
Hawkes processes in finance

Emmanuel Bacry1, Iacopo Mastromatteo1, and Jean-François Muzy1,2
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Abstract

In this paper we propose an overview of the recent academic literature devoted to
the applications of Hawkes processes in finance. Hawkes processes constitute a partic-
ular class of multivariate point processes that has become very popular in empirical
high frequency finance this last decade. After a reminder of the main definitions and
properties that characterize Hawkes processes, we review their main empirical appli-
cations to address many different problems in high frequency finance. Because of their
great flexibility and versatility, we show that they have been successfully involved in
issues as diverse as estimating the volatility at the level of transaction data, estimating
the market stability, accounting for systemic risk contagion, devising optimal execution
strategies or capturing the dynamics of the full order book.

1 Introduction

The availability of high frequency financial data during the last decades allowed the
empirical finance to devise and calibrate models of market microstructure, aiming
at accounting for the intraday market dynamics in its finest details. Until recently,
there were only few continuous time models for the high frequency price variations.
Most approaches relied on discrete time models that consist either in aggregating the
dynamics on intervals of a regular time grid or in considering the succession of discrete
time events like trades (these models are generally referred to as “trading time” or
“business time” models). Hasbrouck [36], Engle and Russel [28] in the nineties, were
the first to advocate that the modeling of financial data at the transaction level could
be advantageously done within the framework of continuous time “point processes”.
Since then, point processes applications to finance is an ongoing, very active topic in
the econometric literature. We refer the reader to the recent review of Bowens and
Hautsch [9] on this subject.

The first type of point processes proposed in the context of market microstructure
is the ACD model introduced by Engle and Russel [28]. This model and its variants
remains, by far, the most used model in high frequency econometrics [9]. In this class
of models, the process is defined by the means of its “hazard function” that specifies
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the conditional law of inter-event (or duration) intervals. However, point processes
(or counting processes) can alternatively be represented by their “intensity function”
that represents the condionnal probability density of the occurence of an event in
the immediate future (see e.g. [22] for a comprehensive textbook on point process
mathematical properties).

In a pioneering work, Bowsher [15], recognized the flexibility and the advantages of
using the class of multivariate counting processes that can be specified by a conditional
intensity vector. More specifically, he introduced a bivariate Hawkes processes in order
to model the joint dynamics of trades and mid-price changes of the NYSE. Hawkes
processes is a class of multivariate point processes that were introduced in the seventies
by A.G Hawkes [37, 38] notably to model the occurrence seismic events. They involve
an intensity vector that is a simple linear function of past events (see e.g. [10, 9] for
other examples of dynamical intensity point processes). Hawkes models are becoming
more and more popular in the domain of high frequency finance. This popularity
can be explained above all by their great simplicity and flexibility, as anticipated by
Bowsher [15]. These models can easily account for the interaction of various types of
events, for the influence of some intensive factors (through marks) or for the existence of
non-stationarities. They are amenable to statistical inference and closed-form formulae
can be obtained in some particular situations. Moreover since their parameters have a
straightforward interpretation (notably through the cluster representation), they lead
to a quite simple interpretation of many aspects of the complex dynamics of modern
electronic markets.

In this paper, we propose a survey of recent academic studies using Hawkes pro-
cesses in the context of finance. As we already explained, there are many such studies.
In order to present them in relation one to each other, we had to group them by
“themes”. Of course, the boundaries of these themes are unclear (e.g., some of the
studies belong to several themes), so the choices we have made are unavoidably some-
what arbitrary. However we believe it helps capturing the “picture” of Hawkes models
in finance.

This survey is organized as follows. Sec. 2 is devoted to the theory of Hawkes
processes. It introduces the main definitions and the general properties that will be
used all along the paper. The following Sections focus on the applications of Hawkes
processes to finance. Sec. 3 starts with the main univariate models that can be found
in the literature. That includes market activity or risk models (e.g., 1-dimensional
market order flow models, extreme return models). Price models (mid-price or best
limit price) are presented in Sec. 4 whereas Sec. 5 is devoted to impact models. In this
Section, we do not only discuss the influence of market order flows on price moves but
also the problems related to optimal execution. Models that involve more order flows
are presented in Sec. 6. So-called level-I models (i.e., dealing “only” with the dynamics
of the best limits) as well full order book models are discussed. Finally, various studies
that did not clearly fit in any of the previous Sections are presented in Sec. 7 (e.g.
systemic risk models, high-dimensional models or news models). More materials can
be found in Appendices. In Appendix A, all the academic works that are discussed
throughout our paper and which involves numerical experiments on financial data is
listed in a single table. This table summarizes some essential characteristics of the
models and data used in each work. Finally, two Appendices sum up the main results
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about simulation (App. B) and estimation (App. C) of Hawkes processes.

2 The Hawkes process

As mentioned in the introduction, Hawkes processes are a class of multivariate point
processes introduced by Hawkes in the early seventies [37, 38] that are characterized
by a stochastic intensity vector. If Nt is a vector of counting processes1 at time t, then
its intensity vector λt is defined heuristically as (see e.g. [22] for a rigorous definition):

λt = lim
∆→0

∆−1E
[
Nt+∆ −Nt

∣∣Ft
]

(1)

where the filtration Ft stands for the information available up to (but not including)
time t. In the case of Hawkes processes, λt is simply a linear function of past jumps of
the process as specified thereafter.

2.1 Definition

We consider a D-variate counting-process Nt = {N i
t}Di=1, whose associated intensity

vector is denoted as λt = {λit}Di=1.

Definition 1 (Hawkes process). A Hawkes process is a counting-process Nt such that
the intensity vector can be written as

λit = µi +

D∑

i=1

∫
dN j

t′φ
ij(t− t′) , (2)

where the quantity µ = {µi}Di=1 is a vector of exogenous intensities, and Φ(t) =
{φij(t)}Di,j=1 is a matrix-valued kernel such that:

• It is component-wise positive, i.e., φij(t) ≥ 0 for each 1 ≤ i, j ≤ D;
• It is component-wise causal (if t < 0, φij(t) = 0 for each 1 ≤ i, j ≤ D);
• Each component φij(t) belongs to the space of L1-integrable functions2

Notation 1 (Convolution). We can adopt a more compact notation so to rewrite
Eq. (2) as

λt = µ+ Φ ∗ dNt , (3)

by defining the ∗ operation, corresponding to a matrix multiplication in which ordinary
products are replaced by convolutions.

Notation 2 (Event times). By introducing the couples {(tm, km)}Mm=1 , where tm
denotes the time of event number m and km ∈ [1, ..., D] indicates its component, Eq. (2)
can also be rewritten as

λit = µi +

M∑

m=1

φi,km(t− tm) , (4)

Fig. 1 shows as an example a specific realization of a multivariate Hawkes process.
Even though the process defined by Eq. (2) is well-defined by any choice of kernel Φ(t)

1A counting process is a stochastic process {Nt}t≥0, with values that are positive, integer, and increasing.
By convention N0 = 0.

2Strictly speaking, this definition only calls for φij(t) ∈ L1
loc but this is of no interest for this paper.
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Figure 1: A realization of a multivariate Hawkes process. The dots represent indi-
vidual events, while the different rows refer to different i coordinates.

satisfying the three conditions stated above, the stationary case characterized below is
of particular relevance in most of the applications of Hawkes processes to finance (see
Sec. 2.2 for some notable exceptions).

Proposition 1 (Stationarity). The process Nt has asymptotically stationary incre-
ments and λt is asymptotically stationary if the kernel satisfies the assumption, also
refered to as the stability condition:
(H) The matrix ||Φ|| = {||φij ||}Di,j=1 has spectral radius smaller than 1.

Notation 3 (Spectral radius). Here and in the following parts of the discussion, given a
a scalar function f(t) we denote with the symbol ||f || its L1-norm, defined as

∫
dt |f(t)|.

For a matrix F = {f ij}, the notation ||F || will denote its spectral radius. Finally, for
a matrix of functions F (t) = {f ij(t)}Di,j=1, we will write ||F || = {||f ij ||}Di,j=1

From now on, we will always consider (unless specified) that assumption (H) holds
and that the Hawkes processes are in the asymptotically stationary regime. In partic-
ular, the averages taken in the stationary state will be denoted with E [ . . . ], while the
variances will be written as V [ . . . ]. The consequences of the stationarity assumption
(H) will be fully explored in the next subsection. Here, we will first provide a simple
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implementation of a Hawkes process, whose prototypical version is the one in which
the kernel functions φij(t) are exponential functions.

Example 1 (Exponential kernel). Consider a bivariate Hawkes process in which the
kernel matrix has the form3

Φ(t) =

(
φ(s)(t) φ(c)(t)
φ(c)(t) φ(s)(t)

)
(5)

where the kernel components have the exponential form

φ(s/c)(t) = α(s/c)β(s/c)e−β
(s/c)t1t∈R+ , (6)

where 1x is an indicator function equal to 1 if x is true and zero otherwise. The
above functions are L1-integrable, so that the choice α(s/c), β(s/c) > 0 ensures that the
associated Hawkes process is well-defined. For the process to be stable, one needs to
additionally require that the spectral norm satisfies ||Φ|| = ||φ(s)||+ ||φ(c)|| < 1. Due to
α(s/c) =

∫∞
0
φ(s/c)(t), the stability condition becomes

α(s) + α(c) < 1 . (7)

The α(s/c) parameters can be interpreted as the ones setting the overall strength of the
interactions, while the β(s/c) control the relaxation time of the perturbations induced
from past to future events.

