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Abstract

Erasure codes, such as Reed-Solomon (RS) codes, are
increasingly being deployed as an alternative to data-
replication for fault tolerance in distributed storage sys-
tems. While RS codes provide significant savings in
storage space, they can impose a huge burden on the
I/O and network resources when reconstructing failed
or otherwise unavailable data. A recent class of era-
sure codes, called minimum-storage-regeneration (MSR)
codes, has emerged as a superior alternative to the popu-
lar RS codes, in that it minimizes network transfers dur-
ing reconstruction while also being optimal with respect
to storage and reliability. However, existing practical
MSR codes do not address the increasingly important
problem of I/O overhead incurred during reconstructions,
and are, in general, inferior to RS codes in this regard.
In this paper, we design erasure codes that are simultane-
ously optimal in terms of I/O, storage, and network band-
width. Our design builds on top of a class of powerful
practical codes, called the product-matrix-MSR codes.
Evaluations show that our proposed design results in a
significant reduction the number of I/Os consumed dur-
ing reconstructions (a 5× reduction for typical parame-
ters), while retaining optimality with respect to storage,
reliability, and network bandwidth.

1 Introduction

The amount of data stored in large-scale distributed
storage architectures such as the ones employed in data
centers is increasing exponentially. These storage sys-
tems are expected to store the data in a reliable and avail-
able fashion in the face of multitude of temporary and
permanent failures that occur in the day-to-day opera-
tions of such systems. It has been observed in a num-
ber of studies that failure events that render data unavail-
able occur quite frequently in data centers (for example,
see [32, 14, 28] and references therein). Hence, it is im-
perative that the data is stored in a redundant fashion.

Traditionally, data centers have been employing triple
replication in order to ensure that the data is reliable and
that it is available to the applications that wish to con-
sume it [15, 35, 10]. However, more recently, the enor-
mous amount of data to be stored has made replication
an expensive option. Erasure coding offers an alternative
means of introducing redundancy, providing higher lev-
els of reliability as compared to replication while requir-
ing much lower storage overheads [5, 39, 37]. Data cen-
ters and cloud storage providers are increasingly turning
towards this option [14, 9, 10, 4], with Reed-Solomon
(RS) codes [31] being the most popular choice. RS
codes make optimal use of storage resources in the sys-
tem for providing reliability. This property makes RS
codes appealing for large-scale, distributed storage sys-
tems where storage capacity is one of the critical re-
sources [1]. It has been reported that Facebook has saved
multiple Petabytes of storage space by employing RS
codes instead of replication in their data warehouse clus-
ter [3].

Under RS codes, redundancy is introduced in the fol-
lowing manner: a file to be stored is divided into equal-
sized units, which we will call blocks. Blocks are
grouped into sets of k each, and for each such set of k
blocks, r parity blocks are computed. The set of these
(k + r) blocks consisting of both the data and the par-
ity blocks constitute a stripe. The parity blocks possess
the property that any k blocks out the (k+ r) blocks in
a stripe suffice to recover the entire data of the stripe. It
follows that the failure of any r blocks in a stripe can
be tolerated without any data loss. The data and parity
blocks belonging to a stripe are placed on different nodes
in the storage network, and these nodes are typically cho-
sen from different racks.

Due to the frequent temporary and permanent failures
that occur in data centers, blocks are rendered unavail-
able from time-to-time. These blocks need to be replaced
in order to maintain the desired level of reliability. Un-
der RS codes, since there are no replicas, a missing block



82 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

1"
he

lp
er

s!

decoding !
node!

12"

8"

7"

6"

2"

1"

total"transfer"
""""="96MB"

(a) RS

he
lp
er
s!

decoding!
node!

1"

12"

8"

7"

6"

2"

1"

total"transfer"
"""="29.7MB"

(b) MSR (e.g., PM-MSR)

Figure 1: Amount of data transfer involved in reconstruc-
tion of block 1 for an RS code with k = 6, r = 6 and an
MSR code with k = 6, r = 6, d = 11, with blocks of size
16MB. The data blocks are shaded.

is replaced by downloading all data from (any) k other
blocks in the stripe and decoding the desired data from
it. We will refer to this operation as a reconstruction op-
eration. A reconstruction operation may also be called
upon to serve read requests for data that is currently un-
available. Such read requests are called degraded reads.
Degraded reads are served by reconstructing the requi-
site data on-the-fly, i.e., immediately as opposed to as a
background job.

Let us look at an example. Consider an RS code with
k = 6 and r = 6. While this code has a storage overhead
of 2x, it offers orders of magnitude higher reliability than
3x replication. Figure 1a depicts a stripe of this code,
and also illustrates the reconstruction of block 1 using the
data from blocks 2 to 7. We call the blocks that are called
upon during the reconstruction process as helpers. In
Figure 1a, blocks 2 to 7 are the helpers. In this example,
in order to reconstruct a 16MB block, 6×16MB= 96MB
of data is read from disk at the helpers and transferred
across the network to the node performing the decoding
computations. In general, the disk read and the network
transfer overheads during a reconstruction operation is
k times that under replication. Consequently, under RS
codes, reconstruction operations result in a large amount
of disk I/O and network transfers, putting a huge burden
on these system resources.

There has been considerable interest in the recent
past in designing a new class of (network-coding based)
codes called minimum-storage-regenerating (MSR)
codes, which were originally formulated in [12]. Under
an MSR code, an unavailable block is reconstructed
by downloading a small fraction of the data from any
d (> k) blocks in the stripe, in a manner that the total
amount of data transferred during reconstruction is
lower than that in RS codes. Let us consider an example
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Figure 2: Amount of data read from disks during recon-
struction of block 1 for k = 6, r = 6, d = 11 with blocks
of size 16MB.

with k = 6, r = 6 and d = 11. For these parameters, re-
construction of block 1 under an MSR code is illustrated
in Figure 1b. In this example, the total network transfer
is only 29.7MB as opposed to 96MB under RS. MSR
codes are optimal with respect to storage and network
transfers: the storage capacity and reliability is identical
to that under RS codes, while the network transfer is
significantly lower than that under RS and in fact, is
the minimum possible under any code. However, MSR
codes do not optimize with respect to I/Os. The I/O
overhead during a reconstruction operation in a system
employing an MSR code is, in general, higher than
that in a system employing RS code. This is illustrated
in Figure 2a which depicts the amount data read from
disks for reconstruction of block 1 under a practical
construction of MSR codes called product-matrix-MSR
(PM-MSR) codes. This entails reading 16MB at each of
the 11 helpers, totaling 176MB of data read.

