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Correcting Correlations for
Range Restriction Been
Adequately Tested? Minor
Sampling Distribution
Quirks Distort Them
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Abstract

Most study samples show less variability in key variables than do their source popula-
tions due most often to indirect selection into study participation associated with a
wide range of personal and circumstantial characteristics. Formulas exist to correct
the distortions of population-level correlations created. Formula accuracy has been
tested using simulated normally distributed data, but empirical data are rarely avail-
able for testing. We did so in a rare data set in which it was possible: the 6-Day
Sample, a representative subsample of 1,208 from the Scottish Mental Survey 1947
of cognitive ability in 1936-born Scottish schoolchildren (70,805). 6-Day Sample par-
ticipants completed a follow-up assessment in childhood and were re-recruited for
study at age 77 years. We compared full 6-Day Sample correlations of early-life vari-
ables with those of the range-restricted correlations in the later-participating sub-
sample, before and after adjustment for direct and indirect range restriction. Results
differed, especially for two highly correlated cognitive tests; neither reproduced full-
sample correlations well due to small deviations from normal distribution in skew
and kurtosis. Maximum likelihood estimates did little better. To assess these results’
typicality, we simulated sample selection and made similar comparisons using the 42
cognitive ability tests administered to the Minnesota Study of Twins Reared Apart,
with very similar results. We discuss problems in developing further adjustments to
offset range-restriction distortions and possible approaches to solutions.
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Despite often extensive and broad recruitment efforts, those willing to participate in

scientific studies tend not to represent their full populations well. Among other char-

acteristics, they tend to be a little healthier, wealthier, more likely female, more con-

scientious, lower in neuroticism, better educated, and to score higher on cognitive

ability measures than general populations (Lonnqvist et al., 2007; Nishiwaki, Clark,

Morton, & Leon, 2005; Volken, 2013). It is a positive development in social science

research that there is increasing awareness of this among those interested in associa-

tions between psychological, lifestyle, and demographic characteristics and physical

and mental health outcomes. There is also increasing awareness among researchers

that these deviations from full-population representativeness introduce distortions in

estimates of the very associations in which they are most interested, sometimes even

misrepresenting their direction (Ree, Carretta, Earles, & Albert, 1994).

This growing awareness takes two forms in the literature. First, there has been a

steady stream of articles introducing new methods to adjust results to offset the dis-

tortions in estimates created by sampling selectivity, both intended and not

(Alexander, 1990; Bobko, Roth, & Bobko, 2001; Botella, Suero, & Gambara, 2010;

Hagglund & Larsson, 2006; Hunter, Schmidt, & Le, 2006; Mendoza & Mumford,

1987; Taylor, 2004). Second, it is increasingly common for researchers to report their

estimates after ‘‘correction’’ using these adjustment formulas (e.g., Berry & Sackett,

2007; Berry & Zhao, 2015; Deary, Pattie, & Starr, 2013; Johnson, Corley, Starr, &

Deary, 2011; Tarescavage, Fischler, Cappo, Hill, Corey, & Ben-Porath, 2015).

Emergence of the latter attests to successful communication of the former, but it can

only improve the accuracy of the literature to the extent that the adjustment formulas

produce accurate corrections to the estimates to which they are applied. Much of the

impetus for this work has come from meta-analysis. Gene Glass (1976), who perhaps

did the most to originate the technique, realized from the beginning that accuracy of

any summary of study results depends intrinsically on quality of the individual studies

being summarized and actively worked to create statistical procedures to compensate

ex post facto for study limitations during the meta-analytic process (e.g., Glass, 1982).

As with most areas of statistics, techniques have improved dramatically in recent years,

often driven to large degrees by improvements in computing power and ease of use.

Schmidt and Hunter (2014), two of the major contributors to this effort, even feature

need for it in the subheading of the title of the third edition of their classic textbook on

meta-analysis, but their concern for its need goes back to the first edition.

Researchers developing adjustment formulas do of course attempt to test their

accuracy, and their tests have generally supported the formulas’ accuracy at least

within bounded circumstances outlined by the researchers (e.g., Alexander, 1990;

Alexander, Carson, Alliger, & Cronshaw, 1989; Bobko et al., 2001; Chernyshenko &
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Ones, 1999; Greener & Osburn, 1980; Gross & Fleischman, 1983; Hoffman, 1995;

Lawley, 1943; Le & Schmidt, 2006; Ree et al., 1994; Sackett, Laczo, & Arvey, 2002;

for examples of exceptions pointing out remaining biases, see Gross & Fleischman,

1983; Mendoza & Mumford, 1987; Roth, Bobko, Switzer, & Dean, 2001). Yet the

circumstances outlined have generally focused on the kinds of contexts faced by

organizations that make selection decisions such as which job applicants to hire or

which applications to educational programs to accept and then later follow up to

understand sources of relative levels of performance that can assist the next round of

applicant review. In these situations, awareness of need to consider sample selectivity

tends to be particularly high because overt efforts have been made to select the

‘‘best,’’ however defined, from some broader pool. As the studies cited exemplify,

the tests are usually carried out by simulating very large random samples drawn from

variables with properties considered similar to those encountered in practice in these

kinds of settings, imposing various forms of selection on the randomly generated

samples to mimic the levels of association and sample sizes often encountered. Then,

the sample properties of interest can be calculated in the selected samples, the adjust-

ment formulas applied, and results compared with those in the full random samples.

This is a sound approach. Simulation can reveal how well a method can recover

the true underlying model or data properties in a way that empirical data never can.

But simulation only works well if the assumptions on which the random samples and

variable distributions on which they are based are realistic representations of those

encountered in the real world. In tests of sample-selection adjustment formulas, this

means that the variable properties assumed in the random sample generation and the

full random samples and the processes used to impose selection on them represent

those encountered in practice thoroughly. If these properties do not, simulation not

only can fail to reveal ‘‘truth,’’ but it can provide an inappropriate sense of security

that methods function as intended. Most researchers carrying out tests of sample-

selection adjustment formulas have assumed selection to be direct. Selection is

strictly direct when selectors simply will not select candidates with scores on some

variable above or below some preset cutoff score. This takes place in practice occa-

sionally in some application settings, for example, when some passing score is

required on a job-knowledge test. ‘‘Directness’’ of selection is often relative or

dimensional, however, even in these settings, with scores or evaluations on several

different measures being considered probabilistic predictive indicators of in-role per-

formance, without strictly applied cutoff scores on any of them. Many universities

(and other organizations) even have overtly compensatory selection processes in

which, for example, grades can offset lower Scholastic Assessment Test or other

scores, or low socioeconomic status can offset both.

In many other selection settings, especially research sample recruitment settings,

selection on variables with relevance to research questions of interest is almost

always quite indirect. Considered dichotomously, selection is indirect when there is

only a tendency for people with some levels of a variable of interest to be more likely

to be selected than others rather than some cutoff requirement. For example, if a job

Johnson et al. 1023



ad specifies that the employer is looking for applicants with university degrees, there

will be direct selection for university degree, but the applicant pool will, as a by-prod-

uct, indirectly also tend to overrepresent the above-average ranges of the population

distribution of IQ and underrepresent the below-average ranges because people who

attain university degrees tend to have higher IQs than those who do not. But people

from the lower ranges of the IQ distribution have not been precluded from applying.

Some who do have university degrees will usually apply, and may even be hired,

though usually indirect selection is considerably stronger (or, practically if not con-

ceptually equivalent, less indirect, reflecting dimensionality in ‘‘directness’’) in the

group actually hired than it was in the applicant pool. Researchers’ participant-

selection settings are far less formal. Researchers are usually looking for samples as

broadly representative of their target populations as possible, and are rarely intention-

ally picking and choosing among possible participants on the basis of the variables on

which indirect selection into their samples tends to take place. But the same kinds of

individual self-selection processes involving personality and cognitive characteristics

that get people to apply for some jobs and not others are often if not usually involved

in decisions to participate in research studies, especially when researchers issue calls

for volunteers rather than recruiting from population rosters (e.g., Johnson, Brett,

Calvin, & Deary, 2016).

Unfortunately, the challenges involved in adjusting correlations for direct selection

are straightforward compared with those for adjusting for indirect selection. Since

most studies evaluating adjustment formula accuracy have focused on direct-selection

adjustment formulas and tested their accuracy by simulating direct-selection situa-

tions, the relevance of their conclusions to indirect-selection situations is not clear.

