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ABSTRACT With recent advances in both AI and IoT capabilities, it is possible than ever to implement

surveillance systems that can automatically identify people who might represent a potential security threat

to the public in real-time. Imagine a surveillance camera system that can detect various on-body weapons,

masked faces, suspicious objects and traffic. This system could transform surveillance cameras from passive

sentries into active observers which would help in preventing a possible mass shooting in a school, stadium

or mall. In this paper, we present a prototype implementation of such systems, Hawk-Eye, an AI-powered

threat detector for smart surveillance cameras. Hawk-Eye can be deployed on centralized servers hosted

in the cloud, as well as locally on the surveillance cameras at the network edge. Deploying AI-enabled

surveillance applications at the edge enables the initial analysis of the captured images to take place on-

site, which reduces the communication overheads and enables swift security actions. At the cloud side,

we built a Mask R-CNN model that can detect suspicious objects in an image captured by a camera at

the edge. The model can generate a high-quality segmentation mask for each object instance in the image,

along with the confidence percentage and classification time. The camera side used a Raspberry Pi 3 device,

Intel Neural Compute Stick 2 (NCS 2), and Logitech C920 webcam. At the camera side, we built a CNN

model that can consume a stream of images directly from an on-site webcam, classify them, and displays the

results to the user via a GUI-friendly interface. A motion detection module is developed to capture images

automatically from the video when a new motion is detected. Finally, we evaluated our system using various

performance metrics such as classification time and accuracy. Our experimental results showed an average

overall prediction accuracy of 94% on our dataset.

INDEX TERMS Artificial Intelligence (AI), threat detector, surveillance cameras, deep learning,

mask Region Based Convolutional Neural Networks (R-CNN), Convolutional Neural Network (CNN),

Internet of Things (IoT).

I. INTRODUCTION

According to the nonprofit Gun Violence Archive [1], around

100 people are killed using guns, and 200 more are shot and

wounded every day in the United States. In 2019, there have

been more than 350 mass shootings in the United States.

The effects of such gun violence extend far beyond these

casualties. It reshapes the lives of millions of people who

are witnessing it and living in fear of the next shooting. So,

there is a growing social demand for developing effective

technological methods to compact gun violence.

A traditional way to mitigate potential security threats

is by using surveillance cameras, which are ubiquitously

installed in almost every public place such as schools, malls,
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shops, residential apartments and parking lots. However, the

traditional methods of surveillance need a continual human

observation though dozens of monitors in realtime. This may

result in missing vulnerable situations due to fatigue, lack of

concentration, or loss of key information in the surveillance

videos [2]. Therefore, an intelligent surveillance system is

critically needed to automatically detect security threats in a

stream of videos without manual intervention.

The advancement of Artificial Intelligence (AI), Machine

Learning (ML), and Internet of Things (IoT) opens up an

opportunity to implement such intelligent surveillance sys-

tems. Imagine an AI-powered security camera system that

can alert about various weapons and guns, masked faces, and

suspicious objects in real-time. This can prevent amass shoot-

ing or terrorist attack before it happens. To detect threatening

objects in a live video, advanced deep learning models must

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 63283

https://orcid.org/0000-0001-9736-5353
https://orcid.org/0000-0003-3140-2144


A. A. Ahmed, M. Echi: Hawk-Eye: An AI-Powered Threat Detector for Intelligent Surveillance Cameras

FIGURE 1. Sample examples from our weapon dataset showing various types of threatening objects.

be deployed on-site to improve object detection and semantic

segmentation of the video content. However, it is challenging

to deploy ML-enabled surveillance applications on cameras

at the network edge because of its intensive computational

requirements [3].

This paper presents Hawk-Eye, a lightweight AI-powered

threat detector for intelligent surveillance cameras, which can

be deployed on-site at the edge.1 The goal of Hawk-Eye

is to minimize communication delays, which is essential to

perform sensitive and mission-critical tasks such as thread

detection using surveillance cameras. Hawk-Eye is organized

into two parts executing on centralized servers on the cloud,

as well as locally on the surveillance cameras. We created

a dataset that consists of more than 10k images for various

types of threatening objects including masked faces, all kinds

of guns including machine guns, grenade, Rocket-Propelled

Grenade (RPG), pistol, motorcycle, cars, knife, and bats.

Figure 1 shows some examples of various types of dan-

gerous objects from our weapon dataset. Most of our dataset

images are in their natural environments because object

detection is highly dependent on contextual information.

