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Abstract. We study the quantitative behavior of Poincaré recurrence.
In particular, for an equilibrium measure on a locally maximal hyper-
bolic set of a C1+α diffeomorphism f , we show that the recurrence rate
to each point coincides almost everywhere with the Hausdorff dimen-
sion d of the measure, that is, inf{k > 0 : fkx ∈ B(x, r)} ∼ r−d. This
result is a non-trivial generalization of work of Boshernitzan concerning
the quantitative behavior of recurrence, and is a dimensional version
of work of Ornstein and Weiss for the entropy. We stress that our ap-
proach uses different techniques. Furthermore, our results motivate the
introduction of a new method to compute the Hausdorff dimension of
measures.

1. Introduction

One of the basic but fundamental results of the theory of dynamical sys-
tems is the Poincaré Recurrence Theorem. Essentially it states that any dy-
namical system preserving a finite invariant measure exhibits a non-trivial
recurrence to each set of positive measure. More precisely, let T : X → X be
a measurable transformation, and µ a T -invariant probability measure in X.
The Poincaré Recurrence Theorem says that if A ⊂ X is a measurable set
of positive measure, then card{n > 0 : Tnx ∈ A} = ∞ for µ-almost every
point x ∈ A.

Unfortunately this information is only of qualitative nature. In particular
it does not address the following natural problems:

1. with which frequency an orbit visits a given set of positive measure;
2. with which rate a given point returns to an arbitrarily small neighbor-

hood of itself.

The Birkhoff Ergodic Theorem provides a comprehensive answer to the first
problem. The second problem has been given considerable growing interest
during the last decade, also in connection with other fields, including com-
pression algorithms, numerical study of dynamical systems, and applications
in linguistics. In particular, there exist several results towards a partial an-
swer of this problem, including the noteworthy work of Boshernitzan [3] and
Ornstein and Weiss [8] (see Sections 2 and 4 for details).
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The purpose of this paper is to provide a comprehensive answer to the
above-mentioned problem 2, concerning the quantitative behavior of recur-
rence. In particular, our results are non-trivial generalizations of the above-
mentioned results of Boshernitzan, and provide a dimensional version of the
work of Ornstein and Weiss for the entropy (see Sections 2 and 4 for ex-
planations and examples). We emphasize that our approach uses different
techniques. In particular we obtain a new proof of one of the main results
of Boshernitzan in [3].

We now illustrate our results with a rigorous statement; see Section 4 for
details. We shall prove that if µ is an ergodic Gibbs measure of a C1+α

diffeomorphism f on a locally maximal hyperbolic set, then

lim
r→0

log inf{k > 0 : fkx ∈ B(x, r)}
− log r

= lim
r→0

logµ(B(x, r))
log r

(1)

for µ-almost every point x, where B(x, r) is the ball of radius r centered at x.
Note that the identity (1) relates two quantities of very different nature,
called respectively recurrence rate and pointwise dimension. In particular,
only the first quantity depends on the diffeomorphism, while only the second
quantity depends on the measure.

Furthermore, our results motivate the introduction of a new method to
compute the Hausdorff dimension of a measure.

The structure of the paper is as follows. The main statements and in-
equalities relating the lower and upper pointwise dimensions, and the lower
and upper recurrence rates are formulated and discussed in Sections 2 and 3.
We also present examples which indicate that the hypotheses in our results
are optimal. In Section 4 we apply those results to the case of equilibrium
measures supported on locally maximal hyperbolic sets, and establish the
identity (1) for µ-almost every point. Section 5 contains an application to
suspension flows. The proofs are collected in Section 6.

Acknowledgment. We gratefully thank Jöerg Schmeling for several en-
lightening discussions. We also thank the referee for the detailed and helpful
comments.

2. Lower bounds for the pointwise dimension

Let T : X → X be a Borel measurable transformation on the separable
metric space (X, d). Note that T is not necessarily invertible. We define the
return time of a point x ∈ X into the open ball B(x, r) by

τr(x) def= inf{k ∈ N : T kx ∈ B(x, r)} = inf{k ∈ N : d(T kx, x) < r},
where N denotes the set of positive integers. We also define the lower and
upper recurrence rates of x by

R(x) = lim
r→0

log τr(x)
− log r

and R(x) = lim
r→0

log τr(x)
− log r

.

Furthermore, the lower and upper pointwise dimensions of µ at a point
x ∈ X are given by

dµ(x) = lim
r→0

logµ(B(x, r))
log r

and dµ(x) = lim
r→0

logµ(B(x, r))
log r

, (2)
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where B(x, r) is the open ball of radius r centered at the point x.
The following statement provides upper bounds for each of these quanti-

ties in terms of the lower and upper pointwise dimensions (see (2) for the
definitions).

Theorem 1. If T : X → X is a Borel measurable transformation on a mea-
surable set X ⊂ R

d for some d ∈ N, and µ is a T -invariant probability
measure on X, then

R(x) ≤ dµ(x) and R(x) ≤ dµ(x) (3)

for µ-almost every x ∈ X.

It follows from Whitney’s embedding theorem that if X is an arbitrary
subset of a finite-dimensional smooth manifold, then it can be smoothly
embedded into Rd for some d ∈ N, and thus Theorem 1 applies.

Example 3 in Section 4 illustrates that the inequalities in (3) may be strict
on a set of positive measure.

Boshernitzan proved in [3] that if the α-dimensional Hausdorff measure
is σ-finite on X (that is, if X can be written as a countable union of sets
Xi for i = 1, 2, . . . such that mα(Xi) < ∞ for all i), and µ is an invariant
probability measure on X, then

lim
n→∞

[n1/α · d(Tnx, x)] <∞ (4)

for µ-almost every x ∈ X. He also showed that if, in addition, mα(X) = 0,
then

lim
n→∞

[n1/α · d(Tnx, x)] = 0. (5)

for µ-almost every x ∈ X.
Recall that the Hausdorff dimension of a probability measure µ on X is

given by

dimH µ = inf{dimH Z : µ(Z) = 1},

where dimH Z denotes the Hausdorff dimension of the set Z. The measure
µ is called exact dimensional if there exists a constant d such that

dµ(x) = dµ(x) = d for µ-almost every x ∈ X. (6)

It follows from Young’s criteria (see [13] for details) that if (6) holds, then
dimH µ = d.

In our setting Boshernitzan’s result can be reformulated in the following
manner (for details, see Section 6 and in particular Lemma 4).

Theorem 2 ([3]). If T is a Borel measurable transformation on the separa-
ble metric space X, and µ is a T -invariant probability measure on X, then
R(x) ≤ dimH µ for µ-almost every x ∈ X.