Moreover, these formula-evaluation studies have tended to be based on assumption

that the variables on which the focal range restriction takes place are normally distrib-

uted, at least in the full population (e.g., Hoffman, 1995; Sackett, Laczo, & Arvey,

2002). Formally, normality of these variables is not required for formula accuracy

(Lawley, 1943); all that is required is that eliminated data be formally ‘‘missing at

random’’ (MAR), regression of range-restricted variable on the other variable be lin-

ear, and involved error variances be homogeneous (Greener & Osburn, 1980). The

latter two, however, generally depend on population-level normality of at least one of

the relevant distributions, but range-restriction formula-evaluation studies have not

generally considered this. Even Greener and Osburn’s (1980) study, that established

this by testing sampling-selectivity correction formula accuracy when the variable on

which range was restricted substantively deviated from normality in six different

ways, assumed that the other variable, or outcome, in the correlation was normally

distributed in the underlying population.

The formal term MAR has found a place in the statistical literature, but this is

somewhat unfortunate, as many assume that it means that the probability of missing-

ness is unrelated to the data distribution in any way, formally ‘‘missing completely at

random’’ (MCAR; Little & Rubin, 1987). This situation is clearly not the case when

range is restricted, but the term MAR does not have this meaning. Instead, it has the

1024 Educational and Psychological Measurement 78(6)



less restrictive meaning that the conditional probability of missingness is unrelated to

the data distribution. In other words, the probability of missingness can depend on

the data distribution as it exists in the full-population sample, but not on the data dis-

tribution as it exists in the selected sample. For example, the common situation that

older participants who tend to score lower on cognitive tests are less likely to partici-

pate in research studies that test cognitive ability makes the data not MCAR. It would

take something such as reluctance to participate explicitly because of participant

awareness of their likely low scores to make the data not MAR. As this is much less

common, it is often reasonable to consider range restriction to be an example of ran-

domly missing data absent evidence that it is not.

For many constructs, at least population-level normal distribution and MAR may

generally be reasonable assumptions, perhaps especially for the kinds of cognitive

ability and achievement-related measures often the focus of studies of situations such

as evaluation of job and educational program applicants where awareness of need to

consider sample selection has been particularly high. But even if the constructs we

intend to measure are completely normally distributed in the population, none of our

measures of them ever is in practice, even at the population level (Micceri, 1989).

This is of course at least partly due to the fact that we never manage to obtain com-

pletely population-representative samples, but it is importantly also due to the fact

that our measures are never adequate to generate completely normally distributed

samples even if we were able to obtain a completely population-representative sam-

ple of a completely normally distributed construct. When samples are close to

population-representative and relations among constructs reasonably linear (or their

deviations from linearity reasonably captured by straightforward transformations

such as squaring or taking logarithms), many estimation procedures are quite robust

to small deviations from normality, and the boundaries beyond which they are not,

and what to do about it, have been quite well articulated (e.g., Wilcox, 1996, 1997).

But sample selection, by its very nature, usually alters not just the variance of a dis-

tribution but its degrees of skew and kurtosis because it eliminates or ‘‘thins out’’

representation of people who earn scores at one end of the distribution more than the

other. These are exactly the kinds of circumstances that introduce violations of line-

arity and homogeneity of variance in selected samples where they do not exist in the

full population. Moreover, in practice, sample range is often restricted not just on

one variable, but on several, including the variable considered the outcome, all of

which inevitably show at least small deviations from normality at the population

level. Formula-evaluation studies have not generally considered the impact of this.

Accuracy of estimates adjusted for deviations from underlying assumptions is more

sensitive to appropriateness of underlying assumptions than is accuracy of the esti-

mates themselves. This is because any adjustment formula must accurately reflect

both how far off the estimate is and counteract that inaccuracy, but the estimation

process only has to remain relatively stable in the presence of the deviation from

assumption. Perhaps, even more important, even norming samples of most psycholo-

gical measures are still subject to considerable selection, so we can never be sure that
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what we observe to be ‘‘the’’ score distribution from a sample intended to represent

the population reflects test properties rather than sample selection.

This article is an outgrowth of work with a sample for which there was evidence

of unusual population representativeness (the Scottish Mental Survey, 1947

[SMS1947]; Scottish Council for Research in Education [SCRE], 1949), a subsample

that resulted from a commonly used and thoroughly applied recruitment process (the

6-Day Sample Follow-Up Study; Brett & Deary, 2014; Deary & Brett, 2015), and

two well-known and highly correlated cognitive tests considered to have high con-

struct, concurrent, and predictive validities and test–retest reliabilities that showed

similar evidence of indirect selection effects in the subsample relative to the full pop-

ulation from which the subsample was recruited. In the full sample, both tests also

showed very typical distributional properties that would not generally arouse any

suspicion of deviation from normality, though the particular small deviations they

did show differed. Usually, the underlying population correlation that is the target of

procedures adjusting subsample correlations for selection is unknown, so it must be

assumed that any such procedures applied have ‘‘done the job’’ as there is no practi-

cal way to evaluate their actual accuracy. In our case, however, this was possible.

In the process of work focusing on the follow-up subsample, we noted that appli-

cation of the most commonly used approaches to adjusting correlation coefficients

involving these cognitive tests for range restriction in the subsample did not repro-

duce full-sample correlations involving these tests at all well, and that the kinds and

magnitudes of deviations the two tests produced differed. This led to exploration of

the reasons for the failures of the adjustment procedures and evaluation of the degrees

to which such failures are typical. This kind of exploration must be supplemented by

empirical data: Simulation can help test whether potential reasons for any failures are

accurate, but it cannot reveal the extent to which failures may be typical in practice

as it relies on aggregations of large numbers of samples and variables that must be

generated artificially based on ultimately arbitrary assumptions that can never reflect

all real-world possibilities. Of course, no single empirical study can do this either,

because, like simulation, empirical data have much more power to refute arguments

or theories than they do to confirm them. Still, empirical data can reveal common

conditions that simulators would never conceive of modelling. This article thus

reports the results of empirical explorations in typical real-world data. The 6-Day

follow-up sample was a small subset of even the surviving members of the original

sample, so of course one of the primary possible reasons for failure was violation of

the required assumption that the data were MAR (Little & Rubin, 1987). Based on

available measures, there was no evidence that this was the case, but the data were

clearly not missing completely at random, and there was no way to verify completely

that they were in fact MAR. To accomplish our evaluations of the degrees to which

such failures are typical, we thus turned to a separate study in which a larger, more

population-representative group of participants had completed 42 different typical

cognitive ability tests comprising three separate test batteries and in which we could

ensure MAR subsamples.
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Method

Source of Our Original Observations: The 6-Day Sample and Older-Age
Follow-Up Study
Participants. SCRE conducted the SMS1947 on June 4, 1947, of almost all children

born in 1936 who were attending schools in Scotland (n = 70,805 of the full birth

cohort of 75,211; those not tested were not present that day at school; SCRE, 1949).

The purpose of the survey was to examine to what degree the population distribution

of cognitive ability might have changed since SCRE’s first such survey in 1932 of

children born in 1921 (SCRE, 1933). These two surveys are among the most com-

pletely population-representative samples ever (they tested almost the entire popula-

tion year-of-birth cohorts), as extensive efforts were made to test all schoolchildren

born in the targeted years, even those in remedial or special education programs or

who suffered other disabilities. Following the 1947 Survey of those children who

had been born in 1936, a subsample of survey-eligible children born on the first day

of any even-numbered month (thus effectively randomly) received an additional cog-

nitive assessment and their families and teachers completed a Sociological Survey at

age 11 years and were reassessed almost annually on a number of factors from ages

15 to 27 years. These 1,208 (618 female) participants were called the 6-Day Sample

(MacPherson, 1958; Maxwell, 1969). Teachers, educational psychologists, and sur-

vey administrators representing SCRE visited and surveyed participants’ homes and

interviewed sample members and their parents on measures of personality, details of

family socioeconomic circumstances, school attendance, and, after participants left

secondary school, details of further schooling, employment, marriage, and family to

administer the follow-up surveys, and head teachers completed assessments of parti-

cipating students at their schools at age 14 years. Table 1 shows data comparing the

6-Day Sample with the full SMS participant group on demographic variables avail-

able in the full SMS. All differences were of very small effect size, and the largest

were in age, consistent with the 6-Day Sample participants’ births on the first days

of months.

In 2012, a follow-up study was launched to recontact the 6-Day Sample partici-

pants in older age. The original 6-Day Sample participants were traced through

United Kingdom and Scottish population records, locating as many of those surviv-

ing as possible and recording deaths and their causes (Brett & Deary, 2014; Deary &

Brett, 2015). Located participants residing in Scotland, England, or Wales were

invited by mail to participate in a study to explore associations between their early-

life demographic circumstances and psychological characteristics and their current

demographic circumstances, psychological characteristics, well-being, health status,

and attitudes toward life in late 2012 and 2013, when they were about age 77 years.

