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Abstract
Hawkes processes are temporal self-exciting point processes. They are well established in 
earthquake modelling or finance and their application is spreading to diverse areas. Most 
models from the literature have two major drawbacks regarding their potential application to 
insurance. First, they use an exponentially-decaying form of excitation, which does not allow 
a delay between the occurrence of an event and its excitation effect on the process and does 
not fit well on insurance data consequently. Second, theoretical results developed from these 
models are valid only when time of observation tends to infinity, whereas the time horizon for 
an insurance use case is of several months or years. In this paper, we define a complete frame-
work of Hawkes processes with a Gamma density excitation function (i.e. estimation, simula-
tion, goodness-of-fit) instead of an exponential-decaying function and we demonstrate some 
mathematical properties (i.e. expectation, variance) about the transient regime of the process. 
We illustrate our results with real insurance data about natural disasters in Luxembourg.

Keywords Point processes · Hawkes processes · Insurance · EM algorithm · Natural 
disasters

1  Summary

Hawkes Processes Hawkes processes form a specific category of point processes. Their 
main characteristic is that each event “self-excites” the process, which means that an 
occurrence increases the probability to have another arrival in a short time period. They 
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were first introduced by Hawkes (1971) and are now commonly used for several applica-
tions: earthquake modelling Bacry and Muzy (2014), criminology Mohler (2011), finance 
Bacry et al. (2015), etc.

Hawkes Processes for Insurance Since recently, insurance companies are developing an 
interest for Hawkes processes. They are used for calculating Solvency Capital Require-
ments and modelling different indicators of risks, such as ruin (improvement of Cramer-
Lundberg model, see Cheng and Seol (2020)) or cyber-attacks (see Bessy-Roland et  al. 
(2020)). Hawkes processes model claims arrival, considered to follow a Poisson process in 
classic approaches.

Article Purpose Up to now, models using Hawkes processes in the literature mainly use an 
exponential excitation function, whose theory was developed in Hawkes’ original papers 
Hawkes (1971). For this excitation function, the self-exciting effect of each occurrence is 
maximal shortly after the event. However, for most insurance use cases, we need to take 
into account a delay between the event and its exciting effect on the process. The main 
originality of this paper is to propose the Gamma density as an excitation function suited 
to this context and to test on real data that this approach is a better choice in insurance situ-
ations. We introduce and discuss some practical situations on which the Gamma density 
fits better than exponential decay. The Gamma density excitation function allows us to deal 
with this delay and could be seen as a generalization of the exponential excitation function, 
since both are equivalent for a particular set of parameters.

At our best knowledge in the literature, there only exists limit results on first and second 
order statistics about this category of Hawkes processes. In Bacry and Muzy (2014), the 
authors state the Wiener-Hopf equations followed by the kernel matrix functions for all 
t. They only compute the expectation of a Hawkes process in a stationary state. In Bacry 
et al. (2012), the focus is on the asymptotic behaviour of multivariate Hawkes processes 
for a large time, by stating a law of large numbers and a functional central limit theorem. 
In Bordenave and Torrisi, Large deviations of Poisson cluster processes. Bordenave and 
Torrisi (2007) (Gao and Wang (2020) resp.), the authors prove a so-called large (moderate 
resp.) deviations principle on Hawkes processes. Such limit results established on the sta-
tionary regime are not suitable to deal with practical cases in the insurance context, where 
the time horizon is of several months. In this paper, we develop a framework for Hawkes 
processes with Gamma density excitation function regarding estimation and simulation. 
A new result in this context is the calculus of the mean and the variance of the process in 
the transient regime. To illustrate our work, we develop the use case of natural disasters in 
Luxembourg.

Main Contributions The major contributions of this paper are to: 

1. Define Hawkes processes and the elements needed for a complete use case study (esti-
mation, goodness-of-fit, simulation, etc.);

2. Study mathematical expressions and properties of Hawkes processes (i.e. expectation, 
variance and central limit theorem) with a Gamma density as excitation function;

3. Model an insurance use case with real data by this specific form of Hawkes processes 
as an illustration of the mathematical tools.
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Plan The remainder of this paper is organized as follows. The second section defines a 
Hawkes process and introduces all useful notations. The third section contains the develop-
ment of our results on mathematical properties of Hawkes processes. We also study a use 
case applied to insurance in the fourth section (natural disasters in Luxembourg).

2  Hawkes Processes Definition

In this section, we define the notion of Hawkes process, and we introduce useful notations 
for mathematical properties and algorithms (simulation, estimation).

2.1  Point Process

Hawkes processes are a particular class of point processes. We first propose a definition of 
a point process, inspired by Daley and Vere-Jones (2003).
Definition 1 (Point Process). A point process � is an increasing sequence of random 
variables � = {T1, T2, ...} called occurrences which takes values in [0,+∞[ , such that 
ℙ(0 ≤ T1 ≤ T2 ≤ ...) = 1.

Definition 2 (History of Occurrences). We define ( H(t), t ≥ 0 ) the filtration and the his-
tory of the occurrences until time t.

Another useful representation of a sequence of occurrences is the counting notation.

Definition 3 (Counting Process). We say that N is a counting process if it is an almost 
surely finite stochastic process and a right-continuous step function with +1 increments 
after each step, taking values in ℕ , and N(0) = 0.

The two notions of point process and counting process are interchangeable. Indeed, 
a counting process could be seen as the cumulative count of a point process. The link 
between � and N is:

where # denotes the cardinality of a set and Ti is the time of the ith occurrence in the time 
interval [0, T], where Tis the final time of observation.

2.2  Intensity Function

The most frequently used characterization of a Hawkes process is by means of the condi-
tional intensity function, �(t|H(t)) . It is defined below.

Definition 4 (Conditional Intensity Function: Expected Rate of Occurrences Condi-
tioned on H(t) ). Let us consider a counting process N(⋅) . If �(t|H(t)) exists such that:

∀t ∈ ℝ+,N(t) = #
{
Ti ∈ �||Ti ≤ t

}
, i ≥ 1,
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then �(t|H(t)) is the conditional intensity function of N(⋅) . We denote �(t|H(t)) by �∗(t) for 
the remainder of the paper.

The following proposition is inspired from Proposition 2.2 of Rasmussen (2018) and 
states that the conditional intensity function uniquely defines the point process. Thus in the 
following we use this characterization.

Proposition 1 Let us consider a conditional intensity function �∗(⋅) , defined for any time 
period [u, t], 0 ≤ u ≤ t , such that:

• �∗(⋅) non-negative and integrable on [u, t],
• lim

t→+∞
 ∫ t

u
�∗(s)ds = +∞.

