property (which are sufficient conditions for ft-stability
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[17]). Let A be one of the basic sets for / and let A(g) be the corresponding basic
set for g in some C1 neighbourhood of/. We denote by Wfodx) and Wioc(x,g)
the local unstable manifolds of a point x under the diffeomorphisms / and g.

Consider the set

We may regard the Hausdorff dimension of this set as a measure of the 'fatness'
of the basic set A(g) in the unstable direction and hence of its influence on the
nearby dynamics. Hausdorff dimension is defined for a metric space X as follows,
see [10, chapter 7]. For a non-negative real number p the Hausdorff p-measure of
AT is

CO

-o inf X [diam (A,)]p

where the infimum is taken over all covers of X by a countable collection of subsets
Ai, A2, A3,..., each of diameter less than e. Then the Hausdorff dimension
HD(AT) is denned by

HD(AT) = sup {p; mp(X) = oo} = inf {p; mp{X) = 0}.

We shall also need the pressure of a continuous function [14], [18]. Let C(A, K)
denote the continuous real-valued functions on the basic set A of / with the sup
norm. Then pressure P: C(A, R) -* IR is denned by

( n — 1 \

X t//(f'x)\,
_ ;=o /

where the supremum is taken over (n, 8)-separated sets E and S is an expansive
constant for/|A. The variational principle [18] gives an alternative description of
pressure as

where the supremum is taken over/-invariant Borel probability measures fi. From
this it follows easily, or see [18], that

P is convex and, for a strictly negative function </s the map

is strictly decreasing.
Now we can state our first theorem.

THEOREM 1. Let A. be a basic set for a C1 axiom A diffeomorphism f :M -»M
with (1,1) splitting

Define <j> :WU(A)->U by

<t>(x) = -\og\\Dfx\E
u
x\\.

Then the Hausdorff dimension of Wu(x) D A is given by the unique S for which
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8 is independent of x e A, and O s ^ s l , Moreover, S depends continously on f in the
C1 topology on diffeomorphisms.

Proof. For purposes of calculating Hausdorff dimension it does not matter which
Riemannian metric we choose on M since any two are Lipschitz equivalent so let
us choose a metric 'adapted' to/, [12]. Now <f> is a negative function and so
is strictly monotonically decreasing, [18].

and, for C2 diffeomorphisms /, we have P(<£)^0 by [2]. Hence there is a unique
value S of t for which P(t<t>) = 0 and, at least for / of class C2, it satisfies 0<<5 < 1.

Given any t > S choose e > 0 such that

P(t(<t>+e))<0.

Choose a Markov partition <U for / | A so fine that <f> varies by at most e on the
intersection of W"(A) with the region of M enclosed by each rectangle. We also
need each rectangle to be enclosed by four intervals of stable and unstable manifold
and we do not allow rectangles to consist of finitely or infinitely many pieces
between each other. (This 'connected' or 'convex' property can be achieved for
our two-dimensional case by modifying the construction given in [2, p 81] to divide
Tj into up to nine parts for each neighbour Tk as in figure 2(a) instead of four as
in figure 2(b). Alternatively see [15].)
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Consider a compact set

We shall show that the Hausdorff f-measure of W is zero. Since each unstable
manifold meets A in a countable union of such pieces it cannot then have dimension
more than S.

The compact set W is in a C1 submanifold of dimension one and the metric on
that as a Riemannian manifold in its own right is Lipschitz equivalent to the
restriction to W of the metric on M. Thus the Hausdorff dimension of W will be
the same for the two metrics and we may choose to work with the former.

Choose some large n and consider the cover <%„ of W by n -cylinders. These are
intervals / so that, for each i with 0 < / < n, all y in / have f'y in the same rectangle.
By the Mean Value Theorem there is some particular y e / for which

diam / = diam (/"/) • \\Dfn
y ^"f 1 = diam (/"/) • exp "l

i = 0

This point y could be wandering so choose some z el f)A. Then

exp"l <^(/'y)^exp"l
i=0 i=0

Now /"/ stretches across some rectangle so
n - l

diam/<m exp £
;=o

where the constant m is the maximum width of any rectangle.
Let E be the set of these points z chosen one from each interval / in the cover

°Un of W by n- cylinders. The set E is arranged in some order along W and we write

where Ex and E2 are the odd and even numbered points in this order in E. Now
Ei and E2 are both (n + 1, 5)-separated sets where 8 is the minimum distance apart
of any two disjoint rectangles. This uses the 'convexity' property of the rectangles.
For the cover *%„ of W we find

n - l

£ (diam/)'<m' £ exp £ t{4>(f'z) + e)

<2m'max £ exp"l t(4>(fiz) + e)

<2m'sup I exp I f(<jH/"x) + e)
n

< 2 m ' c s u p I exp I t(<f>(f'x) + e),

where c is a constant involving the norm of <£ and the supremum is taken over
(n +1, <5)-separated sets £". Now this expression has the negative growth rate
P{t{<(> +e)) as n increases so the Hausdorff t-measure of W is zero as claimed and
the dimension of W is at most <5.
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On the other hand consider t = 8. P(8<p) = 0 and 8<f> has an ergodic equilibrium
state ix, say, (which need not be unique when / is C1). Thus

By [11] the subset of W consisting of points that are future generic for (JL has
Hausdorff dimension hjx*. where Xn is the positive Lyapunov exponent for fi. But
X^ is just -n,(<t>) so this subset of W has Hausdorff dimension

and the dimension of W is precisely 8. This proof is different from [4, lemma 10]
because our 4> need not have any Gibbs state.