I/Os are a valuable resource in storage systems. With
the increasing speeds of newer generation network in-
terconnects and the increasing storage capacities of in-
dividual storage devices, I/O is becoming the primary
bottleneck in the performance of storage systems. More-
over, many applications that the storage systems serve
today are I/O bound, for example, applications that serve
a large number of user requests [7] or perform data-
intensive computations such as analytics [2]. Motivated
by the increasing importance of I/O, in this paper, we in-
vestigate practical erasure codes for storage systems that
are I/O optimal.

In this paper, we design erasure codes that are simul-
taneously optimal in terms of I/O, storage, and network
bandwidth during reconstructions. We first identify two
properties that aid in transforming MSR codes to be disk-
read optimal during reconstruction while retaining their
storage and network optimality. We show that a class
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of powerful practical constructions for MSR codes, the
product-matrix-MSR codes (PM-MSR) [29], indeed sat-
isfy these desired properties. We then present an algo-
rithm to transform any MSR code satisfying these prop-
erties into a code that is optimal in terms of the amount
of data read from disks. We apply our transformation to
PM-MSR codes and call the resulting I/O optimal codes
as PM-RBT codes. Figure 2b depicts the amount of
data read for reconstruction of block 1: PM-RBT entails
reading only 2.7MB at each of the 11 helpers, totaling
29.7MB of data read as opposed to 176MB under PM-
MSR. We note that the PM-MSR codes operate in the
regime r ≥ k− 1, and consequently the PM-RBT codes
also operate in this regime.

We implement PM-RBT codes and show through ex-
periments on Amazon EC2 instances that our approach
results in 5× reduction in I/Os consumed during re-
construction as compared to the original product-matrix
codes, for a typical set of parameters. For general pa-
rameters, the number of I/Os consumed would reduce
approximately by a factor of (d − k + 1). For typical
values of d and k, this can result in substantial gains.
We then show that if the relative frequencies of recon-
struction of blocks are different, then a more holistic
system-level design of helper assignments is needed to
optimize I/Os across the entire system. Such situations
are common: for instance, in a system that deals with de-
graded reads as well as node failures, the data blocks will
be reconstructed more frequently than the parity blocks.
We pose this problem as an optimization problem and
present an algorithm to obtain the optimal solution to
this problem. We evaluate our helper assignment algo-
rithm through simulations using data from experiments
on Amazon EC2 instances.

2 Background

2.1 Notation and Terminology

The computations for encoding, decoding, and recon-
struction in a code are performed using what is called
finite-field arithmetic. For simplicity, however, through-
out the paper the reader may choose to consider usual
arithmetic without any loss in comprehension. We will
refer the smallest granularity of the data in the system
as a symbol. The actual size of a symbol is dependent
on the finite-field arithmetic that is employed. For sim-
plicity, the reader may consider a symbol to be a single
byte.

A vector will be column vector by default. We will use
boldface to denote column vectors, and use T to denote
a matrix or vector transpose operation.

We will now introduce some more terminology in ad-
dition to that introduced in Section 1. This terminology
is illustrated in Figure 3. Let n (= k+ r) denote the to-
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Figure 3: Illustration of notation: hierarchy of sym-
bols, byte-level stripes and block-level stripe. The first
k blocks shown shaded are systematic.

tal number of blocks in a stripe. In order to encode the
k data blocks in a stripe, each of the k data blocks are
first divided into smaller units consisting of w symbols
each. A set of w symbols from each of the k blocks is
encoded to obtain the corresponding set of w symbols in
the parity blocks. We call the set of data and parities at
the granularity of w symbols as a byte-level stripe. Thus
in a byte-level stripe, B = kw original data symbols (w
symbols from each of the k original data blocks) are en-
coded to generate nw symbols (w symbols for each of the
n encoded blocks). The data symbols in different byte-
level stripes are encoded independently in an identical
fashion. Hence in the rest of the paper, for simplicity of
exposition, we will assume that each block consists of a
single byte-level stripe. We denote the B original data
symbols as {m1, . . . ,mB}. For i ∈ {1, . . . ,n}, we denote
the w symbols stored in block i by {si1, . . . ,siw}. The
value of w is called the stripe-width.

During reconstruction of a block, the other blocks
from which data is accessed are termed the helpers for
that reconstruction operation (see Figure 1). The ac-
cessed data is transferred to a node that performs the
decoding operation on this data in order to recover the
desired data. This node is termed the decoding node.

2.2 Linear and Systematic Codes
A code is said to be linear, if all operations includ-

ing encoding, decoding and reconstruction can be per-
formed using linear operations over the finite field. Any
linear code can be represented using a (nw×B) matrix
G, called its generator matrix. The nw encoded symbols
can be obtained by multiplying the generator matrix with
a vector consisting of the B message symbols:

G
[

m1 m2 · · · mB
]T

. (1)

We will consider only linear codes in this paper.
In most systems, the codes employed have the prop-

erty that the original data is available in unencoded (i.e.,
raw) form in some k of the n blocks. This property is
appealing since it allows for read requests to be served
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directly without having to perform any decoding opera-
tions. Codes that possess this property are called system-
atic codes. We will assume without loss of generality
that the first k blocks out of the n encoded blocks store
the unencoded data. These blocks are called systematic
blocks. The remaining (r = n− k) blocks store the en-
coded data and are called parity blocks. For a linear sys-
tematic code, the generator matrix can be written as

[
I
Ĝ

]
, (2)

where I is a (B×B) identity matrix, and Ĝ is a ((nw−
B)×B) matrix. The codes presented in this paper are
systematic.

