
This paper is included in the Proceedings of the
2015 USENIX Annual Technical Conference (USENIC ATC ’15).

July 8–10, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-225

Open access to the Proceedings of the
2015 USENIX Annual Technical Conference
(USENIX ATC ’15) is sponsored by USENIX.

Hawk: Hybrid Datacenter Scheduling
Pamela Delgado and Florin Dinu, École Polytechnique Fédérale de Lausanne (EPFL);

Anne-Marie Kermarrec, Inria; Willy Zwaenepoel,
École Polytechnique Fédérale de Lausanne (EPFL)

https://www.usenix.org/conference/atc15/technical-session/presentation/delgado

USENIX Association 2015 USENIX Annual Technical Conference 499

Hawk: Hybrid Datacenter Scheduling

Pamela Delgado

EPFL

Florin Dinu

EPFL

Anne-Marie Kermarrec

INRIA, Rennes

Willy Zwaenepoel

EPFL

Abstract

This paper addresses the problem of efficient schedul-

ing of large clusters under high load and heterogeneous

workloads. A heterogeneous workload typically consists

of many short jobs and a small number of large jobs that

consume the bulk of the cluster’s resources.

Recent work advocates distributed scheduling to over-

come the limitations of centralized schedulers for large

clusters with many competing jobs. Such distributed

schedulers are inherently scalable, but may make poor

scheduling decisions because of limited visibility into

the overall resource usage in the cluster. In particular,

we demonstrate that under high load, short jobs can fare

poorly with such a distributed scheduler.

We propose instead a new hybrid central-

ized/distributed scheduler, called Hawk. In Hawk,

long jobs are scheduled using a centralized scheduler,

while short ones are scheduled in a fully distributed

way. Moreover, a small portion of the cluster is reserved

for the use of short jobs. In order to compensate for

the occasional poor decisions made by the distributed

scheduler, we propose a novel and efficient randomized

work-stealing algorithm.

We evaluate Hawk using a trace-driven simulation and

a prototype implementation in Spark. In particular, us-

ing a Google trace, we show that under high load, com-

pared to the purely distributed Sparrow scheduler, Hawk

improves the 50th and 90th percentile runtimes by 80%

and 90% for short jobs and by 35% and 10% for long

jobs, respectively. Measurements of a prototype imple-

mentation using Spark on a 100-node cluster confirm the

results of the simulation.

1 Introduction

Large clusters have to deal with an increasing number

of jobs, which can vary significantly in size and have

very different requirements with respect to latency [4, 5].

Short jobs, due to their nature are latency sensitive, while

longer jobs, such as graph analytics, can tolerate long la-

tencies but suffer more from bad scheduling placement.

Efficiently scheduling such heterogeneous workloads in

a data center is therefore an increasingly important prob-

lem. At the same time, data center operators are seeking

higher utilization of their servers to reduce capital ex-

penditures and operational costs. A number of recent

works [6, 7] have begun to address scheduling under

high load. Obviously, scheduling in high load situations

is harder, especially if the goal is to maintain good re-

sponse times for short jobs.

The first-generation cluster schedulers, such as the

one used in Hadoop [22], were centralized: all schedul-

ing decisions were made in a single place. A centralized

scheduler has near-perfect visibility into the utilization

of each node and the demands in terms of jobs to be

scheduled. In practice, however, the very large number

of scheduling decisions and status reports from a large

number of servers can overwhelm centralized sched-

ulers, and in turn lead to long latencies before scheduling

decisions are made. This latency is especially problem-

atic for short jobs that are typically latency-bound, and

for which any additional latency constitutes a serious

degradation. For many of these reasons, there is a recent

movement towards distributed schedulers [8, 14, 17].

The pros and cons of distributed schedulers are exactly

the opposite of centralized ones: scheduling decisions

can be made quickly, but by construction they rely on

partial information and may therefore lead to inferior

scheduling decisions.

In this paper, we propose Hawk, a hybrid scheduler,

staking a middle ground between centralized and dis-

tributed schedulers. Attempting to achieve the best of

both worlds, Hawk centralizes the scheduling of long

jobs and schedules the short jobs in a distributed fashion.

To compensate for the occasional poor choices made by

distributed job scheduling, Hawk allows task stealing for

short jobs. In addition, to prevent long jobs from mo-

nopolizing the cluster, Hawk reserves a (small) portion

of the servers to run exclusively short jobs.

The rationale for our hybrid approach is as follows.

First, the relatively small number of long jobs does not

overwhelm a centralized scheduler. Hence, scheduling

latencies remain modest, and even a moderate amount

of scheduling latency does not significantly degrade

the performance of long jobs, which are not latency-

bound. Conversely, the large number of short jobs would

overwhelm a centralized scheduler, and the schedul-

ing latency added by a centralized scheduler would add

to what is already a latency-bound job. Second, by

scheduling long jobs centrally, and by the fact that these

long jobs take up a large fraction of the cluster resources,

the centralized scheduler has a good approximation of

the occupancy of nodes in the cluster, even though it

500 2015 USENIX Annual Technical Conference USENIX Association

does not know where the large number of short jobs

are scheduled. This accurate albeit imperfect knowledge

allows the scheduler to make well-informed scheduling

decisions for the long jobs. There is, of course, the ques-

tion of where to draw the line between short and long

jobs, but we found that benefits result for a large range

of cutoff values.

The rationale for using randomized work stealing is

based on the observation that, in a highly loaded cluster,

choosing uniformly at random a loaded node from which

to steal a task is very likely to succeed, while finding at

random an idle node, as distributed schedulers attempt

to do, is increasingly less likely to succeed as the slack

in the cluster decreases.

We evaluate Hawk through trace-driven simulations

with a Google trace [15] and workloads derived from

[4, 5]. We compare our approach to a state-of-the-art

fully distributed scheduler, namely Sparrow [14] and to

a centralized one. Our experiments demonstrate that, in

highly loaded clusters, Hawk significantly improves the

performance of short jobs over Sparrow, while also im-

proving or matching long job performance. Hawk is also

competitive against the centralized scheduler.

Using the Google trace, we show that Hawk performs

up to 80% better than Sparrow for the 50th percentile

runtime for short jobs, and up to 90% for the 90th per-

centile. For long jobs, the improvements are up to 35%

for the 50th percentile and up to 10% for the 90th per-

centile. The differences are most pronounced under high

load but before saturation sets in. Under low load or

overload, the results are similar to Sparrow. The re-

sults are similar for the other traces: Hawk sees the most

improvements under high load, and in some cases the

improvements are even higher than those seen for the

Google trace.