It remains to prove that 8 depends continuously on / in the C1 topology. That
will then imply that 5 < 1 for / C1 since this holds for C2 diffeomorphisms and
they are dense in the C1 topology. For any g close enough t o / in the C1 topology
there is a homeomorphism h:A-* A(g) satisfying hf = gh. Now h only moves points
a small distance and so Dghx is near Dfhx, since g is C1 near /, and this is near Dfx,
since / is C1. To compare Eu(g) on A(g) with E" on A consider a family of cones
in TAM containing E", invariant by Df. Extend this to a neighbourhood of A still
invariant by Df. This family is invariant by Dg and so contains E" (g). Hence the map

4>gh:A^U x^-\og\\Dghx\E
u(g)\\

is close to <$>: A->R. The conjugacy h makes Pg(t<f>g) vanish for the same value
of t as Pf(t(<f>gh)) and this is near the value 8 that makes P(t<f>) vanish since
P:C(A, R)-»R is continuous. Thus the Hausdorff dimension of W(hx,g)r\A(g)
is near that of W" (x, f) (1A for g Cl near /. •

From now on let 8 and <t> be denoted by 8U and <f>". In [3] Bowen constructed a
C1 diffeomorphism with a horseshoe of positive measure. This horseshoe is a
product of sets of positive Lebesgue measure in a stable and an unstable manifold
and so has 8U = 1. We now show how unusual this is.

COROLLARY 1. For a Cl open dense subset of the C1 axiom A no-cycle diffeomorph-
isms of a surface each basic set that is not an attractor has 8U<1.

Proof. The property holds for a C2 diffeomorphism / by [2, theorem 4.11] which
says that

if the basic set is not an attractor. By the continuity property in theorem 1 we still
have 8U < 1 for a CJ neighbourhood of /. The union of these neighbourhoods gives
the required C1 open dense set. •

COROLLARY 2. In the situation of theorem 1 the Hausdorff dimension of Ws(x) D A
is the unique number 8S, 0 < <5S < 1, for which

where <j>s: A -* R is the negative function given by

<i>s(y) = log\pf\Es
y\\.

Proof. Apply theorem 1 to/"1 . •
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C O R O L L A R Y 3. The Hausdorff dimension 8U in theorem 1 satisfies

-huv/m {<t>")^8u< htop/(htop -P(<f>")),

where htop is the topological entropy of f\A and m{cf>u) is the integral of 4>" with

respect to the measure of maximal entropy.

Proof. The variational inequality for pressure gives

0 = P(8u<t>u) = sup , (*„ + 8uv (</>"))

FIGURE 3

from which we have our first inequality. The second comes from the convexity,
whereby

t2 = htop/(htop-P(<l>u))>8u. •

Remark. Notice that m(</>") < 0 , that m is the unique equilibrium state of the zero
function, and that P{<f>")<0. Indeed, Bowen and Ruelle showed that P{<t>") has
the following significance for C2 diffeomorphisms [2]. The Lebesgue measure of
the set of those points whose orbits remain within e of A from time 0 to n decays
like expnP(cf>u). Since the pressure curve

is convex there is no precise relation between 8U and P(<f>u) although they both
indicate the thickness of A. In fact the variational inequality shows that the straight
lines

t^>hxop + tm{<t>u) and t^h^+tfj. (</>"),

where y. is an equilibrium state for <j>, lie below the curve t<-*P(t<f>). They are
actually tangents to the pressure curve at t = 0 and 1 provided the curve is differenti-
able there. The upper and lower bounds for Su in corollary 3 are now equal precisely
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when

and this implies that /iM = h,op. In particular this happens when <f> is constant as in
the case of an algebraic Anosov diffeomorphism of T2.

2. Hausdorff dimension of invariant measures
Recently, Young [20] has proposed to define the Hausdorff dimension HD(/i) of
a probability measure fx. as

She proves:

THEOREM (Young). Let f:M2-*M2 be a C2 diffeomorphism or a C1 axiom A
diffeomorphism. Let /x be an f-invariant ergodic Borel probability measure with
Lyapunov exponents A i > 0 > A 2- Then

We shall investigate the relationship of this to the Hausdorff dimension of the basic
set on which fi is concentrated. Let A be a basic set of a C2 axiom A diffeomorphism
of a surface. Assume that A is not just a periodic source or sink in which case it
has Es and E" one-dimensional. Young's formula gives

for an ergodic measure fj. on A. Now the canonical coordinates are Lipschitz [9]
and A is locally Lipschitz equivalent to a product of metric spaces

By [1, theorem 2] and [4, lemma 10], the Hausdorff dimension of this product is

Su+Ss.

