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HAUSDORFF DIMENSION IN
GRAPH DIRECTED CONSTRUCTIONS

R. DANIEL MAULDIN AND S. C. WILLIAMS

ABSTRACT. We introduce the notion of geometric constructions in Rm gov-
erned by a directed graph G and by similarity ratios which are labelled with
the edges of this graph. For each such construction, we calculate a number
a which is the Hausdorff dimension of the object constructed from a realiza-
tion of the construction. The measure of the object with respect to fl"* is
always positive and <r-finite. Whether the ^""-measure of the object is finite
depends on the order structure of the strongly connected components of G.
Some applications are given.

A geometric graph directed construction in Rm consists of
(1) a finite sequence of nonoverlapping, compact subsets of Rm: J\,...,Jn such

that each J, has a nonempty interior,
(2) a directed graph G with vertex set consisting of the integers l,...,n and

similarity maps Tij of Rm, where (i,j) E G, with similarity ratios Uj such that
(a) for each i, 1 < i < n, there is some j such that (i,j) E G,
(b) for each i, {T{j(Jj)](i,j) E G} is a nonoverlapping family and

(i) Ji2\J{T<AJ3WJ)eG}
and

(c) if the path component of G rooted at the vertex iy is a cycle:

[iy,...,iq,iq+y = iy],
then

9

(2) n 'w*+i < l
k=l

We will generalize the setting to ratio graph directed constructions later in the
paper.

Each geometric construction naturally determines a compact subset K of Rm.
This set, which we will term the construction object, is pieced together by following
the graph 67 and applying the maps coded by the edges to the corresponding sets. To
make explicit how this is done we will first formulate how the pieces are generated.
For each t, let 3£(Ji) be the space of compact subsets of Ji provided with the
Hausdorff metric, pn-
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812 R. D. MAULDIN AND S. C. WILLIAMS

THEOREM 1. For each goemetric construction, there exists a unique vector of
compact sets, (Ky,...,Kn) E \~\"=y 3T(Ji) such that for each i,

(3) Ki = \J{TiJ(Kj)\(i,j)EG}.

The construction object is defined as

n

(4) K=\jK,.
i=l

As the proofs of our theorems show, it is really only the regular part of Ji that
counts. Thus, we could assume each Ji = cl(int Ji) to begin with. Our main results
concern the Hausdorff dimension a of the set K and the measure of K with respect
to the corresponding Hausdorff measure ^a. In order to formulate these results,
we must present another fundamental tool associated with a construction and set
some terminology.

The weighted incidence matrix or construction matrix A = Aq associated with
a graph directed construction is the n x n matrix defined by

(."/ A = [ti,j]i,j<n,

where we make the convention that tij = 0 if (i,j) £ G. For each 0 > 0, let
A/3 = Aq,0 be the nxn matrix given by ap-,i,j = if . Also, let $(/?) be the spectral
radius of Ap. Of course, according to the Frobenius-Perron theorem, $(/?) is the
largest nonnegative eigenvalue of Ap. It is known that $ is continuous.

THEOREM 2. $(0) > 1, 4> is continuous, strictly decreasing, and lim/3_oo $(0)
= 0. fndeed, there is a number c, 0 < c < 1, such that for all 0 > 0 and £ > 0,
$(0 + £) <c£$(0).

For each graph directed construction, let a be the nonnegative number such
that $(a) = 1. We will show that the dimension of the construction object K is a.
This will be done by showing that K has positive 3?a measure and, moreover, the
measure of K is either finite or (T-finite depending on the structure of the graph G.
We set some terminology concerning graphs.

A cycle is a directed graph H for which there is a closed path which passes into
every vertex exactly once and such that every edge of H is an edge of this path. A
directed graph H is said to be strongly connected provided that whenever each of
x and y is a vertex of H, then there is a directed path from x to y.

A strongly connected component of G is a maximal subgraph H of G such that
H is strongly connected. Of course, the strongly connected components of G are
pairwise disjoint. It is possible that they do not cover G. It is also possible for
such a component to consist of a single vertex looped on itself. A vertex is not
considered to be strongly connected unless it is looped on itself.

REMARK. If 67 is a construction graph, then G must have at least one strongly
connected component.
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HAUSDORFF DIMENSION IN GRAPH DIRECTED CONSTRUCTIONS 813

A classical theorem states that determinants may be factored over the strongly
connected components. In our case, we have

FACTOR THEOREM. If Hy,H2,...,H9 are the strongly connected components
ofG, then

s

(6) det(7 - AgiP) = n det(I - AHi,p).
t=i

The path component of G rooted at -a vertex i consists of all vertices j such
that there is a directed path from i to j. To say that a path component is a cycle
means that the subgraph of 67 over that component is a cycle. Clearly, if a path
component is a cycle H, then H is a strongly connected component of G. For each
subgraph H of G, let V(H) be the vertex set of H. However, we will normally
write i E H instead of i E V(H).

