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Have it Your Way: Generating Customized Log

Datasets With a Model-Driven Simulation Testbed
Max Landauer , Florian Skopik , Markus Wurzenberger, Wolfgang Hotwagner ,

and Andreas Rauber, Member, IEEE

Abstract—Evaluations of intrusion detection systems (IDS) re-
quire log datasets collected in realistic system environments. Ex-
isting testbeds therefore offer user simulations and attack sce-
narios that target specific use-cases. However, not only does the
preparation of such testbeds require domain knowledge and time-
consuming work, but also maintenance and modifications for other
use-cases involve high manual efforts and repeated execution of
tasks. In this article, we therefore propose to generate testbeds for
IDS evaluation using strategies from model-driven engineering.
In particular, our approach models system infrastructure, simu-
lated normal behavior, and attack scenarios as testbed-independent
modules. A transformation engine then automatically generates
arbitrary numbers of testbeds, each with a particular set of charac-
teristics and capable of running in parallel. Our approach greatly
improves configurability and flexibility of testbeds and allows to
reuse components across multiple scenarios. We use our proof-
of-concept implementation to generate a labeled dataset for IDS
evaluation that is published with this article.

Index Terms—Intrusion detection, log data, model-driven
engineering (MDE), testbed.

I. INTRODUCTION

I
NTRUSION detection systems (IDS) are tools that auto-

matically monitor and analyze computer system or network

behavior and report suspicious activities. They contribute to

system security by recognizing patterns that are known to relate

to adversaries within large amounts of complex data or disclose

deviations from normal behavior without human intervention.

The ability to measure and compare the performances be-

tween IDSs in a representative way is essential for improving

their algorithms and providing new research directions [1].

However, many IDSs are designed and configured for deploy-

ment in particular environments and focus on the detection

of specific types of cyberattacks. Accordingly, objective IDS
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benchmarking for selection and deployment in real-world ap-

plications is nontrivial [2]. For this reason, research groups

have developed testbeds that resemble real networks and allow

IDS deployment as well as attack execution in controlled en-

vironments [3], [4]. In general, it is difficult to make testbeds

publicly available, because this would imply sharing network

infrastructure comprising complex and possibly closed-source

systems in a way that allows others to understand, configure, and

conduct experiments. Instead of sharing the testbeds themselves,

researchers therefore publish the network traffic or log datasets

collected during their simulation runs. Some datasets then be-

come standards for evaluation for some time, however, will at

some point be regarded as outdated or criticized for particular

aspects, e.g., focus on network traffic rather than log data [5],

missing documentation of installed services [6], too simple or

unknown simulations of system behavior [1], lack of multi-

step attack vectors [7] including long-term advanced persistent

threats [8], or too narrow focus that impedes generalization [6].

Eventually, this will encourage other research groups build new

testbeds with updated technologies that are relevant for their own

use-cases.

Testbeds are essential to validate, evaluate, and compare the

capabilities of IDSs. Thereby, testbeds offer analysts environ-

ments that yield unbiased results for their use-cases and the real

world. Otherwise, it is impossible to reliably assess whether the

IDS under test performs with similar efficiency and effectiveness

when deployed in productive operation. Furthermore, flawed

tests may lead to misconfigurations of IDSs and thus limit their

abilities to detect certain attacks. In order to ensure that such

requirements are met, high efforts should be spent on preparing

and designing the testbed setup.

Setting up testbeds for particular use-cases is usually time-

consuming. The most tedious tasks involve adjustments for

tests carried out under different conditions as well as follow-up

modifications for related use-cases [9]. The main problem is

that analysts are stuck with rigid testbeds that are set up a single

time by domain experts that could not predict the requirements

that became necessary after setup. Such testbeds are difficult to

maintain or modify for a number of reasons.

1) Manual work is required to change the testbed in hindsight,

e.g., increase the number of network components.

2) Modifications of otherwise identical components have to

be repeated multiple times.

3) It is necessary to check and update all components indi-

vidually to ensure that up-to-date versions are used.
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TABLE I
TESTBED DEVELOPMENT PHASES

4) Resetting the testbed to a “clean” state is often necessary

to remove artifacts that influence subsequent simulations.

However, this undoes purposefully inserted changes and

thus complicates iterative testbed development.

Another problem is that most existing testbeds are relatively

static, because their configuration, e.g., the selection of a user

behavior profile from a predefined list relies on manual in-

put and domain knowledge. This impedes fast instantiation

of different testbeds with variable configurations. In addition,

such parameters usually cover only basic application settings

of the testbed environment, but are not extensive enough to

fine-tune parameters with less influence, e.g., particular aspects

of a specific system behavior profile, and not powerful enough

to change the overall testbed setup, e.g., upgrade components

to newer versions. However, the possibility to obtain multiple

testbeds with variations would be highly beneficial for IDS

evaluation, because more available data representing different

technical environments would enable generation of separate

training, validation, and test datasets, improve robustness of

evaluation results, and support validation of approaches that

derive reusable attack attributes and patterns for detection of

specific attacks across different systems [10].

There is thus a need for a methodology that addresses the

aforementioned problems and eases testbed setup and devel-

opment. Table I gives an overview of the phases typically

encountered during testbed development and states ideas for

automation of involved tasks. To integrate these strategies in

the development procedure, we propose to leverage techniques

from model-driven development. In particular, in this article

we present an approach that makes use of abstract and testbed-

independent models (TIMs) for the testbed infrastructure, sys-

tem behavior, and attack scenarios, and uses a transformation

engine to automatically generate all scripts necessary to set up

the infrastructure, configure all components, install services,

simulate normal system behavior, and start the attacks. Thereby,

our approach is able to generate multiple testbeds instances

at once, each with particular characteristics, and produce log

datasets that cover variations occurring in different environ-

ments. Note that this does not imply that data is generated using

model-driven techniques; instead, we propose a model-driven

approach for the instantiation of testbeds that are useful for the

production of security data.

We implemented a proof-of-concept based on our proposed

model-driven methodology where an automatized pipeline al-

lows us to generate arbitrary numbers of testbeds running in

parallel. We designed a common real-world use-case, i.e., users

that access a mail platform and a web store, and launched two

attacks that make use of recently discovered exploits. We use

this setup to generate four testbed instances with variations and

collect their log data, which is published with this article.1

We summarize the contributions of this article as follows:

1) a novel model-driven concept for automatically instanti-

ating arbitrary numbers of parameterized testbeds;

2) adhering to a set of design principles;

3) for the generation of new network and log datasets.