Note that the car and truck images are included in the

threatening objects because they may be included with other

weapon objects in the same scene image. For instance, con-

sider a masked-thief robbing a bank who escapes from the

crime place using a car/truck; hence, our threat detector

model could detect the whole scene as a security threat

scenario. This feature is enabled because our threat detector

can handle multi-class classification problems, where it can

classify the input image as belonging to one or more of the

nine weapon classes.

At the camera side, we created a Convolutional Neural

Network (CNN) model that can feed images directly from

on-site cameras, perform object detection and semantic seg-

mentation, and display the classification results to the user

via a web-based interface. We deployed the CNN model

1Both the source code and dataset are available online:
https://github.com/ahmed-pvamu/Hawk-Eye

on an Intel Neural Compute Stick 2 (NCS2), which works

with a Raspberry Pi 3 device, to enable real-time deep learn-

ing inferencing at the edge. At the cloud side, we built a

Mask Region-based CNN (R-CNN) model [4], which is a

deep learning model for object instance segmentation. Mask

R-CNN can detect objects of interest in an image while

generating a segmentation mask for each instance.

We also developed a motion detection module based on the

frame difference method [5]. We calculate the absolute dif-

ference value between adjacent frames in the captured video.

When a change in the current scene is detected, the motion

detection module captures a fresh image with the highest

possible quality in realtime. The captured images are then fed

into the threat detector model automatically for classification.

We developed a web-based interface using Python Flask

Framework, which enables users to upload an image or cap-

ture an image directly from the camera. The web application

runs on top of both the Mask R-CNN model at the cloud side

and the CNNmodel on the camera side. Also, the application

displays the confidence percentage and classification time

taken to process the image.

The contributions of this paper are fourfold. First, we pro-

pose a distributed AI-Powered system that can help secu-

rity personnel detect various types of weapons in real-time,

preventing a potential crime. The system implementation at

the camera side uses the Intel NCS 2 device to boost the

processing capabilities of limited-resource IoT devices (e.g.,

Raspberry Pi 3 device) for deploying powerful machine learn-

ing models locally on the surveillance camera without cloud

compute dependence. Second, we developed a user-friendly

interface on top of both CNN and Mask R-CNN to allow

users to interact with the threat detector system conveniently

at the camera and cloud sides. Third, a novel motion detec-

tion module is proposed for detecting moving objects in

surveillance videos in real-time. The developed module is

integrated seamlessly with both the camera and cloud sides.

Fourth, the system is designed to be generic, making it appli-

cable to different fields requiring real-time processing and
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using cameras and IoT sensors such as in the transportation

field.

The rest of the paper is organized as follows: Section II

presents related work. Sections IV and III present the design

and prototype implementation of the system, respectively.

Section V experimentally evaluates Hawk-Eye in terms of

classification time and accuracy. Finally, Section VI summa-

rizes the results of this work.

II. RELATED WORK

The existing video surveillance approaches from both

academia and industry, to the best of our knowledge, offload

the captured video to the cloud for further analysis. This

precludes the initial analysis of videos to take place on-site,

which leads to increased communication overheads and slows

down security actions [6]. This section focuses on exist-

ing work on video surveillance from different perspectives

such as human-weapon activity recognition [7], [8], crime

detection [9], traffic monitoring [10], monitoring indoor

surveillance video [11], moving object tracking [12] and face

identification [13], [14].

Lim et al. [7] collected an annotated dataset consists

of 5,500 gun images in various settings extracted from

250 recorded Closed Circuit Television Systems (CCTV)

videos. The authors used the collected dataset to train a

single-stage object detector using a multi-level feature pyra-

mid network. Experimental results indicated that the col-

lected dataset increases the precision accuracy by 18% when

compared to two other existing datasets. Both training and

validation phases are carried out offline on a centralized

server equipped with two NVIDIAQuadro P5000 GPUs with

a combined video memory of 32 GB hosted in the cloud.

Another crime detection system based on CCTV images

was proposed in [9] using deep learning models. When the

system detects a potential crime, it sends an SMS message

to the human supervisor to take the necessary actions. The

system can only detect two types of weapons, namely manual

gun and knife, using the pre-trained VGGNET19 model.

However, the model suffers from poor prediction accuracy

due to the limited dataset used to train the model.

Grega et al. [8] proposed an algorithm for automatic

firearms detection using recorded CCTV image analysis and

situation recognition. The algorithm is designed to raise a flag

when a firearm is detected. The authors used 1,000 positive

examples and 3,500 negative examples to train a CNNmodel.