We can also rephrase the first inequality in (3) in a form similar to (5).

Theorem 3. If T : X → X is a Borel measurable transformation on a mea-
surable set X ⊂ Rd for some d ∈ N, and µ is a T -invariant probability mea-
sure on X, then (5) holds for µ-almost every x ∈ X such that dµ(x) < α.
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Using Young’s criteria (see [13]), one can show that dimH µ ≥ dµ(x) for
µ-almost every x ∈ X. Therefore, Theorem 3 may in general provide a
stronger statement than that in (5), and the first inequality in (3) may
be sharper than that in Theorem 2. This possibility indeed occurs in the
following example.

Example 1. In [10], Pesin and Weiss presented an example of a Hölder
homeomorphism in a closed subset X of [0, 1], whose unique (and thus
ergodic) measure of maximal entropy µ is not exact dimensional. More
precisely, there exist disjoint sets A1, A2 ⊂ [0, 1] with positive µ-measure
whose union is equal to X, and there exist positive constants c1 and c2 with
c1 6= c2 such that µ|Ai is exact dimensional and dµ(x) = dµ(x) = ci for
µ-almost every x ∈ Ai and i = 1, 2. Clearly dimH µ = max{c1, c2} and thus
dµ(x) < dimH µ on a set of positive µ-measure (on the set Ai with i such
that ci = min{c1, c2}).

This example illustrates that in general Theorem 3 provides a stronger
statement then that in (5). Therefore, one can see the first inequality in
Theorem 1 as a non-trivial generalization of one of Boshernitzan’s main
results in [3]. Furthermore, we are able to give an estimate for the upper
recurrence rate, and we shall see (in Sections 3 and 4) that for several classes
of maps and measures the inequalities in (3) are in fact identities on a full
measure set. Therefore, the inequalities in Theorem 1 and 3 are optimal.

Example 1 also illustrates that for an arbitrary transformation the func-
tions dµ and dµ need not be invariant µ-almost everywhere. Assume now
that T is a Lipschitz map with Lipschitz inverse, and let c > 1 be a Lipschitz
constant for T and T−1. It is easy to verify that τcr(Tx) ≤ τr(x) ≤ τr/c(Tx)
for every x ∈ X and every r > 0. Thus

R(Tx) = R(x) and R(Tx) = R(x)

for every x ∈ X. One can also verify that for every x ∈ X we have

dµ(Tx) = dµ(x) and dµ(Tx) = dµ(x).

3. Coincidence of recurrence rate and pointwise dimension

3.1. Formulation of the main result. In this section we investigate con-
ditions under which the inequalities in (3) become identities (see also Sec-
tion 4). These conditions will be shown to hold for a large class of invariant
measures.

The return time of the point y ∈ B(x, r) into B(x, r) is defined by

τr(y, x) def= inf{k > 0 : d(T ky, x) < r}. (7)

One can easily verify that if d(x, y) < r then

τ4r(y) ≤ τ2r(y, x) ≤ τr(y). (8)

For each x ∈ X and r, ε > 0, we consider the set

Aε(x, r) = {y ∈ B(x, r) : τr(y, x) ≤ µ(B(x, r))−1+ε}.
We shall say that the measure µ has long return time (with respect to T ) if

lim
r→0

logµ(Aε(x, r))
logµ(B(x, r))

> 1 (9)
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for µ-almost every x ∈ X and every sufficiently small ε > 0.
The class of measures µ with long return time includes equilibrium mea-

sures supported on locally maximal hyperbolic sets (see Theorem 5 below).
On the other hand, Example 2 below illustrates that a T -invariant measure
µ may have long return time even if T is not uniformly hyperbolic. See also
Section 3.2 for a discussion of the relation of the notion of long return time
with return time statistics.

The following is a considerably strengthen version of Theorem 1 for mea-
sures with long return time.

Theorem 4. Let T : X → X be a Borel measurable transformation on a
measurable set X ⊂ Rd for some d ∈ N, and µ a T -invariant probability
measure on X. If µ has long return time, and dµ(x) > 0 for µ-almost every
x ∈ X, then

R(x) = dµ(x) and R(x) = dµ(x) (10)

for µ-almost every x ∈ X.

See Sections 3.2 and 4 for applications of Theorem 4.
Remark that the recurrence rates R(x) and R(x) are essentially quanti-

ties of topological nature, which are defined independently of any measure.
Therefore, the identities in (10) provide non-trivial relations between topo-
logical and measure-theoretic quantities.

3.2. Relation with return time statistics. We define the distribution of
return time of T (with respect to µ) on the ball B(x, r) by

Fx,r(t)
def=

µ({y ∈ B(x, r) : τr(y, x) > t/µ(B(x, r))})
µ(B(x, r))

for each t ≥ 0. In a variety of systems with some kind of hyperbolicity
it has been established that Fx,r(t) → e−t as r → 0, for µ-almost every
x ∈ X. This behavior is known as the exponential statistic of return time,
and is becoming an important ingredient in the analysis of recurrence in
dynamical systems. This study is closely related to the above-introduced
notion of long return time. This can be readily seen from the equation

µ(Aε(x, r)) = [1− Fx,r(µ(B(x, r))ε)]µ(B(x, r))

≤ µ(B(x, r))1+ε + µ(B(x, r)) sup
t≥0
|Fx,r(t)− e−t|, (11)

which holds for all sufficiently small r > 0. This implies the following
criterion for long return time.

Proposition 1. Let T be a Borel measurable transformation on the sepa-
rable metric space X, and µ a probability measure on X. Assume that for
µ-almost every x ∈ X there exists γ = γ(x) > 0 such that

sup{|Fx,r(t)− e−t| : t ≥ 0} ≤ µ(B(x, r))γ

for all sufficiently small r > 0. Then µ has long return time.

In fact, it is not necessary to have an exponential statistic of return time.
For example, assume that for µ-almost every x ∈ X there exist γ = γ(x) > 0
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and a function Fx : [0,+∞) → [0, 1] which is Hölder continuous in an open
neighborhood of 0 such that

sup{|Fx,r(t)− Fx(t)| : t ≥ 0} ≤ µ(B(x, r))γ

for all sufficiently small r > 0. Note that one must have Fx(0) = 1. Then it
follows from (11) that the measure µ has long return time.

The following example illustrates that an invariant measure may have
long return time even if the map is not hyperbolic.

