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Abstract

Adverse drug reaction (ADR) discovery is the task of identifying unexpected and nega-
tive events caused by pharmaceutical products. This paper describes a log-linear Hawkes
process model for ADR discovery from longitudinal observational data such as electronic
health records (EHRs). The proposed method leverages the irregular time-stamped events
in EHRs to represent the time-varying effect of various drugs on the occurrence rate of ad-
verse events. Experimental results on a large-scale cohort of real-world EHRs demonstrate
that the proposed method outperforms a leading approach, multiple self-controlled case
series (Simpson et al., 2013), in identifying benchmark ADRs defined by the Observational
Medical Outcomes Partnership.

1. Introduction

Adverse drug reaction (ADR) discovery is the task of finding unexpected and negative ef-
fects of drugs prescribed to patients. ADR discovery is a major public health challenge. It
is estimated that ADRs cause 4.2-30% of hospitalizations in the United States and Canada,
with an approximated relevant annual cost of 30.1 billion US dollars in the United States
(Sultana et al., 2013). Although the U.S. Food and Drug Administration (FDA) has estab-
lished one of the most rigorous drug preapproval procedures in the world, many potential
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ADRs of a drug may not be identified in its developmental stage. During the preapproval
clinical trials, a drug might be tested on just a few thousand people. Therefore, ADRs
with low occurrence rates are likely not to be identified in this relatively small population.
However, these ADRs might occur and even become a public health hazard after the drug is
introduced to the market, where potentially millions of people with much more diverse pro-
files are taking the drug. Therefore, postmarketing surveillance methods that can quickly
and effectively detect potential ADRs are highly desirable to address this major public
health challenge.

Modern postmarketing surveillance (Robb et al., 2012; Findlay, 2015; Hripcsak et al.,
2015) leverages machine learning and data mining algorithms for ADR discovery (Ryan
et al., 2012; Norén et al., 2013a,b; Ryan et al., 2013a,b; Schuemie et al., 2013; Suchard et al.,
2013) on large-scale longitudinal observational databases (LODs) such as insurance claim
databases and electronic health records (EHRs), where drug prescription records, adverse
health outcome occurrences, and demographic information from millions of individuals are
collected as time-event pairs. A leading model used for ADR discovery from LODs is the
multiple self-controlled case series (MSCCS, Simpson et al. 2013). In MSCCS, we only
consider individuals with at least one occurrence of an adverse health outcome of interest
as cases. By estimating the occurrence rates of the adverse events when the individuals are
exposed (or not exposed) to various drugs, each individual can serve as his/her own control,
potentially linking the elevation of the occurrence rate of adverse events to the exposure of
particular drugs and providing evidence for ADR discovery.

While MSCCS has gained tremendous empirical success (Simpson et al., 2013; Suchard
et al., 2013) in identifying benchmark ADRs defined by the Observational Medical Outcomes
Partnership (OMOP), the model relies on somewhat restrictive assumptions:

• Drug Era Construction: In MSCCS, upon the prescription of a drug to a pa-
tient, the patient is assumed to be under the exposure of the drug for a continuous
period of time called drug era (Reisinger et al., 2010). Since in most EHRs, only
the time-stamped drug prescription records are available, drug eras are usually con-
structed manually based on heuristics that incorporate adjacent time-stamped drug
prescription records of the same drug. A data-driven, drug-era-free approach that
directly leverages the time-stamped information in the EHRs is hence highly desir-
able to represent the influence of a particular drug upon the occurrence of an adverse
event.

• Time-Invariant Drug Effect: Standard MSCCS also assumes that during a drug
era, the effect of the drug on the occurrence rate of the adverse event remains constant.
This obviously is an over-simplification in practice, as different drugs exhibit different
pharmacokinetics and exert different dynamic impacts at different times. While efforts
have been made to extend self-controlled case series to address time-varying drug
effects for a single drug (Schuemie et al., 2016), modeling time-varying drug effects
on adverse events for multiple drugs in large-scale LODs remains underdeveloped.