Then there exists an unique point process with �∗(t) conditional intensity function.

2.3  Hawkes Process Definition

We introduce now the definition of Hawkes processes.

Definition 5 (Hawkes Process). Let us consider 𝜆 > 0 , the background intensity, and 
� ∶ [0,+∞[→ [0,+∞[ , the excitation function. We denote {t1, .., tN(t)} the sequence of past 
occurrences until time t. A point process is a Hawkes process if its conditional intensity 
function is of the form:

where N(⋅) is defined in Definition 3.
Hawkes processes are point processes who have a so-called “self-exciting” property. It 

means that each occurrence increases the intensity, according to the excitation function. A 
higher intensity leads to more occurrences, leading to a higher frequency, etc. A Hawkes 
process with a null excitation function is a homogeneous Poisson process of rate �.

Definition 6 (Γ-Hawkes Processes). We define the Γ-Hawkes processes, a Hawkes pro-
cess whose excitation function is of form:

where Γ(⋅) is the Gamma function. k1 is the scale parameter and k2 is the shape parameter.

Remark 1 For k1 = 1 , we obtain the exponential excitation function:

(1)�(t|H(t)) = lim
h→0+

�[N(t + h) − N(t)|H(t)]

h
,

(2)�∗(t) = � + ∫
t

0

�(t − u)dN(u) = � +

N(t)∑
k=1

�(t − tk),

(3)�(t) = �
tk1−1 exp(−

t

k2
)

k
k1
2
Γ(k1)

, t ≥ 0, � ∈ ℝ
∗
+
, k1, k2 ∈ ℝ

∗
+
,
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used for instance originally by Hawkes (1971). In this situation:

For k1 > 1 , this excitation function allows to avoid a discontinuity in the intensity func-
tion when an event occurs, and introduce a delay between an event and its impact on the 
process. Indeed, in that case, �(0) = 0 . This property is very helpful when considering 
events for which an occurrence and the resulting self-excitation are delayed.

3  Mathematical Properties

In this section, we are going to explicit some mathematical properties of the Γ-Hawkes 
processes (defined by Eq. (3)): we calculate the expectation and the variance for any time 
t ≥ 0 and we state a central limit theorem.

Assumption 1 For the whole Section 3, we consider a Γ-Hawkes process of conditional 
intensity function:

where � ∈ ℝ
∗
+
, k1, k2 ∈ ℝ

∗
+
 , N(t) ≥ 0 (number of events occurred between 0 and t), tk , 

k ∈ {1, ...,N(t)} for which we are going to explicit results for k1 = 1 and k1 = 2.

This study aims to understand the behaviour of the Hawkes processes in function of 
parameters introduced previously.

3.1  Behaviour in Function of Values of ̨

In this section, we are going to see that the Hawkes process dynamics depend on values of 
� (defined in Assumption 1). To do so, let us focus on g(t) = �[�∗(t)] , which will be used to 
calculate the expectation of the Hawkes process later.

We could show that g follows a renewal equation:

According to Asmussen (2003), the behaviour of g(t), when t goes to infinity, depends 
on the value of:

(4)�(t) = �
exp(−

t

k2
)

k2
, t ≥ 0, � ∈ ℝ

∗
+
, k2 ∈ ℝ

∗
+
,

(5)�∗(t) = � +

N(t)∑
k=1

�
exp(−

t−tk

k2
)

k2
.

(6)�∗(t) = � + ∫
t

0

�(t − u)dN(u) = � + �

N(t)∑
k=1

(t − tk)
k1−1 exp(

−(t−tk)

k2
)

k
k1
2
Γ(k1)

,

(7)g(t) = � + ∫
t

0

�(t − u)g(u)du.

(8)∫
+∞

0

�(u)du = ∫
+∞

0

�
�k1uk1−1 exp(−�u)

Γ(k1)
du = �.
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We distinguish, in the classic literature about point processes:

• The defective case: 𝛼 < 1;
• The proper case: � = 1;
• The excessive case: 𝛼 > 1.

The Hawkes process intensity goes to infinity in the excessive case, leading to an explo-
sion of the counting process. This situation does not suit to any real event we would like to 
model. The proper case is not studied here, because it does not correspond to a real case. 
We concentrate our attention in the defective case. In this case, g admits a finite limit in 
+∞ , which will be calculated later.

Assumption 2 For the rest of the Section 3, we consider a Hawkes process of conditional 
intensity function described in Assumption 1, with 0 < 𝛼 < 1 (defective case).

3.2  Expectation: �(N(t))

The first indicator that seems relevant for our study was the evaluation of the average num-
ber of events through time. We propose a calculation method which could be applied for 
any value of k1 ∈ ℕ

∗ . We will develop the calculations for two values of the shape param-
eter: k1 = 1 (exponential excitation function), k1 = 2 and k1 = 3 . Since a Hawkes process 
is the sum of a background part of intensity � and an self-exciting part, we expect that the 
expectation is higher than for a Poisson process of parameter � , which is �t for all time 
t > 0.

Proposition 2 The expectation of the Γ-Hawkes process (i.e. conditional intensity function 
given by Eq. (6)) is: 

1. For k1 = 1 (i.e. �(t) = �
exp(−

t

k2
)

k2
 , exponential decay): 

2. For k1 = 2 (i.e. �(t) = �
t exp(−

t

k2
)

k2
2

 ): 

3. For k1 = 3 (i.e. �(t) = �
t2 exp(−

t

k2
)

k3
2
Γ(3)

 ): 

(9)�(N(t)) =
�

1 − �
t −

��k2
(1 − �)2

[
1 − exp

(
−

1 − �

k2
t
)]
.

(10)

�(N(t)) =
�

1 − �
t +

�
√
�k2

2(1 +
√
�)2

�
1 − exp

�
−

1 +
√
�

k2
t
��

−
�
√
�k2

2(1 −
√
�)2

�
1 − exp

�
−

1 −
√
�

k2
t
��
.

(11)�(N(t)) =
�

1 − �
t +

��B

k
3
2

exp(−r1t) +
��C

k
3
2

cos(�t) exp(−at) +
��(D − Ca)

k
3
2
�

sin(�t) exp(−at),
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 where 

See Appendix 1 for the proof, which is based on Laplace transform of g(t) = �(�∗(t)) and 
could be applied for any value of k1 . We could notice that despite the formula complexity 
increases with k1 , we could observe several common trends. We first notice that for � → 0 
(null excitation function), we obtain �(N(t)) ⟶

�→0
�t . This result is natural since we already 

mentioned that a Hawkes process with a null excitation function is equivalent to a Poisson 
process of parameter � . For all values of the shape parameter, the expectation reveals three 
regimes for the Γ-Hawkes process. As an example, we represent the expectation for 
k1 = 1, k2 = 9, � = 0.9, � = 0.3 , which follows Eq. (9), in Fig. 1. It contains four plots:

• Top-left: expectation from Eq. (9) in blue and the so-called stationary regime 
t →

�

1−�
t in red, from t = 0 to 3000;

• Bottom-left: the relative difference between the expectation and the stationary 
regime on this time period;

• Top-right: focus on the expectation from t = 0 to 500;
• Bottom-right: plot of the exponential term from Eq.  (9), t → exp

(
−

1−�

k2
t
)
.