We give a sufficient condition for %"*(K) to be finite. The development of
Hausdorff measures may be found in Falconer [6] or Rogers [8].

THEOREM 3. For each graph directed construction such that G itself is strongly
connected, the Hausdorff dimension of K, the construction object, is a, where
3>(a) = 1. Moreover,
(7) 0<^a(K) <+oo.

In order to analyze a construction, we get the following notation. Set G(l) =
{1,..., n} and for each integer p > 2, set

(8) G(p) = {(iy, ...,ip)E{l,..., nY\(ij, ij+y) E G, j = 1,... ,p - 1}.
Also, set

CO

(9) G* = |J G(p).
v=i

and

(10) G°° = {(iJ)E{l,...,n}N\(iJ,iJ+1)EG,j = 1,2,3,...}.
We use the partial order on G* U 67°° given by a < r provided r extends a.

At this point let us mention that there is some overlap of our Theorem 3 and
some results of T. Bedford [11]. Bedford considers the case where the maps Tij
depend only on j and the sets Jj are convex. It is not determined whether the %"*
measure is finite or cr-finite, but rather that it is equivalent to the Gibbs measure.

We turn now to the interesting case when A is not assumed to be irreducible.
If the construction matrix A is not irreducible, then the measure of K depends
on the order structure of the strongly connected components of G. Let SC(G) be
the set of all strongly connected components of G. Each H E SC(G) defines a
graph directed subconstruction. This subconstruction, based upon the sets Ji such
that i E V(H), has directed graph H, and the similarity maps are those from the
original construction. Clearly, a subconstruction satisfies conditions 2(a) and 2(b).
We will verify later that condition 2(c) is also satisfied. For each H E SC(G), let
an be the number 0 such that $h(0) = 1- We partially order SC(G) by stating
that Hy < H2 provided there is a path i = {gy,. ■ ■ ,gk} E G* such that gy E Hy
and gk E H2.

Our most general result presented here can now be stated.
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814 R. D. MAULDIN AND S. C. WILLIAMS

THEOREM 4. For each graph directed construction, a = max{otH\H E SC(G)}
and K has positive a-finite £Pa measure. Further, <%"*(K) < oo if and only if
{H E SC(G)|a# = a} consists of pairwise incomparable elements.

For each a = (iy,... ,ip) E G* with |<t| = p > 2, set

(11) Ta = T0.(1),0.(2) O ••■ oTCT(p_1))0.(p),

p-1

(12) ta =  || <o-(t),o-(i + l),
i=l

and,

(13) Jo-=Ta(Ja(p)).

These sets form a Cantor scheme. Thus, for p = 1,2,3,... the sets {Ja]a E G(p)}
are nonoverlapping and if rr and r are in G* and a < r, then JT C Ja. In addition,
for each a in G(p), int(Ja) / 0 and

(14) diam Ja = ta diam Ja( \a\y

Note that the construction object K can be expressed as

oo

(15) K=f]       (J    Ja   .
P=l  [o-6G(p)

Our analysis of the dimension and measure of K depends upon a detailed study of
the natural approximating sums determined by the nth level sets Ja in (15).

LEMMA I.   If t = [ii,Z2, • • • ,i\,i\+y = iy] is a cycle in G, then

(16) tT < 1.

PROOF. Let H be the strongly connected component of G with r C H. If r is
the path component of iy, then by condition 2(c), (16) holds.

Otherwise, r is a proper subset of H and for some vertex is of r and some
j E H\r, there is an arrow from i3 to j.

Consider •/(»!,...,»„«,+,) and J(il,...,isj)- Since these sets are nonoverlapping
nonempty subsets of Ji, with nonempty interiors, Jilt...,it,i, = T8lii2 o- • oT^;, (Ji,)
is a proper subset of Jj,. Therefore, tT < 1, as was to be proved.

For each cycle t in G, let #r be the number of vertices in the subgraph r. Set

(17) r = sup{(«T)1/#T|r is a cycle}.

Lemma II.
-i i/p

(18) lim      sup   ta        < T < 1.
P^°° |_o-€G(p)

PROOF. Fix a = (iy,.. .,ip) E G(p), with p > n. By the pigeon-hole principle
some index is repeated. Choose a cycle in a, factor the product over the cycle from
the entire product, and remove the cycle from a except for one of the repeated
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HAUSDORFF DIMENSION IN GRAPH DIRECTED CONSTRUCTIONS 815

indices.   We again obtain a path.   Continue.   Thus, for each cycle c, there is a
nonnegative integer qf such that

(19) tc = \{tftT,
t

where r EG* and |t| < n. Thus,

(20) ^n[(<r),/#f#fl,,^<rS(#t"f<r.