The invitation included the assessment package, with instructions for self-administra-

tion. Invitees were requested to return a one-page form indicating willingness (or

not) to participate, and to return the assessment package by mail on completion.

Of the original 1,208 participants, 636 (including 1 earlier emigrant; 370 females)

were located and invited to the follow-up. About a third (417; 164 females) were
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deceased; 66 could not be located; and 89 had emigrated from the United Kingdom.

Among the 636 invited, since being located, 1 had emigrated, 2 were deceased, and

20 were deemed not capable by English/Welsh law. Despite follow-up mailing, no

replies were received from 268; another 139 refused participation. The primary rea-

son for refusal was lack of interest. The remaining 205 indicated willingness to par-

ticipate, either by completing the one-page form or telephoning the study office.

Completed assessments were received from 171 (90 females), for participation rates

of 27% of those invited and 83% of those who had indicated willingness. These par-

ticipation rates may sound low, but the number-invited denominator represents the

total cohort potentially available much more clearly and likely fully than those from

many studies. This is because of the extensive efforts involved in locating or account-

ing for all the original participants of the unusually population-representative 6-Day

Sample, including matching to National Health Service medical records on which

almost everyone in the United Kingdom is recorded.

Measures. We examined accuracy of the standard range-restriction adjustment for-

mulas to reflect actual associations among several variables from the early-life sur-

vey whose content would commonly be of interest today. The particular associations

we report in the 6-Day Sample follow-up participants would not generally be of inter-

est in themselves as the measures were taken at age 11 years, and the selection pro-

cesses examined reflected survival and study participation status at age 77 years.

They offered, however, an unusual opportunity to assess the accuracy of adjustment

formulas in real-world test data under a naturally occurring selection process, using

correlations of magnitudes similar to those often explored in recent studies. Previous

studies of adjustment-formula accuracy have, among other potential limitations,

Table 1. The 6-Day Sample and the Scottish Mental Survey.

6-Day Sample,
n = 1,208

Scottish Mental
Survey, n = 70,805

Effect size of
mean differenceMean SD Skew Mean SD Skew

Full sample
Age at MHT 10.98 0.33 .27 10.93 0.29 –.08 .17
Percent female 51.16 — — 49.45 — — 1.71
MHT score 37.4 15.8 –0.31 36.6 15.8 –.34 .05

Females
Age at MHT 10.96 0.32 .19 10.93 0.29 –.07 .10
MHT score 37.8 14.9 –.27 37.5 15.1 –.36 .02

Males
Age at MHT 11.00 0.35 .31 10.93 0.29 –.08 .24
MHT score 37.1 16.7 –.32 35.8 16.4 –.30 .08

Note. SD = standard deviation; MHT = Moray House test. Effect size is (6-Day mean-SMS mean)/SMS SD,

except for sex, which is simple percentage difference.
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relied on modelled selection processes. Any model requires assumptions about appro-

priate representation of the process being modelled, and it is not uncommon that later

emerging empirical data indicate that the assumptions used in simulation studies gen-

erated results that misled researchers who relied on them. There are, for example,

several instances of this in genetic research in the past 50 years or so, including too-

long prevailing ideas that genetic stratification in populations, gene-environment

interaction and correlation, and intergenerational transmission of gene expression

patterns (epigenetics) could be disregarded in understanding interrelations of genetic

and environmental influences on behavioral traits and clinically related phenotypes.

The measures we considered were the following.

Moray House Test 12 (MHT). Most (n = 1,112) of the 1,208 6-Day Sample partici-

pants had been present at school on the day of the Scottish Mental Survey of 1947,

and so completed the MHT. This test (SCRE, 1933) requires 45 minutes to adminis-

ter and is a valid, group-administered test of cognitive ability consisting of 71 items

(SCRE, 1949, 1953), with a maximum possible score of 76. It features many types of

items, though verbal reasoning items predominate. Specific test–retest reliability over

short time periods has not been assessed, but given its stability over long time periods

and comparability with other IQ and cognitive ability tests, Deary, Whiteman, Starr,

Whalley, and Fox (2004) estimated it at .90.

Terman–Merrill IQ Test: 1937 Revision (TMIQ). Participants in the 6-Day Sample

also completed the individually administered L form of the TMIQ, one of the best-

validated and most often used IQ tests at the time (SCRE, 1949). One of the purposes

of administering this test was to corroborate validity of the MHT (SCRE, 1949); the

correlation between the two tests’ scores was .80. Weiner (2003) listed the test–retest

reliability of the related Stanford–Binet test at .90.

Personality. Teachers assessed six areas of 6-Day Sample participants’ personal-

ities as part of the First School Schedule in 1950. They rated self-confidence, perse-

verance, mood stability, conscientiousness, originality, and desire to excel, each on a

scale that ranged from marked lack (1) to very (5). All these personality characteris-

tics tend to be related conceptually and empirically to school achievement regardless

of specific measure used. As cognitive ability scores are also related to school

achievement, the question of association between cognitive ability scores and ratings

of personality is often of interest. We selected two of the rated characteristics, Self-

confidence and Originality, to use as example correlations in this study. In the full

sample, Originality’s correlations with the cognitive tests were the highest of the per-

sonality measures; Self-confidence’s correlations were typical of the personality

characteristics rated. All were higher than commonly observed for personality-

cognitive ability associations, likely due to their having been rated by the children’s

teachers. Test–retest reliability of single items can vary considerably, is not often

directly measured, and was not assessed for these teachers’ ratings of child personal-

ity. Littman, White, Satia, Bowen, and Kristal (2006) found retest-reliabilities of .66

and .74 for two single items of psychosocial stress. We considered .70 a reasonable

estimate for our personality items.
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Height was measured in inches at age 11 years. We considered height because it is

commonly considered in epidemiological studies to reflect social class and/or general

constitutional robustness, and samples are often healthier than their underlying popu-

lations. As height was measured at school and thus with considerable consistency, we

considered .99 a good estimate of the measure’s reliability.

Sample Used to Evaluate ‘‘Typicality’’: The Minnesota Study of Twins Reared
Apart (MISTRA)
Participants. The MISTRA participants were gathered over a period extending from

about 1979 to 2000, as rarely occurring pairs of twins who were separated early in

life, reared in adoptive families, and not reunited until adulthood came to the atten-

tion of the researchers and were recruited for study (). The purpose of the study was

to quantify the degree to which personal, medical, anthropomorphic, and psychologi-

cal characteristics that show individual differences can be considered genetically

influenced in a sample of people for which genetic and familial environment influ-

ences were not inherently confounded. To enhance incentive to participate, twins

were encouraged to invite their spouses and adoptive and other biological relatives

and friends as available to participate as well. The assessment covered a very wide

range of individual differences. The researchers were particularly interested in the

various ways in which cognitive abilities can be manifested and administered a very

comprehensive set of 42 individual cognitive ability tests that spanned three estab-

lished test batteries (Johnson & Bouchard, 2011). The 436 (188 males, 248 females)

participants that contributed data for these analyses came from a broad range of occu-

pations and socioeconomic backgrounds and several different countries, though most

were from the United States or Great Britain. They varied in age from 18 to 79 years

(mean = 42.7 years), with education levels that ranged from less than high school to

postgraduate experience. Details of recruitment and assessment are reported by Segal

(2000).

Measures

The three test batteries administered were the following.

Comprehensive Ability Battery (CAB). Developed by Hakstian and Cattell (1975), the

CAB consists of 20 specific ability tests intended to span the range considered rele-

vant to human intelligence. Each test is short, requiring only 5 to 6 minutes to keep

administration varied and manageable. To avoid task duplication in the extensive

MISTRA assessment, six of the tests in the CAB were not administered to the parti-

cipants. In addition, because we judged it not directly relevant to cognitive ability,

we eliminated the Esthetic Judgment test. As the Verbal Ability test consists of two

completely separable tasks, we considered the scores on the two parts separately.

Thus, we had a total of 14 test scores from this battery. Hakstian and Bennett (1977)

1030 Educational and Psychological Measurement 78(6)



reported split-half and retest reliabilities for its subtests ranging from .64 for

Perceptual Speed and Accuracy to .96 for Memory Span.

Hawaii Battery, Including Raven’s Progressive Matrices. The Hawaii Battery consists of

15 tests of primary abilities. It was developed to assess familial resemblance in cog-

nitive ability in the Hawaii Family Study of Cognition (DeFries et al., 1974). Again,

each test is short, requiring 3 to 10 minutes. for administration. To avoid duplication

of tasks and more fully identify likely ability factors, 2 tests were not administered

and the battery was supplemented with 4 tests from the Educational Testing Services,

so there were 17 tests in this battery. In the validation sample, internal consistency

and retest reliabilities for the tests ranged from .58 for Immediate Visual Memory to

.96 for Vocabulary (Kuse, 1977). We referred to Desai’s (1952) estimated reliability

of .77 for the Raven, and Watkins (1979) for reliabilities for the supplemented

Educational Testing Services tests.