The remainder of this article is structured as follows. Section II

reviews testbeds for log data generation or IDS evaluation. In

Section III, we first propose a list of design principles and then

introduce our approach for automatic testbed generation using

model-driven techniques. Section IV contains concrete design

decisions regarding testbed infrastructure, simulation of normal

behavior, and attacks. Section V validates our approach. Sec-

tion VI discusses applications and limitations of our approach.

Finally, Section VII concludes this article.

II. RELATED WORK

Several testbeds exist for use-cases that include log data gener-

ation for IDS evaluation. For example, Sharafaldin et al. [4] build

a network of real-world components, including servers, fire-

walls, switches, and user machines. They schedule and launch

attacks against the network and then capture and classify the

collected network traffic. Instead of building real networks, most

existing approaches, including our approach presented in this ar-

ticle, leverage virtualization, since it improves the scalability and

flexibility of the testbed. Ring et al. [11] design a virtual network

that represents a small business environment, containing mail,

web, backup, and file servers. They simulate normal behavior

by randomized scripts and carry out brute-force attacks, DoS

attacks, and security scans, which are subsequently labeled in the

collected network traffic by predefined rules. Even though they

use parameterized scripts, they limit this functionality to the user

behavior and do not consider variations of the system infrastruc-

ture or attacker behavior, which is solved by our approach. They

also decided to connect their network to the Internet to include

real data in their captures. The downsides of this setup are that

it is unknown what types of potentially malicious behavior is

included in their collected data, the reproducibility is limited

since it is difficult to recreate the external influences, and artifacts

such as IP addresses linked to real entities have to be anonymized

for privacy reasons, thus altering the raw data.

In contrast to this approach, Algorizmi [12] is a framework to

generate fully isolated testbeds and launch predefined attacks

from a database. The framework is highly configurable and

allows to reproduce results by reusing configuration scripts.

However, testbed setup is nontrivial, since it relies on manual

steps that have to be carried out beforehand. While our ap-

proach also generates isolated testbeds, we employ model-driven

methods to alleviate setup and configuration difficulties. Maciá-

Fernández et al. [6] provide another testbed for network-based

IDS evaluation and put special emphasis on modeling period-

ically repeating behavior, such as daily or weekly cycles. Our

approach also produces such recurring patterns. Despite being

1Log datasets accessible at https://zenodo.org/record/3723083

https://zenodo.org/record/3723083
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configurable, most testbeds comprise specific environments and

are thus unable to provide evaluation results that are independent

of manual settings. TIDeS [13] addresses this issue by varying

network load generated by different types of normal behavior

profiles derived from real networks.

Similar to our approach, Čeponis and Goranin [5] create a

testbed for host-based IDS evaluation, i.e., log data rather than

network traffic is collected. In particular, they collect system

call logs from malware injected on a host system. However,

they do not simulate normal behavior, because their main focus

is to extract the malware manifestations rather than detecting

them within normal data. Creech and Hu [14] on the other

hand perform normal web browsing or document editing while

collecting system call data. Their attack exploits a vulnerability

that was purposefully installed on an otherwise fully patched

server. Similarly, Skopik et al. [3] design a virtual testbed that

imitates a real web platform. They use scripts to simulate user

behavior and validate their approach by comparing simulated

page visit frequencies with log data collected on a real system.

We also use scripts to simulate normal user and attacker be-

havior, but generate different profiles automatically following a

model-driven approach.

ViSe [15] is a testbed for both network-based and host-based

IDS evaluation. It provides snapshots of virtual machines that al-

low easy instantiation of predefined testbeds suitable for running

attacks against already installed IDSs. Another comprehensive

framework for IDS evaluation is LARIAT [16] that comes with

tools for normal behavior simulation and attack injection. Pro-

files for normal behavior are thereby derived from a real network

and attacks involve sequences of malicious actions carried out

in a particular order. In our approach, it is also possible to

parameterize the models with ranges and lists of expected values

that may be derived from expert knowledge or real observations.

Beside IDS evaluation, testbeds are frequently used for mal-

ware analysis and experiments. Due to the fact that require-

ments on the testbeds, particularly isolation, repeatability, and

the presence of monitoring tools, are similar, application for

log data collection and IDS evaluation is usually reasonable.

For example, DETER [17] has been used to test Distributed

Denial-of-Service attacks, worms, and malicious code. When

experimenting with worms, Jiang et al. [18] also include and test

countermeasures and measure their effectiveness. Experimental

testbeds are related to educational simulations, for example,

Frank et al. [19] describe the design process of a security training

testbed that enables automatic deployment of infrastructure and

services.

While several of the aforementioned approaches emphasize

configurability of their networks, they do not make use of

model-driven development for preparing testbed setup, normal

behavior, or attacks. Accordingly, variations of configurations

imply manual work and domain knowledge about the deployed

technologies and the testbed setup itself. This issue is addressed

by Cappos et al. [20], who propose a meta-framework called

Tsumiki that specifies guidelines for testbed design as reusable

components and interfaces. Galan et al. [9] on the other hand

leverage model-driven techniques to enable testbed design on

an abstract level and automatic generation of testbed instances.

While they focus solely on networking aspects, our approach

extends the idea of abstract testbed modeling to its infrastructure

setup, dynamic behavior, and attacks.

III. TESTBED DESIGN METHODOLOGY

In this section, we introduce our proposed methodology

for model-driven testbed development. Before presenting the

model-driven workflow, we propose a set of design principles

that act as requirements for subsequent design decisions.

A. Design Principles

Most of the issues with existing log datasets generated in

testbeds are attributable to shortcomings of the system infras-

tructures and environments where the data was collected. Ac-

cordingly, it is necessary to align the design process of the testbed

with requirements on the data to be generated. We therefore

pursue a number of design principles that form the basis of our

testbed generation methodology. In the following, we briefly

discuss each of the principles.