We distinguish three regimes in this example:

• The transient regime (from t = 0 to 500 approximately): it is the time period neces-
sary for the exponential term in Eq. (9) to become null;

B =
1

r1(r1a1 − r2
1
− a2)

,C =
r1 − a1

a2(r1a1 − r2
1
− a2)

,D =
r1a1 − a2

1
+ a2

a2(r1a1 − r2
1
− a2)

,

r1 =
1 − �1∕3

k2
, a1 =

(2 + �1∕3)

k2
, a2 =

(1 − �)

(1 − �1∕3)k2
2

, a =
(2 + �1∕3)

2k2
,� =

√
3�1∕3

2k2
.

Fig. 1  Number of claims per day processed by Foyer Assurances and labelled as natural disasters since 
2015
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• The intermediary regime (from t = 500 to 2000 approximately): the exponential 
term is null but the constant term could not be neglected before the stationary 
regime. On this period, the relative difference between the expectation and the sta-
tionary regime is above 5 %;

• The stationary regime: for any value of the parameter scale, and for any Hawkes 
process (not only for Γ-Hawkes processes), �(N(t)) ∼

t→+∞

�

1−�
t (see Gao (2018)). The 

constant term in Eq. (9) becomes negligible before the linear term. After the first 
two regimes, the average number of occurrences of the Hawkes process is the same 
as for a Poisson process of parameter �

1−�
.

We conclude in this discussion that the expectation could not be approximated cor-
rectly by the stationary regime from t = 0 to 2000. We will see that this point will have 
an impact on our use case study.

3.2.1  Variance: � (N(t))

We study now the variance of the Hawkes process, in order to see how the occurrences 
are spread out from the expectation calculated previously. We define Ñ(⋅) as the station-
ary Hawkes process.

Proposition 3 The variance of the stationary Γ-Hawkes process (i.e. the conditional inten-
sity function is given by Eq. (6)) is: 

1. For k1 = 1 (i.e. �(t) = �
exp(−

t

k2
)

k2
 ): 

2. For k1 = 2 (i.e. �(t) = �
t exp(−

t

k2
)

k2
2

 ): 

(12)� (Ñ(t)) =
�

(1 − �)3
t −

��(2 − �)k2
(1 − �)4

[
1 − exp

(
−

1 − �

k2
t
)]
.

(13)

� (Ñ(t)) = C1 + C2t + C3 exp(−�1t) + C4 exp(−�2t), where:

�1 =
1 +

√
�

k2
,

�2 =
1 −

√
�

k2
,

C1 =
−�k2�[8 − 5� + �2]

2(1 − �)4
,

C2 =
�

(1 − �)3
,

C3 =
−
√
��k2[4 − 3� −

√
��]

4(1 − �)2(1 +
√
�)2

,

C4 =

√
��k2[4 − 3� +

√
��]

4(1 − �)2(1 −
√
�)2

.
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See Appendix 2 for the proof, in which we use the classic assumption that covariance 
density does not depend on time, assumption valid only if the process is stationary. How-
ever, we remark that theoretical variance is close to the results from simulations (we pro-
pose a method to simulate Hawkes processes in Appendix 3), see Section 4.5 for a com-
parison between simulated and actual variance. A similar comparison in Bacry et al. (2015) 
shows that theoretical variance based on stationary assumptions is a fine approximation as 
well. Therefore, we consider that � (N(t)) approximately equals � (Ñ(t)) from now on.

Let us observe the behaviour of the variance. We first notice that for � → 0 (null excita-
tion function), we obtain � (N(t)) ⟶

�→0
�t . This result is natural since we already mentioned 

that a Hawkes process with a null excitation function is equivalent to a Poisson process of 
parameter � . Secondly, we remark that � (N(t)) ∼

t→+∞

�

(1−�)3
t . We have seen previously that 

�(N(t)) ∼
t→+∞

�

1−�
t : it is natural that we obtain as a limit a variance greater than �

1−�
t since a 

Hawkes process is more volatile than a Poisson process. The limit of the variance is calcu-
lated in Proposition 3 from Gao (2018), which gives the same result. It is also possible to 
do an analysis in terms of regimes similar to the expectation.

3.3  Central Limit Theorem for Hawkes Processes

From Theorem 2 of Bacry et al. (2012), we state a central limit theorem for Hawkes pro-
cess, when t → +∞ . The following proposition is true for any k1 ≥ 1:

Proposition 4 (Central Limit Theorem for Hawkes Processes)

where:

• �̄� =
𝜆

1−𝛼
;

• �2 =
�

(1−�)3
;

• B(1) is a standard Brownian motion;
• d

= means equality in distribution.

We recognize in this central limit theorem the limits of expectation and variance calcu-
lated previously. The central limit theorem gives the distribution of the number of events at 
a large time horizon.

4  Use Case: Natural Disasters in Luxembourg

In this section, we present an insurance use case. Natural disasters are one of the types of 
rare events who could occur in any insurance setting. We apply it in the case of Luxem-
bourg, with data from insurance. They are mainly storms and gusts of wind, whose fre-
quency seems to increase for these last five years. This trend may be explained by climate 
imbalance (see public data about climate change in Luxembourg Online (2019)).

(14)lim
t→+∞

N(t) − �̄�t√
t

d
=𝜎B(1),
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After introducing the data provided by Foyer Assurances in Section  4.1, we present the 
parameters estimated on these data in Section  4.2. Then we justify the choice of using a Γ
-Hawkes process and its study on a transient regime by first comparing the goodness-of-fit of our 
approach with several models by a statistical test, then simulating data and observing the number 
of events from these simulations to check whether our Γ-Hawkes process fits with the data.

4.1  Presentation of the Data

Foyer Assurances has provided data about natural disasters and home insurance. Figure 2 
shows the number of home insurance claims per day processed by Foyer Assurances for 
which the natural disasters cover was used, from January 2015 to December 2019.