We break down the benefits of the different compo-

nents in Hawk. We show that both reserving a small part

of the cluster and work stealing are essential to good per-

formance for short jobs, with work stealing contributing

the most to the overall improvement, especially for the

90th percentile runtimes. The centralized scheduler is a

key component for obtaining good performance for the

long jobs.

We implement Hawk as a scheduler plug-in for

Spark [23], by augmenting the Sparrow plug-in with a

centralized scheduler and work stealing. We evaluate

the implementation on a cluster of 100 nodes, using a

small sample of the Google trace. We demonstrate that

the general trends seen in the simulation hold for the im-

plementation.

In summary, in this paper we make the following con-

tributions:

1. We propose a novel hybrid scheduler, Hawk, com-

bining centralized and distributed schedulers, in

which the centralized entity is responsible for

scheduling long jobs, and short jobs are scheduled

in a distributed fashion.

2. We introduce the notion of randomized task steal-

ing as part of scheduling data-parallel jobs on large

clusters to “rescue” short tasks queued behind long

ones.

3. Using extensive simulations and implementation

measurements we evaluate Hawk’s benefits on a va-

riety of workloads and parameter settings.

2 Motivation

2.1 Prevalent workload heterogeneity

Workload heterogeneity is the norm in current data cen-

ters [4, 15]. Typical workloads are dominated by short

jobs. Long jobs are considerably fewer, but dominate

in terms of resource usage. In this paper, we precisely

address scheduling for such heterogeneous workloads.

To showcase the degree of heterogeneity in real work-

loads, we analyze the publicly available Google trace [1,

15]. We order the jobs by average task duration. The top

10% jobs account for 83.65% of the task-seconds (i.e.,

the product of the number of tasks and the average task

duration). Moreover, they are responsible for 28% of the

total number of tasks, and their average task duration is

7.34 times larger than the average task duration of the

remaining 90% of jobs.

Workload % Long Jobs % Task-Seconds

Google 2011 10.00% 83.65%

Cloudera-b 2011 7.67% 99.65%

Cloudera-c 2011 5.02% 92.79%

Cloudera-d 2011 4.12% 89.72%

Facebook 2010 2.01% 99.79%

Yahoo 2011 9.41% 98.31%

Table 1: Long jobs in heterogeneous workloads form a

small fraction of the total number of jobs, but use a large

amount of resources.

We also analyzed additional workloads described

in [4, 5]. Table 1 shows the percentage of long jobs

among all jobs, and the percentage of task-seconds con-

tributed by the long jobs. The same pattern emerges in

all cases, even for different providers: the long jobs ac-

count for a disproportionate amount of resource usage.

The numbers we provided also corroborate previous

findings from several other researchers [2, 16, 22].

2.2 High utilization in data centers

Understanding how to run data centers at high utiliza-

tion is becoming increasingly important. Resource-

efficiency reduces provisioning and operational costs as

2

USENIX Association 2015 USENIX Annual Technical Conference 501

the same amount of work can be performed with fewer

resources [12]. Moreover, data center operators need to

be ready to maintain acceptable levels of performance

even during peak request rates, which may overwhelm

the data center.

Related work has approached the problem from the

point of view of a single data center server [6, 7]. For

a single server, the challenge is to maximize resource

utilization by collocating workloads without the dan-

ger of decreased performance due to contention. As a

result, several isolation and resource allocation mecha-

nisms have been proposed, ensuring that resources on

servers are well and safely utilized [19, 20].

Running highly utilized data centers presents addi-

tional, orthogonal challenges beyond a single server.

The problem we are targeting consists of scheduling jobs

to servers in a scalable fashion such that all resources in

the cluster are efficiently used.

2.3 Challenges in performing distributed

scheduling at high load

We next highlight by means of simulation why a hetero-

geneous workload in a loaded cluster is a challenge for a

distributed scheduler. The main insight is that with few

idle servers available at high load, distributed schedulers

may not have enough information to match incoming

jobs to the idle servers. As a result, unnecessary queue-

ing will occur. The impact of the unnecessary queueing

increases dramatically for heterogeneous workloads.

We illustrate this insight in more detail using the

Sparrow scheduler, a state-of-the-art distributed cluster

scheduler [14]. In Sparrow, each job has its own sched-

uler. To schedule a job with t tasks, the scheduler sends

probes to 2t servers. When a probe comes to the head of

the queue at a server, the server requests a task from the

scheduler. If the scheduler has not given out the t tasks

to other servers, it responds to the server with a task.

This technique is called “batch probing”. More details

can be found in the Sparrow paper [14], but the above

suffices for our purposes. Sparrow is extremely scalable

and efficient in lightly and moderately loaded clusters,

but under high load, few servers are idle, and 2t probes

are unlikely to find them. More probes could be sent, but

the paper found that this is counterproductive because of

messaging overhead.

We use the same simulator employed by the Sparrow

paper [14] to investigate the following scenario: 1000

jobs need to be scheduled in a cluster of 15000 servers.

95% of the jobs are considered short. Each short job has

100 tasks, and each task takes 100s to complete. 5%

of the jobs are long. Each has 1000 tasks, and each

task takes 20000s. The job submission times are de-

rived from a Poisson distribution with a mean of 50s. We

measure the cluster utilization (i.e., percentage of used

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35

C
D

F

Job runtime (in 1000 s)

Figure 1: CDF of runtime for short jobs, in a loaded

cluster, using Sparrow.

servers) every 100s. The median utilization is 86%, and

the maximum is 97.8%. This suggests that at least 300

servers (2%) are free at any time, enough to accommo-

date all tasks of any incoming short job.

Figure 1 presents the cumulative frequency distribu-

tion (CDF) of the runtimes of short jobs. A large fraction

of short jobs exhibit runtimes of more than 15000 sec-

onds, far in excess of their execution time, which clearly

indicates a large amount of queuing, mostly behind long

jobs. Given that enough servers are free, an omniscient

scheduler would yield job runtimes of 100s for the ma-

jority of the short jobs. With Sparrow, if all tasks are

100s long, the impact of queueing is less severe. How-

ever, a heterogeneous workload coupled with high clus-

ter load has a strong negative impact on the performance

of short jobs.