To circumvent the aforementioned predicaments of MSCCS, we propose a log-linear
Hawkes process (Hawkes, 1971a,b) for adverse drug reaction discovery with longitudinal
observational data. A central component of the Hawkes process is its flexible representation
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power to depict self-excitation and mutual-excitation of past events of various types to future
events via triggering influence functions. Specifically, we propose using dyadic influence
functions in lieu of the construction of drug eras to represent the effect of a drug on the
future occurrence rate of an adverse event. In this way, the influence of a drug on an adverse
event is modulated by the gap between the drug prescription time and the adverse event
occurrence.

To the best of our knowledge, this work is the first attempt to model longitudinal
observational data as a log-linear Hawkes process for ADR discovery. Experimental results
on a real-world EHR demonstrate that the proposed method outperforms MSCCS in various
settings.

2. Modeling framework

For each patient p ∈ {1, . . . , P}, we observe Np > 0 events. The ith event is described
by its time, τp,i, and type, mp,i, where τp,i ≤ τp,i+1 for i = 1, 2, . . . , Np − 1. The times
are generally discretized by EHR software to be accurate within eight hours. Assuming a
sampling period of length ∆ = 8 hours, we let xp,m,t be the number of events at any time
τ ∈ [∆t,∆(t + 1)) of type m for patient p. Event types m belong to a set M = D ∪ O,
where D is the set of possible drug prescription events and O is the set of adverse health
outcomes.

A complicating factor in predicting ADRs is that we do not know when a patient is
actively taking a drug; we can only observe when the drug is prescribed, and different
prescriptions can have different durations. This challenge has been noted before (Kuang
et al., 2016a). A heuristic proposed in the Common Data Model (CDM, Reisinger et al.
2010 ) by Observational Medical Outcome Partnership (OMOP) is to assume that each
drug has a time-at-risk window, which is comprised of (a) the drug era, or the times when
a patient is assumed to be taking a drug based on the prescription date recorded in the
EHR, and (b) the drug exposure window, or the times when a patient is assumed to still
be reacting to a drug even though the prescription has ended.

In this paper, we denote the length of the time-at-risk window as L. That is, L is a
measure of real time (hours), and L/∆ is a measure of the number of discrete time intervals
(e.g., 8-hours periods) in which the EHR data is stored.

Throughout this paper, we model the outcome events as realizations of a point process
with time-varying rate λ. ADR analysis is the process of estimating λ from data and
determining which factors from a patient’s EHR most contribute accurate predictions of
ADRs. In the below, we first describe the commonly-used Multiple Self-Controlled Case
Series (MSCCS, Simpson et al. 2013) and then our proposed log-linear Hawkes model.

2.1 Multiple Self-Controlled Case Series Model

Multiple self-controlled case series (MSCCS, Simpson et al. 2013) is one of the leading
methods for ADR discovery. Given L, the MSCCS model can be specified as follows. First,
define

x̃p,m,t :=

{
1, if ∃s ∈ {t− L/∆ + 1, . . . , t} such that xp,m,s > 0

0, otherwise
;
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then x̃p,m,t indicates whether patient p was prescribed drug m at any point in the past L/∆
time units up until time t. We may then model the log-rate of ADR o ∈ O for patient p at
time t as

log λp,o,t = ∆bp,o +
∑
d∈D

wo,dx̃p,d,t (MSCCS)

for some unknown weights {wo,d}d∈D and unknown baseline event rate bp,o, which can be
different for each patient.

Given this rate, we model our observations of ADRs using a Poisson distribution, so
that the probability of patient p experiencing outcome o at time t is

P(xp,o,t|λp,o,t) =
e−λp,o,tλ

xp,o,t
p,o,t

xp,o,t!
. (1)

The model in (MSCCS) says that the log of this rate parameter is the sum of a patient-
specific baseline rate and a weighted combination of the different events the patient is simul-
taneously experiencing. The weights {wo,d}o∈O

d∈D
indicate how well we may predict outcome

o based on a patient being on drug d.