Example 2. Let α ∈ (0, 1) and consider the map T : [0, 1] → [0, 1] de-
fined by

T (x) =

{
x(1 + 2αxα) if x ∈ [0, 1/2]
2x− 1 otherwise

. (12)

Note that due to the presence of the neutral fixed point 0 (since T ′(0+) = 1),
the map is not uniformly hyperbolic. We recall that there exists a unique
invariant probability measure µ which is ergodic and absolutely continuous
with respect to Lebesgue measure (see, for example, [6] for references). Since
the set of points x ∈ [0, 1] such that |T ′(x)| > 1 has full µ-measure, the
measure µ is hyperbolic (see Section 4 for the definition).

Denote by an the left preimages of a0 = 1. Let ξ be the countable partition
of [0, 1] defined by ξ = {(an+1, an] : n ≥ 0}. It is proved in [6] that T has
exponential statistic of return time for cylinders of the partition ξ. More
precisely, the following sharp estimate is established: there exists γ > 0 such
that for µ-almost every x ∈ [0, 1] and all sufficiently large m ∈ N, we have

sup
t≥0

∣∣∣∣µ({y ∈ ξm(x) : τξm(x)(y) > t/µ(ξm(x))})
µ(ξm(x))

− e−t
∣∣∣∣ ≤ µ(ξm(x))γ ,

where ξm =
∨m−1
k=0 T

−kξ, and

τA(y) = inf{k ∈ N : T ky ∈ A}.
Proceeding as in (11) we conclude that for µ-almost every x ∈ [0, 1] we have

µ({y ∈ ξm(x) : τξm(x) ≤ µ(ξm(x))−1+ε}) ≤ 2µ(ξm(x))1+ε

for every ε ≤ γ and every sufficiently large m.
We now present a simple argument showing that one can replace cylinders

by balls in the last inequality. For each sufficiently small r > 0, it is possible
to choose integers mr ≥ nr such that ξmr(x) ⊂ B(x, r) ⊂ ξnr(x) with
mr/nr → 1 as r → 0. Since

τξnr (x)(y) ≤ τr(y) and µ(B(x, r)) ≥ µ(ξmr(x)),

we obtain

µ(Aε(x, r)) ≤ µ({y ∈ ξnr(x) : τξnr (x)(y) ≤ µ(ξmr(x))−1+ε}).
In view of the inequalities

µ(ξmr(x))−1+ε ≤ µ(ξnr(x))−1+ε/2 and µ(ξnr(x)) ≤ µ(B(x, r))1−ε/4,

which are valid for all sufficiently small r, we conclude that for µ-almost
every x ∈ [0, 1] we have

µ(Aε(x, r)) ≤ 2µ(ξnr(x))1+ε/2 ≤ 2µ(B(x, r))(1+ε/2)(1−ε/4)
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for all sufficiently small r. By taking ε > 0 sufficiently small, this inequality
implies that the measure µ has long return time.

It follows from Theorem 4 that the identities in (10) hold for Lebesgue
almost every point.

We remark that it is an open problem to decide whether all hyperbolic
measures (not necessarily supported on uniformly hyperbolic sets; see Sec-
tion 4) have long return time.

4. Hyperbolic Gibbs measures

We now consider equilibrium measures supported on a locally maximal
hyperbolic set of a C1+α diffeomorphism. The following result shows that
in this situation the identities in (10) hold on a set of full measure.

Theorem 5. Let X be a locally maximal hyperbolic set of a C1+α diffeo-
morphism on a compact smooth manifold, for some α > 0. If µ is an ergodic
equilibrium measure of a Hölder continuous potential on X then:

1. µ has long return time;
2. R(x) = R(x) = dimH µ for µ-almost every x ∈ X.

When µ is not ergodic one can consider the finite ergodic decomposition
of µ on (relatively) open subsets Xi ⊂ X such that (Xi, T, µ|Xi) is ergodic.
Since each Xi is (relatively) open it follows immediately from Theorem 5
that R(x) = R(x) = dimH µXi for µ-almost every x ∈ Xi.

The following example illustrates that for invariant measures which are
not hyperbolic the second statement in Theorem 5 may not hold.

Example 3. Consider a rotation of the circle by an irrational number ω
which is well approximable by rational numbers. We recall that ω is said
to be well approximable by rational numbers if ν(ω) > 1, where ν(ω) is
the supremum of all ν > 0 such that |ω − p/q| < 1/qν+1 for infinitely
many relatively prime integers p and q. The unique invariant measure of
the rotation is the Lebesgue measure m, which is clearly exact dimensional.
Furthermore, it is easy to verify that if 0 < q1 < q2 < · · · is a sequence of
positive integers such that |qnω − pn| < 1/qnν for some integer pn, then

τ1/qnν (x) = inf{k ∈ N : kω(mod1) < 1/qnν} ≤ qn
for every x in the circle, and thus

R(x) ≤ lim
n→∞

log τ1/qnν (x)
− log(1/qnν)

≤ 1
ν(ω)

< 1 = dimH m.

Note that the Lebesgue measure is not hyperbolic in this example.

In view of Theorem 4, Example 3 also illustrates that an exact dimensional
measure may not have long return time.

We now show that the above Theorems 4 and 5 can be seen as general-
izations of work of Ornstein and Weiss for the measure-theoretic entropy.

Let T : X → X be a measurable transformation (note that X need not be
a metric space), and Z a measurable partition of X. Consider the partitions
Zn =

∨n−1
k=0 T

−kZ for each n. We shall denote by hµ(T,Z) the µ-entropy
of T with respect to Z. Then Theorem 1 in [8] can be reformulated in the
following manner.
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Proposition 2 ([8]). Let T : X → X be a measurable transformation, Z a
measurable partition of X, and µ an ergodic T -invariant probability measure
on X. If we endow X with the (pseudo) metric dZ(x, y) = e−n, where n is
the smallest positive integer such that Zn(x) 6= Zn(y), then R(x) = R(x) =
hµ(T,Z) for µ-almost every x ∈ X.

We stress that with the special metric dZ , the measure-theoretic entropy
hµ(T,Z) coincides with the Hausdorff dimension dimH µ of the measure µ.
Theorems 4 and 5 provide versions of Proposition 2 in metric spaces which
may have “non-homogeneous” distances.

Let now f : M →M be a diffeomorphism of a compact smooth manifold.
Given x ∈M and v ∈ TxM the Lyapunov exponent of v at x is defined by

λ(x, v) = lim
n→∞

1
n

log ‖dxfnv‖.

The measure µ is said to be hyperbolic if there exists a set Y ⊂ M of full
µ-measure such that λ(x, v) 6= 0 for every x ∈ Y and every v ∈ TxM .