3 The Hawk Scheduler

3.1 System model

We consider a cluster composed of server (worker)

nodes. A job is composed of a set of tasks that can run in

parallel on different servers. Scheduling a job consists of

assigning every task of that job to some server. We use

the terms long task and short tasks to refer to tasks be-

longing to long jobs or short jobs respectively. A job

completes only after all its tasks finish. Each server has

one queue of tasks. When a new task is scheduled on

a server that is already running a task, the task is added

to the end of the queue. The server queue management

policy is FIFO.

3.2 Hawk in a nutshell

The previous section demonstrated that (i) many cluster

workloads consist of a short number of long jobs that

take up the bulk of the resources and a large number of

short jobs that take up only a small amount of the total

resources, and (ii) existing distributed cluster scheduling

systems, exemplified by Sparrow, do not provide good

3

502 2015 USENIX Annual Technical Conference USENIX Association

Figure 2: Overview of job scheduling in Hawk.

performance for short jobs in such an environment, due

to head-of-line blocking.

In this context, Hawk’s goals are:

1. to run the cluster at high utilization,

2. to improve performance for short jobs, which are

the most penalized ones in highly loaded clusters,

3. to sustain or improve the performance for long jobs.

To meet these challenges, Hawk relies on the follow-

ing mechanisms. To improve performance for short jobs,

head-of-line blocking must be avoided. To this end,

Hawk uses a combination of three techniques. First, it

reserves a small part of the cluster for short jobs. In

other words, short jobs can run anywhere in the clus-

ter, but long jobs can only run on a (large) subset of the

cluster. Second, to maintain low latency scheduling de-

cisions, Hawk uses distributed scheduling of short jobs,

similar to Sparrow. Third, Hawk uses randomized work

stealing, allowing idle nodes to steal short tasks that are

queued behind long tasks.

Finally, Hawk uses centralized scheduling for long

jobs to maintain good performance for them, even in the

face of reserving a part of the cluster for short jobs. The

rationale for this choice is to obtain better scheduling de-

cisions for long jobs. Since there are few long jobs, they

do not overwhelm a centralized scheduler, and since they

use a large fraction of the cluster resources, this central-

ized scheduler has an accurate view of the resource uti-

lization at various nodes in the cluster, even if it does

not know the location of the many short jobs. Figure 2

presents an overview of the Hawk scheduler.

3.3 Differentiating long and short jobs

The main idea behind Hawk is to process long jobs and

short jobs differently. Two important questions are 1)

how to compute a per-job runtime estimate, and 2) where

to draw the line between the two categories.

Hawk uses an estimated task runtime for a job and

computes it as the average task runtime for all the tasks

in that job. This allows Hawk to easily classify jobs with

variations in task runtime [13] without having to deal

with per-task estimates. Moreover, the average task run-

time is relatively robust in the face of a few outlier tasks.

Hawk compares the estimated task runtime against

a cutoff (threshold). The value of the cutoff is based

on statistics about past jobs because the relative propor-

tion of short and long jobs in a cluster is expected to

remain stable over time. Jobs for which the estimated

task runtime is smaller than the cutoff are scheduled in

a distributed fashion. This estimation-based approach is

grounded in the fact that many jobs are recurring [9] and

compute on similar input data. Thus, task runtimes from

a previous execution of a job can inform a future run of

the same job [9].

3.4 Splitting the cluster

Hawk reserves a portion of the servers to run exclusively

short tasks. Long tasks are scheduled on the remaining

(large) part. Short tasks may be scheduled on the whole

set of servers. This allows short tasks to take advantage

of any idle servers in the entire cluster. Henceforth we

use the term short partition to refer to the set of servers

reserved for short jobs and the term general partition to

refer to the set of servers that can run both types of tasks.

If long tasks were scheduled on any server in the clus-

ter, this may severely impact short jobs when short tasks

end up queued after long tasks. A particularly detri-

mental case occurs when a long job has more tasks than

servers or when several long jobs are being scheduled in

rapid succession. In this case, every server in the cluster

ends up executing a long task, and short tasks have no

choice but to queue after them.

Hawk sizes the general partition based on the propor-

tion of time that cluster resources are used by long jobs.

For example, from Table 1 Hawk uses the percentage of

task-seconds.

3.5 Scheduling short jobs

Hawk maintains low-latency scheduling for short jobs

by relying on a distributed approach. Typically, each

short job is scheduled by a different scheduler. For

scalability reasons, these distributed schedulers have no

knowledge of the current cluster state and do not interact

with other schedulers or with the centralized component.

Distributed schedulers schedule tasks on the entire

cluster. The first scheduling step is achieved as in Spar-

row. To schedule a job with t tasks, a distributed sched-

uler sends probes to 2t servers. When a probe comes to

the head of a server’s queue, the server requests a task

from the scheduler. If the scheduler has not given out

the t tasks to other servers, it responds to the server with

a task. Otherwise, a cancel is sent.

4

USENIX Association 2015 USENIX Annual Technical Conference 503

Figure 3: Task stealing in Hawk. L = Long task, S =

Short task. Stolen tasks are on the dark background.

3.6 Randomized task stealing

Hawk uses task stealing as a run-time mechanism aimed

at mitigating some of the delays caused by the occasion-

ally suboptimal, distributed scheduling decisions. Since

the distributed schedulers are not aware of the content

of the server queues, they may end up scheduling short

tasks behind long tasks. In a highly loaded cluster, the

probability of this event happening is fairly high. Even

if a short job is scheduled using twice as many probes as

tasks, if more than half of the probes experience head-

of-line blocking, then the completion time of the short

job takes a big hit.

Hawk implements a randomized task stealing mecha-

nism, that leverages the fact that the benefit of stealing

arises in highly loaded clusters. In such a cluster a ran-

dom selection very likely returns an overloaded server.

Indeed, if 90% of the servers are overloaded, a uniform

random probe has 90% probability of returning an over-

loaded server from which tasks are stolen.

The cluster might reach a point where many servers

in the general partition are occupied by long tasks and

also have short tasks in their queues, while other servers

lie idle. Hawk allows such idle servers to steal tasks

from the over-subscribed ones. This works as follows:

whenever a server is out of tasks to execute, it randomly

contacts a number of other servers to select one from

which to steal short tasks. Both the servers from the gen-

eral partition and the servers from the short partition can

steal, but they can only steal from servers in the general

partition, because that is where the head-of-line blocking

is caused by long jobs.