1) Authenticity: Log data should be collected within realistic

scenarios to ensure a representative evaluation of the capabilities

of IDSs. Thereby, several aspects must be considered: First,

all involved components, e.g., servers or clients, have to be

selected and arranged within a network that is representative for

a well-defined use-case, e.g., a small enterprise. This includes

network complexity, i.e., diversity of involved components, as

well as scale, i.e., total number of components. Second, com-

ponents must act and react like their real counterparts. This

includes automatic behavior, e.g., scheduled tasks, as well as

user behavior that may be erratic, unpredictable, and dependent

on user roles. Third, attacks carried out on the testbed should

be related to recently discovered vulnerabilities to ensure that

the detection capabilities are not measured on outdated exploits

that possibly have lost relevance in modern infrastructures.

Accordingly, all services should be set up with fully patched

and up-to-date software. Moreover, the attacks should affect

common technologies in order to be relevant for a large number

of people and organizations. Fourth, the collection of the log

data and network traffic has to take place in a realistic manner.

This means that only commonly available log sources should

be used and that logging should be configured on a level that is

adequate for the use-case.

2) Flexibility: Setting up a testbed encompasses manual

time-consuming work [9]. It is therefore economically reason-

able to design a testbed that is flexible in the sense that it supports

adjustments and extensions and enable iterative development.

There are mainly three dimensions of modifying the testbed.

First, enlarge or shrink the scale of the network by adding or

removing components. Thereby, we suggest to initially create a

number of predefined components that act as building blocks that

can be arbitrarily duplicated and set into relation with each other.

Second, the configurations of these components, including all

installed services and their versions, are subject to modification.

Third, it should be possible to change the dynamic behavior and

interactions between the components, e.g., the types of services

accessed by clients.
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3) Reproducibility: The ability to reproduce the generated

log dataset requires that it is possible to reset the testbed to a past

state. This is particularly useful when the effects of an attack on

modified versions of the testbed are subject of investigation, for

example, comparisons of patched and nonpatched services. It is

important to note that it is usually impossible to guarantee that

the reproduced dataset is identical to the original dataset, but

rather only conform in their main characteristics, such as the

overall user behavior. This is due to the fact that it is difficult

to avoid that latencies during communication of components

as well as arbitrarily occurring events or failures result in non-

deterministic behavior. In order to ensure reproducibility, it is

necessary to isolate the testbed from all external sources that may

have unpredictable influence on the outcome of the simulation

and are not under control of the analyst, for example, publicly

accessible connection over the Internet may cause unknown and

potentially malicious behavior manifesting itself in the logs,

making subsequent evaluations on the captured data less reliable.

Another important aspect of reproducibility is that only freely

available or open-source services are used within the testbed.

The reason for this is that the use of commercial products or

services that are not publicly available may prevent others from

rebuilding the same system.

4) Availability: To enable IDS benchmarking and compari-

son of detection capabilities with other approaches, it is impor-

tant to make generated datasets publicly available. In addition,

the dataset has to be accompanied with appropriate documenta-

tion, including the overall purpose of the dataset, the infrastruc-

ture setup, and a description of the normal and attacker behavior.

If such a documentation is missing, it is difficult for others

to understand certain artifacts in the data, interpret evaluation

results, or reproduce the dataset.

5) Utilizability: The availability of a dataset alone is not

sufficient to enable evaluation of IDSs. In order to obtain compa-

rable evaluation results, a ground truth that defines the malicious

behavior in a quantifiable way is needed. Thereby, several levels

of labeling the data are possible. The most superficial approach is

to label all log events generated during time intervals of attacks as

malicious. Note that all other events can be considered benign,

because the testbed is a simulation that runs isolated from a

productive system that may be affected by unknown processes

or attacks. While this form of labeling is easy to accomplish

since it is possible to derive anomalous time windows from

attack scenario descriptions, it has the disadvantage of also

labeling normal events that occur during attacks as anomalous.

However, since most IDSs report individual events as anomalies,

a more in-depth evaluation is enabled by labeling only events

that actually correspond to malicious behavior as anomalous.

Even better are labels that differentiate between different types of

attacks or attack steps, enabling in-depth evaluation of anomaly

detection systems that support attack classification or focus on

multistep attacks.

Anomaly detection systems or other self-learning approaches

additionally require that the generated log data covers a suf-

ficiently large duration of the normal behavior in order to be

adequately utilized [6]. In particular, the data has to span over

multiple cycles of normal behavior, i.e., all repeating processes

should be at least once fully present in the data. Incomplete train-

ing sets may lead to misclassifications, e.g., false alarms, during

evaluation. In addition, log data should always be published in

raw format, because any modification such as anonymization or

pseudonymization possibly distort evaluation results [4].

B. Model-Driven Testbed Setup Methodology

The usual setup process of a testbed that adheres to the

outlined design principles involves time-consuming and non-

trivial work. In particular, ensuring flexibility of the testbed, i.e.,

enabling arbitrary changes of the size of the represented network

while at the same time allowing the user to steer component

configurations, is technically difficult and involves tedious tasks,

such as repeatedly setting up or modifying similar components

in slightly different environments. This procedure becomes es-

pecially nerve-racking when settings of the system configuration

have to match simulated user behavior or are dependent on the

type of attack [3].

We suggest to use techniques from model-driven engineering

(MDE) [21] to alleviate these issues. MDE is a methodology

that aims at simplifying software development by providing

programmers a framework to design solutions on a higher level

of abstraction, thereby allowing them to focus on the actual

problem at hand independent of technical details and complex

implementations on specific platforms. This results in appli-

cable models that support development on multiple different

platforms. MDE further makes use of transformation engines

that automatically process platform-independent models and

generate code for specific platforms.

For our proposed approach, we adopt these concepts from

MDE and apply them for testbeds rather than for software plat-

forms. Fig. 1 shows an overview of the layers of abstraction and

workflow that we use for testbed design and automated testbed

deployment. Our model-driven approach thereby differentiates

between 1) the technical infrastructure, 2) the normal system

behavior, and 3) the modeled attack.

The top of the figure depicts preselected relevant aspects of the

real world that is simulated in the testbed. In particular, we seek

for commonly available infrastructures that are frequently sub-

ject to attacks, such as servers that are accessible over a network.