Pesin has als,o considered this question in [13].
Let IJLU, fjus denote respectively the unique equilibrium states of 8u<f>" and 8^s. Since

P(8u<f>u) = 0

we have

A ( .+«#W")s0 or -

with equality only for fi = fj.u. Similarly

with equality only for /u. = fis. Adding the inequalities we obtain

with equality only if (JL = fiu = /xs. As in [2, corollary 4.15], /u,u = /J.S fails for / in a
C2 open dense set. Now

is a positive continuous function of //. and h^ is an upper semicontinuous function
of fj. (since /1A is expansive [6]) so HD(fi) depends upper semi-continuously on
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fi. and attains its supremum. Thus, if /J,U ^ /u.s,

sup,. H D ( M ) < H D ( A ) .

As in the proof of theorem 1, for g in some prescribed neighbourhood of / we have

||<^°/t-<£"||<e and Ul°h -<£s||<e

where h : A-» Ag is the conjugacy. Then

1 1 e e

Hence sup^ HD(/z) depends continuously on the C2 difTeomorphism /. We can
summarise this as:

THEOREM 2. Let f: A-> A be a basic set of a C2 axiom A diffeomorphism of a
surface. Then

HD(A) = 8U+8S

varies continuously with f. So does supM HD(/ti) taken over ergodic measures /u. on
A and the former is strictly greater than the latter except on the nowhere dense set of
those diffeomorphisms for which fj,s = fj.u. •

Remark. Yorke's suggested formula [7] for the dimension or capacity of an attractor
with exponents Ai>0>A2 (with Ai + A2<0) was l-(Ai/A2) and when Ai, A2 are
calculated for the Bowen-Ruelle measure v this agrees with Young's formula for

HD(i/) = M l / A , - l / A 2 )
since here kx = hv by P(<f>u) = 0. (See [20] for discussion of the relationship between
capacity and Hausdorff dimension.) Thus our theorem 2 says that for an open dense
set of C2 axiom A diffeomorphisms of surfaces Yorke's formula gives too low an
answer. One would expect to observe this, for example, for an Anosov diffeomorph-
ism of the torus which is a perturbation of a linear one and has <t>s constant but
<!>" not. An invariant subset of an attractor that does have full dimension is

f 1 "~' 1 ° _
\xe\;— X 8f>x^>v and - I 8px^>v asrc->oo
I n ,=o n ,^-n+i

where v \% the equilibrium state for 8$s. Gurevich and Oseledec put a dissipative
measure here in [8].

3. Continuity across a bifurcation
By theorem 2 an attractor of a C2 Axiom A diffeomorphism of a surface such as
a DA attractor [19] has Hausdorff dimension 1 + 8S and by theorem 1 this varies
continuously with /. So we can ask whether the dimension of the attractor is
continuous across the bifurcation from Anosov to DA.

Let / , , 0 < ? < l bea path through C2 diffeomorphisms of the torus T2 starting
at a linear Anosov diffeomorphism f0 and ending at a DA example fx with every
/,, agreeing with f0 outside a fixed neighbourhood V of the origin. Assume that
each fq preserves the stable manifolds of f0 which are then its own stable manifolds
(except for splitting the line though the origin in two).

https://doi.org/10.1017/S0143385700001966 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001966


Hausdorff dimension for horseshoes 259
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FIGURE 4

Let L denote W*(0, f0) and consider/„\L. Figure 4 shows the graph of fq\L for
three values q <qo<q+ of q where q0 is the bifurcation value. It also shows below
these graphs the behaviour of fq on L and on a neighbourhood of the origin. The
saddle-node fixed point p of fqo is fairly near 0 in L.

THEOREM 3. Under the above hypotheses on fq, 0<q < 1, the Hausdorff dimension
of Q(fq) is a continuous function of q.

Proof. We have already proved continuity for q<qo and for q >q0. So it remains
to prove that the dimension tends to 2 as q -+qo+ and that n(/,o) has dimension
2. For the first of these note that the new fixed point p2(q+) has its contracting
eigenvalue near 1. Specifically,

from below as q -*qo +. The delta measure at this fixed point is invariant, has zero
entropy and integrates </>s

q to give <f>q(p2(q)) which tends to 0 as q -*qo + . Now

Hence Ss -»1 as q-»qo+ and so the dimension of Cl(fq), which by theorem 2 is
1+SS, tends to 2 as q -»<jo+ as required.
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For the second statement notice that il(fqo) is the complement of the open
half-space to the left of p0, which consists of points that wander away from p0. The
dimension of fl(/qo) in a stable manifold is at least the Ss associated with a hyperbolic
invariant subset A of H obtained by deleting the orbit of a very small open rectangle
containing p0. This Ss is arbitrarily close to 1 because the pressure of ^ 0 on A can
be seen to be arbitrarily near 0 by considering the invariant atomic measure on a
periodic orbit in A that spends most of its orbit near the fixed point p0 at which
<f)s

qo is 0. Thus O(/q) has Hausdorff dimension 2 at q = q0 and the dimension is a
continuous function of q. •
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