Task stealing in Hawk proceeds as follow: The first

consecutive group of short tasks that come after a long

task is stolen. To see this in more detail, consider Fig-

ure 3. In cases a1) and a2) a server currently is executing

a short job. The short tasks that it provides for stealing

come after the first long job in the queue. In cases b1)

and b2) the server is executing a long task. The short

tasks stolen come immediately after that long task. Even

though that long task is being executed already and has

made some progress to completion, it is still likely that

it will delay the short tasks queued behind it.

With our design we want to increase the chance that

stealing actually leads not only to an improvement in

task runtime but also in job runtime. Consider a job

that has completed all but two of its tasks. Stealing just

one of these tasks improves that task’s runtime, but the

job runtime is still determined by the completion time

of the last task (the one not stolen). As shown in Fig-

ure 3, Hawk steals a limited number of tasks and starts

from the head of the queue when deciding what to steal.

Thus, stealing focuses on a few short jobs, increasing

the chance that the runtime of those jobs benefits. If

short tasks were stolen from random positions in server

queues that would likely end up focusing on too many

jobs at the same time while failing to improve most.

3.7 Scheduling long jobs

The final technique used in Hawk is to schedule long

jobs in a centralized manner. Long jobs are only sched-

uled in the general partition, and the centralized com-

ponent has no knowledge of where the short tasks are

scheduled. This centralized approach ensures good per-

formance for long jobs for three reasons. First, the num-

ber of long jobs is small, so the centralized component is

unlikely to become a bottleneck. Second, long jobs are

not latency-bound, so they are largely unaffected even if

a moderate amount of scheduling latency occurs. Third,

by scheduling long jobs centrally and by the fact that

these long jobs take up a large fraction of the cluster

resources, the centralized component has a timely and

fairly accurate view of the per-node queueing times re-

gardless of the presence of short tasks.

The centralized component keeps a priority queue of

tuples of the form < server,waiting time >. The prior-

ity queue is kept sorted according to the waiting time.

The waiting time is the sum of the estimated execution

time for all long tasks in that server’s queue plus the re-

maining estimated execution time of any long task that

currently may be executing. When a new job is sched-

uled, for every task, the centralized allocation algorithm

puts the task on the node that is at the head of the prior-

ity queue (the one with the smallest waiting time). After

every task assignment, the priority queue is updated to

reflect the waiting time increase caused by the job that is

being scheduled. The goal of this algorithm is to mini-

mize the job completion time for long jobs.

3.8 Implementation

We implement Hawk as a scheduler plug-in for

Spark [23], by augmenting the Sparrow scheduler with a

centralized scheduler and work stealing. To realize work

stealing we enable the Sparrow node monitors to com-

5

504 2015 USENIX Annual Technical Conference USENIX Association

 0

 20

 40

 60

 80

 100

 1000 5000 10000 15000

Task duration per job (s)

Cloudera
Facebook

Yahoo
Google

(a) Long jobs.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800

Task duration per job (s)

Cloudera
Facebook

Yahoo
Google

(b) Short jobs.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000

Number of tasks per job

Cloudera
Facebook

Yahoo
Google

(c) Long jobs.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180

Number of tasks per job

Cloudera
Facebook

Yahoo
Google

(d) Short jobs.

Figure 4: Workload properties. CDFs of average task duration and number of tasks per job.

municate and send tasks to each other. The node moni-

tors communicate via the Thrift RPC library.

4 Evaluation

We compare Hawk with Sparrow, a state-of-the-art fully

distributed scheduler. We show that in loaded clusters

Hawk outperforms Sparrow for both long and short jobs.

The benefits hold across all workloads. We also show

that Hawk compares well to a centralized scheduler.

4.1 Methodology

Workloads We use the publicly available Google

trace [1, 15]. After removing invalid or failed jobs and

tasks we are left with 506460 jobs. Task durations vary

within a given job. The estimated task execution time

for a job is the average of its task durations.

We create additional traces using the description of

the Cloudera C and Facebook 2010 workloads from [4]

and Yahoo 2011 workload from [5]. We only con-

sider the mapper tasks from these workloads, since many

jobs do not have reducers. In [4, 5] the workloads are

described as k-means clusters, and the first cluster is

deemed composed of short jobs. We consider the rest

of the clusters to be long jobs. For each cluster we de-

rive the centroid values for the average number of tasks

per job and the duration of the tasks by combining the

information on task-seconds from [4, 5] with the job to

mapper duration ratios in [22]. We then use the derived

centroid values as the scale parameter in an exponential

distribution in order to obtain the number of tasks and

the mean task duration for each job. Given the mean

task duration we derive task runtimes using a Gaussian

distribution with standard deviation twice the mean, ex-

cluding negative values.

Figures 4a, 4b, 4c and 4d show the CDFs of the du-

ration of tasks and the number of tasks per job for both

long and short jobs. Table 2 shows additional trace prop-

erties. The trace properties differ from trace to trace.

This is expected, as workload properties are known to

vary depending on the provider [2, 4, 5].

Simulator We augment the event-based simulator

used to evaluate Sparrow [14]. The input traces contain

Workload % Long Jobs Total number jobs

Google 2011 10.00% 506460

Cloudera-c 2011 5.02% 21030

Facebook 2010 2.01% 1169184

Yahoo 2011 9.41% 24262

Table 2: Number of long jobs and total number of jobs.

tuples of the form: (jobID, job submission time, number

of tasks in the job, duration of each task). Network delay

is assumed to be 0.5ms. The scheduling decisions and

the task stealing do not incur additional costs.

Real cluster run We use a 100-node cluster with 1

centralized and 10 distributed schedulers. We use a sub-

set of 3300 jobs from the Google trace. To obtain task

runtimes proportional to the ones in the Google trace, we

scale down task duration by 1000x (i.e., sec. to msec.)

and use these durations in a sleep task. We also scale

down the number of tasks per job by keeping constant

the ratio between the cluster size and the largest num-

ber of tasks in a job. When we scale down the number

of tasks in a job, we compensate by proportionally in-

creasing the duration of the remaining tasks in order to

keep the same task-seconds ratio as the original trace.

We vary the cluster load by varying the mean job inter-

arrival rate as a multiple of the mean task runtime. We

use this mean to generate job inter-arrival times accord-

ing to a Poisson distribution.