Taking the p-root of both sides and then letting p go to infinity, we have (18).
PROOF OF THEOREM 1. Define the map * of n"=i^W mto itself by

(21) 9(M1,...,Mn) = (N1,...,Nn),

where

(22) Ni = [J{Ti,j(Mj)\(i,j)EG}.
By recursion, the pth iterate of * satisfies

(23) W(My,...,Mn) = (*Pl(My,...,Mn))?=y,

where

(24) Vpl(M1,...,Mn)=      [J     Ta(M„{p+1)).
o-6G(p+l)

o-(l)=i

Consider the space rL?=i ^(Ji) provided with the distance d given by the maximum
of the Hausdorff distance between corresponding coordinates. Thus,

d(V>(Ai,...,An),V>(By,...,Bn))

( \= rna*PH |J      T„(A<r(P+y)),      lj      T0(Ba{v+1))\
/ot-x o-6G(p+l) o-6G(p+l) I
(25) V   <r(l)=i <r(l)=i J

~ ?<Z*€1Gif+y) ̂^(^(P+D'5-(P+1))
o-(l)=t

<d((Ay,...,An),(By,...,Bn))    max    t„.
o-€G(p+l)

By Lemma II, if p is large, Vp is a contraction map of FJiLi ^(Ji)- Thus, W and
therefore, V has a unique fixed point.

NOTE. Let us indicate the relationships between our results and those of Hutch-
inson [2] (in Rm) and Moran [1]. Their results may be obtained as follows. Assume
G is complete and Jy,..., Jn are pairwise similar. For each i, let Tj be a contraction
with similarity ratio r^ < 1. Set Ttj = Ti. Now, from Theorem 1 we find the vector
of sets Ky,..., Kn. Setting K = (J"=1 Ki, we have

(26) Ki = Ti(K).
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816 R. D. MAULDIN AND S. C. WILLIAMS

Therefore, this is Hutchinson's set in this case. Also, in the analogous ratio setting
which is given at the end of this paper, we have

r 0     P 0iri    ri    •••   ri

(27) Ap=     :
r0     r0 r0.' n     ' n      • • •     ' n .

Since all the columns are identical, $(/?) = X)"=i rf and the dimension a oi K
satisfies

(28) X>? = 1-
i=l

This is Moran's fundamental formula.
In order to prove Theorem 2, we recall that if u = (1,..., 1) in Rra, then

(29) lim \\Apu\\\/p = $p.
p—*oo        H

By recursion, we have, for p — 1,2,3,...,

(30) \\APpu\\y=     £     C
o-eG(P+i)

Let fl = {1,... ,n}z and let S be the shift operator on fl. Let M be the set of
all shift-invariant probability measures on fl with the weak topology and define
ir: ft —► {1,... ,n}2 by ir(u) = (uj(1),uj(2)). Let A be the standard Haar measure
on ft. Thus,

ll^lli=np+1     J2     (1/"P+1)^
o-eG(p+l)

(3i) =«p+i£n*W))dAM-
•/n j=0

Also, let h(p) denote the entropy of an element of M [4, 5].

Lemma III.

(32) log $(/?) = sup \0 [ log t„{u) dp(uj) + h(p) \ .
n€M I   Jn )

PROOF. For each e > 0, let Ap,£ be the n x n matrix with entries

(33) ti(i,j) = tiJ + £-1G'd,J),

where G'= {1,... ,n}2\G.
Let \p,e be the largest nonnegative eigenvalue of Apt£. We have lime_o^/3,£ =

Xp = $(/?') and

(34) logA/3,£=  lim -log \\AP0  u\\y.
p—>oo p ^'
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HAUSDORFF DIMENSION IN GRAPH DIRECTED CONSTRUCTIONS 817

Now,

Ke«lli=nP+1/nC(S,(w))dAM
•/ni=o

(35) = np+1j^exv   p j ^X>g^(s>M) \    dA(uj).

For each w = (u>,)^_00 £ fl and positive integer p, set

(36) SJp = (...,u>i,...,u)p,u>i,...,u;p,...)

and define a probability measure Rp^ on fl by

1P_1(37) i?p,w = -X^S'^p)'

where <5n is the unit mass at u. Clearly, RptUJ is shift invariant. Note

f 1P_1/   fog^,7r(n) dRp,u(r)) - - 5Zl0g<£,7r(SJ(a,))
(38) Jn P i-o

= -(fog^^tup.tu!) -fog^.TrfSP-Uw)))-

So,

(39) ||Ap£u||1-np+iy Lpp|/3y logtEMv) dRp^r,))

• (t£,n(SP-i(u))/te,(wp,w,))0 dA(uj).