While this model is popular in the literature and practice (Simpson et al., 2013; Suchard
et al., 2013), choosing the time-at-risk window L can still confound analysis. The time-at-
risk window L is generally chosen based on side information about common drug prescription
durations, or is treated as a tuning parameter to be chosen based on data. If L is small,
then the model behaves as if the patient is not on the drug L hours after the prescription
is recorded, thus potentially masking longer-term causal effects. In contrast, if L is large,
then it is difficult to distinguish the effect of a drug prescribed recently and a different drug
prescribed in the distant past; in fact, MSCCS would treat those prescriptions as equal.

Another interpretation of the MSCCS model is that EHRs have missing data about
which drugs patients are taking at what times. The x̃p,d,t’s can be considered a combi-
nation of the original data and imputed events which may or may not be real. Injecting
artificial events into a patient’s EHR poses significant risks for biased analysis leading to
false conclusions.

2.2 Hawkes model

We propose to use a Hawkes process model (Hawkes, 1971a,b; Daley and Vere-Jones, 2003)
as an alternative to MSCCS. Hawkes processes have been used to model spike trains recorded
from biological neural networks (Pillow et al., 2008), interactions within a social network
(Hall and Willett, 2013), pricing changes within financial networks (Chavez-Demoulin and
McGill, 2012), power failures in networked electrical systems (Ertekin et al., 2015), crime
and military engagements (Linderman and Adams, 2014), and in a variety of other settings.

The log-linear Hawkes process shares several features with MSCCS, but is a continuous-
time model that can account for the influence of past events on future events. To specify
the Hawkes process, we first define a collection of K influence functions, {φk(·)}K−1

k=0 . The
Hawkes process can be expressed in terms of any influence functions, and we describe our
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Figure 1: Dyadic influence functions for L = 512 and K = 6.

specific choice for ADR analysis in Section 2.2.1. Given these influence functions, the log-
rate of the Hawkes process has the form

log λp,o(τ) = bp,o +
∑
d∈D

K−1∑
k=0

wo,d,k
∑
i≤Np:
τp,i≤τ
mp,i=d

φk(τ − τp,i). (2)

Similar to MSCCS, the log of this rate parameter is the sum of a patient-specific baseline
rate and a weighted combination of patient features. Unlike MSCCS, the Hawkes model
naturally accounts for the influence of past events without requiring the analyst to inject
artificial events into a patient’s EHR to account for the (unknown) time-at-risk window.
The weights {wo,d,k} o∈O, d∈D,

k∈{1,...,K}
indicate how well we may predict outcome o based on a

patient being on drug d according to the kth influence function. Each influence function
reflects how the influence of a past event changes based on how much time has elapsed since
that event. We generally expect that more recent events have more bearing on a patient’s
risk of an ADR.

2.2.1 Choice of Influence Functions

For ADR analysis, we propose choosing the influence functions (φk’s) to be piecewise con-
stant functions supported on bounded intervals. Specifically, let K be the number of influ-
ence functions in our Hawkes model, and let L be the length of the maximum time-at-risk
window.

For each k, we define an interval Ik = [ak, bk) that satisfies the constraint that the
collection of all K intervals cover the entire time-at-risk window [0, L) (that is,

⋃K−1
k=0 Ik =

[0, L)). Then

φk =
1

bk − ak
1{τ∈Ik}.

Note that these φk’s all integrate to one and are orthogonal to one another. By picking
different pairs (ak, bk), we can jointly model short-term and long-term effects.
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In our experiments, we focus on φk’s where the intervals are chosen as follows. Define

αk :=

{
2K−1/L, k = 0,

2K−k/L, k = 1, . . . ,K − 1,

and the intervals

Ik :=


[
0, 1/αk

)
, k = 0,[

1/αk, 2/αk

)
, k = 1, . . . ,K − 1

.