The Hawkes process with exponential kernels has several advantageous properties,
as it allows one to compute the expected value of arbitrary functions ofNt (see Sec. 2.3.4
and Ref. [29]), to be directly simulated (see App. B), or to compute efficiently its
likelihood (see App. C.1). Most of these properties descend from a Markov property
which in its simplest form is stated as follows:

Proposition 2 (Markov property for exponential kernels). Consider a Hawkes process
with exponential kernels φij(t) = αijβeβt1t∈R+ . Then the couple (Nt, λt) is a Markov
process. In particular, Eq. (2) for the intensity λt can be recast in Markovian form as

dλt = −βλt dt+ αβ dNt (8)

This property can be extended to the case in which (i) the coefficients βij are non-
constant across components and (ii) the kernel Φ contains a finite sum of exponentials.
The price to pay in this more general setting is the introduction of an extra set of

A auxiliary processes {λ̃(a)
t }Aa=1, suitably chosen so that the resulting (A + 1)-uple

(Nt, λ̃
(1)
t , . . . , λ̃

(A)
t ) is Markovian.

In the non-exponential case, the Hawkes process cannot be generally mapped to a
Markovian process, implying that it is necessary to take track of all its past history in
order to perform exact simulation and estimation. A particularly well-known example
of a non-exponential kernel is the power-law one, proposed in Ref. [59] in order to
describe temporal clusters of seismic activity.

3The upperscript (s) (resp. (c)) stands for the word self (resp. cross), since it describes the self- (resp.
cross-) excitation of the two components.
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Example 2 (Power-law kernel). Let’s now consider the case D = 1, and assume the
kernel to be parameterized by the regularized power-law

Φ(t) =
αβ

(1 + βt)1+γ
1t∈R+ (9)

Also in this case the process is well-defined for α, β > 0. The stationarity condition in
is met for

α < γ , (10)

indicating that the tail exponent γ of a power law-kernel should be positive for the
increments of the process to be stationary.

2.2 Some extensions

Although the model defined in above section is the one originally introduced in [37, 38],
and most widely used in the literature, several generalizations have been proposed since.

2.2.1 Marked Hawkes processes

Eq. (4) defining the Hawkes process can be enriched by endowing each event with
a mark variable, thus obtaining a sequence of event times, components and marks
{(tm, km, ξm)}Mm=1. One may further assumes events labeled with different marks to
have different effects on the future intensities, leading to a dynamics for λt of the type

λit = µi +

M∑

m=1

φi,km(t− tm, ξm) , (11)

Finally, one needs to introduce a generating mechanism for the marks, which are typ-
ically assumed to be i.i.d. random variables drawn with each event and sampled from
a common distribution p(ξ). A typical choice for the interaction kernel is the one
φij(t, ξ) = φij(t)χij(ξ), in which one assumes a factorized form for the effect of the
marks. This mechanism is used to describe events of different weights, and has been
originally employed in order to model the occurrence of earthquakes of difference mag-
nitudes [59]. In finance, marks can be used in order to model trades performed at
times tm with different volumes ξm (as e.g. in [30, 5], see Sec. 4 and 5) or a drawdown
intensity (as e.g. in [27, 18], see Sec. 3.1). On a more general ground, note that mul-
tivariate Hawkes processes can also be seen as an example of Hawkes processes with
interacting marks [51].

2.2.2 Exogenous non-stationarity

The exogenous intensity µ can be generalized to a deterministic function of time µ(t).
This choice allows to model a non-stationary system in which the interaction kernel is
indeed independent of time. In finance, this is the case when one wants to model intra-
day seasonalities (see the review article [9]) and/or spillover effects within successive
days (as in [15]).
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2.2.3 Endogenous non-stationarity

The scenarios ||Φ|| > 1 and ||Φ|| = 1 have also been considered in order to model non-
stationarity induced by endogenous interactions. These two cases present indeed an
important difference: while in the former one the average intensity grows exponentially
in time, in the latter one the process may possess a finite average event rate. This
second type of non-stationarity, which we will call quasi-stationarity, has raised a
strong interest in the literature due to the fact that the condition ||Φ|| ≈ 1 is often met
when calibrating Hawkes processes to real financial data (see the detailed discussion
in Sec. 3). The limiting behavior of a Hawkes process in the regime ||Φ|| = 1 has been
analyzed by Brémaud and Massoulié in [17], where it is shown in particular that:

Proposition 3 (Degeneracy of critical, short-range Hawkes). Let Nt be a univariate
Hawkes process as in Eq. (2) such that ||Φ|| = 1 and µ = 0. Then if

∫ ∞

0

dt tΦ(t) <∞ (12)

the average of the conditional intensity is either 0 or +∞.

Hence in the D = 1 case, short-ranged kernels always lead to trivial processes.
The next result shows instead that interactions of broader range allow instead a richer
behavior.

Theorem 1 (Existence of critical, stationarity). Let’s now consider a Hawkes process
with ||Φ|| = 1, µ = 0 and

sup
t≥0

t1+γΦ(t) ≤ R (13)

lim
t→∞

t1+γΦ(t) = r (14)

where r,R > 0 and γ ∈ ]0, 1/2[. Then the average intensity of such process is finite.

Summarizing, there exist non-trivial univariate Hawkes processes with ||Φ|| = 1
only for specific values of the tail exponent of Φ(t), which is required to lie in the
interval γ ∈ ]0, 1/2[.

Notice that, even though in D = 1 a quasi-stationary short-ranged Hawkes process
is always degenerate, Ref. [42] describes a scaling regime for Nt in which it is possible
to obtain to a non-degenerate process in the limit ||Φ|| → 1 by appropriately choosing
an observation timescale for the process. This behavior will be reviewed in Sec. 2.3.6.

In the multivariate setting, Ref. [51] shows that even in presence of kernels Φ
satisfying the short-range condition Eq. (12) it is possible to define a non-trivial quasi-
stationary Hawkes process in the large-dimensional limit. In particular Ref. [51] as-
sumes a factorized form of the kernel, of the type

φij(t) = αijf(t) , (15)

with ||f || = 1, and consider the D → ∞ limit of the process Nt. Such a limiting
regime turns out to be well-defined also when ||Φ|| = ||α|| −−−−→

D→∞
1, provided that the

matrix α has a sufficiently low density of eigenvalues in the vicinity of the critical point
||α|| = 1. Hence, a non-degenerate quasi-stationary limit for a Hawkes process can also
be obtained as an effect of the interaction among a large number of components.
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2.2.4 Non-linear Hawkes

Non-linear generalizations of the Hawkes process have been considered by several au-
thors [16, 65, 62, 69]. The intensity function in the non-linear case is written as

λit = h

(
µi +

D∑

i=1

∫
dN j

t′φ
ij(t− t′)

)
, (16)

where h(·) is a non-linear function with support in R+. Typical choices for h include
h(x) = 1x∈R+ and h(x) = ex. Note that the stability condition for various functions
h was studied by Brémaud and Massoulié in [16]. The main advantage introduced by
this extension is the possibility of modeling inhibition through negative valued kernels,
although the price that has to be paid is the loss of mathematical tractability for most
of the properties of the process. Yet, simulation and calibration of the model are
possible even in this scenario [33, 8]. As we will see, negative valued kernels are found
in the context of finance (see for instance Sec. 6.1).

Let us end this section by mentionning that we have only referred to the most
common extensions of Hawkes original model but many further generalizations have
been proposed like e.g., mixed diffusion-Hawkes models [29, 18], Hawkes models with
shot noise exogenous events [23], Hawkes processes with generation dependent kernels
[53].

2.3 Properties

The linear structure of the stochastic intensity λt of a Hawkes process allows us to
characterize many of its properies in a completely analytical manner. Notably, its
first- and second-order properties are particularly easy to compute, while a cluster
representation of the process can be used in order to obtain a useful characterization
of the Hawkes process. These properties are reviewed in the following Section.

2.3.1 First and second order properties

Assuming the hypothesis (H), it is then possible to write explicitly the first- and the
second-order properties of the model in term of the Laplace transform of the kernel Φ.
In order to do this, it is necessary to introduce the function Ψ defined as follows:

Definition 2 (Kernel inversion). Consider a Hawkes process Nt with stationary in-
crements. We define Ψ(t) as the causal solution of the equation

Φ(t) + Ψ(t) ∗ Φ(t) = Ψ(t) (17)

As a consequence of (H), Ψ(t) exists and can be expressed as the infinite convolution

Ψ(t) = Φ(t) + Φ(t) ∗ Φ(t) + Φ(t) ∗ Φ(t) ∗ Φ(t) + . . . (18)

The matrix function Ψ can be characterized analytically in term of the Laplace
transform of the kernel Φ, which we define as follows:
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Notation 4 (Laplace transform). Given a scalar function f(t) ∈ L1(−∞,+∞), we
denote its Laplace transform as

f̂(z) =

∫ ∞

−∞
dt f(t)ezt (19)

Vector and matrix Laplace transforms are defined by applying the above transformation
component-wise.

In the Laplace domain, Eq. (18) is then mapped to the algebraic relation

Ψ̂(z) = (I− Φ̂(z))−1 − I , (20)

where I denotes the identity matrix, allowing us to state the main result concerning
the linear properties of a Hawkes process:

Proposition 4 (First- and second-order statistics). For a Hawkes process Nt with
stationary increments, the following propositions hold:

1. The average intensity Λ = E [ dNt ]/dt is equal to

Λ = (I + Ψ̂(0))µ (21)

2. The Laplace transform of the linear correlation matrix

c(t− t′) =
E
[

dNtdN
T
t′

]
− E [ dNt ]E

[
dNT

t′

]

dtdt′
(22)

is equal to
ĉ(z) = (I + Ψ̂(−z)) Σ (I + Ψ̂T (z)), (23)

where Σ is a diagonal matrix with non-zero elements equal to Σii = Λi.

This useful characterization of the linear properties of a Hawkes process, first for-
mulated in [37, 38] and then fully generalized in [8], allows to (i) obtain the linear pre-
dictions of a Hawkes model given µ and Φ as an input, (ii) calibrate non-parametrically
the kernel Φ from empirical data by inverting relations (21) and (23) (see App. C.1).

Let us point out that, in Ref. [4], the authors have established that under gen-
eral conditions, the empirical covariation of a multivariate Hawkes process converges
towards its expected value, that can be easily expressed in terms of the Hawkes covari-
ance matrix c(t) as given by Eq. (23).