Parameters By default, in Hawk, a node performs

task stealing by randomly contacting 10 other nodes and

stealing from the first node that has short tasks eligi-

ble for stealing. We compare against Sparrow config-

ured to send two probes per task because the authors of

Sparrow [14] have found two to be the best probe ra-

tio. Each simulated cluster node has 1 slot (i.e., can ex-

ecute only one task at a time). This is analogous to hav-

ing multi-slot nodes with each slot served by a different

queue. Following the task-second proportion between

long and short jobs, the short partition comprises 17% of

the nodes for the Google trace and 9%, 2% and 2% for

the Cloudera, Facebook and Yahoo traces, respectively.

Metrics When comparing Hawk to another ap-

proach X , we mostly take the ratio between the 50th (or

6

USENIX Association 2015 USENIX Annual Technical Conference 505

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

10 15 20 25 30 35 40 45 50

H
a
w

k
 n

o
rm

a
liz

e
d
 t
o
 S

p
a
rr

o
w

Number of nodes in the cluster (thousands)

50th percentile long jobs
90th percentile long jobs

median cluster utilization Sparrow

(a) Google trace long jobs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

10 15 20 25 30 35 40 45 50

H
a
w

k
 n

o
rm

a
liz

e
d
 t
o
 S

p
a
rr

o
w

Number of nodes in the cluster (thousands)

50th percentile short jobs
90th percentile short jobs

median cluster utilization Sparrow

(b) Google trace short jobs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

10 15 20 25 30 35 40 45 50

A
v
g
 j
o
b
 r

u
n
ti
m

e
 H

a
w

k
 /
 S

p
a
rr

o
w

Number of nodes in the cluster (thousands)

fraction long jobs Hawk improves
avg job runtime ratio - long jobs

fraction short jobs Hawk improves
avg job runtime ratio - short jobs

(c) Google trace additional metrics.

Figure 5: Google trace. Hawk normalized to Sparrow. Figure (c) shows two additional metrics: (1) percentage of

jobs for which Hawk is equal or better to Sparrow and (2) average job runtime.

90th) percentile job runtime for Hawk and the 50th (or

90th) percentile job runtime time for X . Consequently,

our results are normalized to 1. We do this separately

for short and long jobs. Additional metrics are explained

with the corresponding results. In all figures lower val-

ues are better.

Repeatability of results The results for the 50th

and 90th percentiles are stable across multiple runs, and

for this reason we do not show confidence intervals. We

have seen variations in the maximum job runtime for

short tasks. This is expected, as failing to steal one task

can make a big difference in job runtime.

4.2 Overall results on the Google trace

We take the Google trace and vary the number of server

nodes in order to vary cluster utilization. We find that

Hawk consistently outperforms Sparrow, especially in a

highly loaded cluster. Figures 5a and 5b illustrate the im-

provements in job runtime for long jobs and short jobs,

respectively as a function of the number of machines in

the cluster. The cluster utilization is based on snapshots

taken every 100s.

Hawk shows significant improvements when the clus-

ter is highly loaded but not overloaded (i.e., 15000 -

25000 nodes), since both the centralized scheduler and

the task stealing algorithm make efficient use of any idle

slots. In the best cases, Hawk improves the 50th and

90th percentile runtimes by 80% and 90% for short jobs

and by 35% and 10% for long jobs. Hawk improves

short job runtime at the 90th percentile more than at the

50th percentile, because these jobs are more affected by

queueing. Stealing a few (even one) short tasks experi-

encing head-of-line blocking can greatly improve short

job completion time.

Figure 5c presents additional metrics: the percent-

age of jobs for which Hawk provides performance better

than or equal to Sparrow and the average job runtime for

Hawk vs. Sparrow. The average job runtime for short

jobs is significantly better for Hawk and is as low as a

factor of 7. For 15000 nodes we present additional de-

tails, not all pictured: Hawk improves the runtime of

68% of short jobs, while for 59% of short jobs the im-

provement is more than 50%. Overall, for 86% of short

jobs, Hawk is better or equal to Sparrow. For long jobs,

Hawk improves 51% of jobs and is better or equal to

Sparrow for 72% of jobs.

Small clusters (10000 nodes) tend to be overwhelmed

by the high job submission rate in the trace. As a result,

the node queues become progressively longer and wait-

ing times keep increasing. We do not believe that any

cluster should be run at this overload, but the case is nev-

ertheless interesting to understand. Hawk is just slightly

worse for long jobs, as the long jobs in Hawk are sched-

uled only in the general partition, while in Sparrow they

can be scheduled across the entire cluster. Conversely,

Hawk is better for short jobs because of the randomized

stealing, but the improvement is small. The short parti-

tion is overloaded, and its nodes have few opportunities

to steal short tasks experiencing head-of-line blocking

in the general partition. As the cluster size increases

(40000+ nodes), the benefits of Hawk decrease as the

cluster becomes mostly idle. Any scheduler is likely to

do well in that case.

4.3 Overall results on additional traces

Figures 6a, 6b and 6c show the results for the work-

loads derived from Facebook, Cloudera and Yahoo data.

Hawk’s benefits hold across all traces. At the median

(not pictured), Hawk also improves on Sparrow across

all simulated cluster sizes.

The most important difference compared to the

Google trace is the larger improvement for short jobs.

This can be traced back to the utilization of the short par-

tition. In the Facebook, Cloudera and Yahoo traces the

short partition is less utilized compared to the Google

trace so there are more chances for stealing.

7

506 2015 USENIX Annual Technical Conference USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

15 20 25 30 35 40 45 50

H
a
w

k
 n

o
rm

a
liz

e
d
 t
o
 S

p
a
rr

o
w

Number of nodes in the cluster (thousands)

90th percentile long jobs
90th percentile short jobs

median cluster utilization Sparrow

(a) Cloudera trace.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

70 90 110 130 150 170

H
a
w

k
 n

o
rm

a
liz

e
d
 t
o
 S

p
a
rr

o
w

Number of nodes in the cluster (thousands)

90th percentile long jobs
90th percentile short jobs

median cluster utilization Sparrow

(b) Facebook trace.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

5 7 9 11 13 15 17 19

H
a
w

k
 n

o
rm

a
liz

e
d
 t
o
 S

p
a
rr

o
w

Number of nodes in the cluster (thousands)

90th percentile long jobs
90th percentile short jobs

median cluster utilization Sparrow

(c) Yahoo trace.