Then we define

φk(τ) =αk1{τ∈Ik}

where 1{A} =

{
1, A true,

0, A false
is the indicator function.

We refer to the above choice of influence function functions (depicted in Figure 1) as
dyadic influence functions because they are supported on dyadic intervals that correspond
to dividing the interval [0, L) in half repeatedly.

2.2.2 Hawkes processes with dyadic influence functions

In this subsection, we examine the Hawkes model of (2) in the specific case of dyadic
influence functions. In particular, we note that for τ ∈ [∆t,∆(t+ 1)),∑

i≤Np:
τp,i≤τ
mi=d

φk(τ − τp,i) =
∑
i≤Np:
τp,i≤τ
mi=d

αk1τ−τp,i∈Ik = αk
∑

s:(t−s)∆∈Ik

xp,d,s.

Define

zp,d,t,k := ∆αk
∑

s:(t−s)∆∈Ik

xp,d,s.

Then by sampling (2) via integration over intervals of length ∆, we have

log λp,o,t = ∆bp,o +
∑
d∈D

K−1∑
k=0

wo,d,kzp,d,t,k. (DyadicHawkes)

The total influence of drug d ∈ D on outcome o ∈ O can be measured by
∑K−1

k=0 wo,d,k.

Note that the weights are independent of the patient p and the times t, so that within
a collection of EHRs, we have a large number of training samples that can be used to infer
the weights. Also note that the sufficient statistics of the data, zp,d,t,k, are simple functions
of the data and independent of outcome o. Hence these statistics can be pre-computed once
and used for all outcomes of interest.

Note that (DyadicHawkes) is a generalization of a log-linear Poisson autoregressive
processes (Zhu and Wang, 2011), for which Hall et al. (2016) have recently derived sample
complexity bounds.
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2.3 Comparing the two models

Contrasting the classical model in (MSCCS) and our proposed Hawkes model with dyadic
influence functions in (DyadicHawkes), we see that both model the log of the event rate
λp,o,t as a linear combination of sufficient statistics of the past data (either the x̃’s or the z’s,
respectively). Despite this superficial similarity, the models exhibit very different behaviors.
In particular, the x̃’s in (MSCCS) can be thought of as the collection of observed events
plus artificial, simulated events injected into the model. In particular, we can think of every
day when a patient is taking a drug but the drug is not noted that day in the EHR as missing
data. The MSCCS approach essentially imputes values for the missing data by assuming
all people are taking all drugs for the same amount of time. Clearly this imputation is
inaccurate, and these inaccuracies can bias inference of which drugs are causing which
ADRs.

In contrast, the Hawkes model in (DyadicHawkes) does not require us to explicitly
impute missing data. The idea is that different drugs may have different impacts after
different delays after the initial prescription, and different potential delays are captured
by the different φks. In effect, when we learn the parameters {wo,d,k} o∈O,d∈D

k∈{0,...,K−1}
, we are

learning the strength of the impact of drug d when the time since it was prescribed is on
the order of 2k. Thus this model is more flexible than the MSCCS model.

Note that (MSCCS) is similar (but not equivalent to) (DyadicHawkes) for K = 1
if the same value of L is used. In particular, if a patient was prescribed a drug multiple
times in the past L hours, then MSCCS would treat this a single drug occurrence in the
time-at-risk window. In contrast, the Hawkes model suggests the multiple prescriptions
have a cumulative effect. Since the number of prescriptions within a time-at-risk window L
is generally small, these models can have similar empirical performances for K = 1.

Note that the number of weights to be inferred in (MSCCS) is equal to the number
of drugs being evaluated. The number of weights to be inferred in our Hawkes model
(DyadicHawkes) is equal to the product of the number of drugs, |D|, and K, the number
of different influence functions in the model. Thus while using the Hawkes process with
multiple influence functions can reduce bias in estimating ADRs, (DyadicHawkes) has
a larger (by a factor of K) parameter space than (MSCCS). We adjust for this larger
parameter space in our inference method by using sparsity regularization, as described
below.