Example 3 (Exponential kernel). Let’s consider again the bivariate case described by
Eq. (5) in the stationary case 1 > α(s) + α(c). In that case, the Laplace transform of
the kernel Φ̂(z) reads:

Φ̂(z) =
1

2

(
1 1
1 −1

)(
φ̂(s)(z) + φ̂(c)(z) 0

0 φ̂(s)(z)− φ̂(c)(z)

)(
1 1
1 −1

)
, (24)

implying that the kernel matrix is diagonal in the symmetric and antisymmetric com-
binations N±t = 2−1/2(N1

t ±N2
t ). The Laplace transform of the individual components

of the kernel is

Φ̂(z) =
α(s/c)

1− z/β(s/c)
, (25)
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and due to the diagonal form of Eq. (5) the inverse kernel Ψ̂(z) can be computed
straightforwardly. If one assumes µ = (µ0, µ0), then the relations above imply that
Λ = (Λ0,Λ0), with

Λ0 =
µ0

1− α(s) − α(c)
. (26)

The Laplace transforms of the lagged cross-correlations of the symmetric and antisym-
metric combinations X±(t), defined as

c±(t− t′) =
E
[

(dN1
t ± dN2

t′)(dN
1
t′ ± dN2

t′)
]

2dtdt′
− Λ2

0 . (27)

result

ĉ±(z) =
Λ0

(1− φ̂(s)(−z)∓ φ̂(c)(−z))(1− φ̂(s)(z)∓ φ̂(c)(z))
. (28)

Above expression can be inverted explicitly so to obtain the lagged cross-correlations in
real space. In the simpler case β(s) = β(c) = β0, one obtains for example

c±(t) = Λ0

(
δ(t) +

β0

2

(α(s) ± α(c))(2− α(s) ∓ α(c))

(1− α(s) ∓ α(c))
e−(1−α(s)∓α(c))β0|t|

)
. (29)

Note that a singular component arises for t = 0 due to the assumption of unitary
jumps (dN)2 = dN . Above formula also shows that by moving the spectral norm
||Φ|| = α(s) + α(c) close to the instability point ||Φ|| = 1, the decay of the symmetric
mode of correlation function becomes slower and slower. Fig. 2 illustrates the result
above for the autocorrelation function of the modes N±t .

Example 4 (Power-law kernel). Let’s now consider again the case of a power-law
interaction kernel in dimension D = 1. For a kernel parameterized by Eq. (9), the
Laplace transform reads

Φ̂(z) = αe−z/β(−z/β)γΓ(−γ,−z/β) , (30)

where Γ(n, z) is the incomplete Gamma function. The inverse kernel Ψ̂(t) may be
expressed in the Laplace domain as

Ψ̂(z) =
αe−z/β(−z/β)γΓ(−γ,−z/β)

1− αe−z/β(−z/β)γΓ(−γ,−z/β)
. (31)

As shown in Sec. 2.1, in this case the spectral radius ||Φ|| is equal to ||Φ|| = |Φ̂(0)| =
α/γ, so that the model is stable for α < γ. Under this assumption, the average intensity
results

Λ = µ

(
γ

γ − α

)
. (32)

For a fixed value of the exogenous intensity µ, this relation interpolates between a
total intensity equal to the exogenous one (in the non-interacting case α = 0) and
an increasingly larger number of events as soon as α approaches the instability point
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Figure 2: Autocorrelation function (left) and normalized variance (right) of the
combinations N±t diagonalizing the interaction kernel appearing in Eq. (5). We have
used the parameter set α(s) = 0, α(c) = 0.1, µ0 = β0 = 1 in order to simulate
a single realization of the process of length T = 105. For such a value of T , the
theoretical predictions (dashed lines) are almost exactly superimposed to the results
of the simulations. The δ(t) component in the cross-covariance function has been
omitted in the left panel for the sake of clarity.

α = γ.
The Laplace transform of the lagged cross-correlation matrix results

ĉ(z) =
Λ

(1− Φ̂(−z))(1− Φ̂(z))
. (33)

The above expression cannot be inverted analytically. One can indeed relate the tail be-
havior of the correlations to the small z behavior of ĉ(z) thanks to Tauberian Theorems.
In particular, for βt� 1 one has:

c(t) ∼
{
e−(γ−1)βt for γ > 1
(βt)−γ−1 for γ < 1

(34)

This behavior is illustrated in Fig. 3, where we compare the autocorrelation function of
several univiariate Hawkes processes with power-law kernel and different tail exponents.
As a final note, we remark that for γ < 1/2, and close to the instability point α = γ,
the function c(t) obeys an intermediate asymptotics c(t) ∼ t2γ−1, which holds as long
as

βt�
(

Γ(1− γ)

γ/α− 1

)1/γ

. (35)
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In this particular regime, the Hawkes process develops an apparent Hurst exponent
H = 1/2+γ. This limiting behavior is a consequence of the quasi-stationarity condition
||Φ|| = 1, analyzed in Ref. [17] and reviewed in Sec. 2.2.3.

1
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Figure 3: Comparison of the autocorrelation function for a set of univariate Hawkes
processes with power-law kernels parametrized by Eq. (9). We used the values µ =
β = 1, α = 0.9 γ, and simulated processes of length T = 5 · 105 (for γ = 0.25 and
0.5), T = 106 (for γ = 1) and T = 5 · 106 (for γ = 2) in order to obtain the curves
represented in the plot. The image illustrates the crossover from the exponential decay
of correlation obtained for β > 1 to the power-law behavior detected for β < 1.

2.3.2 Characterization through second order statistics

This section justifies why the Hawkes process can be thought of as the simplest example
of an interacting point process. In fact, it is entirely characterized by its first- and
second-order properties: means and correlations uniquely determine a Hawkes process
through the solution of a Wiener-Hopf system.

Let us start by defining the conditional intensity matrix g(t), that we define for
t > 0 as

gij(t) =
E
[

dN i
t

∣∣dN j
0 = 1

]

dt
− Λi , ∀t > 0. (36)

Then one can prove straightforwardly [8] from Eq. (23) that

c(t) = ΣgT (t) , ∀t > 0 (37)
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which relates conditional averages and lagged cross-correlations. Hence by using Eq. (37)
and (23), one can prove that [8]:

Theorem 2 (Wiener-Hopf equation). Consider a Hawkes process defined by Eq. (1)
satisfying the stationarity assumption (H). Then the matrix function χ(t) = Φ(t) is
the unique solution of the Wiener-Hopf system

g(t) = χ(t) + χ(t) ∗ g(t) ∀t > 0 (38)

such that the components χij(t) are causal and χij(t) ∈ L1 ∀i, j.
This property implies that, when fixing an average intensity vector Λ and a condi-

tional expectation g(t), there exist at most one Hawkes process consistent with these
observables. Indeed, such a process is not always guaranteed to exist, as a Hawkes pro-
cess doesn’t necessarily reproduce the linear properties for systems in which inhibition
is relevant.

This result is the inverse one with respect to the one expressed by Eq. (23): while
that equation expresses the fact that by fixing a kernel Φ(t) and an exogenous intensity
µ the correlations are uniquely determined, the theorem above states that correlations
and average intensities uniquely fix the interactions. While the direct result was first
proved in [37], the converse was shown in [8] by using the Wiener-Hopf factorization
technique.

Finally note that the Wiener-Hopf system (38) is very useful in applications to
empirical data, as it allows us to estimate non-parametrically the interation kernel of
a Hawkes process given a set of empirical observations (see App. C.2).

2.3.3 Auto-regressive projection

A Hawkes processes with stationary increments can always be linearly approximated
by suitably defined auto-regressive processes. In particular one can show that [51]:

Proposition 5 (Auto-regressive projection). Consider a Hawkes process Nt defined

by Eq. (2) satisfying the stationarity assumption (H). Then the convolution N
(AR)
t

defined by

N
(AR)
t = (Iδ(t) + Ψ(t)) ∗ (µ t+ Σ1/2Wt) , (39)

where Ψ(t) is the infinite convolution of the Hawkes kernel given by Eq. (18), and Wt

is a standard D-dimensional Brownian motion, satisfies

Λ(AR) = Λ (40)

c(AR)(t) = c(t) , (41)

where Λ and c denote respectively the average intensity and the lagged cross-correlation
matrix of Nt.

Hence, it is always possible to match the first and the second order properties of a
stationary Hawkes process with interaction kernel Φ by using a convolution of Wiener
processes. On the other hand, higher order moments cannot be matched in the same
way.

13



2.3.4 Beyond second-order

The first- and second-order moments are not the only moments which can be computed
analytically for a Hawkes process. In particular, Jovanović et al. [44] have recently de-
veloped a combinatorial procedure allowing to calculate cumulants (and consequently,
moments) of arbitrary order of a Hawkes process. More precisely, given a set of com-
ponents S ∈ {1, . . . , D} and one of times tS = {t1, . . . t|S|}, it is possible to define a
cumulant density of a Hawkes process as

k
(
N (S)

)
= dt−|S|

∑

π

(|π| − 1!)(−1)|π|−1
∏

B∈π

〈∏

i∈B
dN i

ti

〉
, (42)

where the sum runs over all the partitions π of S, |π| denotes their number of blocks and
B labels individually the blocks of π. Above equation generalizes the definition of the
average intensity, recovered for |S| = 1, and of the lagged cross-correlation function,
obtained for |S| = 2. Moment densities can be obtained from above expression by
writing 〈∏

i∈S
dN i

ti

〉
dt−|S| =

∑

π

∏

B∈π
k
(
N (B)

)
. (43)

Ref. [44] shows how to express Eq. (42) as a sum of integral terms, which can be written
explicitly in terms of µ and Ψ(t). As each of such addends can be interpreted as a
topologically distinct rooted tree with |S| labeled leaves, the enumeration of all the
contribution to Eq. (42) can be performed systematically.