Figure 6: Cloudera, Facebook and Yahoo traces. Long and short jobs. Hawk normalized to Sparrow.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Hawk
wout

centralized

Hawk
wout

partition

Hawk
wout

stealing

J
o
b
 r

u
n
n
in

g
 t
im

e
 f
o
r

a
lt
e
rn

a
ti
v
e
s

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

J
o
b
 r

u
n
n
in

g
 t
im

e
 f
o
r

a
lt
e
rn

a
ti
v
e
s 50th percentile short jobs

90th percentile short jobs
50th percentile long jobs
90th percentile long jobs

Figure 7: Break-down of Hawk’s benefits normalized to

Hawk. 15000 nodes. Google trace.

4.4 Breaking down Hawk’s benefits

This subsection analyzes the impact of each of the major

components of Hawk: work stealing, reserving cluster

space for short jobs and using centralized scheduling for

the long jobs. We find that the absence of any of the

components reduces the performance of Hawk for either

long or short jobs.

Figure 7 shows the results of the Google trace nor-

malized to Hawk with all components enabled. With-

out centralized scheduling for long jobs the performance

of long jobs takes a significant hit, as tasks of different

long jobs queue one after the other. The performance

of short jobs improves due to the decrease in the perfor-

mance for long jobs. As the placement of long jobs is

not optimized in the general partition, fewer short tasks

encounter queueing there.

Without partitioning the cluster, the short jobs are im-

pacted, because they can be stuck behind long tasks on

any node. For long jobs, the performance slightly in-

creases, because they can be scheduled on more nodes.

Without task stealing both short and long jobs suffer.

The short jobs are greatly penalized, because some of

their tasks are stuck behind long tasks. The long tasks

are penalized, because they share the queues with more

short tasks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

10 15 20 25 30 35 40 45 50

H
a
w

k
 n

o
rm

a
liz

e
d
 t
o
 C

e
n
tr

a
liz

e
d

Number of nodes in the cluster (thousands)

50th percentile short jobs
90th percentile short jobs

Figure 8: Hawk normalized to centralized approach,

short jobs. Google trace.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

10 15 20 25 30 35 40 45 50

H
a
w

k
 n

o
rm

a
liz

e
d
 t
o
 C

e
n
tr

a
liz

e
d

Number of nodes in the cluster (thousands)

50th percentile long jobs
90th percentile long jobs

Figure 9: Hawk normalized to centralized approach,

long jobs. Google trace.

4.5 Hawk vs. a fully centralized approach

We next look at the performance of Hawk compared to

an approach that schedules all jobs (long and short) in

a centralized manner. We find that Hawk is competi-

tive, while not suffering from the scalability concerns

that plague centralized schedulers.

This centralized scheduler does not reserve part of the

cluster for short jobs and does not use work stealing. It

uses the algorithm we presented in subsection 3.7 for all

jobs. Figures 8 and 9 show Hawk normalized to the cen-

tralized scheduler’s performance using the Google trace.

The centralized scheduler penalizes short jobs (Fig-

ure 8), when the cluster is heavily loaded (10000-15000

nodes). This is because in periods of overload the

centralized scheduler does not have many options and

8

USENIX Association 2015 USENIX Annual Technical Conference 507

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

10 15 20 25 30 35 40 45 50

H
a
w

k
 n

o
rm

a
liz

e
d
 t
o
 S

p
lit

 c
lu

s
te

r

Number of nodes in the cluster (thousands)

50th percentile short jobs
90th percentile short jobs

Figure 10: Hawk normalized to split cluster, short jobs.

Google trace.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

10 15 20 25 30 35 40 45 50

H
a
w

k
 n

o
rm

a
liz

e
d
 t
o
 S

p
lit

 c
lu

s
te

r

Number of nodes in the cluster (thousands)

50th percentile long jobs
90th percentile long jobs

Figure 11: Hawk normalized to split cluster, long jobs.

Google trace.

queues short tasks behind long ones. This is especially

the case when long jobs are present in every node in

the cluster. In Hawk short tasks benefit from stealing

and from running on reserved nodes. As the cluster uti-

lization decreases, the centralized scheduler does an in-

creasingly better job for short jobs. When the cluster be-

comes lightly loaded (50000 nodes), the results for both

approaches begin to converge.

For long jobs the centralized approach performs

slightly better (Figure 9), because they can use the en-

tire cluster. In Hawk they only use the general partition.

4.6 Hawk compared to a split cluster

We now compare Hawk to a split cluster, in which a long

partition only runs long jobs and a short partition only

runs short jobs. In other words, there is no general par-

tition, in which both short and long jobs can execute.

Hawk fares significantly better for short jobs, while be-

ing competitive for long jobs.

We use the Google trace. The split cluster uses 17%

of the cluster for the short partition, and the remaining

83% is reserved for long jobs (long partition). The split

cluster uses centralized scheduling for the long partition

and distributed scheduling for the small one.

Figures 10 and 11 show the results. For long jobs, the

split cluster performs slightly better, because the short

jobs do not take up the space in the general partition.

However, this comes at the cost of greatly increasing

runtime for short jobs. For short jobs, for small clus-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

750 1000 1129 1300 1500 2000

H
a
w

k
 n

o
rm

a
liz

e
d
 t
o
 S

p
a
rr

o
w

Cutoff threshold between long and short (sec)

50th percentile long jobs
90th percentile long jobs

Figure 12: Effect of varying cutoff, Hawk normalized to

Sparrow, long jobs. 15000 nodes. Google trace.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

750 1000 1129 1300 1500 2000

H
a
w

k
 n

o
rm

a
liz

e
d
 t
o
 S

p
a
rr

o
w

Cutoff threshold between long and short (sec)

50th percentile short jobs
90th percentile short jobs

Figure 13: Effect of varying cutoff, Hawk normalized to

Sparrow, short jobs. 15000 nodes. Google trace.

ter sizes, the relative degradation for the split cluster is

smaller, because both approaches suffer from significant

queueing delays. In the other extreme, for a large clus-

ter, both approaches do well. In between, the split cluster

shows extreme degradation, because short tasks cannot

leverage the general partition nodes.

4.7 Sensitivity to the cutoff threshold

Next we vary the cutoff point between short and long

jobs. Hawk yields benefits for a range of cutoff values,

showing that it does not depend on the precise cutoff

chosen.

The cluster size is 15000 nodes in this experiment,

and we use the Google trace. Figures 12 and 13 show

the results for long and short jobs, respectively. The per-

centage of short jobs increases as the cutoff increases.