2.3 Optimality of Storage Codes

A storage code is said to be optimal with respect to
the storage-reliability tradeoff if it offers maximum fault
tolerance for the storage overhead consumed. A (k,r) RS
code adds r parity blocks, each of the same size as that
of the k data blocks. These r parity blocks have the prop-
erty that any k out of these (k+ r) blocks are sufficient to
recover all the original data symbols in the stripe. Thus
failure of any r arbitrary blocks among the (k+ r) blocks
in a stripe can be tolerated without any data loss. It is
well known from analytical results [22] that this is the
maximum possible fault tolerance that can be achieved
for the storage overhead used. Hence, RS codes are opti-
mal with respect to the storage-reliability tradeoff.

In [12], the authors introduced another dimension of
optimality for storage codes, that of reconstruction band-
width, by providing a lower bound on the amount of data
that needs to be transferred during a reconstruction op-
eration. Codes that meet this lower bound are termed
optimal with respect to storage-bandwidth tradeoff.

2.4 Minimum Storage Regenerating Codes

A minimum-storage-regenrating (MSR) code [12] is
associated with, in addition to the parameters k and r in-
troduced Section 1, a parameter d (> k) that refers to the
number of helpers used during a reconstruction opera-
tion. For an MSR code, the stripe-width w is dependent
on the parameters k and d, and is given by w = d−k+1.
Thus, each byte-level stripe stores B = kw = k(d−k+1)
original data symbols.

We now describe the reconstruction process under the
framework of MSR codes. A block to be reconstructed
can choose any d other blocks as helpers from the re-
maining (n − 1) blocks in the stripe. Each of these d
helpers compute some function of the w symbols stored
whose resultant is a single symbol (for each byte-level
stripe). Note that the symbol computed and transferred

by a helper may, in general, depend on the choice of
(d −1) other helpers.

Consider the reconstruction of block f . Let D denote
that set of d helpers participating in this reconstruction
operation. We denote the symbol that a helper block h
transfers to aid in the reconstruction of block f when the
set of helpers is denoted by D as th f D. This resulting
symbol is transferred to the decoding node, and the d
symbols received from the helpers are used to reconstruct
block f .

Like RS codes, MSR codes are optimal with respect to
the storage-reliability tradeoff. Furthermore, they meet
the lower bound on the amount of data transfer for recon-
struction, and hence are optimal with respect to storage-
bandwidth tradeoff as well.

2.5 Product-Matrix-MSR Codes

Product-matrix-MSR codes are a class of practical
constructions for MSR codes that were proposed in [29].
These codes are linear. We consider the systematic ver-
sion of these codes where the first k blocks store the data
in an unencoded form. We will refer to these codes as
PM-vanilla codes.

PM-vanilla codes exist for all values of the system
parameters k and d satisfying d ≥ (2k − 2). In order
to ensure that, there are atleast d blocks that can act
as helpers during reconstruction of any block, we need
atleast (d+1) blocks in a stripe, i.e., we need n≥ (d+1).
It follows that PM-vanilla codes need a storage overhead
of

n
k
≥
(

2k−1
k

)
= 2− 1

k
. (3)

We now briefly describe the reconstruction operation
in PM-vanilla codes to the extent that is required for the
exposition of this paper. We refer the interested reader
to [29] for more details on how encoding and decoding
operations are performed. Every block i (1 ≤ i ≤ n) is
assigned a vector gi of length w, which we will call the
reconstruction vector for block i. Let gi = [gi1, . . . ,giw]

T .
The n (= k+ r) vectors, {g1, . . . ,gn}, are designed such
that any w of these n vectors are linearly independent.

During reconstruction of a block, say block f , each
of the chosen helpers, take a linear combination of their
w stored symbols with the reconstruction vector of the
failed block, gf, and transfer the result to the decoding
node. That is, for reconstruction of block f , helper block
h computes and transfers the symbol

th f D =
w

∑
j=1

sh jg f j , (4)

where {sh1, . . . ,shw} are the w symbols stored in block h,
and D denotes the set of helpers.

4
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PM-vanilla codes are optimal with respect to the
storage-reliability tradeoff and storage-bandwidth trade-
off. However, PM-vanilla codes are not optimal with re-
spect to the amount of data read during reconstruction:
The values of most coefficients g f j in the reconstruction
vector are non-zero. Since the corresponding symbol sh j
must be read for every g f j that is non-zero, the absence
of sparsity in g f j results in a large I/O overhead during
the rebuilding process, as illustrated in Figure 2a (and
experimentally evaluated in Figure 7).

3 Optimizing I/O during reconstruction
We will now employ the PM-vanilla codes to con-

struct codes that optimize I/Os during reconstruction,
while retaining optimality with respect to storage, reli-
ability and network-bandwidth. In this section, we will
optimize the I/Os locally in individual blocks, and Sec-
tion 4 will build on these results to design an algorithm to
optimize the I/Os globally across the entire system. The
resulting codes are termed the PM-RBT codes. We note
that the methods described here are more broadly appli-
cable to other MSR codes as discussed subsequently.

3.1 Reconstruct-by-transfer
Under an MSR code, during a reconstruction opera-

tion, a helper is said to perform reconstruct-by-transfer
(RBT) if it does not perform any computation and merely
transfers one its stored symbols (per byte-level stripe) to
the decoding node.1 In the notation introduced in Sec-
tion 2, this implies that gf in (4) is a unit vector, and

th f D ∈ {sh1, . . . ,shw} .

We call such a helper as an RBT-helper. At an RBT-
helper, the amount of data read from the disks is equal to
the amount transferred through the network.

During a reconstruction operation, a helper reads req-
uisite data from the disks, computes (if required) the de-
sired function, and transfers the result to the decoding
node. It follows that the amount of network transfer per-
formed during reconstruction forms a lower bound on the
amount of data read from the disk at the helpers. Thus,
a lower bound on the network transfers is also a lower
bound on the amount of data read. On the other hand,
MSR codes are optimal with respect to network trans-
fers during reconstruction since they meet the associated
lower bound [12]. It follows that, under an MSR code,
an RBT-helper is optimal with respect to the amount of
data read from the disk.