We also look for frequently installed packages and examine the

settings of the logging services. Given a real infrastructure, it

is also possible to monitor the exhibited behavior and derive

relevant characteristics of normal system usage, such as usage

distributions over a period of time. Finally, attacks are either

observed on the real infrastructure or exist in the documented

form in online threat databases.2

We then define TIMs. Regarding the infrastructure, this im-

plies declarations of the setup routines for all involved compo-

nents and services without specifying any concrete parameters.

For example, we define how a component is connected to the

network, but do not allocate IP addresses, assign names, or

specify the number of users, but only the type and range of

these parameters. Similarly, we design a model of the system

2For example, https://www.metasploit.com/

https://www.metasploit.com/
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Fig. 1. Model-driven testbed generation approach. TIMs are derived from real scenarios and transformed to testbed-specific models (TSMs) that instantiate the
testbed for labeled network and log data generation.

behavior as a state machine without fixed transition probabilities

between its states, and a model for the attack scenario that

consists of the basic steps that are necessary for carrying out

the attack. All TIMs function as templates, i.e., they are scripts

that represent specific routines, but are configurable through

consciously placed parameters throughout the code.

Our transformation engine that generates TSMs processes

the templates and inserts all parameters to produce executable

code. The parameters are thereby selected randomly based on

their type specified in the TIM. For example, the number of

simulated users is selected from a predefined range, their names

and passwords are picked from predefined lists, and IP addresses

are automatically assigned from a pool. For the user behavior,

we specify a number of profiles with ranges for transition

frequencies that the transformation engine translates into prob-

abilities. Regarding the attack scenario, optional parameters of

individual steps as well as their order and delays are randomly

selected. Note that modeling may be based either on attacks or

vulnerabilities, i.e., an attack model scenario may focus on a

single malicious action or involve several vulnerability exploits

and diverse attack vectors.

Since transformation of TIMs to TSMs is fully automatic, it

is possible to generate arbitrary amounts of TSMs at the same

time, where each TSM exhibits variations depending on the

settings for random selection. For each TSM, we first run the

infrastructure setup scripts to build the virtual machines and

set up the network of the testbed instance. We then gather,

allocate, and run all generated scripts for component setup, user

simulation, and attack execution, on the respective machines.

After completion, we use another script to copy all logs from

the virtual machines and label them according to the outcomes

of the simulation. In MDE terminology, such labeled data are

usually referred to as oracle data [22].

IV. TESTBED MODELS

The previous section outlines the idea of generating testbeds

using a model-driven approach. In this section, we discuss

selected design aspects of our implementation in more detail.

Fig. 2. Simplified sample transformation of TIM (left) to TSM (right) for
infrastructure setup.

A. System Infrastructure

To evaluate our model-driven concept for generating testbeds,

we were aiming to create a simulation of a system infrastructure

that is common in many organizations. After reviewing usage

statistics of well-known technologies, we decided to model an

Apache web server hosting a mail platform and content manage-

ment system (CMS) that are accessed and used by an arbitrary

number of users. In particular, we selected Horde Groupware

Webmail3 and a webshop provided by OkayCMS,4 because

both platforms are available open source and have recently

been affected by vulnerabilities. Each generated testbed should

consist of one web server with a database and a variable number

of connected host machines, each representing one or more

users.

We designed TIMs in YAML syntax for setup of a web

server and a user host machine. Fig. 2 shows a simplified and

shortened version of such a template on the left side, where

“mail” refers to the web server and “user” to the user host

machine. A transformation engine is able to process such a

3[Online]. Available: https://www.horde.org/
4[Online]. Available: https://okay-cms.com/

https://www.horde.org/
https://okay-cms.com/
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Fig. 3. Simulated normal user behavior on the Horde Webmail (yellow) and OkayCMS (blue) modeled as a state machine.

TIM and generate the TSM on the right side of the figure that

acts as a configuration file for the setup procedure. The engine

thereby executes the code within the arrow brackets specified

in the TIM to fill the gaps of the template with parameters that

are subject to change in every testbed instance. For example,

the server hostname is randomly selected from a predefined list

of names, IP addresses are automatically assigned during setup,

and accounts for a random set of users are created.

Before running the transformation engine, it is necessary to

specify the total amount of web servers and user host machines

to be generated from the TIM. These numbers are critical since

there is usually a limited amount of computational resources

available for the virtual machines. The transformation engine

then allocates the host machines randomly to web servers (pa-

rameter “connectedTo” in Fig. 2) in accordance with predefined

values for the minimum and maximum number of host machines

per web server.

There are two main advantages of designing the infrastructure

on this abstract level. First, it is simple to generate large numbers

of different testbeds that run in parallel. It is thereby easy to steer

the degree of variation by adjusting the predefined ranges in the

TIM. Second, changes that affect all components of a particular

type only have to be carried out once in the TIM since these

modifications will automatically propagate to all TSMs when

running the transformation engine again.

B. Normal System Behavior

The purpose of the testbed is to generate log data for eval-

uating attack detection tools. However, executing malicious

actions on an idle system makes their detection relatively easy,

since almost all generated logs are likely to be related to the

attack. This scenario is not authentic, because web servers in the

real world are almost always actively used. Furthermore, IDSs

based on anomaly detection usually rely on a training phase

that represents normal and anomaly-free behavior in order to

disclose deviations from the learned patterns.

We therefore simulate normal system behavior by modeling

typical user accesses. For this, we created a state machine that

covers all relevant functions of both the Horde Webmail and

Fig. 4. Randomized user profiles and state machine of system behavior TIM
(left) transformed to TSM (top right) and testbed execution (bottom right).

OkayCMS platforms using the well-known web automation

framework Selenium.5 Fig. 3 shows a graphical overview of

all subpages and activities that are covered by the state machine

and users are thus able to visit. On Horde Webmail, the users

are capable of changing their preferences, writing mails to other

users and responding to received mails, and creating and deleting

entries in the calendar, notebook, list of tasks, and address book,

where fields are filled out with random values or dummy text.

Users with administrator privileges are further able to access the

admin page and its subpages. On OkayCMS, users browse the

articles available on the webshop and add or remove products

from their shopping carts.

Fig. 4 shows a sample transformation from TIM to TSM

and further an exemplary execution of a parameterized system

behavior script. The left side of the figure shows the state

machine as well as the instantiation of a predefined number

of profiles, each containing ranges of transition frequencies

between the states, and their random allocation to users. The

profiles also specify the browser used to access the websites.