Wechsler Adult Intelligence Scale. The 11 subtests of the 1955 version of the Wechsler

Adult Intelligence Scale (WAIS; Wechsler, 1955) WAIS were administered.

According to the manual, internal consistency reliabilities range from .79 for

Comprehension to .94 for Vocabulary. For this sample, scores normed at the 1955

level ranged from 79 to 140, with mean of 118.5, standard deviation (SD) of 19.8,

and skew of –.08. Hanson, Hunsley, and Parker (1988) reported test–retest reliabil-

ities for the WAIS subtests, and we made use of their estimates. Adjusted to time of

administration for the Flynn effect, the IQ scores ranged from 61 to 140, with mean

of 101.2, SD of 14.8, skew of .02, and kurtosis of –.23. Given the long time-span

between publication of the WAIS version used and even the earliest MISTRA assess-

ments, the sample was quite representative of English-speaking countries and it was

also quite normally distributed. For this study, we used the subtest scores as individ-

ual cognitive tests, and the Flynn-adjusted IQ scores as the test variable with which

to correlate them. Because of application of the formula for calculating WAIS IQ

scores from the raw subtest scores, and removal of age and sex effects from this fol-

lowed by adjustment for the Flynn effect, there was no direct dependency between

any subtest score and the IQ score. We considered its reliability to be .90.

Personality. The MISTRA sample completed the full 300-item version of the

Multidimensional Personality Questionnaire (Tellegen & Waller, 2008). From the 11

scales it includes, we selected Well-being, Absorption, and Alienation to use as

examples of personality correlations with cognitive abilities due to the variety of dis-

tributional properties they encompassed. High scorers on the Wellbeing Scale have

cheerful dispositions, feel good about themselves and their lives, are optimistic, and

enjoy their activities. The scale tends to be somewhat negatively skewed in most

samples, including MISTRA (–1.29, with kurtosis of 1.18). High scorers on the

Absorption scale are responsive to sensory stimulation, tend to think in images and

experience vivid imaginings, and often have cross-modal experiences and become
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‘‘lost in thought.’’ The scale is generally quite normally distributed, and was so in

MISTRA (–.10, with kurtosis of –.70). High scorers on the Alienation scale feel

‘‘used’’ and ‘‘pushed around’’ by friends, and believe that they have been victims of

bad luck and others wish them harm and have betrayed and deceived them. The scale

tends to be somewhat positively skewed in most samples, including MISTRA (1.28,

with kurtosis of 1.07). Tellegen and Waller (2008) reported 30-day test–retest reli-

abilities of .90 for Well-being, .91 for Absorption, and .87 for Alienation.

Analytical Approach

Five methods for adjusting observed correlations for range restriction can be consid-

ered broadly recognized and in common or recommended use. Four have been tested

for accuracy using simulated population samples assumed to be normally distributed;

the fifth has been tested only in a form relevant to meta-analysis. It was in applying

these approaches to adjust observed correlations in the early-life measures in the

Follow-Up Study sample that we observed their inaccuracies, particularly for the two

cognitive tests, relative to those observed in the full original 6-Day Sample. To assess

the extent to which such problems are common, we generated two completely ran-

dom subsamples of the full MISTRA sample, mimicking the kinds of indirect selec-

tion on general cognitive ability, as measured by Flynn-adjusted IQ (Johnson et al.,

2007; important because IQ was assessed using the 1955 version of the Wechsler in

this sample recruited throughout the period from the late 1970s until 2000), that tend

to occur within research studies. Of course, like other studies that have assessed

adjustment-formula accuracy, we simulated these processes. However, we had two

advantages that other studies of formula accuracy have lacked: (1) Other studies have

had to rely on guesses about how populations stratify into study samples, but we

could use the naturally-selected 6-Day Sample follow-up participation patterns as

general guides in modelling the processes to generate the two MISTRA subsamples

while assuring random, if not completely random (Little & Rubin, 1987) missing-

ness. That is, we divided the full 6-Day Sample into quintiles, noted the proportions

of these quintiles participating in the Follow-Up Study, ratioed these up to two differ-

ent degrees because the participation rate in the 6-Day Follow-Up Study was so low

and we wanted overall higher ‘‘participation’’ rates in our samples, applied these

ratios of the quintiles of the MISTRA Flynn-adjusted IQ scores, and generated com-

pletely random Bernoulli-distribution variables to indicate including or not each

MISTRA participant in our two ‘‘selected’’ MISTRA samples. (2) Prior studies of

formula accuracy have had to rely on assumed distributions of the full-population

scores used to assess formula accuracy, and have assumed at least the outcome distri-

butions to be formally normal; in contrast, we had 42 available examples of naturally

occurring ‘‘population-level’’ score distributions to which to apply our simulated

selection processes to both variables in the correlations, all of which showed very

typical small deviations from formally normal distribution. We modelled extent of

indirect selection on IQ as somewhat stronger in the second selected MISTRA
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subsample than in the first. We applied each of the five adjustment methods to the

correlations in the two selected subsamples between each of the 42 MISTRA cogni-

tive ability tests and Wechsler IQ, and each of the three Multidimensional

Personality Questionnaire scales.

Selection Processes Generating Range Restriction and the Commonly Used Adjustment
Methods. Direct selection often (but far from always) reduces the sample standard

deviation relative to that in the full population. If the relation between the two vari-

ables is linear and homoscedastic in the population, extent of attenuation is directly

affected by the direct-selection cutoff score. Thorndike (1949) laid out the relations

among the distribution properties involved. Formally, the degree of attenuation is

s
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + s2

s2

� �
� 1

� �
r2

q ð1Þ

where s is the population standard deviation, s the sample standard deviation, and r

the population correlation (Hunter, Schmidt, & Le, 2006) (Hunter et al., 2006).

Theoretically, the correlation in a directly selected sample can be corrected to the

full-population–level correlation by multiplying it by the reciprocal of Equation (1).

But this requires knowledge of both the full-population correlation and the full-

population standard deviation. Often neither of these is known, and the exercise

would not even be necessary if we knew the former. In his Case II, Thorndike (1949)

handled this by ‘reversing the nonlinear algebra of the attenuation formula’ (Hunter

et al., 2006, p. 596) to approximate the full-population correlation r as

r �
s
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + s2

s2

� �
� 1

� �
r2

q ð2Þ

where r is the sample correlation, and this has become the standard treatment. In

practice, the correction adjustment is often approximated even further by dropping

the denominator in Equation (2) completely because the population standard devia-

tion is unknown and so must be assumed. This is apparently done under the further

assumption that, given the approximation involved in assuming the population stan-

dard deviation, the adjustment offered by the denominator is small. Terming the

adjustment ‘‘small’’ is a matter of judgment, of course. For example, with a rather

low ratio of population-to-selected sample SD of 1.2, and a moderately strong

observed sample correlation of .40, the full-population correlation would be esti-

mated at .46 using Equation (2), and .48 using Equation (2) without the denominator.

Higher ratios of population-to-selected sample standard deviation and higher correla-

tions, common in psychology study variables and samples, generate greater distor-

tions. For example, with a ratio of population-to-selected ratio of 1.4, the analogous

estimates would be .52 and .56. With a sample correlation of .5, they would be .57

and .60.
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Thorndike’s (1949) Case III formula has long been considered standard for adjust-

ing for indirect range restriction. This is

rXY =
rXY + rXZrYZðU 2

Z � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ðU 2

Z � 1Þr2
XZ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ðU2

Z � 1Þr2
XZ

p ð3Þ

where UZ is the ratio of the full-population standard deviation to the sample standard

deviation of the unmeasured variable on which direct selection has actually taken

place that is correlated with at least X. In research participant-recruitment settings, Z

would be willingness to or interest in participating in research studies. Of course, the

distributional properties of this variable are effectively never known, in either the

sample or the population. This is no doubt part of the reason that the formula for

direct range restriction has been applied in practice and tested for accuracy much

more often than Equation (3), even in situations where selection is clearly indirect.

The tests comparing accuracy of the direct- and indirect-selection formulas that have

been applied have generally involved substantial additional volumes of calculations

and work to apply the indirect formula, as is apparent in inspecting the formulas.

Their indications that the direct formula is relatively accurate have justified continu-

ing its use.