1This property was originally titled ‘repair-by-transfer’ in [34] since
the focus of that paper was primarily on node failures. In this paper,
we consider more general reconstruction operations that include node-
repair, degraded reads etc., and hence the slight change in nomencla-
ture.

We now present our technique for achieving the
reconstruct-by-transfer property in MSR codes.

3.2 Achieving Reconstruct-by-transfer
Towards the goal of designing reconstruct-by-transfer

codes, we first identify two properties that we would like
a helper to satisfy. We will then provide an algorithm to
convert any (linear) MSR code satisfying these two prop-
erties into one that can perform reconstruct-by-transfer at
such a helper.

Property 1: The function computed at a helper is in-
dependent of the choice of the remaining (d−1) helpers.
In other words, for any choice of h and f , th f D is inde-
pendent of D (recall the notation th f D from Section 2.4).

This allows us to simplify the notation by dropping the
dependence on D and referring to th f D simply as th f .

Property 2: Assume Property 1 is satisfied. Then the
helper would take (n−1) linear combinations of its own
data to transmit for the reconstruction of the other (n−1)
blocks in the stripe. We want every w of these (n− 1)
linear combinations to be linearly independent.

We now show that under the product-matrix-MSR
(PM-vanilla) codes, every helper satisfies the two prop-
erties enumerated above. Recall from Equation (4), the
computation performed at the helpers during reconstruc-
tion in PM-vanilla codes. Observe that the right hand
side of Equation (4) is independent of ‘D’, and therefore
the data that a helper transfers during a reconstruction
operation is dependent only on the identity of the helper
and the block being reconstructed. The helper, therefore,
does not need to know the identity of the other helpers.
It follows that PM-vanilla codes satisfy Property 1.

Let us now investigate Property 2. Recall
from Equation (4), the set of (n − 1) symbols,
{th1, . . . , th(h−1), th(h+1), . . . , thn}, that a helper block h
transfers to aid in reconstruction of each the other (n−1)
blocks in the stripe. Also, recall that the reconstruction
vectors {g1, . . . ,gn} assigned to the n blocks are chosen
such that every w of these vectors are linearly indepen-
dent. It follows that for every block, the (n− 1) linear
combinations that it computes and transfers for the re-
construction of the other (n−1) blocks in the stripe have
the property of any w being independent. PM-vanilla
codes thus satisfy Property 2 as well.

PM-vanilla codes are optimal with respect to the
storage-bandwidth tradeoff (Section 2.3). However,
these codes are not optimized in terms of I/O. As we will
show through experiments on the Amazon EC2 instances
(Section 5.3), PM-vanilla codes, in fact, have a higher
I/O overhead as compared to RS codes. In this section,
we will make use of the two properties listed above to
transform the PM-vanilla codes into being I/O optimal
for reconstruction, while retaining its properties of being
storage and network optimal. While we focus on the PM-

5
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vanilla codes for concreteness, we remark that the tech-
nique described is generic and can be applied to any (lin-
ear) MSR code satisfying the two properties listed above.

Under our algorithm, each block will function as an
RBT-helper for some w other blocks in the stripe. For
the time being, let us assume that for each helper block,
the choice of these w blocks is given to us. Under this
assumption, Algorithm 1 outlines the procedure to con-
vert the PM-vanilla code (or in general any linear MSR
code satisfying the two aforementioned properties) into
one in which every block can function as an RBT-helper
for w other blocks. Section 4 will subsequently provide
an algorithm to make the choice of RBT-helpers for each
block to optimize the I/O cost across the entire system.

Let us now analyze Algorithm 1. Observe that each
block still stores w symbols and hence Algorithm 1
does not increase the storage requirements. Further,
recall from Section 2.5 that the reconstruction vectors{

gih1 , · · · ,gihw

}
are linearly independent. Hence the

transformation performed in Algorithm 1 is an invertible
transformation within each block. Thus the property of
being able to recover all the data from any k blocks con-
tinues to hold as under PM-vanilla codes, and the trans-
formed code retains the storage-reliability optimality.

Let us now look at the reconstruction process in the
transformed code given by Algorithm 1. The symbol
transferred by any helper block h for the reconstruc-
tion of any block f remains identical to that under the
PM-vanilla code, i.e., is as given by the right hand side
of Equation (4). Since the transformation performed in
Algorithm 1 is invertible within each block, such a re-
construction is always possible and entails the minimum
network transfers. Thus, the code retains the storage-
bandwidth optimality as well. Observe that for a block f
in the set of the w blocks for which a block h intends to
function as an RBT-helper, block h now directly stores
the symbol th f = [sh1 · · · shw]g f . As a result, whenever
called upon to help block f , block h can directly read and
transfer this symbol, thus performing a reconstruct-by-
transfer operation. As discussed in Section 3.1, by virtue
of its storage-bandwidth optimality and reconstruct-by-
transfer, the transformed code from Algorithm 1 (lo-
cally) optimizes the amount of data read from disks at
the helpers. We will consider optimizing I/O across the
entire system in Section 4.