Let Me = max{tEi(ij)} and m£ = min{te^ij^}. Thus,

(40) HA^ull! < np+1(M£/m£)P J^exp \P0 j^ogteMn) dRp,u(v)   dA(uj).
Therefore,

hm -logllA^ullx

(41) i    u    r   f 11< logn + lrrn^ - log < /  exp \p0 /  logi£^(„) d^P)W(r?)   dA(w) ^ .

We wish to apply Varadhan's theorem [3, Theorem II.7.1]. For each p, let ap = p
and let Qp be the probability measure defined on the Borel subsets A of M by

(42) Qp(A)=A({uj]Rp,ueA}).

Thus, Qp is the image measure of A under the Borel measurable map uj —► i2pjW
and by the ergodic theorem, {Qp}^ converges to 8\. It is shown in [3, Theorem
11.4.4(a)] that {Qp}^Ly has a large deviation property with constants {ap} and
entropy function I(p) = logn — h(p). That I(p) has this form is shown in [3, Ex.
1.6.2].
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818 R. D. MAULDIN AND S. C. WILLIAMS

Now, according to Varadhan's theorem, we have the variational principle:

lim -log-^ /   exp \p0 / logi£?7r{r?) dp(n)   dQp(p)\(43) p^oop       (JM        [     Jn J J

= sup I 0 / logteMu}) dp(u) + h(p) \ - logn.
m€M I.   Jn )

By changing variables,

/   exp \p0 / logt£Mri) dp(n)   dQp(p)
(44) Jm       I    Jn J

= / exp \p0 / logt£^MdRp^(n)   dA(uj).
Jn       l    Jn

From (41), we find

(45) log X0t£ < sup I 0 / logt£Mul] dp(uj) + h(p) \.
(i£M f   Ja )

From (39), we also have

(46) ||^,e«||i > np(m£/M£)0 J exp \p0 j \ogteMv) dRp^(n)   dk(uj).

Proceeding as before, we obtain the reverse inequality in (45). So,

(47) logA^e = sup \ 0 / log££i7r(w) dp(uj) + h(p) \.
H€M {    Jn )

REMARK. We could have used the notion of topological pressure [4] to obtain
(47).
Since

(48) tet„<u)=tn<u)+e-lG<(Tr(u)),

(49) log\p,£ = sup \ 0 I logtn{uj) dp(uj) + 0log£p(Tr(uj) <£ G) + h(p) \ .
p-eM  (     Jn(w)eG J

Since h is upper semicontinuous in p, the first integral is continuous and the second
term is continuous, for each e > 0, there is some p£ where the supremum is attained.
By compactness we can assume p£ —* p. So, with the convention that —oo 0 = 0,
we find

(50) logA^ < sup \ 0 / logt^) dp(uj) + h(p) \ .
ueM  (    Jn(trj)€G J

Notice that if £ < 1, then, according to (49),

(51) logA/3,e > sup I 0 / logt„{u) dp(uj) + h(p) \ .
p-eM  (     Jn(ui)€G )

Taking limits, we obtain the reverse inequality of (50). Lemma III follows.
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LEMMA IV.   There is a number c, 0 < c < 1, such that

(52) sup \ / \ogt^u)dp(ui)\ <logc.
p.eM (Jn )

PROOF. Lemma IV follows from Lemma II, since if (18) holds, then if q is large
and o-EG(q + l),

i 9 /i + r\(53) - 5ZloSk(0."(«+i) < log ( —2~ J '

Thus,

(54) / logt7r(w)dp(a;) = - \q / logt„{w)dp(uj)   .

By the shift-invariance of p,

/ log ̂ (W) dp(uj) = -   J2     l°Stn(S'(w))dp(uj)
Jn 1   ~rQJn

(55) p-1      Y/q
= J  log   n ^(S'M)        dp(uj) < log ( —— j ■

PROOF OF THEOREM 2. Since A^ > 0, it follows from the Frobenius-Perron
theorem that Ap has a nonnegative eigenvalue Xp > 0 with spectral radius $(0) =
Xp. By condition 2(a), and the fact that Xp is at least as large as the minimal
row sum, we have $(0) = Xp > 0 and $(0) > 1. (It is possible that $(0) = 1 as
Example 1 shows.)

It follows from Lemma IV that for 0 > 0 and e > 0

,„,     log$(/? + e) = sup |/? / logtniuJ)dp(uj) + h(p) + £     logt„{u) dp(ui) \
(56) /i€M I   Jn Jn )

< £logC + log $(/?).

Thus,

(57) 9(P + e) <ce$(0).

Of course, this implies that $ is strictly decreasing and converges to zero at infinity.
This completes the proof of Theorem 2.