The classification output of the CNN model is analyzed by

a MPEG-7 classifier to determine whether the target object

is a firearm. However, the collected imagery dataset suffered

from poor quality and low resolution, which degraded the

firearms detection accuracy.

In the field of trafficmonitoring, Zhang et al. [10] proposed

a vehicle detection and annotation algorithm based on a

fine-tuned CNN model. The algorithm can identify vehicle

positions and extract vehicle properties on highways from

recorded traffic videos. The detection algorithm can predict

the bounding-boxes for vehicles and infer their attributes such

as pose, color and type.

Focusing on indoor surveillance, Liu et al. [11] proposed

a video surveillance method for indoor environments based

on a pre-trained model of the Mask R-CNN model using

Microsoft COCO dataset [15]. The authors used a video

recorded by a surveillance camera in a school lab to create the

training dataset. Similar to the work done in [9], the indoor

surveillance system was trained and validated using only

100 and 40 images, respectively. Given that small train-

ing dataset, the model was underfitting, and consequently,

the classification accuracy was relatively low.

Object tracking is an essential step in object recognition

in video surveillance. For instance, in [12], Cui et al. pro-

posed a multiple granular cascaded model of object track-

ing in surveillance videos, where various frames from dif-

ferent granularity levels are analyzed. At the coarse level,

the authors used a Gaussian mixture model to extract the

foreground region of the frame. At a finer scale, they used

a cascaded multi-source feature fusion method to classify

the region proposal and obtain the location of the target.

Experimental results showed that the system is able to obtain

an accuracy of 61% on images that have multiple objects.

Interesting work was presented in [13], [14] for face

recognition using surveillance videos. In [14], Ding et al.

proposed a trunk-branch ensemble CNN platform for face

recognition using recorded surveillance videos. The platform

can extract complementary information from holistic face

images. Another method for face recognition in real-world

surveillance videos using deep learningwas presented in [13],

where a human face dataset is created automatically and

incrementally during the face detection process. The authors

fine-tuned the pre-trainedVGG facemodel [16] with a dataset

collected from web scraping consists of around 2,600 human

faces. The fine-tuned VGG face model increased the recog-

nition accuracy by 9% compared to the original VGG model.

In summary, most of the existing video surveillance

approaches work on either recorded videos [7], [8], [11], [14]

or offload the video data into a centralized server in the cloud

[9], [10], [13], which is not appropriate for real-time threat

detection. Furthermore, none of the current video surveillance

approaches can be deployed on the security camera due to

its limited computational capabilities, which precludes taking

advantage of minimizing the communication delays in such

mission-critical security tasks.

III. SYSTEM DESIGN

As illustrated in Figure 2, the distributed run-time system for

Hawk-Eye is organized with parts executing on IoT devices at

the camera side, as well as on centralized servers at the cloud

side. The hardware components of the camera side are shown

in layer 1, which contains a Raspberry Pi 3, NCS2 device and

webcam. Layer 2 describes the deep learning models used

in Hawk-Eye, which includes the CNN and Mask R-CNN

models. It also shows the Intermediate Representation (IR)

model, which runs on the NCS2 device at the camera side.
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FIGURE 2. System architecture.

Layer 3 illustrates the web-based interface of Hawk-Eye run-

ning on the cloud server. We used Python Flask Framework

to develop a user-friendly web application that enables users

(shown in layer 4) to interact with the system. In the rest of

this section, we discuss these two parts separately.

A. CAMERA SIDE

At the camera side, we trained a CNN model with 4 con-

volutional layers, one input layer and one output layer. I =

[i1, i2, .., ir ] and O = [o1, o2, .., oh] represent the input and

output vectors, respectively, where r represents the number

of elements in the input feature set and h is the number

of classes. The main objective of the network is to learn

a compressed representation of the dataset. In other words,

it tries to approximately learns the identity function F , which

is defined as:

FW ,B(I ) ≃ I (1)

where W and B are the whole network weights and biases

vectors.

A log sigmoid function is selected as the activation func-

tion f in the hidden and output neurons. The log sigmoid

function s is a special case of the logistic function in the t

space, which is defined by the formula:

s(t) =
1

1 + e−t
(2)

The weights of the network create the decision boundaries

in the feature space, and the resulting discriminating surfaces

can classify complex boundaries. During the training pro-

cess, these weights are adapted for each new training image.

In general, feeding the CNN model with more images can

recognize the weapons and other threatening objects more

accurately. We used the back-propagation algorithm, which

has a linear time computational complexity, for training the

CNN model.