Questions about accuracy, however, continue to surface, especially as meta-

analysis has become more widely used and thorough, because there researchers must

cope with many different samples and specific measures, inevitably gathered under

different conditions, while relying only on reports of those conditions from the pri-

mary researchers. Recently, Hunter et al. (2006) developed a procedure they termed

Case IV to estimate the needed Z distributions and to incorporate recognition of

imperfect test reliability in both direct and indirect range-restriction situations. Under

this procedure, the researcher first estimates the reliability rXX of X in the full popu-

lation as

1� u2
X 1� rXXð Þ ð4Þ

where uX is the reciprocal of UX, the ratio of the sample standard deviation of the test

to its full-population standard deviation, and rxx is the reliability of the test in the

sample population. The next step is to estimate uZ= 1/UZ, or the ratio of the sample

standard deviation of the unmeasured variable on which direct selection into the sam-

ple (some kind of willingness to participate in the study) has taken place to its full-

population standard deviation, as

u2
X � 1� rXXð Þ

rXX

� �2

ð5Þ

Then the researcher corrects the observed correlation for population-level unreliabil-

ity in the two measures by dividing it by
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rXX rYYð Þ

p
ð6Þ

to obtain rC. The final step is to apply Thorndike’s (1949) Case II formula for direct

range restriction to rC, using the estimated UZ. That is,

r ¼ UZrCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

z r2
C � r2

C + 1
p ð7Þ

The fourth method we applied has not been as widely used or discussed, but it has

been mentioned occasionally as a possibility for more than 20 years (e.g., Mendoza,

1993) and has started to receive increased attention as a way to adjust correlations in

range-restricted samples to population levels. This is maximum likelihood estimation

(MLE) of expected population-level statistics given only a subset of the full popula-

tion. Use of this method relies on the assumptions that the restricted range of the data

in the examined sample has arisen because some data are MAR (Little & Rubin,

1987), and independent and identically (basically) normally distributed, though the

method can be used assuming any distribution that seems relevant. The normal distri-

bution has usually been the distributional form considered most relevant in studies of

psychological variables involved in range-restricted samples. Here, considerable

work has been done to evaluate MLE’s robustness to violations of normality in gen-

eral, and to offer alternatives where important. Enders (e.g., 2011) and Savalei (e.g.,

Savalei & Rhemtulla, 2012) have been particularly active, though their work has not

focused specifically on selection-based range restriction.

Given the assumed properties and the observed data, the goal of MLE is to esti-

mate parameters of the distributional function underlying the data. In range-restricted

samples, this would mean, for example, estimating the full-population-level mean

and variance and correlations of the variable with other variables of interest. The first

step in doing this is to consider the joint probability density function that must exist

to generate all these data, given its parameters. The data can then be considered the

parameters of this joint density function, and this function itself considered the likeli-

hood of these particular parameters (data) having arisen. The next task is then to

maximize this likelihood function. Parenthetically, it is often more computationally

tractable to work with the logarithm of this function rather than the function itself,

giving rise to the commonly used term maximum log-likelihood. The result is the

same either way (given appropriate back-transformation) as the logarithmic function

increases monotonically. Sometimes this process leads to a directly computable solu-

tion, but often it does not, and numerical optimization methods must be applied.

Other potential practical problems in using this method are that it is not uncommon

that there are many very similarly maximally likely solutions, the likelihood just

keeps increasing indefinitely, and/or the indicated maximum likelihood varies with

the values used to start needed numerical optimization methods, making it difficult

to ascertain that any indicated solution is in fact the true maximally likely one. Many

programs operationalizing this method, however, have built-in features that address

these complications.
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Finally, noting concerns over inaccuracies that can arise in the Le and Schmidt

(2006) ‘‘Case IV’’ adjustment method, Le, Oh, Schmidt, and Wooldridge (2016)

recently developed a ‘‘Case V’’ adjustment method, based on a previously little-

known formula developed by Bryant and Gokhale (1972). They adapted Bryant and

Gokhale’s basic formula

r ¼ rcuxuy +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

x

� �
1� u2

y

� �r
ð8Þ

where uy is the ratio of the sample outcome variable standard deviation to its full-

population standard deviation, to reflect unreliability of measurement in the two vari-

ables involved in the correlation. This means adjusting for unreliability of measure-

ment and indirect range restriction in the two variables in the correlation, using rxp =

rc/
ffiffiffiffiffiffi
ryy
p

and rtp = rxp/
ffiffiffiffiffiffi
rxx

p
to correct the two variables’ unreliability, and

ut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rxxr2

xp= 1 + rxxr2
xp � r2

xp

� �r
ð9Þ

and

up ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ryyr2

tp= 1 + ryyt2
xp � r2

tp

� �r
ð10Þ

to account for indirect selection. With these adjustments in place, the adapted Bryant

and Gokhale (1972) formula becomes

r ¼ rtputup +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

t

� �
1� u2

p

� �r
ð11Þ

They noted that sometimes the two variables involved in the correlation are corre-

lated with the indirectly selected variable in opposite directions. When this is the

case, the plus sign before the radical should be changed to a minus sign. As Le et al.

(2016) noted, the correlation between the two variables of interest will also generally

be negative unless it is rather low. If it is substantially negative, one variable could

be reverse-scored and formula (11) applied. Le et al. evaluated the accuracy of their

adapted formula for meta-analytic purposes, but not for use with individual sample

correlations. In doing so, they considered individual study situations with consider-

ably more regularity and smaller ranges of variation in correlation size than tend to

occur in practice, and, in particular simulated distributions of true full-population

construct correlation and observed sample measure correlation pairs from varying

numbers of studies with varying numbers of sample sizes. In the process, they did

not address the possibility that observed standard deviation was greater than popula-

tion standard deviation. Their formula generally becomes undefined when this is the

case for one of the involved variables. We evaluated their formula for use in individ-

ual studies. Along with even the basic Bryant and Gokhale (1972) formula (8)’s
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reliance on knowing the full-population standard deviations for both variables, this is

likely one of the reasons their formula has never received much attention.

Results and Discussion

6-Day Sample Results Motivating Further Study

To indicate the extent to which the 6-Day Sample actually represented the full birth

cohort form which it was drawn, Table 1 compares its relevant statistics with those in

the much larger SMS1947. Inevitably, given two separate sampling procedures, there

were some mean differences. All were also inevitably significant, given the large size

of the SMS1947. The effect sizes of the MHT-score differences were, however, tri-

vial, and even standard deviations and skews of all the variable distributions were

highly similar. The 6-Day Sample was slightly older than the SMS1947 sample, but

the difference corresponded to 18 days. This is slightly longer than the average differ-

ence between the first and last day of any month, and thus almost exactly what would

be expected given selection on birthdate the first of even-numbered months, and

could also possibly explain their slightly higher MHT scores. The 6-Day Sample did

have a slightly higher proportion of females than did SMS1947 (less than 2% differ-

ence). Given higher rates of infant mortality and incapacitating disabilities in males

than females (National Records of Scotland, 2013), however, it is very possible that

the 6-Day Sample was the more population-representative. The MHT scores were

consistently slightly negatively skewed in females and males, This appears to be a

general property of the test rather than a product of sample selectivity, as it has been

observed in all samples studied to date and other cognitive tests in these samples did

not show negative skew (Johnson et al., 2016). Skews of similar magnitudes in either

direction are generally found in all psychological measures. They can arise through

item-‘‘difficulty’’ properties of the measures as well as through population character-

istics, and most analytical methods in common usage are robust to such minor viola-

tions of the normality assumption commonly underlying them.

Table 2 compares the youth scores of the 791 original participants surviving to be

potentially eligible to participate in the age-77 Follow-Up study and those who actu-

ally agreed to participate in it with the full original sample. The first thing to note is

the distributional properties of the measures in the full sample, particularly the skews

in parentheses following the standard deviations, because they provide the best indi-

cations of the measures’ psychometric properties. The TMIQ distribution was similar

to the properties usually noted for it, and generally claimed for it. Though not shown

in the table, the relative magnitudes (ratios) of standard deviations to means are

important in evaluating the shapes of distributions, and such ratios can be compared

in measures on very different scales, as was the case here. The two personality mea-

sures had similar ratios (.27 and .31), with the TMIQ’s being lower (.20) and the

MHT’s higher (.42). Height’s ratio was very small (.05). These ratios indicate that

MHT scores varied much more within their possible range than did TMIQ scores,

which can reflect more detail in measurement scaling, but also lower reliability when
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the scores are intended to measure the same construct, as these two are. When these

ratios are not similar, the dissimilarity can also primarily reflect degree of population

clustering around the mean, which was probably the primary reason for the low

height ratio.