To continue the analysis, let / be the map of G°° into Rm defined for each
<reG°°, by

oo

(58) {/((t)} = f| JaW
n=l

It follows from (14) and Lemma II that / is a continuous map of G°° onto K.
DEFINITIONS. Set 6 = min(jij)eG{(r.j):7.diam J,-)/diam JJ and let

a = min{Am(int Ji)/(diam Ji)m},

where Am is Lebesgue measure on Rm.
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820 R. D. MAULDIN AND S. C. WILLIAMS

LEMMA V.   Suppose E C Rm with diami? < min{diam Ja}. Let

(59) B = {a E G*|diam JCT < diam£ < diam Ja\ \a\_y and E n Ja ^ 0}.

Then

(60) #73 < (L/a)(2/6)m,

where L is the Lebesgue measure of the unit ball in Rm.

PROOF. Note that if ct e G*, then

(61) diam J^/diamJ^i !<,!_! = (fCT(|ff|_,)iff(|ff|)diam J^t^/diam Jo-(\o-\-i) > &■

Thus, for each a E B, diamJCT > 6 diam E.   Since the sets Ja with ct in B are
nonoverlapping and all lie in a ball, W, of radius 2diam£',
(62)

L(2diam£)m = Xm(W) > ^ Xm(intJa)
o-eB

> ^(diamJff)mAm(intJ(r(k|))/(diamJt7(k|)r
cr€B

> a ^(diam JCT)m > a ^(<5diam£)m > a(diam E)m 6m #B.
a€B aEB

Thus,

(63) #73 < (L/a)(2/S)m.

PROOF  OF   THEOREM 3.   Since Aa is irreducible, by the Frobenius-Perron
theorem, there is a unique strictly positive column vector

'Vl'

(64) v =      :

.Vn.

with Y^7=i vi = i and AQu = v. Thus, for each i,
n

(65) «< = E'S-t,i=   £   *?i*i-
3=1 (»,j)€G

Define a probability measure p on G°° by setting for each a EG*,

(66) £(M) = *X(ki).
where

(67) [CT] = {r€G°°:r|k|=CT}.

To see that Kolmogorov's consistency theorem may be applied it is sufficient to
note that if ct € G*, then

(68) (<T(|<r|)J)€G

= *><x(|<t|) = A(H).
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First, we will show that £Pa(K) < +00. For each p, we have

(69) Y   (d^m.7^=    £   £diamJ°(W),
<r€G(p) o-6G(p)

and since v is strictly positive,

=   Y   A(H)(diamJCT(k|))Q/wCT(k|)
v€G(p)

< sup{(diam Jj)a/ui}   Y   £(M)
o-GG(p)

< sup{(diam Ji)a/vi} < +00.

It follows from Lemma II that

(70) lim supfdiam JJct E G(p)} = 0.
p—>oo

Thus,

(71) %"*(K) < sun{(diamJi)a/vi} < +00.

In order to show 0 < %?a(K), transfer p to a probability measure on K. Let
p = fi o /_1. We will show that there is some c > 0 such that if E is a Borel subset
of Rm with diami? < inf{diam J,}, then

(72) p(£)<c(diam£)Q.

Of course, this inequality implies

(73) l/c<2"*(K).
Set B = {cr E G*|diam Ja < diam£ < diamdCT| \a\_y and E l~l Ja / 0}. Note

that if t € G*, and f(r) E E, then there is some ct € B such that r extends ct.
Therefore,

(74) p(E)<Y»(W})-
o-eB

For any ct, we have

(75) p([CT])/(diamJCT)a = tv(M)/(diam J<r(\o-\))a-

Using this equality, we find

(76) p(E) < (diam E)a sup{^/(diam J,)Q}#(B).

By Lemma V, sup{t>i/(diam Ji)a}#(B) is bounded by some fixed c > 0. Therefore,
(72) holds and Theorem 3 follows.

DEFINITIONS. For H E SC(G) and r = (iy,... ,ip) E G(p) such that ip E H E
SC(G) and ip-y $ H, define

(77) K(r) = {f(uj)]uj extends r and Vg > p, uj(q) E H}.

Let C = {tE G*]3H E SC(G) with r(\r\) E H and r(|r| - 1) $ H}.
PROOF OF THEOREM 4. It follows from the factor theorem, (6) that

(78) a = max{aH\HsSC(G)}.
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822 R. D. MAULDIN AND S. C. WILLIAMS

For each w E G°°, there exist a positive integer p(uj) and H(uj) E SC(G) such that
if q > p(ui), then u(q) is in the vertex set of H(u) and ui(p(uj) - 1) is not in the
vertex set of H(u). Obviously,

(79) K=(J K(t).

For each r EC,

(80) ^a(K(r)) = t?J?a(KH(T(\r\))) < +oo.

Thus, K has CT-finite Wa measure. From (78) and Theorem 3, %"*(K) > 0.
Case 1. Suppose M = {H\an = a} consists of incomparable elements. Since

M"*(K(t)) = 0, unless r(|r|) E H E M, we have

*"W <  E     E    ̂ °(K(r))
H€M     r€C

r(|T|)€H

(81) ^EE   E ^a(^w)
<.°   > HEM j€H        t<EC

Lr(M)-i

< E E^a(*"M)   E «? •
HEMjeH t€C

j(\r\)=j     .