This timeline shows the low frequency and the high severity of this kind of event. The 
peaks correspond to specific weather conditions:

• 31/03/15: “Niklas” storm;
• 16/09/15: “Henri” ex-tropical storm;
• 09/02/16: gusts of wind in East France and Luxembourg;
• 13/01/17: “Egon” cyclone: storm, snow;
• 03/01/18: “Eleanor” storm;
• 10/03/19: gusts of wind in East France and Luxembourg;
• 09/08/19: exceptional tornado in Luxembourg.

We model the occurrence of claims thanks to a Hawkes process. The branching struc-
ture introduced in Appendix 4 may suggest that one claim must be triggered by one another 
specific claim, which is not the case in reality. But Hawkes processes are well suited for 
modelling high-frequency periods of occurrence where the causality between events is not 
trivial as well and where there is a clustering effect due to an underlying cause (i.e. a natu-
ral disaster). For instance, Hawkes processes are well established to model high-frequency 
trades in finance, while one trade is not directly triggered by another (see Bacry et  al. 
(2015)).

4.2  Parameters Estimation

To model the type of event introduced previously, we propose a Γ-Hawkes process:

where ND is an abbreviation for natural disasters and with k1,ND = 2 . This choice of model 
could be justified a priori as follows:

• Self-exciting property: a unique background event which occurs rarely (e.g. a storm) and 
is taken into account by the background intensity in the model, triggers a sequence of 
numerous claims around the country. The more claims there is, the more serious the event 
is, the more likely new claims are: this dynamic is modelled by the self-exciting part of 
the intensity. Thus, we are expecting that the exciting part of the process has more impor-
tance than the background part, which should lead to a �ND value greater than �ND.

(15)�∗ND(t) = �ND +

n∑
k=1

�ND
(t − tk)

k1,ND−1

Γ(k1,ND)k
k1,ND

2,ND

exp
(
−

(t − tk)

k2,ND

)
,
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• Gamma density intensity function of parameter k1,ND = 2 : there is a delay between the 
occurrence of claims on the different Luxembourgish cities. The storm reaches the Luxem-
bourg regions at different times. This function allows us to model this delay. Also, even if 
we check that closed numerical values for k1,ND performed similarly, we select k1,ND = 2 to 
develop an interpretation of results based on closed-form formulae calculated above.

We estimate parameters thanks to EM algorithm, introduced in Appendix 4. Estimation 
leads to the following parameters in Table 1. We used the R library hawkes, developed by 
the authors of Halpin and De Boeck (2013), to implement the estimation. We also propose 
the standard deviation of the estimations, from the inverse of the Fisher information matrix 
that we compiled numerically (see Ly et al. (2017)).

Fig. 2  Counting process and intensity since 2015 / Cumulated number of natural disasters events in Luxem-
bourg since 2015 (in blue) and the intensity of the estimated Hawkes process (in red)

Table 1  Estimated values of 
the HP parameters by the EM 
algorithm

Parameter Estimated value Standard 
deviation

�ND 0.26 0.11

�ND 0.92 0.34
k
ND

2
8.77 4.24
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We see that 𝛼ND > 𝜆ND , as expected, and that �ND is close to 1. Since the expectation is 
proportional to 1

1−�ND
 (we recall that �(N(t)) ∼

t→+∞

�ND

1−�ND
t ), this value of �ND should lead to a 

high average number of events.
Figure 3 presents the evolution of the cumulative number of events (in blue) and the 

estimated intensity of the Γ-Hawkes process (in red). We see that intensity peaks corre-
spond to the meteorological events described previously.

4.3  Goodness‑of‑Fit and Comparison with Other Models

After the parameters estimation, we need to check if this model makes sense. The follow-
ing proposition from Daley and Vere-Jones (2003), called residual analysis, allows us to 
test the quality of the model.

Proposition 5 (Residual Analysis) We consider a sequence of occurrence times {t1, t2, ...} 
and a monotonic, continuous compensator Λ(t) = ∫ t

0
�∗(s)ds such that lim

t→+∞
Λ(t) = +∞ 

almost surely. The sequence {Λ(t1),Λ(t2), ...} is a Poisson process with an unit rate if and 
only if {t1, t2, ...} is a realisation from the point process defined by �∗(⋅).

Thanks to this proposition, we could test with many procedures whether our data 
fit with a Hawkes process. The previous proposition shows us that testing whether 
{t1, t2, ...} follows a Hawkes process with intensity function � is equivalent to test whether 
{Λ(t1),Λ(t2), ...} form a Process process of parameter 1. It is also equivalent to test whether 
every interarrival time {Λ(t1),Λ(t2) − Λ(t1),Λ(t3) − Λ(t2), ...} are independent and identi-
cally distributed and follow an Exponential law of parameter 1. This could be done by:

• A Quantile-Quantile plot (QQ-plot), which represents quantiles of both distributions;

Fig. 3  QQ-plot and Kolmogorov-Smirnov test for set of parameters estimated by EM algorithm
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• Performing a Kolmogorov-Smirnov test, whose statistic D is the maximum absolute 
difference between the two distributions.

Figure 4 is a QQ-plot which allows us to compare the distribution of our data and the 
distribution of the Γ-Hawkes process with the estimated parameters. We also perform a 
Kolmogorov-Smirnov test.

The p-value of the statistical test is greater than 5% , which means that we cannot reject 
the hypothesis that the data follow the estimated Γ-Hawkes process.

We compare the results with three other models:

• An homogeneous Poisson process, since it is the simplest point process and is equivalent to a 
Hawkes process with no self-excitation, whose rate is the average number of events per day;

• A Random Forest Regressor, a time series approach in order to take into account tem-
poral dependencies;

• A Hawkes process with an exponential excitation function and a power-law kernel, in 
order to check whether another excitation function would have better performances 
than the Gamma density, whose parameters are estimated by the EM algorithm (see 
Table 2). The exponential excitation function is in Eq. (4). We propose for a power-law 
excitation function the following equation: 

The QQ-plots for the two models are represented on Fig. 5:
As expected, an homogeneous Poisson process is not enough to model this type of 

event. We need to take into account the self-excitation property of the process. We could 
also see that the fitting is better with a Gamma excitation function than an exponential or 
a power-law decay, which validates our study a posteriori. We remark that the exponential 

(16)�(t) =
�

(t + �)�

Fig. 4  QQ-plot and Kolmogorov-Smirnov test for an homogeneous Poisson process (left) and a Hawkes 
process with an exponential (center) and a power-law excitation function (right)

Table 2  Estimated value of 
the HP parameters by the EM 
algorithm for an exponential and 
a power-law excitation function

Parameter Estimated value - 
exponential

Estimated value - 
power-law

�ND 0.29 0.25

�ND 0.91 0.92
k
ND

2
9.03 -

�ND - 0.71
�ND - 5.56
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and the power-law functions provide the same type of self-excitation with no delay, as we 
plot the fitted functions in Fig. 6.