The input value 2 going into a node i in the network is

calculated by the weighted sum of outputs from all nodes

connected to it, as follows:

2i =
∑

(ωi,j ∗ ϒj) + µi (3)

where ωi,j is the weight on the connections between neuron j

to i; ϒj is the output value of neuron j; and µi is a threshold

value for neuron i, which represents a baseline input to neuron

i in the absence of any other inputs. If the value of ωi,j is

negative, it is tagged as inhibitory value and excluded because

it decreases net input.

The training algorithm involves two phases: Forward and

Backward phases. During the forward phase, the network’s

weights are kept fixed, and the input data is propagated

through the network layer by layer. The forward phase is

concluded when the error signal ei computations converge as

follows:

ei = (di − oi) (4)

where di and oi are the desired (target) and actual outputs of

ith training image, respectively.

In the backward phase, the error signal ei is propagated

through the network in the backward direction. During this

phase, error adjustments are applied to the CNN network’s

weights for minimizing ei.

We used the gradient descent first-order iterative optimiza-

tion algorithm to calculate the change of each neuron weight

1ωi,j, which is defined as follows:

1ωi,j = −η
δε(n)

δej(n)
yi(n) (5)

where yi(n) is the intermediate output of the previous neuron

n, η is the learning rate, and ε(n) is the error signal in the

entire output. ε(n) is calculated as follows:

ε(n) =
1

2

∑

j

e2j (n) (6)

The CNN network has two types of layers: convolution and

pooling. Each layer has a group of specialized neurons that

perform one of these operations. The convolution operation

means detecting the visual features of objects in the input

image such as edges, lines, color drops, etc. The pooling

process helps the CNN network to avoid learning irrelevant

features of objects by focusing only on learning the essential

ones. The pooling operation is applied to the output of the

convolutional layers to downsampling the generated feature

maps by summarizing the features into patches. Two common

pooling methods are used: average-pooling and max-pooling.

In this paper, we used the max-pooling method, which calcu-

lates the maximum value for each patch of the feature map as

the dominant feature.

As shown in Figure 3, the output of every Conv2D and

MaxPooling2D layer is a 3D form tensor (height, width,
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FIGURE 3. The structure of the CNN model.

channels). The width and height dimensions tend to shrink

as we go deeper into the network. The third argument (e.g.,

16, 32, 64 or 128) controls the number of output channels

for each Conv2D layer. During the training phase, the CNN

model generated more than 6.6 million trainable parameters.

Before moving the trained CNN model to the NCS

2 device, we had to convert it into an optimized Interme-

diate Representation (IR) model based on the trained net-

work topology, weights and biases values. We used the Intel

OpenVINO toolkit [17] to generate the IR model, which is

the only format that the inference engine at NCS 2 accepts

and understands. The conversion process involved removing

the convolution and pooling layers that are not relevant to

the inference engine at the stick. In particular, OpenVINO

splits the trained model into two types of files: XML and

Bin extension. The XML files contain the network topology,

while the BINfiles contain theweights and biases binary data.

B. CLOUD SIDE

At the cloud side, we used the pre-trained Mask R-CNN

model [4] to construct segmentation masks on different

Region of Interests (RoI) of weapon objects in the input

image. The Mask R-CNN model extends the Faster R-CNN

model [18] by adding a new module for predicting segmen-

tation masks on each RoI, in addition to the existing modules

for feature extractions, RoI classification, and bounding box

regression. However, the operation of creating the segmenta-

tion masks is time-consuming, making the model relatively

slower than Faster R-CNN and CNN models. Therefore, it is

not applicable to be deployed on IoT devices at the edge.

The Mask R-CNN model adopts the same two-stage pro-

cedure of the Faster R-CNN model: object detection and

semantic segmentation. Semantic segmentation, also called

instance segmentation, is the operation of identifying the

object outlines at the pixel level. First, Mask R-CNN uses

the CNN feature generator to extract the essential features

from the input image. Then, it creates a region proposal

map for the target RoIs by using the CNN Region Proposal

Network (RPN), which transforms the input featuremaps into

candidate bounding boxes. Like CNN, Mask R-CNN applies

the pooling operation to the bounding boxes to wrap them into

a fixed dimension. It then feeds the pooled boxes into fully

connected convolution layers to perform the classification

and boundary box prediction.

Figure 4 shows the structure of our Mask R-CNN model,

with over 63 million trainable parameters. As shown in the

figure, we trained the model with four fully connected con-

volutional layers, one input layer, one classification layer, and

two convolution layers to build the segmentation masks. The

figure also shows the key operations’ output shapes, such for

instance segmentation, RoI creation and pooling, and RPN

construction.