One should notice that the relation between Proposition 2 and Theorem 5
is similar to the relation between the Shannon–McMillan–Breiman theorem,
and the following statement established by Barreira, Pesin, and Schmeling.

Proposition 3 ([1]). If f is a C1+α diffeomorphism on a compact smooth
manifold M , for some α > 0, and µ is a hyperbolic f-invariant probability
measure on M , then dµ(x) = dµ(x) for µ-almost every x ∈M .

The role of Proposition 3 in dimension theory of dynamical systems is
similar to the role of the Shannon–McMillan–Breiman theorem in the en-
tropy theory. While the first ensures the coincidence of many characteristics
of dimension type of the measure (such as the Hausdorff dimension, lower
and upper box dimensions, and lower and upper correlation dimensions),
the later ensures the coincidence of various definitions of the entropy (such
as those due to Kolmogorov and Sinai, Katok, Brin and Katok, and Pesin).
See [1] for details.

In a similar fashion, while Proposition 2 relates the measure-theoretic
entropy with recurrence, Theorem 5 relates dimension-like characteristics
with recurrence. Both results provide a non-trivial insight concerning the
quantitative behavior of recurrence.

A similar observation can be made about the hypotheses under which the
results are established. Namely, the assumptions in Proposition 3 are known
to be optimal (see [1, 9] for details), while the Shannon–McMillan–Breiman
theorem only assumes the invariance of the probability measure. Similarly,
while Proposition 2 only requires the measure to be ergodic, Theorem 5
requires more from the dynamical system and the invariant measure. Ex-
ample 3 illustrates that the assumption that the measure is hyperbolic is
essential in Theorem 5.

We believe that the other assumption in Theorem 5, concerning the reg-
ularity of the map, is also essential, although to the best of our knowledge
no counterexample is known with weaker regularity.

Moreover we would like to formulate the following plausible conjecture.
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Conjecture. Let f be a C1+α diffeomorphism on a compact smooth mani-
fold M , for some α > 0. If µ is an ergodic hyperbolic f -invariant probability
measure on M , then R(x) = R(x) = dimH µ for µ-almost every x ∈M .

Theorem 5 establishes this statement when µ is supported on a uniformly
hyperbolic set. By Theorem 1 and Proposition 3, observe that in order
to establish the conjecture in the affirmative, one must show that R(x) ≥
dimH µ for µ-almost every x ∈ X.

Our results motivate the introduction of a new method to compute the
Hausdorff dimension of measures. More precisely, one can use Statement 2
in Theorem 5 to compute the Hausdorff dimension of an equilibrium measure
µ supported on a locally maximal hyperbolic set of a C1+α diffeomorphism.
Namely, for µ-almost every point we have

lim
r→0

log τr(x)
− log r

= dimH µ.

Therefore, one can use the following algorithm:

1. choose “µ-randomly” a point x ∈ X;
2. iterate the point x and determine the successive “best” return times

to a neighborhood of x, i.e., the smallest possible positive integers
m1 < m2 < · · · such that d(Tm1x, x) > d(Tm2x, x) > · · · ;

3. plot the points (logmn,− log d(Tmnx, x)) in a plane;
4. estimate dimH µ from the asymptotic slope defined by these points.

5. Application to suspension flows

We assume that T : X → X is a bi-Lipschitz transformation on the sep-
arable metric space (X, d). Let ϕ : X → (0,∞) be a Lipschitz function.
Consider the space

Y = {(x, s) ∈ X × R : 0 ≤ s ≤ ϕ(x)},

with the points (x, ϕ(x)) and (Tx, 0) identified for each x ∈ X. The suspen-
sion flow over T with height function ϕ is the flow Ψ = {ψt}t on Y where
each transformation ψt : Y → Y is defined by ψt(x, s) = (x, s+ t).

We equip the space Y with the Bowen–Walters distance dY introduced
in [4], and define the return time of a point y ∈ Y (with respect to the
flow Ψ) into the open ball BY (y, r) by

τΨ
r (y) def= inf{t > ρr(y) : ψty ∈ BY (y, r)} = inf{t > ρr(y) : dY (ψty, y) < r},

where

ρr(y) = inf{t > 0 : ψty 6∈ BY (y, r)}

is the escape time of y from the ball BY (y, r). Observe that ψty ∈ BY (y, r)
for all sufficiently small t, and thus we need to ensure that the orbit ψty has
escaped from BY (y, r) when defining τΨ

r (y).
We also define the lower and upper recurrence rates of y by

RΨ(y) = lim
r→0

log τΨ
r (y)

− log r
and R

Ψ(y) = lim
r→0

log τΨ
r (y)

− log r
.
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Let µ a T -invariant Borel probability measure in X. It is well known that
µ induces a Ψ-invariant probability measure ν in Y such that∫

Y
g dν =

∫
X

∫ ϕ(x)

0
g(x, s) dsdµ(x)

/∫
X
ϕdµ

for every continuous function g : Y → R (where ds refers to Lebesgue mea-
sure in the line), and that any Ψ-invariant measure ν in Y is of this form
for some T -invariant Borel probability measure µ in X.

Theorem 5 can be used to establish the following result for suspension
flows.

Theorem 6. Let X be a locally maximal hyperbolic set of a C1+α diffeo-
morphism T on a compact smooth manifold, for some α > 0, and µ an
equilibrium measure of a Hölder continuous potential on X. If Ψ is a sus-
pension flow over T |X then

RΨ(y) = R
Ψ(y) = dimH ν − 1

for ν-almost every y ∈ Y .

6. Proofs

Following Federer [5], a measure µ is called diametrically regular if there
exist constants η > 1 and c > 0 such that µ(B(x, ηr)) ≤ cµ(B(x, r)) for every
x ∈ X and r > 0. Examples include equilibrium measures with a Hölder
continuous potential for several classes of topologically mixing hyperbolic
systems, and namely subshifts of finite type, conformal expanding maps,
surface axiom A diffeomorphisms, and, more generally, conformal axiom A
diffeomorphisms. See [9] for full details.

We shall say that a measure µ is weakly diametrically regular on a set
Z ⊂ X if there is a constant η > 1 such that for µ-almost every x ∈ Z and
every ε > 0, there exists δ > 0 such that if r < δ then

µ(B(x, ηr)) ≤ µ(B(x, r))r−ε. (13)

It is easy to verify that if µ is a weakly diametrically regular measure on
a set Z, then for each fixed constant η > 1, there exists δ = δ(x, ε, η) > 0
for µ-almost every x ∈ Z and every ε > 0, such that (13) holds for every
r < δ. Clearly, diametrically regular measures are weakly diametrically
regular on X.

Lemma 1. Any Borel probability measure on R
d is weakly diametrically

regular.