4.3.1  Random Forest Regressor

In order to catch the temporal dependency of the natural disasters, we compare with a time 
series approach. We present here the results given by Random Forest Regressor (see Breiman 
and Forests (2001) for details about Random Forest), which fitted better that other types of time 
series models in terms of Kolmogorov-Smirnov test (ARIMA, ARMA, GARCH, Prophet). We 
used the scikit-learn estimator sklearn.ensemble.RandomForestRegressor and the parameters 
presented in Fig. 6.

We learned the time series from January 2015 to June 2019 and we predicted the num-
ber of events over 100 days from July 2019. Figures 7 and 8 shows the prediction (in blue) 
versus the real data (in orange, the peak corresponds to the tornado in August 2019).

Fig. 5  Excitation functions with 
respect to time : exponential 
(black), Gamma (blue), power-
law (red)

Fig. 6  Parameters used for Random Forest Regressor
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We then compared the distribution of the interarrival times of the prediction with the 
distribution of the interarrival times of the actual time series with a QQ-plot in Fig. 9.

We could see that this approach does not allow to catch the severe peaks which charac-
terize this time series. This kind of approach is more efficient on data with seasonality and 
a regular trend.

4.4  Simulations

Moreover, we must make sure that our model is able to replicate severe events like those 
observed in our data. We verify that simulated trajectories present the same structure 

Fig. 7  Prediction of the time series by a Random Forest Regressor

Fig. 8  Prediction of the time series by a Random Forest Regressor
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than the actual time series: few severe events between very calm periods. Figure  10 
shows the simulation of 20 trajectories over five years according to our estimated 
Hawkes process.

Fig. 9  Simulation of 20 trajectories over five years for set of parameters estimated by EM algorithm

Fig. 10  Simulation of 20 trajectories over five years for four set of parameters
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Most of the simulated trajectories do not present the expected step function structure, 
observed with real insurance data. The evolution of the process counting is too smooth for 
these simulations, if we compare the dynamics between Figs. 3 and 6.

Let us see what happens with another set of parameters. Since the expectation of the 
process assuming stationarity is proportional to �ND

1−�ND
 , we slighty change �ND and �ND so 

that stationary expectation remains the same. Moreover, as we would like to have larger 
jumps in the trajectory, it means that the importance of the self-exciting part of the process 
should be higher. Thus, we will increase the value of �ND . We propose the same type of 
simulation over five years for different sets of (�ND, �ND) in Fig. 11.

Results show that increasing �ND allows indeed the process to be more volatile and with 
more severe events. Simulated trajectories are more alike actual data for the different sets 
of parameters. The higher is �ND , the larger are the jumps. In order to quantify the capacity 
to generate scenarios with severe events, we evaluate by a Monte-Carlo method the average 

Fig. 11  Average number of times 
the process reaches a threshold of 
500 events in a period of time of 
1825 days

Fig. 12  QQ-plot and Kolmogorov-Smirnov test for four set of parameters
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number of times the process reaches a threshold of 500 events in a period of time of 1825 
days (five years), by performing 1000 simulations. We present the results on Fig. 12.

The Monte-Carlo estimation shows that the higher is � , the higher is the average value 
of severe events. Therefore it confirms that another set of parameters could be more appro-
priate in terms of ability to generate disasters observed on real data.

In terms of goodness-of-fit, Fig. 13 shows QQ-plot for each set of parameters.
Figure 13 illustrates that goodness-of-fit is worse for each set of parameters, when com-

paring to the first set of parameters we estimated by our approach (see Fig. 4). Indeed, for 
each set of parameters we could reject the hypothesis that the Hawkes process fits the data. 
We eventually have a set of parameters which maximizes the goodness-of-fit (the one esti-
mated by the EM algorithm), but another which seems to catch better the dynamics of the 
time series (a set with a higher �ND ). It is explained by the fact that the goodness-of-fit is 
evaluated on the entire distribution, by computing the distance on all the quantiles of the 
distribution. Whereas the dynamics of the natural disasters rely on the accumulation of 
grouped events, which are the smallest quantiles of the distribution. By the way we could 
see on Fig. 13 that the distribution gets worse on medium quantiles. There is an imbalance 
between the quality of simulations and the statistical tests, which illustrates the difficulty to 
estimate the right set of parameters for a Hawkes process.

4.5  Distribution of the Number of Events

In this subsection, we observe the distribution of N(t), where t = five years. We perform 
1000 simulations of the Hawkes processes, with the first set of parameters estimated, for a 
time period of five years. We observe the errors distribution in Fig. 14, N(t)−�̄�t√

t
 , and we com-

pare with a Normal distribution of variance �2 =
�

(1−�)3
t.

Fig. 13  Distribution of errors at 
the end of the five years

Fig. 14  A realisation of a Hawkes process and its branching structure
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We see that the mean of errors is different from zero. The distribution of errors does 
not follow the Normal distribution, as the process is not observed long enough to be close 
to its limit. This observation justifies our mathematical study a posteriori, since the study 
of limits is not enough. We need the transitory values of the expectation and the variance, 
even for a long five years period.

Numerically, from Eqs. (10) and (13) we obtain:

with t in days.
The following table presents the observed, calculated and limit value of expectation and 

variance at the final time of simulations.
This table confirms that calculated expectation and variance give the correct values and 

that focusing on limits is not sufficient to study a process over several years, which is a 
quite long period for insurance use cases. Thanks to numeric values provided by Eqs. (23) 
and (24), we could see that we are still in either the transient state or the intermediary state 
for t = 5 years = 1825 days: while exponential terms are close to zero for both expectation 
and variance, the difference between the actual value (third column of Table  3) and the 
limit value (fourth column) is explained by the constant terms. The order of magnitude of 
these constant terms shows that the limit values are not a good approximation for a period 
of several years. That justifies our study on the different regimes.

5  Conclusion and Future Work

In this paper, we introduced a complete framework for the study of Hawkes process: defini-
tion, estimation and simulation. We presented a specific form of Hawkes processes, the Γ
-Hawkes process, and we developed mathematical properties for this category of process. 
We applied this model to an insurance use case, i.e. natural disasters, and we observed that 
the considered Hawkes process is well fitted with historical data.