In the special case of a Hawkes processes with exponential kernel, a useful result is
obtained by Errais et al. [29] by exploiting Dynkin’s formula for the couple (N,λ) in
the marked framework described in Sec. 2.2.1. In particular, they are able to express
the generating function for the couple (N,λ) in terms of the solution of an ordinary
differential equation. While it may be necessary to solve numerically the equation for
the generating function, closed-form expressions are available for specific moments ofNt
(see also the work of Dassios and Zhao [23] for similar results on a slight generalization
of Hawkes processes).

2.3.5 Martingale representation

The process defined by Eq. (2) admits a convenient martingale representation once one

introduces suitably defined compensators
∫ t

0
ds λis [22].

Theorem 3 (Martingale representation). Given a Hawkes process (2), the D stochastic
processes

Yt = Nt −
∫ t

0

ds λs (44)

are martingales with respect to the canonical filtration of the process Nt [22]. Ad-
ditionally, under the stability condition (H), the stochastic intensity λt admits the
representation

λt = µ+

∫ t

0

Ψ(t− s)µds+

∫ t

0

Ψ(t− s) dYs . (45)
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While the above result is valid even in the non-stationary regime, Eq. (45) takes a
particularly simple form in the asymptotic regime of large t, where it can be written
as

λt −−−→
t→∞

Λ +

∫ t

0

Ψ(t− s) dYs (46)

thanks to Eq. (21). The martingale property of the Hawkes process plays an important
role in determining the first- and second-order properties discussed in above section,
which are derived by means of Eq. (46) in [2, 8]. The representation Eq. (45) is also
particularly useful in order perform predictions of the intensity of the Hawkes process
given an historic filtration Ft of the process.

Example 5 (Prediction of the intensity). Suppose that, given a Hawkes process which
satisfies the stationary condtion (H), one is interested in computing the predictor
E
[
λt
∣∣Fs
]

for t > s. (see Ref. [40, 41] for direct applications in Finance). While,
by naively applying the definition of the Hawkes processes, one can obtain an implicit
equation of the type

E
[
λt
∣∣Fs
]

= µ+

∫ s

0

Φ(t− u)dNu +

∫ t

s

duΦ(t− u)E
[
λu
∣∣Fs
]

(47)

the martingale representation Eq. (45) can be used in order to write the explicit expres-
sion

E
[
λt
∣∣Fs
]

= µ+

∫ t

0

Ψ(t− s)µds+

∫ s

0

Ψ(t− s) dYs . (48)

2.3.6 Scaling limit of the process

The structure of Hawkes processes is naturally adapted to describe systems in which
the discrete nature of the jumps in the coordinates Nt is relevant, making this model
especially suitable to the modelization of high-frequency data. Indeed, in many ap-
plications one additionally needs to control the limiting behavior the system in the
opposite regime of low frequencies, where the granularity of events is disregarded, and
the scaling in time of Nt needs to be known.

Diffusion towards a Brownian motion. The following results, first proved
in [4] allow us to establish that Hawkes processes, under appropriate hypotheses and
after a suitable rescaling, behave at large times as linear combinations of Wiener pro-
cesses.

Theorem 4 (Law of large numbers). Consider a Hawkes process as in Eq. (2) satis-
fying the stationarity assumption (H). Then

sup
u∈[0,1]

||T−1NuT − uΛ|| −−−−→
T→∞

0 (49)

almost surely and in L2-norm.

Above result establishes a law of large numbers for the Hawkes process, valid for any
stationary kernel. Indeed, under additional hypotheses it is also possible to formulate
a corresponding functional central-limit theorem.
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Theorem 5 (Central-limit theorem). Suppose that for all i, j ≤ D the kernel Φ(t)
satisfies ∫ ∞

0

dt t1/2φij(t) <∞ . (50)

Then for u ∈ [0, 1] one has the following convergence is in law for the Skorokhod
topology:

T 1/2
(
T−1NuT − uΛ

)
−−−−→
T→∞

(I + ||Ψ||)Σ1/2Wu , (51)

where Wt denotes a standard D-dimensional Brownian motion.

Example 6 (Exponential kernel). Consider the bivariate Hawkes process analyzed in
Sec. 2.1. Eqs. (5) and (51) above imply that

NuT −−−−→
T→∞

Λ0uT

(
1
1

)
(52)

+
(Λ0T )1/2

(1− α(s))2 − (α(c))2

(
1− α(s) α(c)

α(c) 1− α(s)

)(
W 1
u

W 2
u

)
,

which in term of the combinations N±t = 2−1/2(N1
t ±N2

t ) reads

N±uT −−−−→
T→∞

(1± 1)
1/2

Λ0uT +
(Λ0T )1/2

1− α(s) ∓ α(c)
W±u . (53)

This behavior is summarized in Fig. 4, where we compare the rescaled processes N±uT
at different timescales T .

Other scaling limits It is well known that many of the microscopic observables
involved in the price formation process do not diffuse at large scales (e.g., at the daily,
or even monthly, time-scale) toward Brownian motion dynamics. For instance, the
trading activity (i.e., the market-order flow) seems to be long-range dependent [14],
while the volatility displays clusters that can last for months. Since, as we will see
in the next sections, Hawkes processes tend to mimic very well the high-frequency
dynamics of financial time-series, it is natural to try to understand if diffusive limits
other than the one described by Theorem 5 can be found. In a recent work by Jaisson
and Rosenbaum [42], a sequence of rescaled univariate Hawkes processes

Z(T )
u =

1− aT
T

N
(T )
uT (54)

indexed by a time-scale parameter T and where aT ∈ [0, 1[ is proved to converge, when
T → +∞, towards an integrated Cox, Ingersoll, Ross process [20] under the main
following conditions 4

• the corresponding sequence of kernels φ(T )(t) satisfies φ(T )(t) = aTφ(t), where φ

is differentiable and it is such that ||φ|| = φ̂(0) = 1, φ̂′(0) < +∞, ||φ′||∞ < +∞
and ||φ′|| < +∞,

4For precise formulation of the corresponding theorem, we refer the reader to [42].
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Figure 4: The figure illustrates the shape of the process N±uT at different timescales
T = 10, 100, 1000 for the same choice of paramters as in Fig. 2. The process has been
rescaled according to Eq. (53) so to obtain a standard Wiener process Wu in the limit
T →∞. The plot illustrates how the presence of discrete jumps, clarly visible at small
times, becomes irrelevant in the scaling limit T →∞.
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• the criticality condition (H) of Prop. 1 is met at a speed

lim
T→+∞

(1− aT )T = κ, κ > 0. (55)

Hence, even though a quasi-stationary short-ranged Hawkes process is always degener-
ate, one can detect a non-trivial behavior of the rescaled counting function by suitably
choosing an observation timescale T ∼ (1−||Φ(T )||)−1. Let us point out that the above
conditions do not allow for φ to have a power-law decay with an exponent strictly
smaller than 2 (in the limit t → +∞). As reviewed in Sec. 3, several studies tend to
show that for many financial time-series (e.g., market order flow time-series) the rele-
vant kernel has power-law tails with an exponent above but rather close to 1. Thus,
strictly speaking, the previous framework is inappropriate to describe such behavior.
Using the same asymptotics (T → +∞), Jaisson [41] studied the asymptotic limit of
the correlation function of a 1-dimensional Hawkes process with a power-law kernel
which decreases with an exponent 1 + γ with γ ∈ ]0, 1/2[. He proved that the auto-
correlation function of the Hawkes process decreases asymptotically as a power-law
with an exponent 1− 2γ, i.e., leading to a long-range dependence5.

2.3.7 Clustering representation

Another useful property of the Hawkes process is the clustering property which emerges
as a consequence of the linearity of Eq. (2). Such property allows one to (i) build an
efficient simulation algorithm for the process (see App. B), (ii) introduce the notion
of parenthood among different events (see Sec. 2.3.8 below), (iii) infer parenthood
relations among successive events from empirical data (see the paragraph about the
EM method in App. C.2).

Proposition 6 (Clustering representation). Consider a positive integer D and a (non-
necessarily finite) time interval [0, T ], in which we define a sequence of events {(tm, km)}Mm=1

according to the following procedure:

• For each 1 ≤ i ≤ D, consider a set of immigrant events {(t(0)
m , i)}M

(0)
i

m=1 extracted
with homogeneous Poissonian rate µi in the interval [0, T ].

• For each immigrant event of type j, labeled by (t
(0)
m′ , j), and for each 1 ≤ i ≤ N ,

generate a sequence of first-generation events {(t(1)
m , i)}M

(1)
i

m=1 sampled with time-

dependent Poissonian rate φij(t− tm′) in the interval [t
(0)
m′ , T ].

• Iterate above rule from generation n − 1 to generation n, so to obtain the event

sequence {(t(n)
m , k

(n)
m )}M(n)

m=1 , until no more events are generated in [0, T ].
Then the union of all the events

{(tm, km)}Mm=1 =

∞⋃

n=0

{(t(n)
m , k(n)

m )}M(n)

m=1 (56)

corresponds to the one generated by the Hawkes process (2) in the time interval [0, T ].

5Let us notice that qualitative arguments for similar result were also given in [7] in a 2-dimensional
framework.
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Note that the construction above (depicted in Fig. 5) can be equivalently taken
as a definition for the Hawkes process, once the information encoding the generation
n is discarded by taking the union of all the events. Indeed, this richer definition

i = 1

i = 2

Time t

C
lu

st
er

re
pr

es
en

ta
ti

on

Figure 5: Cluster representation of a Hawkes process: while the upper panel repre-
sents the branching structure of a bivariate Hawkes process, the lower panel shows its
projection obtained by disregarding the cluster structure. The different components
i ∈ {1, 2} are shown in different colors, while the connected structures in the upper
panel denote three different clusters.

characterizes more transparently the stationarity condition (H): by considering T =∞
in above construction, it is possible to map the branching structure of the Hawkes
process described above onto the one of a Galton-Watson tree with average offspring
||Φ||. The qualitative behavior of the model is in fact dictated by the average number

of events generated by a parent event, equal to
∫∞

0
φ(t) = φ̂(0) = ||Φ||. The three

phases of the Hawkes process (stationary ||Φ|| < 1, non-stationary ||Φ|| > 1 and quasi-
stationary ||Φ|| = 1) correspond then to the three phases of a Galton-Watson branching
process, more precisely:

1. For ||Φ|| < 1, we have a sub-critical phase in which each parent event generates
on average less than one child event. This implies that the total progeny of each
event is a.s. finite and the average number of generations before extinction is a.s.
finite.
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2. For ||Φ|| > 1, we have a super-critical phase in which more than one child event is
generated by each parent event. In that case the total progeny of a parent event
might be infinite with finite probability.