Moreover, the mail recipients are selected based on a randomly

generated small-world network, i.e., most users communicate in

small groups rather than randomly sending mails to every other

5[Online]. Available: https://selenium.dev/

https://selenium.dev/
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Fig. 5. Multistep attack on Horde Webmail (top) and its transformation from
TIM (center) to TSM (bottom).

user with the same probability [23]. In addition, users regularly

log out and go idle for random amounts of time, and stay inactive

during night time to simulate daily routines.

The TSM generated by the transformation engine yields a

configuration that is exemplarily displayed in the top right of

Fig. 4. Note that probabilities for choices are normalized to

ensure that they sum up to 1. All users exhibit different behavior,

even though their actions are based on the same independent

behavior model. The bottom right of the figure shows the ex-

ecution log of users “alice” and “bob.” In this sample, user

“alice” views a random day from the calendar, but returns to the

home page rather than adding a new event, because a randomly

selected value is below the required threshold. This sample also

shows multiple users using the system at the same time causing

interleaving processes.

C. Attacker Behavior

We prepared two attacks to be executed on the testbed. The

first one is a multistep intrusion that involves several tools

commonly used by adversaries and exploits two well-known

vulnerabilities to gain root access on a mail server. The top of

Fig. 5 shows an overview of the attack steps. The first two steps

involve scans for open ports6 and vulnerabilities.7 Then, the

attacker uses the smtp-user-enum tool8 for discovering Horde

Webmail accounts using a list of common names and the hydra

tool9 to brute-force log into one of the accounts using a list

of common passwords. The attack proceeds with an exploit in

Horde Webmail that allows to upload a webshell (CVE-2019-

9858) and enables remote command execution. We simulate the

attacker examining the web server for further vulnerabilities by

6[Online]. Available: https://nmap.org/
7[Online]. Available: https://cirt.net/Nikto2
8[Online]. Available: https://tools.kali.org/information-gathering/smtp-user-

enum
9[Online]. Available: https://tools.kali.org/password-attacks/hydra

executing several commands, such as printing out system info.

In our scenario, the intruder realizes that a vulnerable version

of the Exim package is installed and thus uploads an exploit

(CVE-2019-10149) to obtain root privileges through another

reverse connection.

Fig. 5 shows how we model this attack procedure as TIM

and one possible transformation to TSM. As visible in the

TIM, we use a sequence of predefined commands, but do not

specify values that are only known after instantiating the testbed,

such as the IP addresses of the web server (“mail-IP”) and

user host (“user-IP”), as well as parameters that are varied in

each simulation, such as port numbers, evasion strategies, or

commands executed after gaining remote access. This attack

was purposefully designed as a multistep attack with variable

parameters to evaluate the ability of IDSs to disclose and extract

individual attack steps and their connections, and recognize the

learned patterns in different environments despite variations.

The second attack targets the web shop. A recently discovered

flaw in OkayCMS allows an attacker to inject a malicious php-

object via a crafted cookie (CVE-2019-16885). In this scenario,

the attacker uses the exploit to upload a webshell and is then

again able to execute commands through the remote interface.

Since no user credentials are required for authentication, this

attack consists of only a single step and does not involve varia-

tions. Instead, it is designed to evaluate whether IDSs are able to

detect and classify the injection of the php-object, since it only

manifests itself in slightly different library calls that are difficult

to detect.

Both attacks are carried out at a random point in time within

a predefined period on randomly selected user host machines.

Since the attacks are carried out independent of each other,

they may be executed at the same time. During execution, the

outcomes of the commands are automatically searched for key-

words that indicate successful execution. We log this information

together with the start and end times of each attack step, which

is useful for labeling the recorded log data.

D. Ground Truth

Labeling data is essential for appropriately evaluating and

comparing the detection capabilities of IDSs. However, gener-

ating labels is difficult for several reasons, such as follows.

1) Log data is generated in large volumes and manual label-

ing all lines is usually infeasible.

2) Single actions may manifest themselves in multiple log

sources in different ways.

3) Processes are frequently interleaving and thus log lines

corresponding to malicious actions are interrupted by

normal log messages.

4) Execution of malicious commands may cause manifes-

tations in logs at a much later time due to delays or

dependencies on other events.

5) It is nontrivial to assign labels to missing events, i.e., log

messages suppressed by the attack.

We attempt to alleviate most of these problems by automat-

ically labeling logs on two levels. First, we assign time-based

https://nmap.org/
https://cirt.net/Nikto2
https://tools.kali.org/information-gathering/smtp-user-enum
https://tools.kali.org/password-attacks/hydra
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labels to all collected logs. For this, we make use of the attack ex-

ecution log mentioned in the previous section. We implemented a

script that processes all logs, parses their time stamps, and labels

them if their occurrence time lies within the time period of an

attack stage. Under the assumption that attack consequences and

manifestations are not delayed, it is then simple to check whether

anomalies reported by IDSs lie within the expected attack time

phases. Since exact times of malicious command executions are

known, it is even possible to count correctly reported missing

events as true positives.

While time-based labeling is simple and effective, it cannot

differentiate between interleaved malicious and normal pro-

cesses and does not correctly label delayed log manifestations

that occur after the attack time frame. Therefore, our second

labeling mechanism is based on lines that are known to occur

when executing malicious commands. For this, we carry out the

attack steps in an idle system, i.e., without simulating normal

user behavior, and gather all generated logs. We observed that

most attack steps either generate short event sequences of partic-

ular orders (e.g., webshell upload) or large amounts of repeating

events (e.g., scans). We assign the logs to their corresponding

attack steps and use the resulting dictionary for labeling new

data. For the short ordered sequences, we pursue exact matching,

i.e., we compute a similarity metric [24] based on a combination

of string similarity and timing difference between the expected

and observed logs and label the event sequence that achieves

the highest similarity. For logs that occur in large unordered

sequences, we first reduce the logs in the dictionary to a set

of only few representative events, e.g., through similarity-based

clustering [24]. Our algorithm then labels each newly observed

log line that occurs within the expected time frame and achieves

a sufficiently high similarity with one of the representative lines.