C. MOTION DETECTION

Given that most of the surveillance cameras are stationary,

the background of its video stream is static and relatively sta-

ble over consecutive frames of the video. Therefore, we used

the background subtraction [5] method to detect any moving

weapon objects in the captured video in realtime. We rep-

resented the video background using the Gaussian Mixture

model [19]. Our motion detection algorithm monitors the

modeled background for any substantial changes, which cor-

responds to a motion on the video.

The Gaussian model works on pixel points (x, y) in the

background regions of both the current frame fk (x, y) and pre-

vious frame fk−1(x, y) to obtain the difference values. If the

absolute difference value Dk (x, y) exceeds an experimentally

predefined threshold value τ , motion is detected between the

two consecutive frames. This operation is described formally

as follows:

Dk (x, y) =

{

1, if |fk (x, y) − fk−1(x, y)| > τ

0, if |fk (x, y) − fk−1(x, y)| ≤ τ
(7)

In order to ensure the reliability of motion detection,

we update the current background model Bt (x, y) frequently.

We continuously integrate the previous background frame

Bt−1(x, y) and the new incoming video frame It (x, y) with

Bt (x, y). This adaptive backgroundmodeling is attained using

a simple adaptive filter, as follows:

Bt (x, y) = (1 − β)Bt−1(x, y) + βIt (x, y) (8)
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FIGURE 4. The structure of the mask R-CNN model.

where β is an experimentally adjustable parameter. When

selecting a large coefficient value of β, the model updates

Bt (x, y) at higher speed; it also leads to the creation of arti-

ficial trails behind moving objects in the background model.

If some objects remain stationary in the video for a long time,

they become part of the background model Bt (x, y).

IV. IMPLEMENTATION

This section presents the implementation details of

Hawk-Eye at the camera and cloud sides.

A. HAWK-EYE TRAINING

Although standard object detection datasets (e.g., Microsoft

COCO [15]) exhibit volume and variety of examples, they

are not suitable for gun detection as they annotate a set of

object categories not include guns. Therefore, we collected

more than labeled 10k weapon images for training the CNN

and Mask R-CNN models from different sources such as

TABLE 1. The number of images used in the training, validation, and
testing phases across weapon classes.

FIGURE 5. Annotated image used in training the mask R-CNN model.

Kaggle [20] and Google Web Scraper [21]. Many images in

our dataset are in their natural environments because object

detection is highly dependent on contextual information.

Our dataset is divided into three parts: training, validation

and testing. Table 1 shows the number of images used in the

three phases across the nine weapon classes. The number of

images in each phase is determined based on the fine-tuned

hyperparameters and structure of the CNN model.

For training the Mask-RCNN model, we used the VIA

Annotation tool [22] to annotate 210 images for each weapon

class. We had to manually define and describe spatial regions

of the target objects in all training images. Figure 5 illustrates

an annotated image with two threatening objects (i.e., RPG

and Mask). As shown in the figure, the image region occu-

pied by the RPG is defined using a polygon and described

using the VIA annotation editor. We exported the spatial

dimensions of each polygon in the input image in JSON

format, which is then fed to the Mask-RCNN model as a

one-dimensional array of the mask.

Both the CNN and Mask R-CNN models are imple-

mented using Keras development environment [23]. Keras

is an open-source neural network library written in

Python, which uses TensorFlow [24] as a back-end

engine. Keras libraries running on top of TensorFlow

make it relatively easy for developers to build and test

deep learning models written in Python. For instance,

we used the keras.preprocessing.image.Image

DataGenerator library to augment some images in our
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FIGURE 6. Dataset augmentation.

dataset for a few disease classes that lack an insufficient

training set and have a lot of background noise, such as the

knife and bat.

We used several random geometric transformations so that

our model would never see twice the same image. This

helps to avoid overfitting and allows the model to gener-

alize better. As shown in Figure 6, the geometric trans-

formations applied to these classes were horizontal flip-

ping, −45◦ to 45◦ rotation, 1.5x scaling, filling with nearest

neighbor regions, zoom with range 0.2, width and height

shifts with a relative scale of 0.3, and cropping some image

manually.

The training images must have the same size before feed-

ing them as input to the model. Our model was trained

with colored (RGB) images with resized dimensions of

200× 200 pixels. We set the batch size and number of epochs

to be 150 images and 30 epochs, respectively. The model

training was carried out using a server computer equipped

with a 4.50GHz Intel Core i7-16MB CPU processor, 16GB

of RAM, and CUDA GPU capability. The training phase

took approximately 3 days to run 30 epochs on both models.