3. For ||Φ|| = 1 (the critical case), the total progeny is a.s. finite, but the total
size of the progeny has large fluctuations leading to a divergence of the average
number of generations before extinction.

2.3.8 Causality

The parenthood relation introduced by using the clustering representation of the Hawkes
process allows us to discuss the problem of causality in this context. In particular, after
constructing a Hawkes process according to the branching procedure described above,
one can introduce the counting functions

N i←0
t = (Exogenously generated events of type i) (57)

N i←j
t = (Events of type i with type j direct ancestor) (58)

N i←j∗
t = (Events of type i with type j oldest ancestor) (59)

so that N i←0
t +

∑
j N

i←j
t = N i←0

t +
∑
j N

i←j∗
t = N i

t . Hence, these quantities can be
used in order to express the overall number of events of type i generated by an ancestor
of a given type j. In particular, it is easy to prove that:

Proposition 7 (Causality). For a stationary Hawkes process, the average increments
of N i←0

t , N i←j
t and N i←j∗

t are expressed by

E
[

dN i←0
t

]
/dt = µi (60)

E
[

dN i←j
t

]
/dt = φ̂ij(0)Λj (61)

E
[

dN i←j∗
t

]
/dt = ψ̂ij(0)µj . (62)

The property above can be used in order to estimate the average fraction of events
(directly or indirectly) caused by a specific component of a Hawkes process.

Alternative notions of causality for point-processes have also been investigated.
In particular, the notion of Granger-causality has been extended to point-processes
in [57, 25].

3 Univariate models

3.1 Models of market activity and risk

The first straightforward application of Hawkes processes in high frequency finance
is probably to model the so-called volatility clustering phenomenon. Since volatility
at the transaction level can be directly related to the number NT of a given type of
events (trades, mid-price changes,...) that occur in a given time interval of size T 6,

6One can have in mind a simple price model where the price is build as the sum of independent random
shocks. In this case, the volatility at scale T is proportional to (NT )1/2. The empirical results of Ref. [68]
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the self-exciting nature of Hawkes processes provides a very simple picture that can
explain the correlated nature of volatility fluctuations. This idea was first proposed by
Bowsher [15] who calibrated a univariate Hawkes model with mixture of exponential
kernels using intraday equity data from NASDAQ and NYSE 7.

In Ref. [2], Bacry et al. recently introduced a non-parametric estimation method
for multivariate symmetric Hawkes processes based on the spectral factorization of
the covariance matrix by the means of the Hilbert transform. By calibrating a 1-
dimensional Hawkes model to the occurrence of trades of the 10 years Euro-Bund
future front contract over 75 trading days in 2009, they discovered two important
empirical facts: (i) the model is very close to its stability threshold ||Φ|| = 1 and (ii)
the empirical kernel Φ(t) is very well decribed, over a wide range of scales, by the
power-law function Eq. (9)

Φ(t) =
αβ

(1 + βt)1+γ
(63)

with γ ' 0. The first observation directly concerns the level of endogeneity and the one
of stability of financial markets, a problem, as discussed in the next section, that has
been addressed afterwards by Filimonov and Sornette or Hardiman et al. [31, 32, 34, 35].
The power-law nature of Hawkes kernels with an exponent γ ' 0 has been confirmed
by studies that followed, notably by Hardiman et al. on mid-price changes of E-mini
S&P500 futures [34] or by Bacry and Muzy on trades arrivals of EuroStoxx index
futures [8]. The plots of Fig. 6 are directly extracted from these papers: they represent
in log-log scales the estimated Hawkes kernel for the E-mini SP futures mid-price
change events and the EuroStoxx market order occurences. One can see that the
two estimated kernels, corresponding to different data, different markets and different
estimation methods, are strikingly similar. This suggests some universality of both γ
and C = αβ−γ parameters in the algebraic decay of Eq. (63).

The origin of this power-law behavior and, in particular, of the values of α and
γ remains an open question. Previous empirical results motivated the work by Jais-
son [41] (see also Ref. [7] and the section preceding Eq. (35)), who proved that, within
a particular asymptotics (which includes the L1 norm of the kernel converging to 1), a
1-dimensional kernel with a power-law decay with an exponent 1 + γ (with γ ∈]0, 0.5[)
leads to an auto-covariance function of the flow which is power-law with an exponent
1− 2γ, i.e., to a long-range dependence of the flow (see also the discussion in Sec. 2.3,
Eq. (34)). The algebraic decay of Hawkes kernels can then be related to the volatil-
ity clustering properties. Notice that within trading time models [14], the long-range
nature of offer and demand has been mostly explained in terms of order splitting dy-
namics, and is supported by empirical results such as [66], in which broker-resolved
data is analyzed in order to distinguish among the herding and splitting components
of the order flow. It is thus likely that the observed slowly decreasing nature of the
kernel directly results from the splitting of the meta-orders. Such an hypothesis re-
mains however to be supported by quantitative arguments and to be confirmed by

corroborate empirically this observation, allowing one to establish more precisely of the relation among
impact per trade and volatility.

7More precisely Bowsher considered a generalization of Hawkes processes in order to account for the
peculiar non-stationnarities observed at high frequancy like intraday seasonalities and overnight gaps.

21



10−5

10−4

10−3

10−2

10−1

100

101

102

10−3 10−2 10−1 100 101 102 103

K
er

ne
lΦ

[s
−
1
]

Time t [s]

Kernel comparison

E-mini (1998)
E-mini (2006)
E-mini (2009)
FXSE

Figure 6: Inferred kernel Φ(t) of the univariate Hawkes process describing mid-
point changes of the E-mini S&P500 and for the trade arrivals of the EuroStoxx in
different years, reproduced respectively from Refs. [8] and [34]. Strikingly, considering
the different markets, traded contract, type of events considered, and periods of time
considered in these studies, the shape of Φ(t) is almost identical.

empirical observations. Beyond these fundamental questions, the power-law nature of
Hawkes kernels remains a solid empirical fact which, at least, calls to question all the
approaches based on exponential Hawkes models.

In the same lines of the previously cited studies, Da Fonseca and Zaatour [21], per-
form a parametric estimation (using a GMM approach, see Sec. C.1) of a 1-dimensional
Hawkes process with exponential kernels of the form αβ exp(−βt) on (unsigned) market-
order flow data. As expected, market-order clustering translates in a rather low value
for β ∈ [0.02, 0.1] (depending on the financial time-series) and the L1 norm of the kernel
is found to be very close to criticality, i.e., α ≥ 0.9 (and very often ≥ 0.95). One can
also cite the work of Lallouache and Challet [45], who performed a maximum likelihood
estimation on market orders using a sum of two exponential functions as the Hawkes
kernel. They study forex EBS data which are throttled (market orders are gathered
within slices of 0.1 seconds) which calls for a rather complex denoising preprocessing.
Using goodness of fit tests, they conclude that, though the model performs well when
applied to a 1 hour specific intraday time (averaged every day over 3 months), the
intraday seasonality of (mainly) the exogeneous intensity µ does not allow to fit well a
whole day.

Hawkes processes have also been used to model extreme price moves at a rather low
frequency. In Ref. [27], Embrechts et al. study an equally weighted portfolio of 3 indices
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(Dow Jones, Nasdaq and SP) on an hourly time-frame (on 14 years). Only extreme
quantiles of returns are kept (the smallest and the largest 1% quantiles) leading to a
1-dimensional point process whose jumps correspond to an extreme return of any of
the three indices. The jumps are then marked using a 3-dimensional marks coding the
excess of each index respect to the corresponding 1% quantile. The so-obtained point
process is modeled using a 3-dimensional Hawkes process (with an exponential kernel)
marked by 3-dimensional Gamma-distributed i.i.d. random variables. A maximum
likelihood estimation is performed and goodness of tests show that this model is well
suited for modeling extreme price moves. Let us point out that, in the same work, a
very similar experiment is performed on daily log-returns of an (home-made) index of
stocks using this time a 2-dimensional Hawkes process (for coding positive or negative
extreme jumps) with 1-dimensional marks. In the same spirit, in Ref. [18], Chavez-
Demoulin and Mc Gill constructed a model for the excessses of an asset price above a
given threshold. This model combines a Hawkes process for the exceedance occurences
with Pareto distributed marks to the exceedance sizes. Within this approach, the
author’s goal was to describe the clustering of large drawdown events through the self-
excited dynamics of the Hawkes process. By performing backtests on equities intraday
data, they have shown that this model captures very well extreme intraday events,
notably as compared to standard non-parametric methods based on extreme value
theory.

3.2 Measuring the endogeneity of stock markets

In a recent series of papers [31, 32, 34, 35], some authors addressed, within the frame-
work of Hawkes models, the important problem of the so-called “volatility puzzle”,
namely the fact that the observed market volatility cannot be explained by classical
economic theory. Indeed, it is well known that prices move too much compared to the
flow of pertinent information that may impact the market. This observation naturally
leads to the idea that price dynamics is highly endogenous, i.e. mainly driven by some
internal feedback mechanisms. Filimonov and Sornette [31] were the first to propose
a quantitative measure of the level of “market reflexivity”. For that purpose, they
model the high frequency mid-price variations of some stock index (namely the E-mini
S&P500) as a 1-dimensional Hawkes process. As explained in Sec. 2.3.8, ||Φ|| can be
interpreted as a branching ratio, i.e., the number of events generated by any parent
event. Each exogenous event occurring at rate µ thus generates ||Φ||/(1− ||Φ||) events
and therefore the ratio of endogenous event rate to the overall rate Λ in one dimension
is, according to Eq. (21),

µ

Λ

( ||Φ||
1− ||Φ||

)
= ||Φ|| .