None of the measures was skewed to a degree that would typically generate con-

cern about material deviation from normal (maximum magnitude –.78 in the Follow-

Up Sample MHT), but the two cognitive tests were more skewed than the other three,

and the TMIQ was somewhat positively skewed (.50), while the MHT was somewhat

negatively skewed (–.31). In addition, the TMIQ became less positively skewed as

degree of selection increased, while the MHT became more negatively skewed. This

is typical when the lower scores of such distributions are dropped in greater propor-

tions than higher scores. Survivors to age 77 had moderately higher cognitive test

scores in youth than those who had passed away before that age (effect sizes of .35

and .37 for MHT and TMIQ, respectively). They also had slightly higher Originality

scores as rated by their teachers (effect size .19), but did not differ significantly in

either Self-confidence or height. Survival sets the ultimate boundary for participation,

so selection of at least these magnitudes would be expected among the participants in

the Follow-Up study relative to the original full sample, but there is no predominat-

ing a priori reason for it to be greater within the surviving group. In fact, however,

actual selection among participants was considerably larger: compared with surviving

nonparticipants, participants had considerably higher cognitive test scores in youth

(effect sizes of .74 and .65 for MHT and TMIQ, respectively), and somewhat higher

self-confidence and moderately higher originality as rated by their teachers (effect

sizes of .26 and .43, respectively). They were also taller in youth (effect size .23).

This indicated considerable selection on characteristics that are usually very highly

correlated (stable in population-level rank ordering) over long periods of the lifespan

in the age-77 Follow-Up Sample.

Table 2. 6-Day Sample Youth Descriptives of Age-77 Participation Status Groups.

Mean (SD, skew)

Full 6-Day
Sample n = 1,208

Alive at age
77 n = 791

Participating at
age 77 n = 171

Moray House Test 37.4 (15.8, –.31) 39.3 (15.3, –.38)*1 48.1 (11.3, –.78)*2

Terman–Merrill IQ 102.6 (20.1, .50) 105.0 (20.6, .49)*3 115.6 (19.7, .18)*4

Self-confidence 3.0 (0.80. 06) 3.0 (0.80, .03) 3.2 (0.76, .05)*5

Originality 2.6 (0.80, –.16) 2.7 (0.79, –.15)*6 2.9 (0.75. 10)*7

Height 54.0 (2.8, .05) 54.1 (2.9, .00) 54.7 (2.8, .55)*8

Note. All measures in youth. Superscripts denote effect sizes of differences, more restricted to less

restricted: 1 = .35, 2 = .74, 3 = .37, 4 = .65, 5 = .26, 6 = .19, 7 = .43, 8 = .23.

*Difference in means was significant between survivors and deaths (middle column), or participants and

nonparticipants (right column), at p \ .01 to offset multiple testing.
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Table 3 gives the correlations that motivated this article. For purposes related to

an article on another topic completely, we happened to calculate the correlations

between the 6-Day Sample MHT and TMIQ and personality and height measures (all

taken in youth) in the age-77 Follow-Up Sample and in those who had survived to be

potentially eligible for the Follow-Up Study. These correlations were not of intrinsic

interest in and of themselves, and generally would not be. But the opportunity to

make such calculations in naturally selected samples for which the full-sample corre-

lations can also be made is rare. As is common, the Follow-Up–participant correla-

tions were considerably lower than the full-sample correlations. This was not the

case for the survivor-sample correlations: They were much closer to the full-sample

correlations, and some were higher but others lower, though none reproduced the

Table 3. 6-Day Sample Early-Life Correlations.

Observed

Adjusted for

Maximum likelihood estimate
Direct range
restriction

Indirect range
restriction

Moray House Test
Participating at 77

Originality .323 .423 .538 .409
Self-confidence .152 .203 .269 .248
Height .199 .263 .532 .268

Alive at 77
Originality .437 .450 .567 .441
Self-confidence .255 .263 .333 .268
Height .315 .325 .367 .298

Difference/ratio between actual and estimated in participating sample
Full sample

Originality .383 –.040/.906 –.155/.712 –.026/.936
Self-confidence .246 .043/1.212 –.023/.914 –.002/.992
Height .314 .051/1.194 –.218/.590 .046/1.172

Terman–Merrill IQ
Participating at 77

Originality .288 .293 .370 .428
Self-confidence .144 .147 .185 .248
Height .210 .215 .241 .259

Alive at 77
Originality .474 .473 .576 .470
Self-confidence .283 .282 .340 .278
Height .306 .305 .327 .289

Difference/ratio between actual and estimated in participating sample
Full sample

Originality .432 .139/1.474 .062/1.168 .004/1.009
Self-confidence .272 .125/1.850 .087/1.470 .024/1.097
Height .296 .081/1.376 .055/1,228 .037/1.143

Note. See text for reliabilities used in calculating the estimated correlation adjustments.
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full-population correlation exactly. We applied the methods outlined above (omitting

the approximate adjustment for direct selection often made in the absence of knowl-

edge of the full-population standard deviation) to adjust the sample correlations for

direct and indirect selection and made maximum likelihood estimates of the full-

sample correlations based on both selected-sample correlations. For the adjustments

for indirect selection, we had to assume test–retest reliabilities for some of the mea-

sures, and those noted in the Method section for Originality and Self-confidence were

of necessity particularly arbitrary. All else being equal, lower reliabilities generate

higher adjusted correlations and vice versa, so we were able to assess the impacts of

likely differences between our assumed reliabilities and actuals. As the table shows,

all the adjusted estimates differed from the actual full-population correlations, some

of them considerably. The magnitudes and directions of deviation also differed some-

what systematically for the two cognitive tests and the adjustment methods applied.

Though selection on cognitive ability appeared to be involved in both Follow-Up

Study participation and survival, the specific processes involved appeared to differ,

as the patterns of deviation in the two samples differed as well.

For example, for the MHT, some of the adjustments overstated the full-population

correlations, while others understated them, and over- and understatement were con-

sistent in the two samples for one correlation, but not the other two. In contrast, for

the TMIQ, all the adjustments understated the full-population correlations, and most

of the understatements were quite a bit larger in absolute magnitude than those with

the MHT. The TMIQ in this sample was rather unusual in that its standard deviation

remained effectively the same no matter the degree of naturally occurring selection

that took place, and the arithmetic of the direct- and indirect-selection adjustment for-

mulas generated these understatements. The maximum likelihood estimates tended to

be most accurate in both samples, and it appeared that participation selection was

much more directly on MHT score than on TMIQ score, given that its correlations

adjusted for direct were more accurate than those for indirect range restriction, but

the opposite was the case for the TMIQ. This was especially puzzling given the con-

sistency of the biasing of estimates of the population correlation by all methods for

this test, which would tend to suggest more overt sample selection based on it. In

contrast, if anything, this situation was reversed for survival selection, though less

consistently so. For the MHT, the adjustment for indirect selection that relied on our

assumed test–retest reliabilities overestimated all the full-sample correlations, but it

underestimated them for the TMIQ. This meant that, had we assumed lower reliabil-

ities, the formula would have generated greater errors for the MHT correlations, but

smaller errors for the TMIQ correlations, but would not have altered the overall

extent of formula misestimation.

It was this consistent presence of differences between the actual population-level

correlations and their estimates using commonly used or considered methods to offset

the clearly present range restriction (especially in the follow-up participant sample)

that led us to evaluate how common such deviations might be and whether, if com-

mon, there might be consistent patterns in them that could be more clearly revealed.
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To evaluate this, we needed many more test scores in a single sample, preferably

ranging in size of correlation in systematic ways. To accomplish this, we turned to

the MISTRA sample with its 42 cognitive ability tests and personality measures as

described above.

MISTRA Sample Results
Basic Statistics. Table 4 shows the descriptive statistics for each of the 42 cognitive

ability tests administered in MISTRA in the full and two selected samples. In the full

sample, all the tests would be considered very reasonably normally distributed: All

had means and standard deviations close to those expected for standardized variables,

with the deviations reflecting having winsorized outliers that occurred in removing

effects of age and sex from the variables. None of the skews exceeded the commonly

applied rule-of-thumb level of 1.00 in absolute value, and most were substantially

below that. Still, some of the tests generated small negative skews, while others gen-

erated small positive skews. Kurtosis levels also were small, but some tests generated

scores more concentrated around 1 SD in absolute value than would be expected in a

strictly normal distribution (Moors, 1986) (Moors, 1986), while others did the oppo-

site. This variety without extremity was a good feature of these data for our purpose,

as would be expected if there were no systematic biases in either the participant or

test samples.

Table 5 shows the correlations between each of the 42 MISTRA cognitive ability

tests and Flynn-adjusted IQ and Multidimensional Personality Questionnaire Well-

being, Absorption, and Alienation in the full and two selected samples. The magni-

tudes of these correlations reflected both individual measure reliability and content.