3.3 Making the Code Systematic
Transforming the PM-vanilla code using Algorithm 1

may result in a loss of the systematic property. A fur-
ther transformation of the code, termed ‘symbol remap-
ping’, is required to make the transformed code system-
atic. Symbol remapping [29, Theorem 1] involves trans-
forming the original data symbols {m1, . . . ,mB} using a
bijective transformation before applying Algorithm 1, as

described below.
Since every step of Algorithm 1 is linear, the encod-

ing under Algorithm 1 can be represented by a generator
matrix, say GAlg1, of dimension (nw×B) and the encod-
ing can be performed by the matrix-vector multiplica-
tion: GAlg1

[
m1 m2 · · · mB

]T . Partition GAlg1 as

GAlg1 =

[
G1
G2

]
, (5)

where G1 is a (B×B) matrix corresponding to the en-
coded symbols in the first k systematic blocks, and G2 is
an ((nw−B)×B matrix. The symbol remapping step to
make the transformed code systematic involves multipli-
cation by G−1

1 . The invertibility of G1 follows from the
fact that G1 corresponds to the encoded symbols in the
first k blocks and all the encoded symbols in any set of k
blocks are linearly independent. Thus the entire encod-
ing process becomes

[
G1
G2

]
G−1

1




m1
m2
...

mB


=

[
I

G2G−1
1

]



m1
m2
...

mB


 , (6)

where I is the (B×B) identity matrix. We can see that the
symbol remapping step followed by Algorithm 1 makes
the first k blocks systematic.

Since the transformation involved in the symbol
remapping step is invertible and is applied to the data
symbols before the encoding process, this step does not
affect the performance with respect to storage, reliability,
and network and I/O consumption during reconstruction.

3.4 Making Reads Sequential
Optimizing the amount of data read from disks might

not directly correspond to optimized I/Os, unless the data
read is sequential. In the code obtained from Algo-
rithm 1, an RBT-helper reads one symbol per byte-level
stripe during a reconstruction operation. Thus, if one
chooses the w symbols belonging to a byte-level stripe
within a block in a contiguous manner, as in Figure 3,
the data read at the helpers during reconstruction oper-
ations will be fragmented. In order to the read sequen-
tial, we employ the hop-and-couple technique introduced
in [27]. The basic idea behind this technique is to choose
symbols that are farther apart within a block to form the
byte-level stripes. If the stripe-width of the code is w,
then choosing symbols that are a 1

w fraction of the block
size away will make the read at the helpers during recon-
struction operations sequential. Note that this technique
does not affect the natural sequence of the raw data in the
data blocks, so the normal read operations can be served
directly without any sorting. In this manner, we ensure
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Algorithm 1 Algorithm to achieve reconstruct-by-transfer at helpers
Encode the data in k data blocks using PM-vanilla code to obtain the n encoded blocks
for every block h in the set of n blocks
...Let {ih1, . . . , ihw} denote the set of w blocks that block h will help to reconstruct by transfer
...Let {sh1, . . . ,shw} denote the set of w symbols that block h stores under PM− vanilla
...Compute [sh1 · · · shw]

[
gih1 · · · gihw

]
and store the resulting w symbols in block h instead of the original w symbols

that reconstruct-by-transfer optimizes I/O at the helpers
along with the amount of data read from the disks.

4 Optimizing RBT-Helper Assignment
In Algorithm 1 presented in Section 3, we assumed

the choice of the RBT-helpers for each block to be given
to us. Under any such given choice, we saw how to
perform a local transformation at each block such that
reconstruction-by-transfer could be realized under that
assignment. In this section, we present an algorithm to
make this choice such that the I/Os consumed during re-
construction operations is optimized globally across the
entire system. Before going into any details, we first
make an observation which will motivate our approach.

A reconstruction operation may be instantiated in any
one of the following two scenarios:

• Failures: When a node fails, the reconstruction op-
eration restores the contents of that node in another
storage nodes in order to maintain the system reli-
ability and availability. Failures may entail recon-
struction operations of either systematic or parity
blocks.

• Degraded reads: When a read request arrives, the
systematic block storing the requested data may be
busy or unavailable. The request is then served by
calling upon a reconstruction operation to recover
the desired data from the remaining blocks. This is
called a degraded read. Degraded reads entail re-
construction of only the systematic blocks.

A system may be required to support either one or both
of these scenarios, and as a result, the importance asso-
ciated to the reconstruction of a systematic block may
often be higher than the importance associated to the re-
construction of a parity block.

We now present a simple yet general model that we
will use to optimize I/Os holistically across the system.
The model has two parameters, δ and p. The relative
importance between systematic and parity blocks is cap-
tured by the first parameter δ . The parameter δ takes
a value between (and including) 0 and 1, and the cost
associated with the reconstruction of any parity block
is assumed to be δ times the cost associated to the re-
construction of any systematic block. The “cost” can be
used to capture the relative difference in the frequency

(a) Total number of I/Os consumed

(b) Maximum of the I/O completion times at
helpers

Figure 4: Reconstruction under different number of
RBT-helpers for k = 6, d = 11, and a block size of 16MB.

of reconstruction operations between the parity and sys-
tematic blocks or the preferential treatment that one may
wish to confer to the reconstruction of systematic blocks
in order to serve degraded reads faster.

When reconstruction of any block is to be carried out,
either for repairing a possible failure or for a degraded
read, not all remaining blocks may be available to help in
the reconstruction process. The parameter p (0 ≤ p ≤ 1)
aims to capture this fact: when the reconstruction of a
block is to be performed, every other block may indi-
vidually be unavailable with a probability p independent
of all other blocks. Our intention here is to capture the
fact that if a block has certain number of helpers that can
function as RBT-helpers, not all of them may be avail-
able when reconstruction is to be performed.

We performed experiments on Amazon EC2 measur-
ing the number of I/Os performed for reconstruction
when precisely j (0 ≤ j ≤ d) of the available helpers
are RBT-helpers and the remaining (d − j) helpers are
non-RBT-helpers. The non-RBT-helpers do not perform
reconstruct-by-transfer, and are hence optimal with re-
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Algorithm 2 Algorithm for optimizing RBT-helper assignment
//To compute number of RBT-helpers for each block
Set num rbt helpers[block] = 0 for every block
for total rbt help = nw to 1
...for block in all blocks
......if num rbt helpers[block] < n-1

.........Set improvement[block] = Cost(num rbt helpers[block]) - Cost(num rbt helpers[block]+1)

......else

.........Set improvement[block] = -1

...Let max improvement be the set of blocks with the maximum value of improvement

...Let this block be a block in max improvement with the largest value of num rbt helpers

...Set num rbt helpers[this block] = num rbt helpers[this block]+1

...
//To select the RBT-helpers for each block
Call the Kleitman-Wang algorithm [20] to generate a digraph on n vertices with incoming degrees num rbt helpers

and all outgoing degrees equal to w
for every edge i → j in the digraph
...Set block i as an RBT-helper to block j

spect to network transfers but not the I/Os. The result
of this experiment aggregated from 20 runs is shown in
Figure 4a, where we see that the number of I/Os con-
sumed reduces linearly with an increase in j. We also
measured the maximum of the time taken by the d helper
blocks to complete the requisite I/O, which is shown Fig-
ure 4b. Observe that as long as j < d, this time decays
very slowly upon increase in j, but reduces by a large
value when j crosses d. The reason for this behavior is
that the time taken by the non-RBT-helpers to complete
the required I/O is similar, but is much larger than the
time taken by the RBT-helpers.