For future work, we intend to apply this model to other insurance use cases, such that:

• Life events prediction: births, marriage, job change, etc. We could use a multi-variate 
version of Hawkes processes (see Laub et  al. (2015)), since one type of event could 
trigger another (e.g. a marriage could lead to a birth);

• Epidemic: we already studied the dynamics of Covid-19 pandemic in Lesage (2020). 
We intend to adapt the study to a long class of diseases;

• Workload prediction: we would like to anticipate peaks of workload for Foyer Assur-
ances employees in order to optimize staffing.

(17)
�(N(t)) = −655.55 + 3.25t − 0.28 exp(−0.22t) + 655.84 exp(−0.004t),

� (N(t)) = −82154.94 + 383.66t − 6.01 exp(−0.22t) + 82160.95 exp(−0.004t),

Table 3  Observed, calculated 
and limit value of expectation 
and variance

Quantity Observed value Calculated value Limit value: 
linear term

Expectation 5265.2 5275.8 5931.2
Variance 621988.3 618039.4 700177.6
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Appendix

Appendix 1

Proof of the Proposition 2. 

1. Laplace transform of g(t) = �[�∗(t)] Since �(N(t)) = ∫ t

0
�[�∗(t)]dt , we first focus on 

�[�∗(t)] , that we denote g(t). We saw that: 

 We recognize a convolution product of g and � , denoted g ∗ � . Therefore it is much 
easier to work into Laplace domain, since L

[
g ∗ �(t)

]
(s) = L

[
g(t)

]
(s) × L

[
�(t)

]
(s) . By 

transforming Eq. (25) into Laplace domain: 

  By rearranging, we obtain: 

2. Inverse of g(t) Laplace transform We turn the Laplace transform into the temporal 
domain. In our study, � is a Gamma density function and is given by Eq. (3). We can 
show that the Laplace transform is (see D’Azzo and Houpis (1988)): 

  By using Eq. (26) in Eq. (27), we obtain: 

• For k1 = 1 (see Eq. (5)): 

  By transforming Eq. (28) into the temporal domain, we obtain: 

(18)g(t) = � + ∫
t

0

�(t − u)g(u)du.

L
[
g(t)

]
(s) = L

[
� + ∫

t

0

�(t − u)g(u)du
]
(s)

= L
[
�
]
(s) + L

[
�(t)

]
(s) × L

[
g(t)

]
(s).

(19)L
[
g(t)

]
(s) =

L
[
�
]
(s)

1 − L
[
�(t)

]
(s)

.

(20)L
[
�(t)

]
(s) =

�

(1 + k2s)
k1
.

(21)L
[
g(t)

]
(s) =

L
[
�
]
(s)

1 − L
[
�(t)

]
(s)

=
�

s
(
1 −

�

(1+k2s)
k1

) .

(22)L
[
g(t)

]
(s) =

�

s
(
1 −

�

(1+k2s)

) =

( �

1−�

)

s
−

( ��

1−�

)
1−�

k2
+ s

.

(23)g(t) = �(�∗(t)) =
�

1 − �
−

��

1 − �
exp

(
−

1 − �

k2
t
)
.
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• For k1 = 2 (see Eq. (4)): 

  By turning Eq. (29) into the temporal domain, we obtain: 

• For k1 = 3 (see Eq. (4)): 

 (A, B, C, D) is the solution of the following linear system: 

  The solution is: 

(24)

L
�
g(t)

�
(s) =

�

k2
2
s
� 1+

√
�

k2
+ s

�� 1−
√
�

k2
+ s

� +
2�

k2
� 1+

√
�

k2
+ s

�� 1−
√
�

k2
+ s

�

+
�s

� 1+
√
�

k2
+ s

�� 1−
√
�

k2
+ s

� .

(25)g(t) = �(�(t)) =
�

1 − �
+

�
√
�

2(1 +
√
�)

exp
�
−

1 +
√
�

k2
t
�

(26)−
�
√
�

2(1 −
√
�)

exp
�
−

1 −
√
�

k2
t
�
.

(27)L
[
g(t)

]
(s) =

�

s
(
1 −

�

(1+k
2
s)3

) =
�

s
+

��

s((1 + k
2
s)3 − �)

=
�

s
+

��

k3
2
s(s +

1−�1∕3

k
2

)(s2 + a
1
s + a

2
)

(28)=
�

s
+

��

k
3
2

[
A

s
+

B

s + r1

+
Cs + D

(s + a)2 + �2

]
by partial fraction decomposition, where:

(29)

r1 =
1 − �1∕3

k2
,

a1 =
(2 + �1∕3)

k2
,

a2 =
(1 − �)

(1 − �1∕3)k2
2

,

a =
(2 + �1∕3)

2k2
,

� =

√
3�1∕3

2k2
.

⎧⎪⎨⎪⎩

A + B + C = 0

(a1 + r1) A + a1 B + r1 C + D = 0

(a2 + r1a1) A + a2 B + r1 D = 0

r1a2 A = 1
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  Therefore the Laplace transform equals: 

 By turning Eq. (31) into the temporal domain, we obtain: 

3. Calculation of �(N(t)) from g(t) From g(t), we calculate �(N(t)) : 

 which leads us to Eqs. (9), (10) and (11).

Appendix 2

Proof of the Proposition 3, inspired from Appendix A.2 of Laub et al. (2015). 

1. Link between the variance and the covariance density Φ(�) We calculate the variance 
from the so-called covariance density Φ(�) , 𝜏 > 0 , defined in Hawkes (1971). According 
to Hawkes (1971), the covariance density is given by the following equation: 

 where �̄� =
𝜆

1−𝛼
 . Considering the stationary Hawkes process Ñ(⋅) , the variance � (Ñ(t)) 

and the covariance density are linked by the following equation: 

(30)

A =
1

r1a2
,

B =
1

r1(r1a1 − r2
1
− a2)

,

C =
r1 − a1

a2(r1a1 − r2
1
− a2)

,

D =
r1a1 − a2

1
+ a2

a2(r1a1 − r2
1
− a2)

.

(31)

L
[
g(t)

]
(s) =

�

s
+

��

k3
2

[
A

s
+

B

s + r
1

+
Cs + D

(s + a)2 + �2

]
=

�

s
+

��

k3
2

[
A

s

+
B

s + r
1

+
C(s + a)

(s + a)2 + �2
+

(D−Ca)

�
�

(s + a)2 + �2

]

(32)=
�

(1 − �)s
+

��B

k3
2
(s + r1)

+
��C

k3
2

(s + a)

(s + a)2 + �2
+

��(D − Ca)

k3
2
�

�

(s + a)2 + �2

(33)g(t) = �(�(t)) =
�

1 − �
+

��B

k3
2

exp(−r1t) +
��C

k3
2

cos(�t) exp(−at) +
��(D − Ca)

k3
2
�

sin(�t) exp(−at).