These strategies enable correct labeling of logs that occur with a

temporal offset or are interrupted by other events, but obviously

suffer from misclassifications when malicious and normal lines

are similar enough to be grouped together during clustering.

Fig. 6 shows an example of our labeling procedure that

involves two sample attack steps, the brute-force login tool

“hydra” and the “webshell” upload. The top left of the figure

shows start and end times of both attacks logged during attack

script execution. The top right of the figure shows a dictionary

that lists the log lines that are expected to occur in the Apache

access log at attack execution. Note that the “hydra” logs are

marked as “repeating,” i.e., they represent a large number of

similar lines, whereas the “webshell” logs are marked as “exact,”

i.e., they correspond to ordered individual lines. The bottom left

of the figure displays the time-based and line-based labels for

the Apache access logs in the bottom right. As visible in this

example, the time-based labels are assigned to the lines solely

by their occurrence timestamps. Due to the interleaving user

actions, this means that lines generated by actions other than

the attack (e.g., viewing Horde task list “nag”), but occurring in

the same time frame, are also labeled accordingly. These lines

remain correctly unlabeled by the line-based method. In particu-

lar, the “repeating” technique labels all lines within the “hydra”

attack time frame that achieve a minimum string similarity to the

message “POST /login.php.” In this simplified example, these

Fig. 6. Example of our labeling procedure. Information on attack execution
(top left) and expected attack logs (top right) are used to create labels (bottom
left) using time-based and line-based techniques for log data (bottom right).

lines are identical and thus achieve a perfect similarity score.

The “exact” technique matches the three expected lines of the

“webshell” attack step within all lines occurring in the attack

time frame to find and label their counterparts. Note that it is

possible to specify the temporal offset through the timestamp in

the attack dictionary, e.g., “HEAD /static/x.php” is expected to

occur 10 s after the first two lines of the “webshell” attack step.

E. Implementation

We implemented the outlined concept for the automatic gen-

eration of testbeds using model-driven techniques. Fig. 7 shows

an overview of the typical workflow for testbed and log data

generation. As visible in the figure, we use the infrastructure-

as-a-service tool Terraform10 to instantiate the testbed infras-

tructures as virtual machines on an Openstack11 cloud platform

using our predefined setup scripts. Configurations at this point

involve the total number of machines, operating systems, and

computational resources, e.g., memory.

Building the machines with Terraform yields a so-called state

file that contains deployment information, such as IP addresses.

The testbed script generator implemented in Python that acts as

the transformation engine of our model-driven proof-of-concept

implementation imports the state file together with a configu-

ration file, system behavior and attack TIMs, and thesauri, i.e.,

word lists arranged by topics such as usernames, passwords, and

host names. The configuration contains lower and upper limits

for parameters that are randomly chosen when generating TSMs,

i.e., files and executable scripts. Moreover, the transformation

function generates a playbook that specifies the services to be

10[Online]. Available: https://www.terraform.io/
11[Online]. Available: https://www.openstack.org/

https://www.terraform.io/
https://www.openstack.org/
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Fig. 7. Technical implementation of the model-driven testbed and log data generation approach. Simple arrows indicate imports and filled arrows indicate
generation of resources such as scripts, configuration files, or machines.

installed, which are referred to as roles. Examples for such roles

are PHP, Apache for web server setup, MariaDB for database

setup, suricata IDS, or Internet browsers. Each role requires a

setup script that states a list of tasks to be carried out. Thereby,

it is possible to use variables in the playbook to specify random

modifications of the setup process, e.g., install different versions,

or replace them with alternative roles altogether. We then use the

application-deployment tool Ansible12 to distribute all generated

files, set up services, and start the execution of user and attack

scripts.

Note that roles have dependencies that have to be deployed

before initiating the installation of the dependent role. Fig. 8

shows an overview of all roles currently available and their

dependencies. As visible in the figure, the roles for installing

Horde Webmail and OkayCMS require several other roles for

database setup, user management, mailing services, etc. The user

automation scripts as well as the attacks on the respective web

services in turn require the availability of Horde Webmail and

OkayCMS to access the web pages. In addition, some services

are depending on specific versions, e.g., the vulnerable Exim

version requires a specific Debian snapshot.

The right side of Fig. 7 shows that once the simulation is

complete, another script collects all log files from the virtual

machines and stores them on disk. As outlined in the previous

section, we automatically label the logs using attack execution

information extracted together with the other logs as well as a

predefined dictionary of expected log lines for each attack step.

We store the lists of generated labels in separate files.

V. VALIDATION

We devote this section to the validation of our approach and

discovery of limitations. We first evaluate whether our approach

12[Online]. Available: https://www.ansible.com/

Fig. 8. Overview of role dependencies. To install any role, it is necessary that
all roles that the attached arrows point to are available and correctly installed.

adheres to the design principles defined in Section III-A. We

then analyze the collected log data and show the effects of

automatically selected parameters on the system behavior. In

addition, we discuss selected case examples to demonstrate the

simplified process of iterative testbed development.

A. Fulfillment of Design Principles

We selected a simple web server to target a realistic and

common use-case. However, real web servers may be accessed

https://www.ansible.com/
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Fig. 9. Event frequencies of Apache access logs. Scans executed as part of a multistep attack manifest themselves as peaks (shaded intervals).

by humans as well as bots with extremely high frequency and

diverse behavior patterns. While our approach theoretically al-

lows to add arbitrary numbers of user hosts, the total amount of

machines is limited by the available computational resources and

may thus not represent the heavy loads present in real networks.

In addition, we did not use real user activity measurements to

define behavior parameters, but argue that our model-driven

approach makes it easy to adjust the TIM appropriately if such

data is available. The prepared attacks are realistic, relevant, and

make use of recently discovered exploits. Finally, all used log

sources were either left in their standard configurations or were

realistically adapted.

Our approach fulfills all three dimensions of the flexibility

principle due to the incorporation of model-driven techniques.

The number of testbeds and sizes of the networks only depend

on the predefined amount of machines. Changing components

or user and attack behavior is easy by modifying TIMs. For

example, it is simple to extend the state machine that represents

an independent model of the user behavior by adding new states

for particular actions while leaving everything else untouched.