Proof of Lemma 1. Let µ be a Borel probability measure on Rd. Clearly, it
is sufficient to show that for µ-almost every x ∈ Rd we have

µ(B(x, 2−n)) ≤ n2µ(B(x, 2−n−1)) (14)

for all sufficiently large n ∈ N. For each n ∈ N and δ > 0 let

Kn(δ) def=
{
x ∈ suppµ : µ(B(x, 2−n−1)) < δµ(B(x, 2−n))

}
.

Taking a maximal 2−n−2-separated set E ⊂ Kn(δ) we obtain

µ(Kn(δ)) ≤
∑
x∈E

µ(B(x, 2−n−1)) ≤
∑
x∈E

δµ(B(x, 2−n)).
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Since E is 2−n−2-separated, there exists a constant M (depending only on d)
such that E can be decomposed into the union E =

⋃M
i=1Ei where each set

Ei is 2−n-separated. Thus for each i = 1, . . . , M the union
⋃
x∈Ei B(x, 2−n)

is disjoint. Therefore

µ(Kn(δ)) ≤
M∑
i=1

∑
x∈Ei

δµ(B(x, 2−n)) ≤Mδ.

Since ∑
n>0

µ(Kn(n−2)) ≤M
∑
n>0

n−2 <∞,

we conclude from the the Borel–Cantelli lemma that (14) holds for µ-almost
every x ∈ X and all sufficiently large n ∈ N. This completes the proof.

This shows that the class of weakly diametrically regular measures is
very broad. In particular, due to Whitney’s embedding theorem, this class
contains all probability measures supported in a finite-dimensional smooth
manifold. Further weakly diametrically regular measures on arbitrary metric
spaces include any measure µ on a separable metric space X restricted to
the set

{x ∈ X : dµ(x) = dµ(x)}.

This readily follows from the definition of pointwise dimension.
Note that the property of Rd that we used in the proof of Lemma 1 is

that the maximal cardinality, say M(r), of a 1
4r-separated subset of balls

of radius r is bounded by some constant M . Our proof readily extends to
separable metric spaces X with the property that M(r) = o(r−ε) for any
ε > 0. In this case, instead of (14) one can show that for each δ > 0 we have

µ(B(x, 2−n)) ≤ 2nδµ(B(x, 2−n−1))

for µ-almost every x ∈ X and all sufficiently large n ∈ N. This readily
implies the weak regularity of µ.

We now provide an example of very different nature.

Example 4. Let α ∈ (1
2 , 1) and define the sequence βn = nα. Consider the

space of sequences X = {0, 1}N and define a metric on X by requiring that
diamCn(x) = e−βn , where Cn(x) is any cylinder of length n. Consider also
the Bernoulli measure µ on X such that µ(Cn(x)) = 2−n. One can easily
verify that µ is weakly diametrically regular (by checking that any ball of
radius r contains at most r−ε(r) balls of radius 1

4r, where ε(r)→ 0 as r → 0),
and also that dimH µ = +∞. In particular X = suppµ cannot be smoothly
embedded into Rd for any d ∈ N.

The same measure µ may not be weakly diametrically regular if the se-
quence βn increases in a slower fashion. This is the case for example when
βn = logn.

We recall that for any a > 0 the following identities hold:

dµ(x) = lim
n→∞

logµ(B(x, ae−n))
−n

, dµ(x) = lim
n→∞

logµ(B(x, ae−n))
−n

, (15)
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R(x) = lim
n→∞

log τae−n(x)
n

, R(x) = lim
n→∞

log τae−n(x)
n

. (16)

Lemma 2. Let T be a Borel measurable transformation on the separable
metric space X, and µ a T -invariant probability measure on X. If µ is
weakly diametrically regular on a measurable set Z ⊂ X with µ(Z) > 0,
then (3) holds for µ-almost every x ∈ Z.

Proof of Lemma 2. Observe that the function δ(x, ·) in the definition of a
weakly regular measure (see (13)) can be made measurable for each fixed x.
Fix ε > 0, and choose δ > 0 sufficiently small such that the set

G = {x ∈ Z : δ(x, ε) > δ}
has measure µ(G) > µ(Z)− ε. For any r, λ > 0 and x ∈ X consider the set

Ar,x = {y ∈ B(x, 4r) : τ4r(y, x) ≥ λ−1µ(B(x, 4r))−1},
where τ4r(y, x) is defined in (7). Chebychev’s inequality implies that

µ(Ar,x) ≤ λµ(B(x, 4r))
∫
B(x,4r)

τ4r(y, x) dµ(y).

Since µ is invariant, Kac’s lemma tells us that∫
B(x,4r)

τ4r(y, x) dµ(y) = µ({y ∈ X : τ4r(y, x) <∞}) ≤ 1.

Since B(x, 2r) ⊂ B(x, 4r), we obtain

µ({y ∈ B(x, 2r) : τ4r(y, x)µ(B(x, 4r)) ≥ λ−1}) ≤ λµ(B(x, 4r)).

Furthermore

τ4r(y, x)µ(B(x, 4r)) ≥ τ8r(y)µ(B(y, 2r))

whenever d(x, y) < 2r (see (8)), and thus

µ({y ∈ B(x, 2r) : τ8r(y)µ(B(y, 2r)) ≥ λ−1}) ≤ λµ(B(x, 4r)). (17)

By Lemma 3 we can find an at most countable maximal r-separated set
E ⊂ G. Using (17) with λ = r2ε and (13) with η = 4 (see also the discussion
after (13)), we obtain

Dε(r)
def= µ({y ∈ G : τ8r(y)µ(B(y, 2r)) ≥ r−2ε})
≤
∑
x∈E

µ({y ∈ B(x, 2r) : τ8r(y)µ(B(y, 2r)) ≥ r−2ε})

≤ r2ε
∑
x∈E

µ(B(x, 4r))

≤ rε
∑
x∈E

µ(B(x, r)) ≤ rε.

We conclude that ∑
n>− log δ

Dε(e−n) ≤
∑

n>− log δ

e−εn <∞.

By the Borel–Cantelli lemma we find that for µ-almost any x ∈ G, we have

log τ8e−n(x)
n

≤ 2ε+
logµ(B(x, 2e−n))

−n
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for all sufficiently large n. The desired result now follows from the identities
in (15) and (16), and the arbitrariness of ε.

In particular, if µ is an exact dimensional probability measure on a separa-
ble metric space X, then by Lemma 2 we have R(x) ≤ dimH µ for µ-almost
every x ∈ X. On the other hand, if µ is not exact dimensional then in
general one can only show that R(x) ≤ dimH µ for µ-almost every x ∈ X
(see Theorem 2 and Example 1).