(34)�(N(t)) = ∫
t

0

g(t)dt,

(35)
Φ(𝜏) = �̄�𝜇(𝜏) + ∫

𝜏

−∞

𝜇(𝜏 − u)Φ(u)du

= �̄�𝜇(𝜏) + ∫
+∞

0

𝜇(𝜏 + u)Φ(u)du + ∫
𝜏

0

𝜇(𝜏 − u)Φ(u)du,
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2. Laplace transform of Φ(�) We first calculate Φ(�) . We recognize a convolution product 
in Eq. (34). Thus we work in the Laplace domain: 

 For k1 = 2: 

  By using the definition of the Laplace transform: 

  By replacing l1(s) in Eq. (36) we obtain: 

(36)� (�N(t)) = �̄�t + 2∫
t

0 ∫
t1

0

Φ(t2 − t1)dt1dt2.

(37)L
[
Φ(𝜏)

]
(s) = L

[
�̄�𝜇(𝜏) + ∫

+∞

0

𝜇(𝜏 + u)Φ(u)du + ∫
𝜏

0

𝜇(𝜏 − u)Φ(u)du
]
(s)

(38)
= �̄�L

[
𝜇(𝜏)

]
(s) + L

[
∫

+∞

0

𝜇(𝜏 + u)Φ(u)du
]
(s)

�����������������������������������������
=∶l1(s)

+L
[
Φ(𝜏)

]
(s) × L

[
𝜇(𝜏)

]
(s)

l1(s) = L
[
∫

+∞

0

�(� + u)Φ(u)du
]
(s)

= L
[
∫

+∞

0

�(� + u) exp(−
�+u

k2
)

k2
2

Φ(u)du
]
(s)

= L
[
∫

+∞

0

�� exp(− �

k2
) exp(−

u

k2
)

k2
2

Φ(u)du
]
(s)

+ L
[
∫

+∞

0

�u exp(− �

k2
) exp(−

u

k2
)

k2
2

Φ(u)du
]
(s).

l1(s) =
�

k2
2
∫

+∞

0

� exp(−(s +
1

k2
)�)

[
∫

+∞

0

exp(−
u

k2
)Φ(u)du

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

L

[
Φ(�)

]
(
1

k2
)

d�

+
�

k2
2
∫

+∞

0

exp(−(s +
1

k2
)�)

[
∫

+∞

0

u exp(−
u

k2
)Φ(u)du

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

−L
[
Φ(�)

]�
(
1

k2
)

d�

=
�

k2
2
(s +

1

k2
)

[
1

(s +
1

k2
)
L
[
Φ(�)

]
(
1

k2
) − L

[
Φ(�)

]�
(
1

k2
)
]
.

(39)
L
[
Φ(𝜏)

]
(s) = �̄�L

[
𝜇(𝜏)

]
(s) +

𝛼

k2
2
(s +

1

k2
)

[
1

(s +
1

k2
)
L
[
Φ(𝜏)

]
(
1

k2
) − L

[
Φ(𝜏)

]�
(
1

k2
)
]

+ L
[
Φ(𝜏)

]
(s) × L

[
𝜇(𝜏)

]
(s).
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  To solve Eq. (38) and find Φ , we need to calculate L
[
Φ(�)

]
(
1

k2
) and L

[
Φ(�)

]�
(
1

k2
) . 

First, by substituting s = 1

k2
 in Eq. (38), rearranging and using Eq. (27) for L

[
�(�)

]
(s) , 

we obtain: 

  Second, by differentiating Eq. (38), we obtain: 

  By substituting s = 1

k2
 in Eq. (40), rearranging and using Eq. (27) for L

[
�(�)

]
(s) and 

L
[
�(�)

]�
(s) , we obtain: 

  Equations (39) and (41) form a system of two equations with two variables, 
L
[
Φ(�)

]
(
1

k2
) and L

[
Φ(�)

]�
(
1

k2
) . Solving this system leads to: 

   We can now solve Eq. (38). After rearranging: 

3. Inverse Laplace transform of Φ(�) We turn the Laplace transform of Φ(�) into the tem-
poral domain. For k1 = 2 , we can show that: 

 where: 

(40)L
[
Φ(𝜏)

]�
(
1

k2
) +

(2 − 𝛼)k2
𝛼

L
[
Φ(𝜏)

]
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1

k2
) =

�̄�k2
2

.

(41)
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𝜇(𝜏)
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2𝛼L
[
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]
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k2
)
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1

k2
)3

+
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1

k2
)
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1
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𝜇(𝜏)
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(s)L

[
Φ(𝜏)

]
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]
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(42)L
[
Φ(𝜏)

]�
(
1

k2
) +

𝛼k2
(2 − 𝛼)

L
[
Φ(𝜏)

]
(
1

k2
) =

−�̄�k2𝛼

2(2 − 𝛼)
.

(43)
L
[
Φ(𝜏)

]
(
1

k2
) =

�̄�𝛼

4(1 − 𝛼)
,

L
[
Φ(𝜏)

]�
(
1

k2
) =

−�̄�𝛼k2
4(1 − 𝛼)

.

(44)

L
�
Φ(𝜏)

�
(s) =

𝛼[�̄� + L
�
Φ(𝜏)

�
(
1

k2
) +

√
𝛼

k2
L
�
Φ(𝜏)

��
(
1

k2
)]

k2
2
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1+
√
𝛼

k2
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1−
√
𝛼

k2
)

−
𝛼L

�
Φ(𝜏)

��
(
1

k2
)

k2
2
(s +

1−
√
𝛼

k2
)

=
−
√
𝛼[�̄� + L

�
Φ(𝜏)

�
(
1

k2
) +

√
𝛼

k2
L
�
Φ(𝜏)

��
(
1

k2
)]

2k2(s +
1+

√
𝛼

k2
)

+

√
𝛼[�̄� + L

�
Φ(𝜏)

�
(
1

k2
) −

√
𝛼

k2
L
�
Φ(𝜏)

��
(
1

k2
)]

2k2(s +
1−

√
𝛼

k2
)

.

(45)Φ(�) = D1 exp(−�1�) + D2 exp(−�2�),
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4. Calculation of � (Ñ(t)) from Φ(�) From Eqs. (35) and (42), we calculate � (Ñ(t)).