We took a snapshot of the trained weights every 5 epochs to

monitor the progress. The training error and loss are calcu-

lated using this equation:

M =
1

n

n
∑

i=1

(yi − xi)
2 (9)

where M is the mean square error of the model, y is the

value calculated by the model, and x is the actual value. M

represents the error in object detection and the construction

of a mask over the wrong object.

Given our threat detector model is considered a multi-class

classification problem, where it classifies the input image as

belonging to one or more of the nine weapon classes, we used

the softmax activation function at the output layer and the

cross-entropy as the loss function. Figure 7 illustrates the

calculated training error and loss graphically. As shown in

the figure, the mean squared error loss is decreasing over the

30 training epochs, while the accuracy increases consistently.

We can see that our model converged after the 25th epoch,

which means that our dataset and the fine-tuned parameters

were a good fit for the model.

FIGURE 7. The training accuracy and loss of the CNN model.

FIGURE 8. The physical implementation of Hawk-Eye at the camera side.

B. PHYSICAL IMPLEMENTATION

Figure 8 shows the physical prototype implementation of

Hawk-Eye on the camera side. Next, we describe the system

components on the camera side.

• Raspberry Pi 3 Model B+ is used as an IoT edge pro-

cessing unit on the camera side. The Raspberry Pi is

equipped with a 64-bit quad-core processor running at

1.4GHz, dual-band 2.4GHz, and 5GHz wireless LAN.

We installed Ubuntu 18.04 on the Raspberry Pi, which

can host and run the Keras development environment.

We connected an Intel NCS 2 and Logitech C920 web-

cam to the Raspberry Pi via the General Purpose

I/O (GPIO) pins.

• Logitech C920 webcam is used to simulate the surveil-

lance camera at the edge. We selected this webcam

because it has several surveillance features such as

high-resolution live streaming with USB-C capability,

high-dynamic-range capability, digital zoom, autofocus,

and infrared sensor technology, as well as working

smoothly with Ubuntu OS.

• Intel Neural Compute Stick 2 (NCS 2) is used as our

inference engine for accelerating the rapid prototyping,

validation, and deployment of our deep learning models

at the edge. The NCS 2 device is equipped with Intel

Movidius Myriad X Vision Processing Unit (VPU) and

supports USB 3.0.
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FIGURE 9. A snapshot of the web-based GUI of Hawk-Eye.

• Display screen is connected to the Raspberry Pi via

its HDMI port as an output device to render the web

interface to users.

• Keyboard and mouse are connected to the Raspberry Pi

via its USB ports as input devices.

C. USER INTERFACE

The user interface is developed as a responsive, mobile-first,

and user-friendly web application to enhance user experience

using the system. We built the web application using Python

Flask Framework, HTML5, CSS3, JavaScript, and JSON. All

web pages are designed to be device-agnostic that can accom-

modate visitors using mobile devices, desktops, or televisions

to visit the web site. Figure 9 shows the homepage of the

web application, which is divided into three modules: Mask

R-CNN running on the cloud server, CNN running on the

cloud server, and CNN running on the NCS 2 at the edge.

Each module allows users to upload saved images or capture

fresh photos and videos using the webcam.

To run the web application on top of the CNN and Mask

R-CNN models, we had to wrap both models, implemented

on Keras, as a REST2 API using the Flask web framework.

In other words, the communication between Keras and Flask

is coordinated through that REST API. When the user cap-

tures an image using the camera, Flask uses the POSTmethod

to send the image from the user browser to Keras via an HTTP

header. The Flask service can be accessed by the IP address

and port number of the web server without an extension as

follows: http://127.0.0.1:5000 at both the Raspberry Pi at the

camera side and the computer server at the cloud side.

Given that the Mask R-CNN model is not deployed at

the camera side, our implementation supports transferring

images from the camera side to the cloud side for utilizing the

masking capability of the model. The Flask service, running

on the Raspberry Pi, uses the REST API to send the image

to the computer server on the cloud as an HTTP request via

the POST method. Then, the classification results and the

masked image are returned back to the Raspberry Pi as a

JSON response.

2Representational State Transfer (REST) is a software architectural style
that is used to provide interoperability between heterogeneous computer
systems connected via the internet.

FIGURE 10. A snapshot of the inference result of the mask R-CNN model
at the cloud side.

FIGURE 11. A snapshot of the inference result of the CNN model at the
camera side.