Thus, for the smaller cutoffs, Hawk improves the most

on Sparrow because the short partition is underloaded

and can steal more tasks. The percentage of long jobs

increases as the cutoff decreases. For the smaller cutoffs

the 90th percentile long job runtime is affected more for

Hawk compared to Sparrow, because Sparrow is able

to relieve some of the queueing among long jobs by

scheduling them over the entire cluster.

4.8 Sensitivity to task runtime estimation

Hawk’s centralized component schedules long jobs ac-

cording to an estimate of the average task runtime for

that job. We next analyze how inaccuracies in estimat-

9

508 2015 USENIX Annual Technical Conference USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

0.1-1.9 0.2-1.8 0.3-1.7 0.4-1.6 0.5-1.5 0.6-1.4 0.7-1.3

H
a
w

k
 n

o
rm

a
liz

e
d
 t
o
 S

p
a
rr

o
w

Misestimation magnitude

50th percentile long jobs
90th percentile long jobs

Figure 14: Hawk with varying mis-estimation magni-

tude normalized to Sparrow, long jobs. 15000 nodes.

Google trace.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 3 4 5 10 15 20 25 50 75 100250

H
a
w

k
 n

o
rm

a
liz

e
d
 t
o
 H

a
w

k
 c

a
p
 1

Cap on number of random nodes contacted for stealing

50th percentile short jobs
90th percentile short jobs

Figure 15: Hawk with varying number of stealing at-

tempts normalized to Hawk capped at 1 attempt, short

jobs. 15000 nodes. Google trace.

ing the average affect the results. For each job, to obtain

the inaccurate estimate, we multiply the correct estimate

with a random value, chosen uniformly within a range

given as a parameter (e.g., 0.1-1.9). Figure 14 shows the

job runtimes normalized to Sparrow for the set of jobs

classified as long when no mis-estimations are present.

These results are averaged over ten runs.

Hawk is robust to mis-estimations. The mis-

estimation results in some long jobs being classified as

short and vice-versa. This is more likely to happen for

long and short jobs for which the estimation is compa-

rable to the cutoff. Since these jobs are fairly similar

in nature, the two opposing mis-classifications (long as

short and short as long) tend to cancel each other. More-

over, most jobs are not mis-classified, because their es-

timation significantly differs compared to the cutoff. In

Figure 14, long jobs perform better at the 90th percentile

as the mis-estimation magnitude increases because more

long jobs are classified as short. At 15000 nodes the

short partition is less loaded than the general partition so

the long jobs classified as short benefit from the addi-

tional, less-loaded nodes in the short partition.

Short jobs are not directly impacted by mis-

estimations, since their scheduling does not rely on es-

timations. Short jobs can be indirectly impacted by the

changes in the scheduling of the long jobs. In the exper-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 1.2 1.4 1.6 1.8 2 2.25

H
a
w

k
 n

o
rm

a
liz

e
d
 t
o
 S

p
a
rr

o
w

(Inter-arrival time) / (Mean task runtime)

50th percentile short jobs
90th percentile short jobs

median cluster utilization Sparrow
corresponding simulation results

Figure 16: Implementation vs simulation, short jobs.

3300 job sample from the Google trace.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 1.2 1.4 1.6 1.8 2 2.25

H
a
w

k
 n

o
rm

a
liz

e
d
 t
o
 S

p
a
rr

o
w

(Inter-arrival time) / (Mean task runtime)

50th percentile long jobs
90th percentile long jobs

median cluster utilization Sparrow
corresponding simulation results

Figure 17: Implementation vs simulation, long jobs.

3300 job sample from the Google trace.

iments, we only see minute variations for the results for

short jobs (not pictured).

4.9 Sensitivity to stealing attempts

We now vary the maximum number of nodes that an idle

node can contact for stealing. We find that performance

increases with an increase in the cap value, but even a

low value (e.g., 10) gives significant benefit.

Figure 15 shows the results normalized to Hawk using

a cap of 1. As expected, increasing the cap also increases

performance, as it increases the chance for successful

stealing. At high cap values there is also a slight increase

in the performance of long jobs (not pictured), because

they wait behind fewer short tasks. The improvement for

long jobs is small, because of the large relative differ-

ence between the resource usage of long jobs compared

to short jobs.

4.10 Implementation vs. simulation

Figures 16 and 17 show the results for a 3300-job sam-

ple of the Google trace. In the implementation, Hawk

schedules 3000 short jobs in a distributed way (300 per

each of the 10 distributed schedulers) and 300 long jobs

in a centralized fashion. The simulation and implemen-

tation experiments agree and show similar trends. Hawk

is best at high loads, when it significantly improves on

Sparrow for short jobs, while maintaining good perfor-

mance for long jobs. As load decreases, the 50th per-

centiles for Hawk and Sparrow become similar, as fewer

10

USENIX Association 2015 USENIX Annual Technical Conference 509

jobs suffer from queueing. Even at medium load, the

90th percentile is still considerably better for Hawk for

short jobs, since those jobs suffer from queueing in Spar-

row but not in Hawk.

The simulation and implementation results do not per-

fectly match, because the simulation does not model

overheads for scheduling or stealing. Moreover, some

Spark tasks sleep very little (a few msec) and are sensi-

tive to slight inaccuracies in sleeping time and to various

system overheads (message exchanges, network delays).

5 Related Work

The first data center schedulers had a monolithic de-

sign [22], which lead to scalability concerns [20]. Sec-

ond generation schedulers (YARN [20], Mesos [10])

use a two-level architecture, which decouple resource

allocation from application-specific logic such as task

scheduling, speculative execution or failure handling.

However, the two-level architecture relies on a central-

ized resource allocator, which can still become a scal-

ability bottleneck in large clusters. In contrast, Hawk

schedules most jobs in a distributed manner minimizing

the scalability concerns.

We compared against Sparrow [14] in this paper.

Sparrow is a fully distributed scheduler that performs

well for lightly and medium loaded clusters. However,

it is challenged in highly loaded clusters, especially for

heterogeneous workloads, because tasks experience un-

necessary queueing. This is due to Sparrow’s design,

which is geared at extreme scalability and cannot fully

benefit from load information when making scheduling

decisions. Moreover, Sparrow does not have runtime

mechanisms to compensate in case the initial assignment

of tasks to nodes is suboptimal.