This means that ||Φ|| provides a direct measure of the fraction of endogenous events
within the whole population of mid-price changes and thus a measure of the market re-
flexivity. By analyzing the E-mini S&P500 future contracts over the period 1998-2010,
Filimonov and Sornette found that the degree of reflexivity has strikingly increased
during the last decade. They suggested that this effect could be directly caused by
the increasing amount of high frequency and algorithmic trading, raising the question
of the impact of high frequency trading on the market stability. This analysis has
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been revisited by Hardiman, Bercot and Bouchaud [34] who noticed that Filimonov
and Sornette estimation relying on an exponential parametrization is biased because,
as discussed previously, empirical evidences suggest that Hawkes kernels have a slow
(power-law) decay. Accounting for this feature on their estimation of ||Φ||, Hardiman
et al. found that the reflexivity of the E-mini S&P future hasn’t been increasing during
the last decade, but has remained constant at a value very close to the critical one
||Φ|| = 1. It is noteworthy that Hardiman et al. also provided, in their study, empirical
evidences of the existence of a high frequency cut-off of the Hawkes kernel (namely
the parameter β−1 in Eq. (63)) that decreases exponentially fast in time and that can
be associated with the increase of the trading frequency. In a more recent paper, Fil-
imonov and Sornette [32], have reviewed all the pitfalls associated with the estimation
||Φ|| in the case of a slowly decreasing kernel. They have shown that significant biases
can be induced by the presence of outliers, edge effects or non stationary effects. Be-
cause some important issues are also related to the way one parametrizes the model
(notably the choice of the high-frequency regularization), Hardiman and Bouchaud [35]
proposed a simple non-parametric approximation of the branching ratio ||Φ|| that relies
on Eq. (23). Indeed, by considering this equation in z = 0, it is possible to relate the
integral of the correlation function, ĉ(0) to ||Φ||. The number of events NT in a window
of size T , becomes, for T large enough, ĉ(0) ' T−1V [NT ] and therefore one gets

||Φ|| ' 1−
(
V [NT ]

E [NT ]

)1/2

. (64)

This formula leads to a very intuitive intepretation of the degree of reflexivity: The
occurrence of correlated events implies an increase of the variance of NT with respect
to its mean value (for a Poisson process, both quantities are equal so that one directly
gets ||Φ|| = 0). Using this model free estimator, Hardiman and Bouchaud [35] have
confirmed their former claims that the S&P 500 future appears to have, during the last
ten years, a stable level of reflexivity, close to the criticality. Let us notice that this
formula only holds for 1-dimensional Hawkes processes and has no simple extension in
the multivariate situation.

Beyond the debate on the most suitable estimator for the reflexivity parameter
and its genuine behavior, the pionneering work of Filimonov and Sornette provided a
quantitative framework allowing to study the endogeneity of market fluctuations with
Hawkes processes. They notably have shown that such approach can be used to study
particular events such as the flash crashes of April and May 2010 [31]. Their results
may be helpful to devise warning tools in order to anticipate extreme drawdowns which
are of endogenous origin. The prospects and applications along this path are numerous.
One important question concerns the extenstion of such studies by accounting other
types of events like e.g. order book events (see Sec. 6).

4 Price models

Describing the fluctuations of price at the finest time scales, with notably the goal of
improving volatility and covariance estimations, is a central issue of financial econo-
metrics. The notion of microstructure noise was considered by many authors as an
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additional noise, superimposed to the standard diffusion, that accounts for the small
scale behavior of the signature plot. Indeed, it is well know that the signature plot

C(τ) =
1

T

T/τ∑

i=0

[
P(i+1)τ − Piτ

]2

that corresponds to the quadratic variation of the mid-price Pt at scale τ , strongly
increases when τ → 0 (see Fig. 7). Along the same line, the so-called Epps effect
accounts for the vanishing covariation among the returns of pairs of assets when the
return scale τ goes to zero. Bacry et al. in [3] proposed as an alternative to standard
“latent price” models, to directly account for the discrete nature of price variations.
They have been the first ones to describe the tick-by-tick variation of the mid-price, Pt,
within the framework of Hawkes processes. In order to do so, these authors considered
the two counting processes N1

t and N2
t associated with respectively the arrival times

of upward and downward price changes and set:

Pt = P0 +N1
t −N2

t , t > 0

where the couple (N1
t , N

2
t ) is a 2-dimensional Hawkes model. Since, in a first approxi-

mation, the dynamics of the upward moves and of the downward moves are expected
to be the same, it is natural to consider a matrix kernel Φ as the one considered in
Eq. (5) with equal diagonal terms φ(s)(t) and anti-diagonal terms φ(c)(t). It is well
known that, at the microstructure level, the price is essentially mean reverting, thus
in [3], the authors considered the “purely mean-reverting scenario”, i.e., the case where
φ(s)(t) = 0 and chose for φ(c)(t) an exponential shape. Within this simple framework,
Bacry et al. provided a closed-form expression for the signature plot. Calibrating the
model using MLE or GMM estimations on Euro-Bund and Euro-Bobl future data, they
have shown that the model is able to reproduce the scale behavior of the signature plot
(see Fig. 7). Bacry et al. also considered a natural extension of the previous model
to a 4-dimensional Hawkes model in order to describe the joint mid-price dynamics of
a pair of assets and to reproduce the Epps effect [3]. Let us recall that, in Ref. [4],
the authors established that under general conditions, the empirical covariation of a
multivariate Hawkes process converges towards its expected value, that can be easily
expressed in terms of the Hawkes covariance matrix c(t) as given by Eq. (23). This
result allows one, within the Hawkes price model of Bacry et al., to provide analyti-
cal expressions for the signature plot, lead-lag behavior and the Epps effect in terms
of Hawkes matrix kernel Φ [3, 4]. Let us also mention that, along the line the of
previous model, in [21], the symmetric case was considered, i.e., the “purely trend
following scenario”: φ(s)(t) = 0 and φ(c)(t) exponential shape. The authors compared
this scenario with the “purely mean-reverting scenario” when used for daily volatility
estimation using diffusive formula (53). They showed that the mean-reverting (resp.
trend-following) scenario underestimates (resp. over-estimates) the volatility and con-
cluded that a “full” model with both cross and self terms is more realistic and should
lead to better volatility estimation. Let us notice that the existence of non-negligible
diagonal and anti-diagonal terms has been confirmed by non-parametric estimations
performed thereafter in [2, 7, 6].
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Figure 7: Reproducing the mid-price behevior at miscrostructure level using Bacry
et al. 2-dimensional Hawkes model. The plots represent the Euro-Bund empirical
signature plot as compared to its fit within the model of Bacry et al.. The figure has
been reproduced from Ref. [3]

One also expects the involved kernels not to be exponential functions. Indeed,
as shown in many works, (e.g., in Ref. [2]) and as discussed previously in Sec. 3.1,
empirical self-exciting kernels are closer to a power-law than to an exponential. It
is with that consideration in mind that Jaisson and Rosenbaum [42] developed the
diffusive framework that we have already described in second part of Sec. 2.3.6. It is
an alternative framework to the more classical Brownian motion diffusive framework
developed in the first part of the same Section. In the second part of their paper, Jaisson
and Rosenbaum used their framework to build a version of the 2-dimensional Hawkes
model initially introduced by [3] that converges at large scales towards the Heston price
model [39] which displays volatility clustering. This work can be seen as the very first
step towards a “across scales” unified model that would fit both microstructure stylized
facts of price (i.e., point process with strong mean reversion) and “diffusive” stylized
facts (volatility clustering and multifractality). In that sense this is a very promising
work.

We can also mention a very interesting generalization of the model introduced by
Bacry et al. in [3]. In [69], Zheng et al. introduced a model for the coupled dynamics
of the best bid and ask prices. It starts by coding each best price using the Bacry
et al. model leading to a 4-dimensional price model. The main difficulty comes from
the fact that one needs to encode in the model the fact that the ask price needs to lie
strictly above the bid price. This is achieved through a spread point process whose
dynamics is coupled with the dynamics of both best prices. It is used to measure the
distance (in ticks) between the ask price and the bid price: the spread is increased (resp.
decreased) by 1 each time either the ask (resp. bid) component jumps upward (resp.
downward) or the bid (resp. ask) component jumps downward (resp. upward). Finally
a non-linear term is introduced in the Hawkes model: the intensities of the downward
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(resp. upward) jumps of the ask (resp. bid) price are set to 0 as soon as the spread
process is equal to 1. The authors of [69] developed a whole new rigorous framework for
this constrained, non-linear Hawkes model in which they were able to establish several
properties (including a diffusive limits). They perform maximum likelihood estimation
on real data (using exponential kernels) and show that they were able to reproduce
rather well the signature plot.

Let us finally cite the work of Fauth and Tudor in [30] where the authors proposed
to describe bid and ask prices of an asset (or a couple of assets) within the frame-
work of marked multivariate Hawkes model. Motivated by the empirical observation
(performed on high-frequency Euro/USD and Euro/GPB FX rates from 30-01-2012
to 10-03-2012) that, as the transaction volumes increase, the inter-trade durations de-
crease, the authors proposed to consider, in addition to an exponential Hawkes kernel,
a multiplicative mark (the function χ in Sec. 2.2.1) that corresponds to a power-law
function of the volumes: χ(v) = Cvν . Their model thus describes the events corre-
sponding to an increase/decrease of the bid/ask as a four dimensional Hawkes process
marked by transaction volumes. By adding suitable constraints in order to avoid in-
finite spread, they calibrated the model on FX rates data by a maximum likelihood
approach. Fauth and Tudor have shown that their model is consistent with empirical
data by reproducing the signature plots of the considered assets and the behavior of
the high-frequency pair correlation function (Epps effect).