Figure 10 illustrates an example of the inference result of

the Mask R-CNN model on the cloud side. As shown in the

figure, the model created segmentation masks around the gun

and face-mask with a confidence percentage of 99.2% and

94.8%, respectively. The processes of class prediction, mask

construction, and displaying results took around 6 seconds.

A significant portion of the 6 seconds is consumed to identify

the regions of interest and create segmentation masks around

them.

Figure 11 illustrates an example of the inference result

of the CNN model on the camera side. The CNN model

classified the pistol image correctly with a confidence score

of 99.99%. With the help of NCS 2, the operations of class

prediction and displaying results took around 0.6 seconds.

This shows that Hawk-Eye can be used as a threat detector

for live videos at the edge.

D. MOTION DETECTION

Our implementation of the motion detection module enables

users to capture up to 12 images every minute in the video

stream. A motion detection mask is also created around the

moving objects in the video, as shown in Figure 12. We used

the multi-threading capabilities in Python to enable paral-

lel processing of images from the input camera. In other

words, while the motion detection module generates the

motion frames, our inference models are classifying the
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FIGURE 12. A snapshot of the motion detection result.

FIGURE 13. The confusion matrix for the CNN model.

output images to the various weapon classes. The motion

detection module used various Python OpenCV [25] libraries

including CV2, Pandas and Shutils.

The video stream is sliced into individual frame

images, which are stored into a static_back stack.

Amotion_list is also created to keep track of the start and

end times of the detected motions. We then convert the RGB

colored images stored in static_back to a gray-scale

format before feeding them to GaussianBlur, which is a

Gaussian filter for blurring images which helps in identifying

the moving objects in frames.

The CV2 absdiff function is used to calculate the abso-

lute difference value between the static background model

and the current video frame. If the difference exceeds the

predefined threshold value, which means that a new motion

is observed, we start finding the contour of moving objects.

A green-color rectangle is constructed around the found con-

tours using the CV2 library. Finally, a new entry with the

start and end times of the detected motion is appended to the

motion_list.

V. EXPERIMENTAL EVALUATION

We experimentally evaluated our prototype implementation

regarding classification accuracy and performance.

Figure 13 shows the confusion matrix for the CNN model

at both the camera and cloud sides. It demonstrates that our

model, in most cases, can differentiate between the weapon

classes and achieve high levels of prediction accuracy. For

the two most common types of weapons, pistol and knife,

the model achieves accuracies above 92% and 95%, respec-

tively. Knives appear easier to identify than pistols, which

FIGURE 14. The ROC curve of the CNN model.

seems to make sense since pistols can be easily confused with

other metal weapons.

As shown in thematrix, our model, in some cases, confuses

between RPG and machine guns because they have a similar

body structure. A similar situation happens between cars

and motorcycles as they can share some common attributes

such as pose, color, and type. Note that CNN can still

identify face-masks quite well because of its discriminative

features compared to the other classes in our dataset. Most

notably, although bats and knives are considered non-linearly

separable classes because of their similar shape properties

(e.g., length, width and frame), ourmodel was able to separate

them effectively.

Figure 14 depicts the Receiver Operating Characteris-

tic (ROC) curve for our CNN model. The ROC curve is

a graphical plot that illustrates the model’s ability to dis-

criminate between the learned classes at all classification

thresholds. The ROC curve is created by plotting the true

positive rate against the false-positive rate at various threshold

settings. TheArea Under the ROCCurve (AUC)measures the

two-dimensional area underneath the ROC curve from (0,0)

to (1,1). AUC ranges in value from 0 to 1. A model whose

predictions are 100% correct has an AUC of 1.0. As shown

in the figure, most of the weapons classes are approaching an

AUC’s value of 1.0, which means that our CNN model could

minimize most of the false positives.

The precision vs. recall curve, shown in Figure 15, sum-

marizes the trade-off between the true-positive rate and the

positive predictive value for our CNN model using different

probability thresholds. Precision represents the positive pre-

dictive value of our model, while recall is a measure of how

many true positives are identified correctly. As shown in the

figure, the precision vs. recall curve tilts towards 1.0, which

means that our CNN model achieves high accuracy while

minimizing the number of false negatives.

The precision ratio describes the performance of our model

at predicting the positive class. It is calculated by dividing the

number of True Positives (TPs) by the sum of TPs and False

Positives (FPs), as follows:

Precision =
TPs

TPs+ FPs
(10)
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FIGURE 15. The precision vs. Recall curve of the CNN model.