Algorithm 2 takes the two parameters δ and p as in-
puts and assigns RBT-helpers to all the blocks in the
stripe. The algorithm optimizes the expected cost of I/O
for reconstruction across the system, and furthermore
subject to this minimum cost, minimizes the expected
time for reconstruction. The algorithm takes a greedy ap-
proach in deciding the number of RBT-helpers for each
block. Observing that, under the code obtained from Al-
gorithm 1, each block can function as an RBT-helper for
at most w other blocks, the total RBT-helping capacity
in the system is nw. This total capacity is partitioned
among the n blocks as follows. The allocation of each
unit of RBT-helping capacity is made to the block whose
expected reconstruction cost will reduce the most with
the help of this additional RBT-helper. The expected re-
construction cost for any block, under a given number
of RBT-helper blocks, can be easily computed using the
parameter p; the cost of a parity block is further mul-
tiplied by δ . Once the number of RBT-helpers for each
block is obtained as above, all that remains is to make the
choice of the RBT-helpers for each block. In making this
choice, the only constraints to be satisfied are the num-

ber of RBT-helpers for each block as determined above
and that no block can help itself. The Kleitman-Wang
algorithm [20] facilitates such a construction.

The following theorem provides rigorous guarantees
on the performance of Algorithm 2.

Theorem 1 For any given (δ , p), Algorithm 2 minimizes
the expected amount of disk reads for reconstruction op-
erations in the system. Moreover, among all options re-
sulting in this minimum disk read, the algorithm further
chooses the option which minimizes the expected time of
reconstruction.

The proof proceeds by first showing that the expected re-
construction cost of any particular block is convex in the
number of RBT-helpers assigned to it. It then employs
this convexity, along with the fact that the expected cost
must be non-increasing in the number of assigned RBT-
helpers, to show that no other assignment algorithm can
yield a lower expected cost. We omit the complete proof
of the theorem due to space constraints.

The output of Algorithm 2 for n = 15, k = 6, d = 11
and (δ = 0.25, p = 0.03) is illustrated in Fig 5. Blocks
1, . . . ,6 are systematic and the rest are parity blocks.
Here, Algorithm 2 assigns 12 RBT-helpers to each of the
systematic blocks, and 11 and 7 RBT-helpers to the first
and second parity blocks respectively.

The two ‘extremities’ of the output of Algorithm 2
form two interesting special cases:

1. Systematic (SYS): All blocks function as RBT-
helpers for the k systematic blocks.

2. Cyclic (CYC): Block i ∈ {1, . . . ,n} functions as an
RBT-helper for blocks {i+1, . . . , i+w} mod n.
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Figure 5: The output of Algorithm 2 for the parameters
n = 15, k = 6, d = 11, and (δ = 0.25, p = 0.03) depict-
ing the assignment of RBT-helpers. The directed edges
from a block indicate the set of blocks that it helps to
reconstruct-by-transfer. Systematic blocks are shaded.

Algorithm 2 will output the SYS pattern if, for example,
reconstruction of parity blocks incur negligible cost (δ is
close to 0) or if δ < 1 and p is large. Algorithm 2 will
output the CYC pattern if, for instance, the systematic
and the parity blocks are treated on equal footing (δ is
close to 1), or in low churn systems where p is close to
0.

While Theorem 1 provides mathematical guarantees
on the performance of Algorithm 2, Section 5.7 will
present an evaluation of its performance via simulations
using data from Amazon EC2 experiments.

5 Implementation and Evaluation

5.1 Implementation and Evaluation Set-
ting

We have implemented the PM-vanilla codes [29] and
the PM-RBT codes (Section 3 and Section 4) in C/C++.
In our implementation, we make use of the fact that
the PM-vanilla and the PM-RBT codes are both lin-
ear. That is, we compute the matrices that represent
the encoding and decoding operations under these codes
and execute these operations with a single matrix-vector
multiplication. We employ the Jerasure2 [25] and GF-
Complete [26] libraries for finite-field arithmetic opera-
tions also for the RS encoding and decoding operations.

We performed all the evaluations, except those in Sec-
tion 5.5 and Section 5.6, on Amazon EC2 instances of
type m1.medium (with 1 CPU, 3.75 GB memory, and

Figure 6: Total amount of data transferred across the
network from the helpers during reconstruction. Y-axes
scales vary across plots.

attached to 410 GB of hard disk storage). We chose
m1.medium type since these instances have hard-disk
storage. We evaluated the encoding and decoding per-
formance on instances of type m3.medium which run on
an Intel Xeon E5-2670v2 processor with a 2.5GHz clock
speed. All evaluations are single-threaded.

All the plots are from results aggregated over 20 inde-
pendent runs showing the median values with 25th and
75th percentiles. In the plots, PM refers to PM-vanilla
codes and RBT refers to PM-RBT codes. Unless other-
wise mentioned, all evaluations on reconstruction are for
(n = 12, k = 6, d = 11), considering reconstruction of
block 1 (i.e., the first systematic block) with all d = 11
RBT-helpers. We note that all evaluations except the one
on decoding performance (Section 5.5) are independent
of the identity of the block being reconstructed.