Since all the configuration files are reusable, it is possible to

recreate the overall system behavior multiple times and thus

reproduce the results. In addition, all technologies used in our

scenario as well as the tools used to generate the testbed (Ter-

raform, Openstack, Ansible) are open source.

We made all produced log data available online in documented

form. In addition, we provide labels for the logs created by time-

based and line-based methods. The labels are on the level of

attack steps and thus support the evaluation of IDSs. Finally,

our generated data covers several days and thus contains several

periods of repeating patterns, which allows anomaly detection

tools to learn a baseline of normal behavior.

B. Manifestations of Testbed Variations

Depending on the types and characteristics of variations,

different log files are affected in particular ways, e.g., by event

appearances or changed parameters. In the following, we focus

on event frequencies as a measure to compare testbeds. We

analyze Apache access logs, because they keep record of page

visits on Horde Webmail and OkayCMS, and thus allow to

reconstruct user behavior, which is subject to variation.

Fig. 9 shows user access frequencies on four web servers cup,

insect, onion, and spiral, aggregated in time windows of 1 h

over six days. The plot depicts that users access the server more

Fig. 10. Biplot of user page visit frequencies aggregated in daily intervals.

frequently during the day than at night, resulting in a daily cycle.

The peaks (shaded intervals) are caused by the scans as part of the

multistep attacks. Note that additional detection techniques are

required to disclose manifestations of the remaining attack steps.

Since the amount of users per web server is selected randomly in

order to increase variation, the average access rates differ among

the web servers.

We further retrieve activity logs from each user. Since transi-

tion probabilities of the behavior state machines are specific to

each user and remain constant over time, it is possible to relate

observed behavior to users. For this, we compute the relative

frequencies of accessed web pages for each user in time intervals

of one day and use principal component analysis to scale down

the resulting high-dimensional data. Fig. 10 shows a biplot13

containing daily user behavior as scores (visualized as points)

and the influence of visited pages on principal components

as loadings (visualized as vectors). The ellipses represent the

normal distributions of the daily user activities and show that

each user follows a distinct pattern. The behavior spectrum in-

cludes admin users (daryl, lacresha, lino, and sadye) and shows

overlaps between users following similar behavior profiles, e.g.,

denis and long.

13R package available at https://github.com/vqv/ggbiplot

https://github.com/vqv/ggbiplot
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Fig. 11. Biplot of Apache access logs collected from different testbeds.

We also extract page visits from Apache access logs collected

at the web servers. Note that we do not attempt to trace individual

accesses to specific users; instead, we analyze differences of

the overall behavior observed at the web servers. Fig. 11 is

another biplot that shows groups of daily page visits on the

web servers. Despite the aggregation of different user behavior

patterns, the activities on the web server form distinct groups,

for example, onion is located far away due to its high activity of

admin users. The figures suggest that our approach achieved to

generate testbeds with variations.

C. Case Examples of Testbed Extensions

We designed the presented approach to simplify iterative

testbed development and support variations across generated

testbeds. Our experiences during the development of our

proof-of-concept implementation (cf., Section IV) endorsed

the achievement of this target. In particular, we proceeded by

adding new TIMs as reusable modules and repeatedly built and

destroyed testbeds to test new features. In the following, we

discuss three case examples of such extensions in detail and

measure the required manual work in lines-of-code that were

adapted.

1) Tool: System administrators install different tools on web

servers based on domain knowledge and personal preference. We

selected the Clam AntiVirus software14 as an exemplary tool to

be installed on some testbeds. Since there are no dependencies to

other modules, another infrastructure TIM with ten lines of code

is required to define a new role that contains two tasks that install

the software and set up a cron job that regularly performs scans.

Thereby, we leave the scheduled scan time as a variable. In the

transformation engine that generates and populates the testbed

14[Online]. Available: https://www.clamav.net/

setup scripts, we add 14 lines of code to specify the probability

for installing Clam Antivirus, set the scan intervals, and add the

resulting parameters to the Ansible playbook.

2) Browser: Since real users prefer different browsers for

accessing web platforms, we planned to add Firefox15 as an

alternative to Chromium.16 Similar to the antivirus tool, this

implies creating a role with a single task consisting of 6 lines that

specify the installation details. However, it is further necessary

to change the existing TIM of the user behavior by adding a task

that copies the required browser drivers for web automation (four

lines of code) and adapting the user behavior script to support

the new browser (five lines of code). Finally, a single line is

edited in the transformation engine that randomly assigns one

of the available browsers to each user profile.

3) Web Platform: At first, only Horde was implemented in

the testbed. To increase diversity of the generated log data, we

then decided to extend the simulation to also include OkayCMS.

For this, we first set up and configured an OkayCMS instance.

Once this was accomplished, a role with only 23 lines of code

was required to specify three tasks that copy the OkayCMS

instance in the appropriate webroot and set up the database

to make the web store accessible to the users. Around 120

lines of code were necessary to update the state machine in

the user behavior TIM so that users are able to navigate four

pages of the website and perform adequate actions. Finally, three

lines of code in the transformation engine specify the transition

probabilities between the states.

VI. DISCUSSION

In this article, we propose to shift from traditional testbed

setup to model-driven testbed design in order to overcome

common issues, including high manual efforts and repeated

work when adjusting or upgrading components. In the previous

sections, we discuss several design aspects and show examples

of TIMs and automatically generated TSMs. In the following,

we will outline possible use-cases and review limitations that

could provide ideas for future work.

A. Applications

There are several promising use-cases for our model-driven

testbed generator. Foremost, our main intention is to automat-

ically build testbeds for generating log datasets suitable for

IDS evaluation without the need to start from scratch for ev-

ery new use-case, but instead reuse existing components and

develop testbeds iteratively. For example, starting from our

proof-of-concept, it is possible to introduce and exploit new

vulnerabilities by changing only the affected components and

attacks while leaving everything else untouched. Another idea

is to model account hijacking by changing a user profile at some

particular point in time, which could be the focus of detection

tools based on user profiling.

Since testbeds are isolated from real networks and thus do

not produce sensible data that could raise privacy concerns, the

15[Online]. Available: https://www.mozilla.org/en-US/firefox/
16[Online]. Available: https://www.chromium.org/

https://www.clamav.net/
https://www.mozilla.org/en-US/firefox/
https://www.chromium.org/
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generated log data is always suitable to be shared with others.