The recall ratio is calculated as the ratio of the number

of true positives divided by the sum of TPs and the False

Negatives (FNs), as follows:

Recall =
TPs

TPs+ FNs
(11)

The overall classification accuracy of our model is cal-

culated as the ratio of correctly predicted observation (i.e.,

the sum of TPs and True Negatives (TNs)) to the total obser-

vations (i.e., the sum of TPs, FPs, FNs, and TNs) using this

equation:

Accuracy =
TPs+ TNs

TPs+ FPs+ FNs+ TNs
(12)

Table 2 compares between the Mask R-CNN and CNN

models in terms of classification accuracy and prediction time

across the nine classes. The Mask R-CNN model achieved

an overall average classification accuracy of 93.09%, and for

the CNN model was a slightly better 94.20%. The average

prediction time of the Mask R-CNN and CNN models was

measured to be 4.18s (seconds) and 5.10ms (milliseconds),

respectively. It is evident that the CNNmodel, running on the

edge, outperforms the Mask R-CNN in most of the classes in

terms of both the classification accuracy and prediction time.

Compared to CNN, Mask R-CNN is considered a signifi-

cantly slower model because of the operations of identifying

RoIs and creating segmentation masks around them. That is

why Mask R-CNN is not adequate to be deployed on the

camera side. In contrast, the CNNmodel, on average, requires

around 5ms only to detect a security thread in an image

captured locally from the camera. To put these numbers in

some context, consider a commercial surveillance camera

that can run at 30 Frames Per Second (fps), which means it

can generate up to one image every 33ms. Our CNN model

can process more than 6 images every 33ms, or support a

super-resolution camera that runs at the rate of 180 fps.

We noted that the prediction accuracy of machine guns was

100% using the CNNmodel. With the fact that machine guns

are the most used weapon in the deadliest mass shootings

in the United States [1], Hawk-Eye can be used as a useful

tool to mitigate mass shootings if deployed on the various

TABLE 2. The average classification accuracy and prediction time of mask
R-CNN vs. CNN.

surveillance camera at public places such as schools, malls,

restaurants, etc.

VI. CONCLUSION

This paper presented the design and implementation of

Hawk-Eye, an AI-enabled threat detector for realtime

video surveillance. The developed prototype showed that

Hawk-Eye could be deployed locally on the camera at

the edge with high prediction accuracy and response time.

We believe that this system would create a better opportunity

for security personnel to detect various types of weapons

in real-time, which could prevent a potential crime. The

system implementation at the camera side used the Intel

NCS 2 device to boost the processing capabilities of a Rasp-

berry Pi 3 device for deploying the CNN model locally

on the surveillance camera without cloud compute depen-

dence. We also implemented Mask R-CNN, the state-of-

the-art model for instance segmentation, on the cloud side

to sketch bounding boxes around the weapon objects in the

input image. A user-friendly interface was developed on top

of both models to allow users to interact with the system con-

veniently at the camera and cloud sides. We also developed

a motion detection module that can detect moving objects in

surveillance videos in realtime. We carried out several sets

of experiments for evaluating the performance and classi-

fication accuracy of our system, paying particular attention

to the prediction time at the camera side. Most notably, our

CNN model could process a number of images per second

more than sextupled of the commercial fps. This proves that

Hawk-Eye is suitable for real-time inference at the edge with

offline generated deep learning models.

We expect that this research would increase the

open-source knowledge base in the area of deep learn-

ing on the edge and real-time video surveillance by pub-

lishing the source code and dataset to the public domain:

https://github.com/ahmed-pvamu/Hawk-Eye.

In ongoing work, we are looking into opportunities to

generalize our approach to commercial surveillance cam-

eras. Also, we are examining the composition of our work

on multi-modal sensing, ModeSens [3], with ShareSens [6]

to support the sharing of data between applications with

multi-modal sensing requirements. ShareSens is a mecha-

nism that opportunistically economizes on collecting sensor

63292 VOLUME 9, 2021



A. A. Ahmed, M. Echi: Hawk-Eye: An AI-Powered Threat Detector for Intelligent Surveillance Cameras

data by merging sensing requirements of multiple applica-

tions, thereby achieving significant power and energy sav-

ings. The problem of cumulating demand on sensors is a

substantial barrier to simultaneously serving multiple sensing

applications on battery-powered devices. Our work address-

ing this challenge has the potential of making it possible

to serve numerous sensing-heavy applications on a single

IoT device simultaneously. Finally, experiments with more

massive datasets are needed to study our system’s robustness

at a large scale and improve the prediction accuracy of the

less performing classes.
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