As would be expected, all the correlations with Flynn-adjusted IQ were positive and

generally at least moderate, ranging from .201 for CAB Immediate Visual Memory

to .650 for WAIS Vocabulary. Those with Well-being were also almost all positive,

though generally small. Absorption correlations were also generally positive, but

even smaller, and several were negative. Alienation correlations were negative, and

small to moderate. About a third of the correlations were weaker in the selected than

in the full sample, as is often assumed to be the case when range is known to be

restricted but no further information is available, but often the difference was tiny.

And about two thirds of the correlations were actually stronger in the selected sam-

ples; some also took the opposite direction. This suggests quite strongly that the

common assumption that correlations in range-restricted samples are weaker than the

full-population correlations is at best tenuous.

Accuracy of Formulas to Adjust for Range Restriction. The degree to which the adjustment

formulas intended to account for direct selection could recover the full-sample corre-

lations in the two selected samples is recounted in Table 6. At the top of the table, we

show statistics about the differences between the full-sample correlations and the sub-

sample correlations, followed by the same kinds of comparisons for the estimates of

the full correlations based on application of the adjustment formulas. The means of

Johnson et al. 1041



Table 4. MISTRA Full and Selected Samples—Descriptive Statistics for Age-Sex–Adjusted
Cognitive Test Scores.

Cognitive test Full sample First selected sample Second selected sample

Mean SD Skew Kurt. Mean SD Skew Kurt. Mean SD Skew Kurt.

Hawaii Battery

Vocabulary .010 .991 –.318 –.716 .074 .923 –.372 –.522 .181 .962 –.461 –.645

Immed Vis Mem .016 .933 –.685 .353 .045 .940 –.654 .273 .113 .870 –.822 .471

Subtract/Multipl –.001 .993 .393 –.057 .044 .980 .373 .026 –.002 .948 .257 –.297

Line Dots –.011 .988 .170 .064 .029 1.013 .124 .345 .050 .976 .074 –.094

Word Begin/End .003 .995 .227 –.191 .034 .920 .130 –.214 .178 1.039 .053 –.045

Card Rotation –.010 .956 .443 .476 .010 .493 .726 .908 –.076 .989 .584 .459

Delay Vis Mem .014 .990 –.253 –.146 .089 1.005 –.331 –.157 .154 .941 –.210 –.006

Pedigrees .011 .994 –.328 –.016 .036 .964 –.484 .075 .143 .995 –.199 –.460

Mental Rotation –.001 .985 .113 –.203 .047 .975 .112 .253 .109 .940 .205 –.051

Identical Pictures .001 1.004 .225 –.256 .046 1.010 .147 –.267 .116 1.005 .279 –.188

Paper Form Bd .005 1.001 .460 –.082 .068 .977 .589 .227 .160 1.091 .467 –.343

Hidden Patterns –.002 1.000 –.161 –.297 .123 1.027 –.293 –.359 .117 .998 –.262 –.250

Things –.003 .994 .262 –.124 .002 1.016 .418 –.007 .160 1.039 .108 –.389

Different Uses –.003 .998 .083 –.333 –.017 .973 –.005 –.266 .180 1.037 .060 –.439

Cubes –.001 .993 .334 .186 –.126 1.050 .343 –.208 .164 .980 .453 .299

Paper Folding .002 .999 .053 –.311 .038 1.046 .043 –.467 .113 1.038 .163 –.319

CAB

Vocabulary .010 .982 –.738 –.124 .086 .915 –.661 –.240 .182 .998 –.974 .317

Proverbs –.009 .995 –.886 .223 .032 .946 –1.096 .767 .134 .984 –1.057 .661

Number .005 .996 .248 .017 .009 .935 .278 –.147 .094 1.079 .156 –.333

Spatial .009 .998 .047 .286 –.056 1.014 –.072 .304 .087 .962 .310 .178

Speed of Closure –.001 1.000 .552 .330 –.117 .986 .729 .511 –.037 .993 .559 .265

Perceptual Speed –.001 .995 .346 –.022 .011 1.061 .335 –.323 .057 .951 .278 –.164

Induction .001 .994 .151 –.322 .122 .978 –.242 –.183 .120 1.019 .203 –.355

Flex of Closure –.004 .998 .054 –.763 .051 1.009 .025 –.792 .144 .991 –.025 –.802

Assoc Memory .010 1.002 .517 –.573 .140 1.007 .398 –.543 .115 .973 .418 –.659

Mechanical Reas .011 .994 –.249 –.330 .091 .950 –.116 –.296 .246 .955 –.226 –.513

Memory Span .004 .986 –.023 –.426 –.015 .981 –.070 –.138 .076 1.004 –.094 –.407

Meaningful Mem .000 1.002 –.362 –.648 .116 .981 –.380 –.602 .108 .987 –.444 –.511

Spelling .006 .994 –.177 –.975 –.022 .951 –.268 –.826 .145 1.013 –.392 –.815

Word Fluency .013 .999 .133 .286 .042 .923 .220 .928 .168 1.041 –.107 .093

WAIS

Information –.023 .992 –.229 –.444 .066 .965 –.380 –.475 .115 1.009 –.246 –.522

Comprehension –.018 .994 –.516 –.134 .052 .967 –.301 –.186 .196 .912 –.612 .263

Arithmetic .003 .997 –.129 –.733 .114 .951 –.059 –.796 .124 1.006 –.321 –.652

Similarities –.008 .997 –.661 .160 .025 .944 –.648 .382 .080 .992 –.609 –.154

Digit Span –.006 .991 .313 –.559 –.002 .954 .353 –.556 .040 .983 .199 –.501

Vocabulary –.015 .994 –.481 –.191 .060 .879 –.779 .572 .212 .979 –.598 .022

Digit Symbol .007 .999 –.144 –.302 .037 .940 –.263 –.280 .097 .982 –.135 –.182

Picture Completion –.007 .989 –.354 –.025 .053 1.036 –.555 .164 .075 .958 –.315 –.178

Block Design .004 .990 –.280 –.113 .026 1.035 –.399 –.023 .114 1.035 –.492 .239

Pattern Arrangement –.002 .999 –.221 –.355 .106 .973 –.218 –.512 .097 .997 –.277 –.587

Object Assembly –.004 .985 –.659 .093 –.020 .997 –.723 .206 .066 1.008 –.644 –.199

Raven –.002 .998 –.668 –.090 .059 .977 –.487 –.352 .111 .999 –.694 –.131

Mean .002 .992 –.081 –.176 .037 .968 –.087 –.089 .115 .992 –.128 –.189

Note. MISTRA = The Minnesota Study of Twins Reared Apart; CAB = Comprehensive Ability Battery;

WAIS = Wechsler Adult Intelligence Scale.
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the differences between the full- and subsample correlations look rather small, but

this obscures that for some tests the subsample correlations were higher than the full-

sample correlations, and the reverse was true for others. Reflecting this, in all cases,

the means of the absolute values of the correlation differences were higher than the

means of the raw correlation differences, and the overall adjusted subsample averages

tended to be stronger than the actual averages. These were sometimes trivially so,

other times quite substantially so. Extent of the former depended on variabilities of

under- and overstatement of the adjustments, the latter on relations between magni-

tudes of under- or overstatement and correlation. The correlation ratios depict this, as

they represent the differences in proportion to the raw differences. Because research-

ers tend to assume that range restriction suppresses correlations relative to their full-

population levels, the not-uncommon presence of higher subsample than full-sample

correlations is important. Proportions of overstated subsample correlations were

greater when the means of the absolute values of the differences were relatively larger

than those of the raw differences. The correlation ratios simply reinforced these

observations.

Comparing results for the two subsamples offered further insight. First, it empha-

sized the weakness of the common assumption that range-restriction results in under-

estimation of correlations. Recall that indirect selection on IQ was greater in

Subsample 2 than Subsample 1. Contrary to expectations based on this, at mean

level, the correlation differences from the full-sample correlations were smaller in

Subsample 2 than Subsample 1. Explanation for this comes from the means of the

absolute values of the correlation differences. Though these were also smaller in

Subsample 2 than Subsample 1, with the exception of that for Absorption, this was

true to a much smaller degree than for the mean raw differences (e.g., in absolute

value, the Subsample 1 raw and absolute means differed by .012 [.04, –.03] ) for

FSIQ, whereas those for Subsample 2 differed by .023 [.03, –.01]). This indicated

that there was more variance in sign of the differences in the more highly selected

Subsample 2, so that ability to guess at direction of bias decreased with greater indi-

rect selection. The correlation ratios make clear that the degree to which this was true

was a function of size of correlation: Bias was more likely to take the commonly

assumed direction for the higher FSIQ correlations than for the lower personality

correlations. Even this was not completely reliable, however, as all bets on direction

and degree of bias were essentially off for the very low raw Absorption correlations,

yet the mean absolute correlation ratio was moderate.