5 Impact models

5.1 Market impact modeling

Market impact modeling is a longstanding problem in market microstructure literature
and is obviously of great interest both for theoreticians and practitioners (see e.g., [13]
for a recent review). While for the former market impact reflects the mechanism
enforcing the efficiency of markets, allowing prices to reflect fundamental information,
for the latter it represents a cost which needs to be carefully minimized when executing
an order. For a trader, market impact induces extra costs per transaction which needs
to be added to the fees charged directly by the market, forcing him to split large
orders and trade them incrementally in sequences of smaller child orders. Any of such
sequences of orders is called a meta-order, and quantifying their effect on prices is at
the heart of market-microstructure regulation discussions.

The theory of market price formation and the relationship between the order flow
and price changes has made significant progress during the last decade thanks to the
increasing availability of intraday data [14]. Many empirical studies have provided
evidence that the price impact has, to many respects, some universal properties and is
the main source of price variations. This corroborates the picture of an “endogenous”
nature of price fluctuations that contrasts with the classical scenario according to which
an “exogenous” flow of information drives the prices towards a fondamental value [14].

If a meta-order is placed at time t = 0 and executed until time t = T , an associated
market impact curve can be defined by a proxy of the price variation it directly or
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indirectly causes8. One generally distinguishes two phases: an increasing (concave)
part during the execution of the meta-order (i.e., on the interval [0, T ]), followed by
a decaying (generally convex) resilient part. The existence of permanent impact, i.e.,
a non zero asymptotic value (for large time) of the market impact curve, is a central
problem that remains under debate. The typical shape of a market impact curve is
shown in Fig. 8, that was was obtained by Bacry et al. in [5] by averaging empirical
impact curves over a large database of broker meta-orders. Let us point out that this
type of measure of market impact cannot be obtained using anonymous market data
(i.e, one cannot easily identify the meta-order of a given agent). This, together with the
extremely slow intensity of the price signal with respect to its statistical fluctuations,
is the reason why empirical results in this respect have been obtained only in relatively
recent years.
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Figure 8: Averaged empirical market impact curves (normalized in time) over a large
database of broker meta-orders. The fit is performed using the impulsive HIM model.
This figure has been reproduced from [5].

Bacry and Muzy proposed recently a price impact model based on Hawkes pro-
cesses [7]. They suggested to directly account for the joint dynamics of mid-price and
the market order occurences. More precisely the four dimensions of their Hawkes model
correspond to the mid-price upward and downward jumps and the buying and selling
market order flow (they did not account for the volume of the orders nor the price jump
sizes). The matrix kernel Φ can then be decomposed into four sub-blocks of size 2× 2.
The first one describes the self-excitement of the market order flow, the second one the
self-excitement of the price, the third one the (market) impact of the trades on the price
while the last one accounts for the feedback influence of price moves on market order
flow intensity. By calibrating the model directly from anonymous high-frequency data
(using the Wiener-Hopf non-parametric estimation technique described in App. C.2

8We focus here on the impact of meta-orders, rather than with the impact of individual orders, or with
the one of trade imbalance, which have also received considerable interest in the literature.
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on the most liquid maturity of EuroStoxx and Euro-Bund future contracts over 800
trading days from 2009 to 2012), the authors of [7] were able to disentangle the self
and cross excitation dynamics of mid-price changes from the impact of market orders.
In particular, they have shown that the market impact block is mainly diagonal: buy-
ing (resp. selling) orders are mostly triggering upward (resp. downward) price moves.
Moreover the shape of the diagonal impact function is very localized around t = 0.
This means that a market order no longer directly impacts the price after a very short
delay (i.e. less that 0.1s). They have also shown that the feedback sub-block is mostly
anti-diagonal with slightly negative diagonal kernel functions (see Sec. 2.2.4 for a short
discussion on negative kernels). That indicates that an upward (resp. downward) jump
in the price tends to increase the intensity of the selling (resp. buying) market or-
der flow and to decrease the intensity of the buying (resp. selling) market order flow.
The shape of kernels involved in the self-excitation of the market order flow or the
price jumps confirms former estimations performed within lower dimensional models:
long-range correlation of the signs of the trades and mainly long-range mean-reversion
of the price. All these results were confirmed (using a database with a much higher
precision in time) in the work of [6] (see Sec. 6.1). Bacry and Muzy established that,
within their framework, it is possible to determine the entire impact profile of some
meta-order that is built by accounting for the “bare” direct localized marked impact
and by a “dressed” impact that involves mainly the trades power-law self-excitation.
They provided analytical expressions for this curve and notably established in both the
increasing and the decreasing phase of the impact function, its relationship with the
power-law behavior of the self-exciting kernel of market order events. Using the pre-
viously described empirical findings, they have shown that one can recover the typical
shape depicted in Fig. 8.

In [5], an impact model based on the 2-dimensional Hawkes price model described
in Example 1 of Sec. 2.1 (in which only mean-reversion influence has been kept, i.e.,
φ(s)(t) = 0) has been introduced. It takes into account the impact of an exogeneous
(buying) meta-order strategy r(t), where r(t) corresponds to the trading rate of the
(buying) strategy per unit of time (so r(t)dt corresponds to the number of shares
bought between time t and t + dt). More precisely, the so-obtained Hawkes Impact
Model (HIM) writes

λ1
t = µ+ φ(s) ? dN2

t + φ(I) ? f(rt) and λ2
t = µ+ φ(s) ? dN1

t + φ(x) ? f(r1), (65)

where dN1
t (resp. dN1

t ) codes the upward (resp. downward) jumps of the price and
f(r(t))dt (with f(0) = 0) codes the infinitesimal impact of a buy order of volume
r(t)dt. The function f corresponds to the instantaneous impact function and φ(I) and
φ(x) correspond respectively to the impact kernel and the cross-impact kernel (this
latter describes the impact of a buying order on downward jumps, of course, we expect
that ||φ(x)|| << ||φ(I)||)9. Following the empirical findings of [7], the impulsive-HIM
model corresponds to the particular choice of an impulsive (very localized) impact
kernel φ(I)(t) = δ(t), i.e., a Dirac distribution. Moreover, as for the choice of φ(x),
the impulsive-HIM model considers that the market reacts to the newly arrived order

as if it triggered an upward jump: φ(x)(t) = C φ(s)(t)
||φ(s)|| . The constant C > 0 is a very

9As for (s) and (c), (I) stands for impact and (x) for cross-impact.

29



intuitive parameter that quantifies the ratio of “contrarian” reaction (i.e. impact decay)
and of the “herding” reaction (i.e. impact amplification). Analytical formula for the
market impact curve were obtained and three cases of interest for C were distinguished
in [5]: C = 0 corresponds to no contrarian reaction (strong permanent impact), C = 1
corresponds to a contrarian reaction as “strong” (in terms of the norm) as the herding
one (no permanent impact) and finally C ∈]0, 1[ corresponds to a contrarian reaction
which is not zero but strictly smaller than the herding reaction. Fig. 8 shows a fit of
the empirical market impact curve using this model with a power-law microstructure
kernel (φ(s)(t) ∼ t−γ , when t→ +∞), in which case, the market impact curve is proven
to be decaying to the permanent market impact value with a power-law t−(γ+1).

Let us point out, that in a totally different framework, Jaisson [41], linked, in the
asymptotic limit defined by Jaisson and Rosenbaum in [42] (see Sec. 2.3.6), the power-
law exponent of the self-excitement kernel involved in the market order flow and the
power-law exponent of the market impact decay. He derived his results, within a 2-
dimensional Hawkes model (with only self-excitement kernels) for the market order
flow, from (i) a price martingale hypothesis and (ii) a linear market impact hypothesis.

5.2 Optimal execution

A natural application of price impact models is to define optimal liquidation strategies.
Hewlett [40] was the first to address this problem using Hawkes models. He proposed
to model the occurrence of buy and sell market orders on FX markets using a bivariate
exponential Hawkes process. He found that these events are mostly self-excited, the
cross excitation intensity between buy and sell events being negligible. Using Eq. (47),
Hewlett determined the expected future trade imbalance that, within a linear price
impact model, allows one to determine the expected future price returns and the as-
sociated risk. He then showed that this approach allows one to devise a liquidation
strategy that maximises a mean-variance utility function.

Application of Hawkes model for optimal execution has also been considered more
recently by Alfonsi and Blanc [1] who modelled the price process using a linear impact of
liquidity takers. More precisely, the price is decomposed a the sum of a “fundamental”
price which variations are proportional to a fraction of the trade imbalance and a
“transient” price that is moved by the remaining fraction of the trade imbalance but
with a damping term that represents the market resiliency caused by the market makers
behavior. Alfonsi and Blanc have provided explicit expressions of optimal liquidation
strategy (i.e. the one with the minimum expected cost) when the flow of buy/sell
market orders that impact the price is either a Poisson process or a 2-dimensional
Hawkes process with a symmetric exponential kernel matrix. They notably show that
price manipulation strategies (i.e. liquidation strategies with negative expected cost)
always exist for a Poisson model while they can be excluded in the Hawkes model
provided its parameters meet some specific conditions. According the these conditions,
the self-excitation should exactly compensate the price resiliency so that resulting price
is a martingale. The other condition leads to identify the fraction of endogenous orders
within the Hawkes model with the proportion of market orders involved in the transient
part of the price behavior.
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6 Orderbook models

Modeling faithfully the occurrence of various type of orders in the order book with
the aim of understanding the mechanisms at the origin of price formation, volatility
and liquidity variations is probably the main challenge that the applications Hawkes
processes in financial econometrics have to face. Although this goal is far from being
reached, some authors have already tackled the problem and made significant progress
on these issues.

6.1 Level-I book models

The Level-I book description concerns the events that exclusively occur at the best bid
and best ask levels of the order book. Even if this approach discards most of the book
information, since best bid or best ask values are directly related to the asset mid-price
and market orders mostly impact the book at level-I, one can expect that this level of
description is rich enough to capture most of the market features. The study of Biais et
al. [11] confirms indeed that most of the activity of an order book takes place close to
the best quotes, while Cont et al. [19] indicate that a substantial part of the dynamics
of prices can be accounted for by the evolution best bid and best ask only.