We notice that as in Lemma 2, the condition that X ⊂ Rd in Theorem 4
may also be replaced by the hypothesis that µ is weakly diametrically regular
on X.

We continue with an auxiliary statement.

Lemma 3. Let µ be a finite Borel measure on the separable metric space
X, and G ⊂ suppµ a measurable set. Given r > 0, there exists a countable
set E ⊂ G such that:

1. B(x, r) ∩B(y, r) = ∅ for any two distinct points x, y ∈ E;
2. µ(G \

⋃
x∈E B(x, 2r)) = 0.

Proof of Lemma 3. The existence of the set E can be obtained using Zorn’s
lemma on the non-empty family of subsets of G which satisfy the first prop-
erty, ordered by inclusion. Then the second property is satisfied for any
maximal element. Since µ(B(x, r)) > 0 for each x ∈ E ⊂ suppµ, the set E
is at most countable.

We shall call the set E in Lemma 3 a maximal r-separated set for G.
We now start establishing the results in the former sections.

Proof of Theorem 1. The desired statement follows from Lemma 1 and The-
orem 2.

Lemma 4. Given x ∈ X, we have R(x) ≤ d if and only if for every ε > 0,
we have

lim
n→∞

[n1/(d+ε)d(Tnx, x)] = 0. (18)

Proof of Lemma 4. Assume first that R(x) ≤ d. Given ε > 0 there exists a
sequence of numbers rn such that rn → 0, and τrn(x) < rn

−(d+ε) for all n.
Let mn = τrn(x). If the sequence mn is bounded, then x is periodic and (18)
holds. Assume now that mn is unbounded. Note that d(Tmnx, x) < rn and

mn
1/(d+2ε)d(Tmnx, x) < τrn(x)1/(d+2ε)rn

< rn
−(d+ε)/(d+2ε)rn = rn

ε/(d+ε).

Therefore

lim
n→∞

[n1/(d+2ε)d(Tnx, x)] ≤ lim
n→∞

[mn
1/(d+2ε)d(Tmnx, x)] = 0.

This establishes (18) for each ε > 0.
Assume now that (18) holds for every ε > 0. Setting rn = 2d(Tnx, x), we

conclude that τrn(x) ≤ n, and it follows from (18) that

lim
n→∞

[τrn(x)1/(d+ε)rn] = 0.
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Thus there exists a diverging sequence of positive integers kn such that
τrkn (x)1/(d+ε)rkn < 1 for each n. Therefore

R(x) ≤ lim
n→∞

log τrn(x)
− log rn

≤ lim
n→∞

log(rkn
d+ε)

− log rkn
= d+ ε.

The arbitrariness of ε implies the desired result.

Proof of Theorem 2. We remind that the statement in Theorem 2 is a refor-
mulation of a result of Boshernitzan.

By the definition of the Hausdorff dimension of a measure, for any α >
dimH µ and all sufficiently small δ > 0 there exists a set Z ⊂ X of full
µ-measure such that α > dimH Z > dimH µ − δ, and hence mα(Z) = 0. It
follows from (5) and Lemma 4 that R(x) ≤ α for µ-almost every x ∈ Z.
Letting α → dimH Z and δ → 0 we obtain R(x) ≤ dimH µ for µ-almost
every x ∈ X.

Proof of Theorem 3. The desired statement follows from Theorem 1 and
Lemma 4.

Proof of Theorem 4. By Theorem 1 we haveR(x) ≤ dµ(x) andR(x) ≤ dµ(x)
for µ-almost every x ∈ X. We shall now establish the reverse inequalities.

By Lemma 1 the measure µ is weakly diametrically regular on X. Since
µ has long return time (see (9)), µ is weakly diametrically regular on X
(see (13)), and dµ(x) > 0 for µ-almost every x ∈ X, if ε > 0 is sufficiently
small we conclude that there exist numbers a, γ, ρ > 0 and a set G ⊂ X
with µ(G) > 1− ε such that if x ∈ G and r ∈ (0, ρ) then

µ(Aε(x, 2r)) ≤ µ(B(x, 2r))1+γ , (19)

µ(B(x, 2r)) ≤ µ(B(x, r/2))r−aγ/2, (20)

µ(B(x, r)) ≤ ra. (21)

Consider the set

Aε(r)
def= {y ∈ G : τr(y) ≤ µ(B(y, 3r))−1+ε}.

Whenever d(x, y) < r we have τr(y) ≥ τ2r(y, x) (see (8)). Since B(x, 2r) ⊂
B(y, 3r), if x ∈ G then using (19), (20), and (21), we obtain

µ(B(x, r) ∩Aε(r)) ≤ µ({y ∈ B(x, r) : τ2r(y, x) ≤ µ(B(x, 3r))−1+ε})
≤ µ(Aε(x, 2r))
≤ µ(B(x, 2r))1+γ

≤ µ(B(x, r/2))r−aγ/2(2r)aγ .

If E ⊂ G is a maximal r
2 -separated set given by Lemma 3, then

µ(Aε(r)) ≤
∑
x∈E

µ(B(x, r) ∩Aε(r))

≤
∑
x∈E

µ(B(x, r/2))r−aγ/2(2r)aγ

≤ 2aγraγ/2.
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We conclude that
∞∑
n=1

µ(Aε(e−n)) <∞.

The Borel–Cantelli lemma implies that for µ-almost every x ∈ G we have

τe−n(x) > µ(B(x, 3e−n))−1+ε

for all sufficiently large n. The identities in (15) and (16) imply that

R(x) ≥ (1− ε)dµ(x) and R(x) ≥ (1− ε)dµ(x)

for µ-almost every x ∈ G. The desired statement follows from the arbitrari-
ness of ε.

For a non-uniformly hyperbolic set X in the manifold M , and a Lyapunov
regular point x ∈ X, let Φx : Ux → M be the Lyapunov chart at x for
some sufficiently small open neighborhood Ux ⊂ RdimM of 0, which satisfies
Φx0 = x, and

d0Φx(RdimEs(x) × {0}) = Es(x) and d0Φx({0} × RdimEu(x)) = Eu(x).

See the appendix to [1] for details. We denote by Ds(x, r) ⊂ RdimEs(x) and
Du(x, r) ⊂ RdimEu(x) the balls of radius r at the origin. We also denote
by Bs(x, r) ⊂ V s(x) and Bu(x, r) ⊂ V u(x) the balls of radius r centered at
the point x, with respect to the distances induced in the local stable and
unstable manifolds V s(x) and V u(x).