5.2 Data Transfers Across the Network

Figure 6 compares the total amount of data trans-
ferred from helper blocks to the decoding node during
reconstruction of a block. We can see that, both PM-
vanilla and PM-RBT codes have identical and signifi-
cantly lower amount of data transferred across the net-
work as compared to RS codes: the network transfers
during the reconstruction for PM-vanilla and PM-RBT
are about 4x lower than that under RS codes.

5.3 Data Read and Number of I/Os

A comparison of the total number of disk I/Os and
the total amount of data read from disks at helpers dur-
ing reconstruction are shown in Figure 7a and Figure 7b
respectively. We observe that the amount of data read
from the disks is as given by the theory across all block
sizes that we experimented with. We can see that while
PM-vanilla codes provide significant savings in network
transfers during reconstruction as compared to RS as
seen in Figure 6, they result in an increased number of
I/Os. Furthermore, the PM-RBT code leads to a signif-
icant reduction in the number of I/Os consumed and the
amount of data read from disks during reconstruction.

9
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(a) Total number of disk I/Os consumed

(b) Total amount of data read from disks

Figure 7: Total number of disk I/Os and total amount of
data read from disks at the helpers during reconstruction.
Y-axes scales vary across plots.

Figure 8: Maximum of the I/O completion times at
helpers. Y-axes scales vary across plots.

For all the block sizes considered, we observed approx-
imately a 5x reduction in the number of I/Os consumed
under the PM-RBT as compared to PM-vanilla (and ap-
proximately 3× reduction as compared to RS).

5.4 I/O Completion Time

The I/O completion times during reconstruction are
shown in Figure 8. During a reconstruction operation,
the I/O requests are issued in parallel to the helpers.
Hence we plot the the maximum of the I/O completion
times from the k = 6 helpers for RS coded blocks and
the maximum of the I/O completion times from d = 11
helpers for PM-vanilla and PM-RBT coded blocks. We
can see that PM-RBT code results in approximately 5×
to 6× reduction I/O completion time.

Figure 9: Comparison of decoding speed during recon-
struction for various values of k with n = 2k, and d =
2k−1 for PM-vanilla and PM-RBT.

5.5 Decoding Performance

We measure the decoding performance during re-
construction in terms of the amount of data of the
failed/unavailable block that is decoded per unit time.
We compare the decoding speed for various values of
k, and fix n = 2k and d = 2k − 1 for both PM-vanilla
and PM-RBT. For reconstruction under RS codes, we
observed that a higher number of systematic helpers re-
sults in a faster decoding process, as expected. In the
plots discussed below, we will show two extremes of this
spectrum: (RS1) the best case of helper blocks compris-
ing all the existing (k−1) = 5 systematic blocks and one
parity block, and (RS2) the worst case of helper blocks
comprising all the r = 6 parity blocks.

Figure 9 shows a comparison of the decoding speed
during reconstruction of block 0. We see that the best
case (RS1) for RS is the fastest since the operation in-
volves only substitution and solving a small number of
linear equations. On the other extreme, the worst case
(RS2) for RS is much slower than PM-vanilla and PM-
RBT. The actual decoding speed for RS would depend on
the number of systematic helpers involved and the per-
formance would lie between the RS1 and RS2 curves.
We can also see that the transformations introduced in
this paper to optimize I/Os does not affect the decoding
performance: PM-vanilla and PM-RBT have roughly the
same decoding speed. In our experiments, we also ob-
served that in both PM-vanilla and PM-RBT, the decod-
ing speeds were identical for the n blocks.

5.6 Encoding Performance

We measure the encoding performance in terms of the
amount of data encoded per unit time. A comparison
of the encoding speed for varying values of k is shown
in Figure 10. Here we fix d = 2k − 1 and n = 2k and
vary the values of k. The lower encoding speeds for PM-
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Figure 10: Encoding speed for various values of k with
n = 2k, and d = 2k−1 for PM-vanilla and PM-RBT.

vanilla and PM-RBT as compared to RS are expected
since the encoding complexity of these codes is higher.
In RS codes, computing each encoded symbol involves a
linear combination of only k data symbols, which incurs
a complexity of O(k), whereas in PM-vanilla and PM-
RBT codes each encoded symbol is a linear combination
of kw symbols which incurs a complexity of O(k2).

Interestingly, we observe that encoding under PM-
RBT with the SYS RBT-helper pattern (Section 4) is
significantly faster than that under the PM-vanilla code.
This is because the generator matrix of the code under the
SYS RBT-helper pattern is sparse (i.e., has many zero-
valued entries); this reduces the number of finite-field
multiplication operations, that are otherwise computa-
tionally heavy. Thus, PM-RBT with SYS RBT-helper
pattern results in faster encoding as compared to PM-
vanilla codes, in addition to minimizing the disk I/O dur-
ing reconstruction. Such sparsity does not arise under the
CYC RBT-helper pattern, and hence its encoding speed
is almost identical to PM-vanilla.

We believe that the significant savings in disk I/O of-
fered by PM-RBT codes outweigh the cost of decreased
encoding speed. This is especially true for systems stor-
ing immutable data (where encoding is a one-time over-
head) and where encoding is performed as a background
operation without falling along any critical path. This
is true in many cloud storage systems such as Windows
Azure and the Hadoop Distributed File System where
data is first stored in a triple replicated fashion and then
encoded in the background.

Remark: The reader may observe that the speed
(MB/s) of encoding in Figure 10 is faster than that of de-
coding during reconstruction in Figure 9. This is because
encoding addresses k blocks at a time while the decoding
operation addresses only a single block.

Figure 11: A box plot of the reconstruction cost for dif-
ferent RBT-helper assignments, for δ = 0.25, p = 0.03,
n = 15, k = 6, d = 11, and block size of 16MB. In each
box, the mean is shown by the small (red) square and the
median is shown by the thick (red) line.