In Apollo [3], distributed schedulers utilize global

cluster information via a loosely coordinated mecha-

nism. Apollo does not differentiate between long and

short jobs and uses the same mechanisms to sched-

ule both types of jobs. Apollo has built-in, node-level

correction mechanisms to compensate for inaccurate

scheduling decisions. If a task is queued longer than

estimated at scheduling time, then Apollo starts dupli-

cate copies of the task on other nodes. In contrast, work

stealing in Hawk works at the level of the entire cluster.

Even if the queueing time for a task has been correctly

predicted, the task can be stolen by another server that

becomes idle.

Mercury [11] is parallel work on designing a hy-

brid scheduler. In Mercury, jobs can choose between

guaranteed (non-preemtable, non-queueable, centrally-

allocated) containers and queueable containers (pre-

emptable, allocated in a distributed way). However, it

is not clear whether jobs have the information necessary

to make an informed choice with respect to the appro-

priate container type. In Mercury, distributed schedulers

loosely coordinate with a coordinator to obtain per-node

load information. In Hawk, the distributed schedulers

make completely independent decisions.

Omega [17] supports multiple concurrent schedulers

which have full access to the entire cluster. The sched-

ulers compete in a free-for-all manner, and use opti-

mistic concurrency control to handle conflicts when they

update the cluster state. Omega is designed to support

at most tens of schedulers and this may prove insuf-

ficient to ensure low latency scheduling for very short

jobs. Borg [21] uses a logically centralized controller

but employs replication to improve availability and scal-

ability. Borg’s scheduling design is similar to Omega’s

optimistic concurrency control.

HPC and Grid schedulers [18] use centralized

scheduling and do not have the same latency require-

ments. The jobs they schedule are usually compute-

intensive and often long running. These jobs come with

several constraints as they are tightly coupled in nature,

requiring periodic message passing and barriers.

6 Conclusions and Future Work

In this paper we address the problem of efficient schedul-

ing in the context of highly loaded clusters and hetero-

geneous workloads composed of a majority of short jobs

and a minority of long jobs that use the bulk of the re-

sources. We propose Hawk, a hybrid scheduling archi-

tecture. Hawk schedules only the long jobs in a central-

ized manner, while performing distributed scheduling

for the short jobs. To compensate for the occasional poor

choices made by distributed job scheduling, Hawk uses a

novel randomized task stealing approach. With a Spark-

based implementation and with large scale simulations

using realistic workloads we show that Hawk outper-

forms Sparrow, a state-of-the-art fully distributed sched-

uler, especially in the challenging scenario of highly

loaded clusters.

Acknowledgement

We thank the anonymous reviewers and our shepherd

David Shue for their feedback. We also thank Laurent

Bindschaedler, Christos Gkantsidis, Calin Iorgulescu,

Konstantinos Karanasos, Sergey Legtchenko, Amitabha

Roy, Malte Schwartzkopf and John Wilkes for the dis-

cussions, feedback and help. Additional thanks go to

the Sparrow authors for making their simulator avail-

able. This research has been supported in part by a grant

from Microsoft Research Cambridge.

References

[1] J. Wilkes - More Google cluster data.

http://googleresearch.blogspot.ch/2011/11/more-google-cluster-

data.html.

11

510 2015 USENIX Annual Technical Conference USENIX Association

[2] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur,

S. Kandula, S. Shenker, and I. Stoica. Pacman: coordinated

memory caching for parallel jobs. In Proc. NSDI 2012.

[3] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian,

M. Wu, and L. Zhou. Apollo: scalable and coordinated schedul-

ing for cloud-scale computing. In Proc. OSDI 2014.

[4] Y. Chen, S. Alspaugh, and R. Katz. Interactive analytical pro-

cessing in big data systems: a cross-industry study of mapreduce

workloads. In Proc. VLDB 2012.

[5] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The case for

evaluating mapreduce performance using workload suites. In

Proc. MASCOTS 2011.

[6] C. Delimitrou and C. Kozyrakis. Paragon: QoS-aware schedul-

ing for heterogeneous datacenters. In Proc. ASPLOS 2013.

[7] C. Delimitrou and C. Kozyrakis. Quasar: resource-efficient and

QoS-aware cluster management. In Proc. ASPLOS 2014.

[8] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron. De-

centralized task-aware scheduling for data center networks. In

Proc. SIGCOMM 2014.

[9] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca.

Jockey: guaranteed job latency in data parallel clusters. In Proc.

EuroSys 2012.

[10] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.

Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: a platform for

fine-grained resource sharing in the data center. In Proc. NSDI

2011.

[11] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil,

G. Fumarola, S. Heddaya, R. Ramakrishnan, and S. Sakalanaga.

Mercury: Hybrid centralized and distributed scheduling in large

shared clusters. In Proc. Usenix ATC 2015.

[12] C. Kozyrakis. Resource efficient computing for warehouse-scale

datacenters. In Proc. DATE 2013.

[13] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. A study of skew

in mapreduce applications. In Proc. OpenCirrus Summit 2011.

[14] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow:

distributed, low latency scheduling. In Proc. SOSP 2013.

[15] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.

Kozuch. Heterogeneity and dynamicity of clouds at scale:

Google trace analysis. In Proc. SoCC 2012.

[16] K. Ren, Y. Kwon, M. Balazinska, and B. Howe. Hadoop’s ado-

lescence: An analysis of hadoop usage in scientific workloads.

In Proc. VLDB 2013.

[17] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and

J. Wilkes. Omega: flexible, scalable schedulers for large com-

pute clusters. In Proc. EuroSys 2013.

[18] G. Staples. Torque resource manager. In Proc. SuperComputing

2006.

[19] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Row-

stron, T. Talpey, R. Black, and T. Zhu. IOFlow: a software-

defined storage architecture. In Proc. SOSP 2013.

[20] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,

M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,

B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and

E. Baldeschwieler. Apache Hadoop YARN: Yet Another Re-

source Negotiator. In Proc. SOCC 2013.

[21] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune,

and J. Wilkes. Large-scale cluster management at Google with

Borg. In Proc. EuroSys 2015.

[22] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,

S. Shenker, and I. Stoica. Delay scheduling: a simple technique

for achieving locality and fairness in cluster scheduling. In Proc.

EuroSys 2010.

[23] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-

Cauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient

distributed datasets: A fault-tolerant abstraction for in-memory

cluster computing. In Proc. NSDI 2012.

12