In [7], Ledrappier and Young constructed two measurable partitions ξs

and ξu of M such that for µ-almost every x ∈M we have:

1. ξs(x) ⊂ V s(x) and ξu(x) ⊂ V u(x);
2. ξs(x) ⊃ V s(x) ∩ B(x, γ) and ξu(x) ⊃ V s(x) ∩ B(x, γ) for some γ =
γ(x) > 0.

We denote by µsx and µux the conditional measures associated respectively
to the partitions ξs and ξu. Recall that any measurable partition ξ of M
has associated a family of conditional measures: for µ-almost every x ∈
M there exists a probability measure µx defined on the element ξ(x) of ξ
containing x. The conditional measures are characterized completely by
the following property: if Bξ is the σ-subalgebra of the Borel σ-algebra
generated by unions of elements of ξ then for each Borel set A ⊂ M , the
function x 7→ µsx(A ∩ ξ(x)) is Bξ-measurable and

µ(A) =
∫
A
µsx(A ∩ ξ(x)) dµ.

We will later need the following result concerning the product structure
of hyperbolic measures. Instead of formulating the result in all its generality
we state it in a form adapted to our purposes.

Proposition 4 ([12], after [1]). Let X be a locally maximal hyperbolic set
of a C1+α diffeomorphism f on a compact smooth manifold, for some α > 0.
If µ is an equilibrium measure of a Hölder continuous potential on X and
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a, b, c > 0, then for µ-almost every x ∈ X, there exists ε(r) > 0 for each
each r > 0 such that ε(r)→ 0 as r → 0 and

rε(r) ≤ µsx(Bs(x, ra))µux(Bu(x, rb))
µ(Φx(Ds(x, cra)×Du(x, crb)))

≤ r−ε(r)

for all sufficiently small r > 0.

Proof of Proposition 4. We use the notations of [12]. Take a Lyapunov reg-
ular point x, and let χ1, . . . , χd be the values of the Lyapunov exponent
at x. Setting ai = −a for χi < 0, and ai = −b for χi > 0 we conclude that
for any r sufficiently small there exist n(r), m(r) ∈ N such that

Rm(r)(x) ⊂ Φx(Ds(x, ra)×Du(x, rb)) ⊂ Rn(r)(x)

and m(r)/n(r) → 1 as r → 0. The desired result now follows immediately
from Theorem 3.9 in [12].

We define the return time of a set A into itself by

τ(A) = inf{n ∈ N : TnA ∩A 6= ∅}.

Given a partition ξ of X we consider a new partition ξn =
∨n−1
k=0 T

−kξ for
each n. Saussol, Troubetzkoy, and Vaienti show in [11] that the first return
time of an element of ξn is typically large.

Proposition 5 ([11]). Let T : X → X be a measurable transformation pre-
serving an ergodic probability measure µ. If ξ is a finite or countable mea-
surable partition with entropy hµ(T, ξ) > 0 then

lim
n→∞

τ(ξn(x))
n

≥ 1

for µ-almost every x ∈ X.

Using this result, it can be shown that the first return time of a ball is
also typically large.

Lemma 5. Let T : X → X be a Lipschitz map with Lipschitz constant
L > 1 on a compact metric space X. If µ is an ergodic T -invariant Borel
probability measure with entropy hµ(T ) > 0, then

lim
r→0

τ(B(x, r))
− log r

≥ 1
logL

for µ-almost every x ∈ X.

Proof of Lemma 5. We claim that for each n > 0 there exists a partition ζn
of X with diameter diam ζn ≤ 2−n, such that if r > 0, then

µ({x ∈ X : d(x,X \ ζn(x)) < r}) < cnr, (22)

where ζn(x) is the atom of ζn containing x, and cn is some positive constant
depending only on n.

Take a finite set En ⊂ X such that
⋃
x∈En B(x, 2−n−1) = X. For each

x ∈ En, we can find a sequence of real numbers rk = rk(x) ∈ (2−n−1, 2−n)
satisfying |rk+1 − rk| ≤ 2−k−1 and

µ(B(x, rk + 2−k−1) \B(x, rk − 2−k−1)) ≤ 2−k.
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Take r(x) = limk→∞ rk and consider the set

Ak = {y ∈ X : r(x)− 2−k ≤ d(x, y) ≤ r(x) + 2−k for some x ∈ En}
for each k ∈ N. Note that we obtain a cover of X satisfying

µ(Ak) ≤ 2−k+1 cardEn.

Writing En = {x1, . . . , xp} we set

B1 = B(x1, r(x1)) and B` = B(x`, r(x`)) \
`−1⋃
j=1

Bj

for ` = 2, . . . , p. Then the partition ζn = {B1, B2, . . . , Bp} has the desired
properties, with cn = cardEn.

Since diam ζn → 0 as n→∞, there exists n∗ ∈ N such that hµ(T, ζn∗) >
hµ(T )/2 > 0. Let Z = ζn∗ , C = cn∗ and denote by Zm(x) the unique
element of

∨m−1
k=0 T

−kZ which contains x ∈ X.
Fix σ < 1/L < 1. Clearly, if d(x,X \ Zm(x)) < σm, then

d(T kx,X \ Z1(T kx)) < σmLk

for some k < m. It follows from (22) that
µ({x ∈ X : d(x,X \ Zm(x)) < σm})
≤ mmax{µ({x : d(T kx,X \ Z1(T kx)) < σmLk}) : k = 0, . . . ,m− 1}
≤ Cm(σL)m,

using the invariance of the measure. By the Borel–Cantelli lemma we con-
clude that for µ-almost every x ∈ X we have B(x, σm) ⊂ Zm(x) for all
sufficiently large m.

By Proposition 5, for µ-almost every x ∈ X we have

1 ≤ lim
m→∞

τ(Zm(x))
m

≤ − log σ lim
m→∞

τ(B(x, σm))
−m log σ

= − log σ lim
r→0

τ(B(x, r))
− log r

.

Since σ can be made arbitrarily close to 1/L, we obtain the desired state-
ment.

Proof of Theorem 5. Let Z be a Markov partition, and consider the new
partitions Znm =

∨k=n
k=m f

−kZ whenever m ≤ n. There exist constants c > 0
and λ > 0 such that for any cylinder Znm ⊂ Znm

diams Z
n
m ≤ ce+λm and diamu Z

n
m ≤ ce−λn, (23)

where diams and diamu denote the diameters along the stable and unstable
manifolds.

For µ-almost every x ∈ X, we have dµ(x) = dµ(x) = d > 0 and, by
Lemma 5, there exists δ > 0 and ρ > 0 such that

B(x, r) ∩ f−kB(x, r) = ∅

for every r < ρ and k ≤ tr
def= −δ log r.