3. Inference approach

Let b := (bp,o)p∈{1,...,P}, o∈O and w := (wo,d,k)o∈O,d∈D, k∈{0,...,K−1} denote the model pa-
rameters. (The model parameters for MSCCS can be represented this way with K = 1.)
Using the Poisson likelihood in (1), we have that the negative log-likelihood of patient p’s
occurrences of outcome o is proportional to

`p,o,t(bp,o,w) := λp,o,t − xp,o,t log λp,o,t (3)

Define

`(b,w) =
1

P

P∑
p=1

∑
o∈O

∑
t

`p,o,t(bp,o,w).
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Note that in our Hawkes model (DyadicHawkes), `p,o,t is piecewise constant over t, so
the log-likelihood can be efficiently computed via data squashing (Madigan et al., 2002;
Simpson et al., 2013). In order to avoid overfitting and obtain an interpretable result, we
induce sparsity by adding an `1 (LASSO) penalty (Tibshirani, 1996) on w, resulting in the
following optimization problem:

min
b,w

`(b,w) + λ‖w‖1, (4)

where λ > 0 is a tuning parameter controlling the level of sparsity.

The objective function in (4) is convex and can be minimized using a variety of ap-
proaches (cf. Wright et al. (2009)). Empirically we find that alternating between minimiz-
ing b (which has a closed form solution) and updating w using FISTA (Beck and Teboulle,
2009) yields fast convergence and quickly computable updates.

4. Experiments

4.1 OMOP task

To evaluate methods for ADR discovery, OMOP established a challenge problem of ranking
drug-outcome pairs as possible ADRs. From ten different drugs and ten different outcomes,
53 drug-outcome pairs are labeled by OMOP as ground-truth true or false ADRs based
on information on drug labels, for example calling warfarin-bleeding and ACE inhibitor-
angioedema true pairs while calling ACE inhibitor-bleeding a false pair. From this ground
truth, any algorithm that can rank drug-condition pairs from most- to least-likely ADRs
can be evaluated via an ROC curve. This task is extremely difficult because many ADRs
are (thankfully) rare, in addition to all the ordinary challenges of causal discovery from
LODs, such as confounding by other measured or unmeasured variables, which may also
vary over time.

4.2 Data description

We employ a de-identified version of Marshfield Clinic health system’s EHR, which has
been used for clinical care since the mid 1980s, serving primary, secondary, and tertiary
care clinicians throughout Central and Northern Wisconsin (Powell et al., 2012). The
system uses a variety of data gathering techniques to capture and code patient encounter
information including diagnoses, laboratory results, procedures, medications, and vital sign
measurements such as height, weight, blood pressures, etc. This longitudinal data is linked
for each patient and exists in electronic form back to the early 1960s. Data consist of
date-stamped events such as diagnosis codes and drug prescriptions; dates are encoded as
patient age in 1/1000 years, for privacy reasons.

We extract ten drug prescription records and ten diagnosis records from the de-identified
EHRs according to the definitions of the vocabularies used in the OMOP ground truth. We
admit a patient into the cohort if the length of the observation for the patient is at least
three months. The resulting cohort contains 327,824 patients with 1,940,681 adverse health
outcome occurrences and 11,211,769 drug prescription records. The average observation
duration for the patients in our cohort is 9.1 years. Following the design of MSCCS, we
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Figure 2: Area under the curve for MSCCS and the Hawkes with various L and K

restrict our attention to patients with at least one occurrence of the outcome o when we
are inferring the weight for that outcome.

4.3 Metrics

Since the log-likelihood for both models is separable across different health outcomes, the
influence is not directly comparable among different outcomes. We define the normalized
score So,d for each drug-outcome pair in MSCCS and the Hawkes process model as following:

So,d =
wo,d√∑
d∈D w

2
o,d

in MSCCS, So,d =

∑K−1
k=0 wo,d,k√∑

d∈D

(∑K−1
k=0 wo,d,k

)2
in Hawkes.