  ◻  

Appendix 3

Simulaion is performed thanks to Ogata’s thinning algorithm. The idea of Ogata’s thin-
ning algorithm is that randomly removing points from a “faster” simulated Poisson pro-
cess (i.e. with a higher intensity function than targeted Hawkes process) allows to simu-
late a Hawkes process. This idea is based on the proposition below, which is inspired 
from Theorem 4.2 of Chen (2016):

We consider a point process, with conditional intensity function �∗(⋅) . We also con-
sider an upper-bound for �∗(⋅) , �̄� ≥ 0 , and a Poisson process N̄ of parameter �̄� of jump-
ing times T̄i, i ≥ 1 . Then the point process defined by:

where (Ui) are i.i.d and follow an uniform distribution on [0, 1], is a process of conditional 
intensity function �∗(⋅).

A formulation of Ogata’s thinning algorithm is proposed in Laub et  al. (2015) for 
instance. We notice that the use of a Gamma excitation function does not change the 
classic algorithm.

Appendix 4

We first present an interpretation of Hawkes processes introduced in Halpin and De 
Boeck (2013), useful to understand better the estimation algorithm. Events occurring in 
a Hawkes process could be seen as a population, which expands either by immigration 

(46)

𝜔1 =
1 +

√
𝛼

k2
,

𝜔2 =
1 −

√
𝛼

k2
,

D1 =
−
√
𝛼[�̄� + L

�
Φ(𝜏)

�
(
1

k2
) +

√
𝛼

k2
L
�
Φ(𝜏)

��
(
1

k2
)]

2k2

=
−
√
𝛼�̄�[4 − 3𝛼 −

√
𝛼𝛼]

8k2(1 − 𝛼)2
,

D2 =

√
𝛼[�̄� + L

�
Φ(𝜏)

�
(
1

k2
) −

√
𝛼

k2
L
�
Φ(𝜏)

��
(
1

k2
)]

2k2

=

√
𝛼�̄�[4 − 3𝛼 +

√
𝛼𝛼]

8k2(1 − 𝛼)2
.

(47)N(t) =
∑
i≥1

�
{T̄i≤t,Ui≤ 𝜆∗(T̄i )

�̄�
}
,
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or births. Immigrants correspond to occurrences due to the background intensity, which 
are spontaneous. Births correspond to occurrences due to the self-exciting part of the 
intensity, which are a consequence of the previous occurrences. We can consider that 
the Hawkes process is a sum of independent Poisson processes, where each occurrence 
would be a consequence of one of these Poisson processes:

where �∗(⋅) , N(⋅) and �(⋅) were introduced previously.

• The number of spontaneous occurrences is a Poisson process of rate � over [0, �] , 
where � ≥ 0 is the final time of observation. We denote �∗

0
(t) = �;

• The number of responses to each event ti, i ≥ 1 is a Poisson process of rate �(t − ti) 
over [ti, �] . We denote �∗

i
(t) = ��(t − ti).

Definition 7 (Process of Response). For each event Ti , we introduce the random variable 
Zi , which indicates the process to which the event belongs.

As an example, we consider the realisation of a Hawkes process, represented in the 
Fig. 15.

• Z1 = 0 : event T1 is a spontaneous occurrence.
• Z2 = 1 : event T2 is a response to event T1.
• Z3 = 1 : event T3 is a response to event T1.
• Z4 = 3 : event T4 is a response to event T3.
• Z5 = 0 : event T5 is a spontaneous occurrence.
• And so on.

We could now detail a method to estimate parameters of Hawkes processes, developed 
in Halpin and De Boeck (2013) in particular. First, we define the likelihood of Hawkes 
processes.

Definition 8 (Observations Likelihood). Let us consider N(⋅) a point process of inten-
sity function �∗(⋅) , on time period [0, �] , 𝜏 > 0 . We denote T = {T1, ...,TN(�)} the jumping 
times until time � . We observe N(�) = n and T = {t1, .., tn} . Observations log-likelihood 
�({t1, .., tn}, �) of N(⋅) is:

where � is the set of parameters to estimate (i.e. � and parameters of the excitation function 
�).

Then we define the so-called complete likelihood, when assuming that {Z1, ...,Zn} intro-
duced in Definition 7 are observed.

(48)�∗(t) = � +

N(t)∑
k=1

�(t − tk) =

N(t)∑
i=0

�∗
i
(t),

(49)�({t1, .., tn}, �) =

n∑
i=1

log
(
�∗(ti)

)
− ∫

�

0

�∗(s)ds,
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Definition 9 (Complete Likelihood). Assuming we observe {Z1, ...,Zn} = {z1, ..., zn} , 
then complete log-likelihood is:

where Λz(�) = ∫ �

0
�∗
z
(s)ds . This complete likelihood allows us to build the Expectation-

Maximization algorithm (or EM algorithm), which will estimate the parameters of Hawkes 
processes by minimizing this likelihood. We first define the quantity Q(�|��

) below.

Definition 10 We define:

where � and �′ are two sets of parameters and whose computation is the E step of the EM 
algorithm (see Proposition 6).

We can show that:

This Eq. (52) will be useful to describe the EM algorithm. This algorithm is based on 
the following proposition, which states that the iterative maximization of Q(�|��

) allows 

(50)�({t1, .., tn}, {z1, z2, ..., zn}, �) =

n∑
z=1

[ n∑
i=1

log
(
�∗
z
(ti)

)
�zi=z

− Λz(�)
]
,

(51)Q(�|��

) = �

[
l({t1, .., tn}, {Z1, ...,Zn}, �)

|||{t1, .., tn}, �
�
]
,

(52)Q(�|��

) =

n∑
z=1

[ n∑
i=1

log
(
�∗
z
(ti)

)
ℙ
[
Zi = z||{t1, .., tn}, ��]

− Λz(�)
]
.

Fig. 15  Expectation for k
1
= 1, k

2
= 9, � = 0.9, � = 0.3
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to converge to a local maximum of the complete likelihood. In other words, maximizing 
Q(�|��

) allows to estimate parameters (see Section 1.5 of McLachlan and Krishnan (1996) 
for the proof).

Proposition 6 The sequence defined by �(m+1) = argmax
�

Q(�|�(m)) converges to a local 

maximum of �({t1, .., tn}, �) , the observations likelihood.

Then we write the EM algorithm: 

1. Initialize m = 0 , �(m) = �0
2. While convergence:

• [E step] Compute ℙ
[
Zi = z||{t1, .., tn}, �(m)

]
• [M step] Compute �(m+1) = argmax

�
Q(�|�(m)) → maximization by Nelder-Mead 

method (see Nelder (1965))
• m = m + 1.

To check the accuracy of the estimation, we simulate a Hawkes process over five years, 
we estimate the parameters and we compare estimation and actual parameters. We 
notice that the estimation is pretty accurate, except for the scale parameter k2 but its 
impact is lower than the other parameters. Table 4 compares the two sets of parameters.
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