5.7 RBT-helper Assignment Algorithm

As discussed earlier in Section 4, we conducted exper-
iments on EC2 performing reconstruction using differ-
ent number of RBT-helpers (see Figure 4). We will now
evaluate the performance of the helper assignment algo-
rithm, Algorithm 2, via simulations employing the mea-
surements obtained from these experiments. The plots of
the simulation results presented here are aggregated from
one million runs of the simulation. In each run, we failed
one of the n blocks chosen uniformly at random. For its
reconstruction operation, the remaining (n − 1) blocks
were made unavailable (busy) with a probability p each,
thereby also making some of the RBT-helpers assigned
to this block unavailable. In the situation when only j
RBT-helpers are available (for any j in {0, . . . ,d}), we
obtained the cost of reconstruction (in terms of number
of I/Os used) by sampling from the experimental values
obtained from our EC2 experiments with j RBT-helpers
and (d − j) non-RBT-helpers (Figure 4a). The recon-
struction cost for parity blocks is weighted by δ .

Figure 11 shows the performance of the RBT-helper
assignment algorithm for the parameter values δ = 0.25
and p = 0.03. The plot compares the performance of
three possible choices of helper assignments: the assign-
ment obtained by Algorithm 2 for the chosen param-
eters (shown in Figure 5), and the two extremities of
Algorithm 2, namely SYS and CYC. We make the fol-
lowing observations from the simulations. In the CYC
case, the unweighted costs for reconstruction are homo-
geneous across systematic and parity blocks due to the
homogenity of the CYC pattern, but upon reweighting
by δ , the distribution of costs become (highly) bi-modal.
In Figure 11, the performance of SYS and the solution
obtained from Algorithm 2 are comparable, with the out-
put of Algorithm 2 slightly outperforming SYS. This is
as expected since for the given choice of parameter val-
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ues δ = 0.25 and p = 0.03, the output of Algorithm 2
(see Figure 5) is close to SYS pattern.

6 Related Literature
In this section, we review related literature on optimiz-

ing erasure-coded storage systems with respect to net-
work transfers and the amount of data read from disks
during reconstruction operations.

In [17], the authors build a file system based on
the minimum-bandwidth-regenerating (MBR) code con-
structions of [34]. While system minimizes network
transfers and the amount of data read during reconstruc-
tion, it mandates additional storage capacity to achieve
the same. That is, the system is not optimal with respect
to storage-reliability tradeoff (recall from Section 2).
The storage systems proposed in [18, 23, 13] employ
a class of codes called local-repair codes which opti-
mize the number of blocks accessed during reconstruc-
tion. This, in turn, also reduces the amount of disk reads
and network transfers. However, these systems also ne-
cessitate an increase in storage-space requirements in
the form of at least 25% to 50% additional parities.
In [21], authors present a system which combines local-
repair codes with the graph-based MBR codes presented
in [34]. This work also necessitates additional storage
space. The goal of the present paper is to optimize I/Os
consumed during reconstruction without losing the opti-
mality with respect to storage-reliability tradeoff.

[16] and [6], the authors present storage systems based
on random network-coding that optimize resources con-
sumed during reconstruction. Here the data that is recon-
structed is not identical and is only “functionally equiv-
alent” to the failed data. As a consequence, the system
is not systematic, and needs to execute the decoding pro-
cedure for serving every read request. The present paper
designs codes that are systematic, allowing read requests
during the normal mode of operation to be served directly
without executing the decoding procedure.

In [27], the authors present a storage system based
on a class of codes called Piggybacked-RS codes [30]
that also reduces the amount of data read during recon-
struction. However, PM-RBT codes provide higher sav-
ings as compared to these codes. On the other hand,
Piggybacked-RS codes have the advantage of being ap-
plicable for all values of k and r, whereas PM-RBT codes
are only applicable for d ≥ (2k−2) and thereby necessi-
tate a storage overhead of atleast (2− 1

k ). In [19], authors
present Rotated-RS codes which also reduce the amount
of data read during rebuilding. However, the reduction
achieved is significantly lower than that in PM-RBT.

In [33], the authors consider the theory behind
reconstruction-by-transfer for MBR codes, which as dis-
cussed earlier are not optimal with respect to storage-
reliability tradeoff. Some of the techniques employed in

the current paper are inspired by the techniques intro-
duced in [33]. In [36] and [38], the authors present op-
timizations to reduce the amount of data read for recon-
struction in array codes with two parities. [19] presents
a search-based approach to find reconstruction symbols
that optimize I/O for arbitrary binary erasure codes, but
this search problem is shown to be NP-hard.

Several works (e.g., [8, 24, 11]) have proposed system-
level solutions to reduce network and I/O consumption
for reconstruction, such as caching the data read during
reconstruction, batching multiple reconstruction opera-
tions, and delaying the reconstruction operations. While
these solutions consider the erasure code as a black-box,
our work optimizes this black-box and can be used in
conjunction with these system-level solutions.

7 Conclusion

With rapid increases in the network-interconnect
speeds and the advent of high-capacity storage de-
vices, I/O is increasingly becoming the bottleneck in
many large-scale distributed storage systems. A family
of erasure-codes called minimum-storage-regeneration
(MSR) codes has recently been proposed as a superior
alternative to the popular Reed-Solomon codes in terms
of storage, fault-tolerance and network-bandwidth con-
sumed. However, existing practical MSR codes do not
address the critically growing problem of optimizing for
I/Os. In this work, we show that it is possible to have
your cake and eat it too, in the sense that we can min-
imize disk I/O consumed, while simultaneously retain-
ing optimality in terms of both storage, reliability and
network-bandwidth.

Our solution is based on the identification of two key
properties of existing MSR codes that can be exploited
to make them I/O optimal. We presented an algorithm
to transform Product-Matrix-MSR codes into I/O opti-
mal codes (which we term the PM-RBT codes), while re-
taining their storage and network optimality. Through an
extensive set of experiments on Amazon EC2, we have
shown that our proposed PM-RBT codes result in signif-
icant reduction in the I/O consumed. Additionally, we
have presented an optimization framework for helper as-
signment to attain a system-wide globally optimal solu-
tion, and established its performance through simulations
based on EC2 experimentation data.
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