For quantitative metrics, we report the area under the curve (AUC) of receiver operating
characteristics (ROC) using the OMOP ground truth and the scores defined above.

4.4 Evaluation

To choose the shrinkage parameter λ for both MSCCS and the Hawkes process model,
we perform leave-one-condition-out cross-validation (LOCOCV): for each of the ten out-
comes, we adaptively pick λ ∈ {0, 10−8, 10−7, 10−6} that perform the best on the other nine
conditions.

Figure 2 presents the AUC of MSCCS and Hawkes with various K for L ∈ {three
months, six months, one year}. Note that for fixed L, both MSCCS and Hawkes make use
of the information in the past L hours to model the occurrence of adverse health outcomes
at each time. We observe that the Hawkes process model consistently outperforms MSCCS
when more then one influence function is used, effectively indicating that modeling drug-
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dependent time-at-risk windows (captured in a data-dependent manner by the Hawkes
model) is beneficial to ADR discovery.

In the literature of ADR discovery from LODs (Norén et al., 2013b; Simpson et al.,
2013; Suchard et al., 2013; Schuemie et al., 2016), different methods are compared under
their best settings. To test the highest AUC for both models, we vary L from 22 days to ten
years and K from 1 to 7. The best performers of MSCCS reaches an AUC of 0.7449 at L =
four years, while the Hawkes process model reaches its best AUC of 0.8409 at K = 5, L =
six months. To demonstrate how well the Hawkes process model and MSCCS can predict
unseen adverse drug reactions in practice, we perform LOCOCV to adaptively and jointly
pick λ, L and K. The AUC after LOCOCV for MSCCS is 0.6970, while the AUC after
LOCOCV for Hawkes is 0.8258, indicating that the expressive power of the the Hawkes
process model better coincides with the ADR signals encoded in the data.

Figure 3 shows the rank of the true ADR-causing drug among all ten drugs for each of
the nine true ADR pairs. Rank of one means the true ADR-causing drug is assigned the
highest score among all ten drugs by the method. Notice that the eighth and ninth pairs are
both associated with the same outcome, so ranking one true causing drug to the first place
and the other true causing drug to the second place is the best one can do. We observe that
although MSCCS with L = four years performs reasonably well on the first pair and the last
five pairs, it completely fails to discover the second true ADR pair. Actually, it even assigns
a negative score to this true ADR pair, suggesting that the true causing drug inhibits the
occurrence of the adverse outcome. On the other hand, MSCCS with L = 22 days attains
better performance on the second and third pairs, but it cannot successfully learn the eighth
and ninth true ADR pair due to the limitation of a short time-at-risk window. By using
different influence functions, the Hawkes process model is able to better capture these long-
term and short-term effects jointly and this results in an overall performance superior to
MSCCS.
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5. Discussion

We have proposed a log-linear Hawkes process model of adverse drug reactions with longitu-
dinal observational data. Compared with the leading approach, multiple self-controlled case
series, for ADR discovery with LODs, the proposed method offers tremendous flexibility in
modeling time-varying effects of various drugs on the occurrence of adverse health outcomes.
Experimental results demonstrate the superior performance of the proposed method over
MSCCS in various experiment settings.

Notice that in our experiments, the increase of the time-at-risk window and the number
of influence functions used in the models does not necessarily correspond to the improvement
of ADR discovery performance. A reasonable explanation is that with prolonged time-at-risk
windows, long-term fluctuation of the baseline occurrence rate of an adverse health outcome
also needs to be taken into consideration. However, in the current modeling framework,
for efficiency we only use a patient-specific yet time-invariant parameterization to model
the baseline occurrence rate of an adverse health outcome. Therefore, incorporating time-
varying baseline (Kuang et al., 2016b) to distinguish between baseline fluctuation and time-
varying drug effects would be an important future research direction. Other future directions
include improving the efficiency of model fitting via parallelism and stochasticity as well as
designing different kernels to facilitate the incorporation of different clinical hypotheses.
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