So, %?a(K) is finite provided this last inner sum is finite.
If r € G and r(|r|) = j, then r travels through some transient points and possibly

through points of some of the strongly connected components Ho with cxh0 < ct.
Thus,

(82) j(?< n (i+tik)   n (i+*m)   n   ^e? •
r€C i€Trans jgTrans J70€SC(G) 3€Hq

t(|t|)=j L(*-fc)GG J    L(fc.0eG J     a„0#c

The first two factors are fixed finite numbers. To see that the third factor is finite,
it suffices to fix Ho with olh0 < ct and note

oo

(83) E*r = EE «?■
jetf0* n=2|3|=n

We apply the root test to this last series:

r    i1/n  r i1/n r       l1/n
(84) Y't    * ™*jralHo)    >< E^Q(Ho)    •

\i\=n     J |3|=„ »<=Mo
l\i\=n J
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Now, since the construction restricted to Hq is still a construction, Lemma II is
applicable and

r i i/n
r -l 1/n

(85) ImT   Y t?        < TaH-a{Ho)lhn~    Y tfHo)
V     ' n—oo      ^    J _     "o n-too      ^    3

\l\=n tfMl
L|3|=n J

Since Ho is irreducible, the proof of Theorem III shows that the sums £3j€#-i"    °
are uniformly bounded. The root test now yields the convergence of the series.

Case 2. In this case, there exist distinct elements Hy and H2 in M and a path
7 = (9i,---,9k) such that gy E Hy, gk E H2 and gi £ Hy U H2, if 1 < i < k.
Let us assume that Hy = {1,... ,my}, H2 = {my + 1,... ,m,y + m2}, gy = 1 and
9k = my + 1.

For each q, set

(86) Eq = {t E G(q)]r C #j and rfa) - 1},
(87) F* = {n E G*]n = r * 7 * ct, where t E Eq, a E H2, ct(1) = mi. + 1},

and

(88) Fq = {n E G°°|n = r * 7 * ct, where re£„ ct € #2°, cr(l) = mi + 1},

where 7= (g2,... ,gk-y). Let

%i+i
(89) vH2 = :

be the strictly positive column eigenvector of Ah2,oi with X)£L\ "m,+i — 1- Define
pg on Fq by

(90) pg([r*7*CT]) = (^r/><r(M)>

where a E H2 and ct(1) = my + 1. As before, transfer pq to pg, a measure on K(l)
and, therefore, on K. For each r, set

r

(91) "r = X>,-
9=1

The fact that K does not have finite %"* measure follows from the next two claims:
Claim 1. There is some c, 0 < c < +00 such that for each r, there exists some

br > 0 such that

(92) vr(E) <c(diam£)Q,

provided diam E <br.
PROOF OF CLAIM 1. Let br = inf{diam Ja]a = r * 7 * mi + 1, where r E

\Jq<r Eq} and let diami? < br. Let

(93) B = I n E |J F*]diam(Jr,) < diamE < diam Jvl M_y and E D Jn ± 0 > ,
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and for each q, let

(94) Bq = {n E B\n E F*q}.
The sets Bq are pairwise disjoint and

vr(E) = YN(E)<YY,»M
q<r q<rn&Bq

(95) < ^#5g(diamE)asup{^/(diam J,)a|mi + 1 < i < my + m2}
q<r

<#B(diamE)a.

Set S equal to the last supremum. Using Lemma V, we have

(96) vr(E) < S(L/a)(2/6)m(diamE)a.

Since S, L, a, and 6 are independent of r the claim follows.
Now, Claim 1 implies

(97) f(K) > rlim (i) ur(K) > (±)t,MFq) = (±) *° £ Y «?■

The proof of the theorem follows from the next claim.
Claim 2. 52™=1 T,T€Eq lr = oo.
By the Frobenius-Perron theorem, there is a unique strictly positive row vector

u = (ui,..., umi) with ^2 ui = 1 snca inai

(98) uAHl,a=u.

It also follows that

(99) -^f>i,(l,...,l)A^Q)
9=1

converges to ui > 0, where ey is the unit vector (1,0,..., 0) in Rmi. But,

(100) £C = <ei,(l,...,l)A^,J.
r€Eq

This means the series diverges and Theorem 4 follows.
We can now analyse each Kj. To do this, let C3 = {H E SC(G)| there is a path

from j to some vertex of 77}.

THEOREM 5. dimTf, = a3 = max{Q//|77 E Cj} and Kd has positive, a-finite
%fa' measure. Moreover, £?a>(Kj) < oo if and only if M3 = {H E Cj]ctn = aj}
consists of incomparable elements.