Moreover, it is simple to create multiple variants of the same

testbed in parallel and generate several datasets that represent

different environments. This improves the robustness of results

from IDS evaluation and allows researchers to measure the

variation of the detection capabilities of their IDSs.

Alternatively, it is possible to deploy IDSs directly in the

generated testbeds by adding an appropriate setup script to

the infrastructure TIM. In this case, the generation of log data

is less relevant, and instead analysts are able to observe and

measure the detection capabilities in real-time. This application

scenario could be especially useful for experiments and live

demonstrations, where attacks are injected manually.

Another relevant application case is malware analysis. Since

it is easy to generate many testbeds with variabilities, inserting

the code to deploy malware in the TIM allows to observe their

behavior in different environments. This enables analysts to

derive insights on the behavior of the malware without much

effort spent on setting up the necessary machines. Then, the

same attack can be deployed in testbeds with patched services

to ensure that the intrusions fail in every case.

Finally, our provided datasets contain log data rather than

network traffic and thus enable evaluation of host-based IDSs, a

field where datasets are urgently needed [5]. In addition, since

one of our injected attacks involves the execution of several

steps, the resulting dataset is a great benefit for the research

community around multistep attacks, where publicly available

datasets are rare [7]. Even more so, the variations of these

multistep attacks across our generated datasets enable evalua-

tion of algorithms that extract attack patterns independent of

the environment and transform them into reusable cyber threat

intelligence [10].

B. Limitations and Future Work

Despite the aforementioned benefits, we recognize some

drawbacks of our method. First, it is necessary to point out that

model-driven testbed design requires more effort than setting up

a single static testbed, because all installation procedures have

to be formalized and separated into fixed and variable parts that

are subject to change, e.g., IP addresses have to be dynamically

retrieved whenever they are necessary for a command. However,

we argue that this increased initial effort pays off when testbeds

are reused multiple times, especially when application scenarios

are subject to change or multiple instances and variations of

testbeds are required.

We further encountered that the ability to automatically up-

grade all components to their newest versions in each rollout

comes handy to ensure that the testbed is relevant to real-world

scenarios, but possibly causes problems when services are de-

pendent on each other or rely on version-specific configurations.

In such cases, there is no way around manually fixing the TIMs,

because such requirements of future versions cannot be foreseen.

For critical components, it is possible to always install a fixed

version, despite the downside that the service will eventually be

outdated.

It is also important to note that generating data in our gener-

ated testbed requires the users to run in real-time. The reason

for this is that it is infeasible to speed up the actions carried out

by users, e.g., decreasing the sleep time between commands in

the user behavior or attack scripts, since also the timestamps

have to be adopted accordingly, i.e., the generated log data

needs to be modified in hindsight. In addition, properties of the

infrastructure, e.g., latencies and loading times, may have unre-

alistic influence on the log data when timestamps are changed,

and eventually limit the possibility to increase the speed of the

publication. Thus, it is not simply possible to simulate long

timespans in a short amount of time.

Another limitation of our approach is that our line-based

method for automatically labeling log messages corresponding

to malicious activity is not guaranteed to always yield correct re-

sults and should thus only be seen as a complementary approach

to the time-based method that provides additional confidence to

the labels. The reason for this is that this method is based on

string similarity, and as such is unable to differentiate between

messages that are not sufficiently distinct, which leads to in-

correct labeling. In addition, selecting the similarity threshold

is nontrivial, since it depends on the overall structures of all

possible log events. At the moment, gathering the expected

logs for each attack step involves manual work, in particular,

executing each attack step separately to populate the attack dic-

tionary. Introducing new attack steps or changes of the logging

infrastructure require to repeat this process. For future work,

we are therefore planning to automatize this task so that it is

executed before each simulation run. Nevertheless, attack steps

that involve random or otherwise variable manifestations will

remain difficult to label correctly. A possible solution could be

to reconstruct the links between processes and their manifes-

tations by analyzing system traces. In addition, it is unclear

how overlapping attacks should be labeled, since this would

require a more complex syntax, e.g., lists of labels for each

line.

Regarding the log dataset produced in our proof-of-concept,

we see a number of extensions that could improve future simu-

lations. First of all, the authenticity of the user behavior can be

improved by deriving parameters from real system usage, which

was omitted due to lack of such real data. In addition, random-

ness is usually based on uniform distributions, however, actual

user behavior could be better represented by other distributions,

such as the normal distribution.

Finally, it would be interesting to develop a formal modeling

language for generating testbeds. Thereby, the transformation

engine would work as a function that selects properties of

infrastructure components, user behavior, and attacks, from the

predefined ranges of allowed values. This would help to define

a metric that makes testbeds comparable by measuring their

similarity through their common properties. Aggregating such a

testbed similarity metric over all generated testbeds, it would be

possible to provide the analyst with a feedback on the diversity

of the testbeds, i.e., a measure on the coverage of possible

combinations of model parameters. Ultimately, the resulting

aggregated metric could be used to determine whether an appro-

priate amount of testbeds have been generated to represent most
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possible testbed configurations, or to calculate an estimation for

the number of testbeds required.

VII. CONCLUSION

In this article, we proposed a methodology for creating

testbeds for log data generation using techniques from MDE. For

this, we designed abstract models for the testbed infrastructure,

the simulated system behavior, and the injected attacks, and

used a transformation engine to automatically translate these

TIMs into testbed-specific scripts and configuration files that

allow deployment. This increases the required initial effort, but

largely reduces the amount of work required to maintain and

modify testbeds for different application scenarios. Due to the

fact that TIMs only define parameters as discrete lists or ranges

of allowed values, we were able to generate arbitrary numbers

of testbeds with variations.

The testbeds aligned with our design principles authentic-

ity, flexibility, reproducibility, availability, and utilizability. We

demonstrated our approach by a proof-of-concept implemen-

tation that involves users accessing a webmail platform and

online store as well as one multistep attack and one complex

vulnerability exploit. We used our demonstrator to generate four

testbeds and collect log datasets. Log messages related to attack

steps were then labeled based on their time of occurrence and

their similarity to predefined log patterns, and were thus useful

for the evaluation of host-based IDS.
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