Let r < ρ and write B = B(x, r). There exists a countable collection of
points {xa}a∈A ∈ B and integers ma < 0 < na for each a ∈ A such that if
Znama(xa) ∈ Znama denotes the unique element containing xa, then

B =
⋃
a∈A
Znama(xa) (mod 0),
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in such a way that the union is disjoint (mod 0). We may also assume,
without loss of generality, that min{−ma, na} ≥ tr. Let k ≥ tr and write
p = [k/2] > 0 and q = p+ 1− k < 0. We have

B ⊂
⋃
a∈A
Zpma(xa)

def= Zp−∞(x, r) and B ⊂
⋃
b∈A
Znbq (xb)

def= Z+∞
q (x, r).

Once can find sets U ⊂ A and V ⊂ A such that

Zp−∞(x, r) =
⋃
a∈U
Zpma(xa) and Z+∞

q (x, r) =
⋃
b∈V
Znbq (xb),

with the two unions being disjoint (mod 0). Since

f−kZnbq (xb) = Znb+kp+1 (f−kxb)

we obtain

B ∩ f−kB ⊂
⋃

a∈U,b∈V
[Zpma(xa) ∩ Znb+kp+1 (f−kxb)].

The Gibbs property of the measure implies that there exists a constant κ > 0
such that

µ(B ∩ f−kB) ≤
∑

a∈U,b∈V
µ(Zpma(xa) ∩ Znb+kp+1 (f−kxb))

≤ κ
∑

a∈U,b∈V
µ(Zpma(xa))µ(Znb+kp+1 (f−kxb))

≤ κ
∑

a∈U,b∈V
µ(Zpma(xa))µ(Znbq (xb))

≤ κµ(Zp−∞(x, r))µ(Z+∞
q (x, r)).

(24)

Setting

rk = max{diamsZ+∞
q (x, r),diamuZp−∞(x, r)}

it follows from (23) that rk ≤ r + ce−λk/2. Furthermore, for µ-almost every
x ∈ X (in fact for all Lyapunov regular points) we have

Zp−∞(x, r) ⊂ Φx(Ds(x, 2r)×Du(x, 2rk)) (25)

and

Z+∞
q (x, r) ⊂ Φx(Ds(x, 2rk)×Du(x, 2r)) (26)

for all sufficiently small r > 0. Since k ≥ tr, we have rk ≤ r + crλδ/2 ≤ rg

where g = λδ/3 > 0 (provided that r is sufficiently small). Proposition 4
together with (24), (25), and (26), and the main theorem in [1] yield

µ(B ∩ f−kB) ≤ κµ(Φx(Ds(x, 2r)×Du(x, 2rg)))×
× µ(Φx(Ds(x, 2rg)×Du(x, 2r)))
≤ κr−2ε(r)µsx(Bs(x, r))µux(Bu(x, rg))×
× µsx(Bs(x, rg))µux(Bu(x, r))
≤ κr−4ε(r)µ(B(x, r))µ(B(x, rg))
≤ κµ(B)r−5ε(r)rgd,
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where ε(r) > 0 and ε(r)→ 0 as r → 0. Set now

kr =
[

2
L

(log c− log r)
]

+ 1.

If k ≥ kr then rk ≤ 2r, and a similar argument establishes that

µ(B ∩ f−kB) ≤ κµ(B)r−5ε(r)rd.

Then for any sr > 0, summing the estimate above as k runs from tr through
sr we obtain

µ({y ∈ B(x, r) : τr(y, x) ≤ sr})
µ(B(x, r))

≤
kr−1∑
k=tr

κr−5ε(r)rgd +
sr∑

k=kr

κr−5ε(r)rd

≤ κr−5ε(r)(krrgd + srr
d).

By rechoosing ε(r) if necessary, we may assume that µ(B(x, r)) ≥ rd+ε(r)

for all sufficiently small r. Setting sr = µ(B(x, r))−1+ε we obtain

µ({y ∈ B(x, r) : τr(y, x) ≤ sr})
µ(B(x, r))

≤ κr−5ε(r)[(−δ log r)rgd + r(d+ε(r))(−1+ε)rd],

provided that ε is sufficiently small. Since gd > 0, εd > 0 and ε(r) → 0 as
r → 0 we conclude that (9) holds. Since ε is arbitrarily small, the measure
µ has long return time.

The second statement is now an immediate consequence of Theorem 4
and Proposition 3, together with Young’s criteria (see [13]).

Proof of Theorem 6. It follows immediately from Proposition 17 in [2] that
there exists a constant c > 1 such that if y = (x, s) ∈ Y \ (X × {0}) and
r > 0 is sufficiently small (possibly depending on x) then

B(x, r/c)× I(s, r/c) ⊂ BY (y, r) ⊂ B(x, cr)× I(s, cr), (27)

where I(s, r) = (s− r, s+ r) ⊂ R. Therefore

µ(B(x, r/c)2r/c ≤ ν(BY (y, r)) ≤ µ(B(x, cr))2cr

for all sufficiently small r, and thus

dν(y) = dµ(x) + 1 and dν(y) = dµ(x) + 1.

It follows from Proposition 3 that dν(y) = dν(y) = dimH µ+ 1 for ν-almost
every y ∈ Y , and applying Young’s criteria (see [13]) we obtain dimH ν =
dimH µ+ 1.

By (27) we obtain

τΨ
r (y) ≤ inf{t > ρr(y) : ψty ∈ B(x, r/c)× {s}}+ r/c,

τΨ
r (y) ≥ inf{t > ρr(y) : ψty ∈ B(x, cr)× {s}} − cr,

and hence
τcr(x)−1∑
k=0

ϕ(T kx)− cr ≤ τΨ
r (y) ≤

τr/c(x)−1∑
k=0

ϕ(T kx) + r/c (28)
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for all sufficiently small r > 0 (possibly depending on x). By Theorem 5,
given ε > 0 we have r−d+ε < τr(x) < r−d−ε for all sufficiently small r, where
d = dimH µ. By (28) and the ergodicity of µ, we obtain

(cr)−d+ε

(∫
X
ϕdµ− ε

)
− cr ≤ τΨ

r (y) ≤ (r/c)−d−ε
(∫

X
ϕdµ+ ε

)
+ r/c

for all sufficiently small r. Therefore

RΨ(y) = R
Ψ(y) = lim

r→0

log τΨ
r (y)

− log r
= d = dimH µ

for ν-almost every y ∈ Y . This completes the proof of the theorem.
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