Theorem 5 is proved by defining G' to be the restriction of G to all vertices i
such that there is a path from j to i and noting that Kj only depends on this part
of the graph G.

EXAMPLE 1. The simplest way to obtain a construction with $(0) = 1 is to loop
something on itself. Thus, G has one vertex 1 and Tx<y is a similarity contracting
Ji into itself. Of course, Tf is a singleton. There are more interesting possibilities
here. For example, take two sets di and d2i loop Jy on itself, loop J2 on itself and
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map Jy into J2. Again, $(0) = 1, but now K has exactly one limit point. One
can continue this procedure to generate sets K with Cantor-Bendixson order n, for
each integer n. With a generalization of directed constructions to infinite graphs
G, one can build countable compact sets with derived set order a, for any given
a < UJy.

EXAMPLE 2. Let Tb(c, r) consist of those x's in [0,1] for which any r consecutive
base b digits in the 6-ary expansion of x sum up to at least c. We will derive
the dimension a of each set TB(c, r) from our results. The dimension of these sets
has also been given by Drobot and Turner [7]. Our results show, in addition that
0<J?a(Tb(c,r)) <oo.

For each (ey,..., er) E {0,..., b — l}r, let

(ey,..., er) = {x E [0,1]| the 6-expansion of x begins with ey,..., er}.

Of course, there are countably many x's which have more than one expansion. We
can safely ignore these. Let Jy,..., Jn enumerate the sets (ey,... ,er) such that

r

(ioi) Ye^c-
i = l

The graph G is determined as follows. Suppose Ji = (ey,...,er) and J, = (e'y,... ,e'r).
Then (i,j) EG ii and only if Jj begins with the shift of J,. That is,
(102) (e2,...,er) = (e'y,...,e'r_y).

If (i,j) E G, then Tij is the natural linear map which takes Jj onto (ei,..., er,e'r).
Thus, Tij has similarity ratio 1/b. Clearly, the graph G itself is strongly connected.
So, 0 < </fQ(T;,(c, b)) < oo, where a is the dimension of T0(c, b). Notice that if M
is the incidence matrix of G, then

(103) Ap = (l/b)0M.
Thus, det(Ap - I) = (l/b)0n det(M - b0I). Therefore, ba = p(M), the spectral
radius of M. Or,
(104) a = log(/9(M))/log6.

EXAMPLE 3. Consider the construction given by Jy = [0,1/3], J2 = [1/3,4/9],
Jz = [5/9,2/3] and J4 = [2/3,1]. The similarity maps are the orientation-preserving
maps such that Ti maps [0,1] onto Jy, T2 maps [1/3,2/3] onto J2, T3 maps [1/3,2/3]
onto Jz and T4 maps [0,1] onto J4. Thus, ty = t2 = i3 = £4 = 1/3. The directed
graph G is given by the diagram:

<3r—ife
Figure l
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If (i,j) E G, then Tij = Ti. The strongly connected components of G are 77i =
{1,4} and 772 = {2,3}. Clearly,

(105) aHl =aH2 =a = ln2/ln3.

Since there is a path from 77i to 772, Theorem 4 applies and we know that K has
infinite, but a-finite measure. It is rather easy to see what K is in this construction.
One simply takes the standard middle-third Cantor set and in each complementary
interval attach a similar copy of the middle-third set. Thus, on level n we will have
2n copies of the middle third set. So,

oo oo

(106) &a(K) = Y 2n[(l/3)n+1]Q = ^(2/3Q)n(l/3Q) = oo.
n=0 n=0

A ratio graph directed construction consists of a directed graph G with vertex
set consisting of the integers 1,... ,n and positive numbers t%j, where (i,j) E G
such that

(a) for each i, 1 < i < n, there is some j such that (i,j) E G, and
(b) if the path component of G rooted at the vertex iy is a cycle:

[iy,...,iq,iq+y =iy],

then
9

(107) n *<*.<*+> < l
k=l

A realization of a ratio directed construction consists of a sequence of nonoverlap-
ping compact subsets of Rm: Jy,..., Jn, such that each Ji has a nonempty interior
and a family of similarity maps TiUm..tih where (iy,... ,ik) E Gk, for k = 2,3,4,...
such that the similarity ratio otTilt...tik is given by

k-l

(io8) n *w*+i
9=1

and such that the family of sets dCT, where a EG forms a nonoverlapping Cantor
scheme. Here, if a = (iy,..., ik) E G*, with k > 2, then Ja = Ta(Jcrk)).

The object constructed by a realization of a ratio directed construction is

oo

(109) K=f] [J     Ja    ■
P=l   \_o-€G(p)

A geometric graph directed construction is a particular type of realization of a ratio
directed construction.