In general, adjustments resulting from the commonly used formula for direct

selection were tiny, making little difference, especially in the first subsample. In the

second, more selected, subsample, however, the differences between actual and esti-

mated full-sample correlations were sometimes larger after this adjustment (compare

raw and adjusted mean absolute correlation differences and ratios in Table 6). The

ranges of adjusted correlations and the mean absolute correlation ratios made clear

that this was mostly when raw correlations were low. Applying the full adjustment

for direct selection improved this situation, but not much.

Johnson et al. 1047



Table 7 presents analogous information for the adjustment for indirect selection

and MLE of the full-sample correlation based on the subsamples. In general, the

adjustment for indirect selection overestimated the full-sample correlations, some-

times rather badly, so that it was more inaccurate than the full adjustment for direct

selection. A primary reason for overstatement was inaccuracy of the assumption that

indirect selection results in range restriction that understates correlations. That is, in

many cases it had not, and even when it did, it did not do so as much as assumed in

the indirect selection adjustment process. Still, accuracy was slightly better in the

more selected second subsample, except for the very low correlations with

Absorption. This suggested that, when correlations were at least moderate, adjust-

ment formula accuracy improved with greater sample selection. Maximum likelihood

did considerably better, and, overall, slightly better than full adjustment for direct

selection. This was true particularly in the second subsample, though again not for

the lowest correlating Absorption.

Finally, the Le et al. (2016) Case V adjustment method failed slightly more than

half the time, primarily due to subsample standard deviations that were larger than

those of the full sample. The rather high frequency of this was probably due to sam-

pling quirks in the relatively small ‘‘population’’ in this case, but norming samples

for even widely used personality and intelligence tests are always far from com-

pletely population-representative and not uncommonly around the size of the full

MISTRA sample. This means that reliance on standard deviation ratio is a rather seri-

ous limitation of this adjustment method. To be specific, of the 42 tests, the method

failed for all four outcome tests 27 times in the first selected subsample. In the sec-

ond, it failed for 18 for Flynn-adjusted FSIQ, 24 for each of WB and AL, and 18 for

AB. Where it worked, it produced results very similarly lacking in accuracy to the

others (see online supplemental table).

General Comments. We recommend first applying MLE, applying adjustments as

completely as possible for direct selection preferred over the method used here for

indirect selection, which is intended to be the most accurate available, even when

selection is very likely indirect. Applying both maximum likelihood and adjusting

for direct selection, comparing results, and interpreting accordingly is better still.

The adjustment formulas all tended to be somewhat more accurate when applied

to positive than to negative correlations. This can be seen by comparing the means of

the absolute values of the correlation differences for FSIQ and Well-being with those

for Absorption, keeping in mind that the adjustment formulas tended to be somewhat

more accurate for higher correlations. This is what made this tendency more apparent

in the absolute correlation ratios. It was, however, far from completely reliable. Still,

it is probably a good idea to reverse one of the measure’s scoring when the raw sam-

ple correlation is negative and estimating extent of its sampling bias is a goal.

Greater skew and kurtosis also tended to be associated with greater distortion in

estimated full-sample correlations. Unfortunately, however, as for estimates due to

range restriction themselves, neither skew nor kurtosis directions nor magnitudes

1048 Educational and Psychological Measurement 78(6)
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appeared to be systematically associated with degree of distortion. For example,

degree of skew was associated in the first sample with greater distortion in direct

selection-adjusted correlations with FSIQ, but not in correlations with the personality

measures (except for a statistical ‘‘tendency’’ for association with distortion of WB).

This could suggest that skew might matter more when observed (positive) correla-

tions are greater, as that is the primary common difference between the personality

measures and FSIQ in this study, but there was no association in the second sample.

Instead there was an association with degree of kurtosis in the second sample,

which showed up for AL too. It makes a certain amount of sense that kurtotic asso-

ciations could be picked up in correlations of smaller magnitudes in negative correla-

tions just as easily as in positive correlations in positively selected samples such as

those that occur most commonly in research studies and were modelled here, as kur-

tosis reflects more symmetrical deviations from normality than does skew. It also

makes sense that it would be picked up in AL in this study as its correlations tended

to be the strongest among the personality measures, but they were negative, which

might matter for skew but would be less likely to matter for the more symmetrical

kurtotic measure of deviation from normality.

These tendencies for greater degree of distortion in range-restriction adjustment

formulas with greater skew and/or kurtosis were not consistent in the two samples,

Even in these at most very moderately skewed and kurtotic variables (whose devia-

tions from normality would not usually arouse any concern) they were strong enough

that examining results of adjustment formulas with and without transforming vari-

ables to improve normality is a good idea. Of course, all such transformations change

the way the correlation should be interpreted, but we rarely have any sense that the

numerical ratio or interval scales we often use to measure psychological constructs

actually capture those constructs in those ways, so this is probably not as big a prob-

lem as it might superficially appear.

Examination of the specific effects of the same sample selections on the means, stan-

dard deviations, skews, and kurtoses in the 42 cognitive tests studied here suggests no

clear patterns. Greater sample selectivity did tend to produce higher means, but even

this did not happen consistently. Researchers often tend, at least implicitly, to assume

that sample selection produces smaller standard deviations, but in these data this was

not true about as often as it was true, and patterns for differences in skew were not more

regular. Moreover, patterns of combinations of effects of sample selection on standard

deviation, skew, and kurtosis were even less consistent. It was possible to examine indi-

vidual tests and make some inferences about the particular distributional properties of

that test in the full sample, but these inferences could not get beyond the inevitable con-

found between specific item properties of that test that would apply in any sample and

the sample-specific clusterings of participants’ actual abilities in the areas items tested.

Conclusion

We began this article lauding researchers’ increasing awareness that participants in

their studies tend not to represent the population from which they come very well.
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We noted that this has been addressed in two ways, through development of new

methods to adjust results to offset the resulting distortions in estimates and tests of

their accuracy, and by increasing application of existing formulas in reporting esti-

mated associations in actual study samples. These efforts fully deserve the praise we

offered. Based on this study, however, we have to conclude that the accuracy tests

run to data have not been sufficient to resolve the problem of distortions in estimated

associations from population levels that selection into research participation creates.

This is of course of necessity a subjective judgment; some may see the deviations we

picked up as too small to matter, noting that no adjustment formula could ever be

expected to recover the intended statistic exactly. Several of the deviations in both

tests in the 6-Day Sample were not small in absolute value and were quite large in

relation to the observed correlations (see Table 3). The same was true of many of the

specific test observations in the MISTRA sample, even when not true of the mean

levels (see especially the ranges in Tables 6 and 7). We believe that the ratios of

deviations to the observed correlations are particularly relevant because accuracy is

always relative to the size of whatever is being measured. Lab tests are commonly

considered relatively accurate when their results ‘‘generally’’ fall within 10% of

actual values, both by lab course instructors and medical technicians. By this stan-

dard, 68% of the common approximations, 68% of the full adjustments for direct

selection, 90% of the adjustments for indirect selection, and 73% of the EM adjust-

ments would be considered inaccurate. Doubling tolerance to 20%, 49% of the com-

mon approximations, 47% of the full adjustments for direct selection, 72% of the

adjustments for indirect selection, and 51% of the EM adjustments would be consid-

ered inaccurate. We suggest that either psychological measurement somehow merits

being held to much lower standards of accuracy, or these adjustment formulas too

often do not perform adequately.

The deviations we observed were apparently due to too-restrictive assumptions

about the shapes of the distributions cognitive ability tests take in actual populations

and the natures of the distortions in those distributions imposed by the multifaceted,

largely indirect selection processes that get some targeted people to participate in

research studies and others not. Sources of deviation from normality could not be pin-

pointed exactly in this study because sampling variability is inevitably confounded in

empirical data with systematically selective participation (whether direct or indirect,

random, or nonrandom), population-level deviations from normality, and incomple-

tely uniform item coverage of the construct range, but the common ‘‘symptom’’ of

all these sources of ‘‘malaise’’ was small and very typical deviations from normality

in the population-level full MISTRA sample. More work is needed to develop better

adjustment formulas and test them more thoroughly using the kinds of distributions

that measures in common use actually produce at population levels, and models of

the processes that reflect how people actually sort into both research and personnel

selection samples. This work needs to recognize that such distributions basically

always differ somewhat from the normal. Researchers producing estimates in existing

study samples also need to be much more circumspect than they often have been in
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assuming that they have some idea about what form of distortion the particular pat-

terns of selection into their samples has created. This may be especially important for

meta-analysis, as its results are often considered to be more generally applicable, and

the distortions in estimates that sample-selection adjustment formulas can contain

may actually make them less so.

Authors’ Note

The data reported in this article have been previously published and were collected as part of

two completely independent larger data collections, one of which ended more than 10 years
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