Notice that all the proofs given in the paper depend only on the ratios except
for the proof of Lemma I. This lemma will hold once a realization has been given.
Thus, the dimension and measure of the set K can be calculated exactly as before.
This result generalizes Moran's ratio theorem. Again, one should note that this
theorem depends only on the ratios employed.

EXAMPLE 4. This example is due to J. Marion [9]. Let Ey,...,En be com-
pact subsets of Rm having the property that there is some £ > 0 such that for
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j = 1,..., n, Ej is the disjoint union of ayj subsets similar to Ey each with reduc-
tion ratio £, of a2j subsets similar to E2 each with reduction ratio £, etc. Thus, in
particular Ej is the union of Y17=i a'j pairwise disjoint sets. Let A be the integer
valued matrix {aij}. Assuming that A is primitive, Marion shows that for each
k = 1,... ,n

0<^a(Ek)<oo

where a = — log(spectral radius A)/ log £. This result follows from Theorem 3 of
this paper and we assume only that A is irreducible. In order to see this, note that
we can assume that the sets Ey,..., En are disjoint. Let

D = {(l,i,j)]l<l<aij}.
By Marion's hypothesis, there are disjoint sets

{E{l^3)](l,i,j)ED}
such that for each j, j = 1,... ,n,

Ej=\jE(l,i,j)
CO

and Et,ij is similar to Ei with ratio £. The directed graph for the construction has
D as its vertex set. There is an edge from (/, i, j) to (r, s, t) provided that i = t. The
similarity map indexed by this edge is the one determined by Marion's hypothesis.
It has reduction ratio £. Since the sets Eitij are disjoint, there is some 6 > 0 such
that if each Etjj is replaced by Jitij, its closed 8 neighbourhood, they are still
disjoint. We now have a graph directed construction with incidence matrix Ao-
A direct application of Theorem 4 shows that 0 < %fa(Ek) and the ^Q measure
of Ek is CT-finite, where a = - log (spectral radius A0)/log£. To obtain Marion's
result we first check that

spectral radius of Ao = spectral radius of A.

To see this consider a column vector v = {t>(r,s,t) K^i s, t) E D} such that Aqv = Xv.
So,

Xv(l,i,3) =   E   aW,i,3),(r,s,t))V(r,s,t)-
(r,s,t)

Since a((/,t,j),(r,«,t)) = 0 unless i = t, and is one if i = t,

Xv(l,r,j) =       E      V(r,*,i)-
(r,s)

(r,s,i)€D

This sum depends only on t. So, there are numbers wy,..., wn such that vitij = Wi.
Thus,

Xwi =     Y    ws
(r,»)

(r,s,i)€D
n

= E E w°
8=1l<r<a, i

n

= Y.as,iws-
s=l
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Or, Xw = Atw. It follows from this that the spectral radius of A is the spectral
radius of Ao-

Finally, we note that with some effort it can be shown that A is irreducible if
and only if Ao is irreducible.

EXAMPLE 5. This example is due to H. Cajar [10]. It generalizes the example
of Drobot and Turner and is related to similar results concerning sets determined
by their arithmetic expansions. These results are referenced in Cajar's book. Let
g be an integer, g > 2 and G = {0,1,..., g — 1}. Let I be an integer greater than
one and B C Cl. We will consider the g-ary expansion of numbers x in [0,1]. For
our considerations we can neglect countable sets. If Yl'iLy xi/9%, with each Xi E C,
then b\(x) := (xi,xi+1,... ,n+i-y). Set Xb = {x]Wi &'(x) E B}. Now, XB can
be determined as a graph directed construction as follows. First, build a graph
on B by having a directed edge from by = (b\,...,b\) to (b\,...,b2) provided
(b2,b\,... ,b}) = (b\,... ,bf_y). This directed graph may not be the graph of a
construction since there may be some vertex with no arrow coming out of it. So,
lop off all such vertices and edges into such vertices. We obtain a derived graph.
Iterate this procedure. Evidently, we will obtain the empty set or else we will
obtain a directed graph which satisfies condition 2(a) and is a construction. In
the first case, Xb = 0- In the second case, we obtain a subset D C A1 such
that Xb = Xd- The graph on D obviously directs a construction of Xb- The
construction matrix A is the function: A(by,b2) = 1/g1 ii by,b2 E D and = 0
otherwise. Thus, dim h(Xb) = a, where the spectral radius of Aa = 1. But,
AQ = (l/o)aAo, where A0 is the incidence matrix of D. So, we have the equation
1 = g~a (spectral radius A0). Thus,

dimji(XB) = log(spectral radius A0)/logg.

It is easy to see that if M is the incidence matrix of G, then M and A0 have the
same spectral radius. Thus,

dimH(Xs) = log(spectral radius M)/logg.

This is Cajar's formula. From the results of this paper, we know, in addition that
the ^a measure of Xb is positive and either finite or cr-finite. One can construct
examples to show that both cases are possible.
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