One of the first applications of Hawkes models to order-book modeling at level-I
was performed by Large [46] who formalized the concept of book resiliency, namely
the ability of the order book to replenish after being depleted by a large trade. Large
suggested to quantify resiliency by the way large trades alter future intensities of order
occurences. For that purpose he introduced the response kernel Gij(t):

Gij(t)dt = E
[

dN i
t

∣∣F0,dN
j
0 = 1

]
− E

[
dN i

t

∣∣F0

]
. (66)

Gij(t) simply describes the increase of the future conditional intensity of events of
type i caused, directly or indirectly, by the the occurence, at time t = 0 of an event
of type j. In the case of a Hawkes process of kernel matrix Φ, Large proved that Gij

satisfies the integral equation in Eq. (17) defining Ψ(t). In other words, the matrix
Ψ(t) can be interpreted as the increase of the expected number of events after a lag
t caused by the occurrence of some event at time 0. Large then considered order
book data from LSE, modelled as a 10-dimensional Hawkes processes where the book
events are classified according to whether they move or not the mid-price: market and
limit orders that move the mid-prices (4 components if one distinguishes bid and ask),
market and limit orders that leave the book unchanged (4 components) and cancel
orders (2 components). The impact of “aggressive” orders on the rate of forthcoming
events is then studied. The processed data consisted in LSE stock data (Barclays
equity) timestamped at the resolution of 1s during the 22 trading days of January
2002. Large used MLE estimation within the class of exponential kernels in order to
estimate Ψ. His results allowed him to provide a “causal” interpretation (Large prefers
the term “precipitation” than “cause”) of the main event occurrence in the book. He
mainly found that aggressive limit orders are principally caused by aggressive market
orders, measuring thereby the market resiliency in all his aspects, magnitude, trade
direction and characteristic time. Consistently with former studies, Large estimated
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that the studied stock value is resilient less than 40 % of cases and, when it is the
case, the book replenishment occurs within a time frame of around 20s. He also shown
that market order dynamics is mostly self-excited and correlated over a large time.
Agressive market orders are also triggered by aggressive limit orders as a consequence
of the “race to liquidity”.

A similar analysis of level-I order book data was recently conducted by Bacry et
al. [6]. These authors made a slightly different categorization than Large and dis-
tinguished all book events (market, limit and cancel orders) that leave the mid-price
unchanged (6 components accounting for bid and ask sides) from events that move
the mid-price up or down (2 components). The dynamics of these event occurrence
has then been modeled as a 8-dimensional Hawkes process. Unlike Large, Bacry et
al. performed a non-parametric estimation of the matrix of kernels using the method
described in Sec. C.2. They considered book data time-stamped at a time resolution
of 10−6s and the analysis has been performed up to lags of a few minutes. The event
dynamics has thus been considered over a range of time scales close to eight decades.
The main result reported by the authors is that the book event dynamics is mainly
self-exciting, except for the mid-price changes for which cross-excitation effects are
strongly dominating. This is illustrated in Fig. 9 where the values of the estimated
kernel norms are reported using a color map: one can see that the resulting matrix is
mainly diagonal except in the price sub-block, that is anti-diagonal. The observation
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Figure 9: Empirical determination of the matrix of Hawkes kernel norms in the 8-
dimensional model of level-I book events. P stands for mid-price change events, T for
trade events, L for limit order events and C for cancel events. The superscripts (a)
(b) indicates the direction, ask or bid of the events. This figure is reproduced from [6].
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that price changes events are mainly triggered by price change events is in agreement
of Large previously reported results. Moreover, Bacry et al. observations confirmed the
previously reported empirical fact that this triggering effect is mostly anti-diagonal, i.e.,
present price changes impact future price changes in the opposite direction. Previous
findings using low-dimensional model concerning the kernel shapes were also confirmed:
the market is highly endogenous, whatever the type of event one considers and all the
dominating kernels (the diagonal kernels for orders leaving the price unchanged and
the anti-diagonal kernels for mid-price moves) are slowly decreasing, well described by
a power-law behavior as in Eq. (63). The richness of the Hawkes model of [6] allowed
the authors to account for a richer dynamical behavior than previous works and to
describe and quantify the high-frequency influences between all types of events. They
notably characterized the impact of price changes on the book event flow, a quantity
that turns out to be very sensitive to the asset tick size (as estimated by the probability
that the mid-price has to move). They also provided evidence of some inhibitory effects
which result from negative values of some Hawkes kernels. For example it was observed
that, for a large tick asset (like the Euro-Bund futures), an upward price move not only
triggers forthcoming trades at bid but also inhibits trades on the ask side.

Restricting previous Large model to market order flows at best bid and best ask,
Muni-Toke and Pomponio [56] studied the dynamics of trade-through orders. A market
order is a trade-through if part of it is executed at the next best limit. Thus, for
that purpose, they used the 2-dimensional Hawkes process (with exponential kernels)
decribed by Eq. (53). Though very rare for some assets (e.g., Euro-Bund future), trade-
through can be quite frequent on other contracts. For instance on the BNP stock [56]
finds an average of 400 trade-throughs per day. Parametric estimation using MLE on
exponential kernels have been performed on Euronext stocks restricting intraday-time
to 9h30 to 11h30 am to avoid very strong intraday seasonality effects. Goodness of
fit tests confirm that, as for the full market order flow, the main components of the
2-dimensional Hawkes kernel are the self-exciting kernel.

6.2 Full order book model

In [55], Muni Toke generalized the zero-intelligence model introduced in [64] to the
Hawkes framework. While in the latter model the authors built a full model for the
order book in which all the involved flows (i.e., limit and market orders at any level) are
independent pure Poisson processes. It is clearly a very rough approximation, market
orders are known to be long-range dependent (see Sec. 3.1) due to the splitting of large
meta-orders. Moreover, one expect limit orders to be also highly auto-correlated as
well as correlated with the market-order flow due to the fact market makers interact
with market takers. In [55], a 2-agents model is introduced. It comprises the following
agents:
• A liquidity provider :

– Arrivals of limit orders are modeled by using either a pure homogeneous Pois-
son process or a 1-dimensional Hawkes process with an exponential kernel
(cancellations are treated as in the zero-intelligence model, i.e., each order
has a life-time which is an i.i.d. exponential random variable using whose
parameter is fixed a priori)
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– The price-levels of new limit orders are randomly chosen by first choosing
the (bid or ask) side with probability 1/2 and then by sampling their values
from a Student distribution

• A liquidity taker :
– Modeled using either a pure homogeneous Poisson process or a 1-dimensional

Hawkes process with an exponential kernel.
All the volumes of both limit and market orders are i.i.d. and exponentially distributed
variables. Hawkes processes use exponential kernels which are estimated parametrically
using Maximum Likelihood Estimation.

Not surprisingly, inter-trade times of market orders are shown to be much better
modeled by a 1-dimensional Hawkes process (referred to as MM since the only Hawkes
kernel involved is one which deals with the influence of Market orders on themselves)
than by a pure Homogeneous Poisson process (HP). In the same way, inter-time of
limit orders are shown to be much better modeled by a 1-dimensional Hawkes process
(LL) than by HP. Along the same lines, the left panel of Fig. 10 shows that inter-
time between a given market order and the first arrival time of a limit order after
that market order is much better reproduced by a 2-dimensional Hawkes (referred to
as MM+LL+LM) model with self-exciting kernels for both market (MM) and limit
orders (LL) and a single cross-exciting kernel which corresponds to the influence of
past market orders on future limit orders (LM). The figure shows that a model with
two independent Hawkes models (MM+LL) with no cross-exciting kernels (LM) does
not perform well. In [55], Muni-Toke claims that the other cross-exciting kernel (the
one describing the influence of past limit orders on future market orders) is negligible.
Thus the order book dynamics seems to be driven mainly by the liquidity taker agent
rather than the liquidity provider, i.e., in a first approximation, the market makers
strategy consists basically in reacting to liquidity takers, whereas liquidity takers take
decisions independently from market makers.

Finally the right panel of Fig. 10 shows the so-obtained distribution of the bid-ask
spread for empirical data, the pure Homogenous Poisson (HP) model, the MM+LL
Hawkes model and the MM+LL+LM model. Again, this latter model is the one which
best fits the empirical data.

Let us mention a theoretical work by Jedidi and Abergel [43] in which a Hawkes-
based markovian framework for the whole orderbook dynamics is studied.

7 Other models

7.1 Systemic risk models

Hawkes models have been also be used at coarser time scales where asset prices are
mainly diffusive. They can be used in mixed models in order, for instance, to account
for jumps that occur over the diffusion process. This is the spirit of the model developed
by Aı̈t-Sahalia et al. [63] that proposed to describe the contagion of a crisis across all
the world markets by superimposing a multivariate self-excited Hawkes process to a
standard multivariate continuous diffusion model. According to this model, called be
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Figure 10: (Left panel) Empirical density function of the distribution of the duration
between a given market order and the first arrival of a limit order after that market
order. The density function is displayed for empirical BNPP time-series, and for three
different models that were fitted (using maximum likelihood) on these data, namely:
a purely Homogenous Poisson model (HP) for both market and limit orders, a model
with a pure poisson process for limit orders and a 1-dimensional Hawkes process for the
market orders (MM), a model with two independent 1-dimensional Hawkes processes
for limit and market orders (LL+MM) and finally this last model with a cross-exciting
term which characterize the influence of past market orders on future limit orders (LM).
(Right panel) Empirical density function of the distribution of the bid-ask spread. The
density function is displayed for empirical BNPP time-series, and for three different
models that were fitted (using maximum likelihood) on these data, namely: a purely
Homogenous Poisson model (HP) for both market and limit orders, a model with
a pure poisson process for limit orders and a 1-dimensional Hawkes process for the
market orders (MM), a model with two independent 1-dimensional Hawkes processes
for limit and market orders (LL+MM) and finally this last model with a cross-exciting
term which characterize the influence of past market orders on future limit orders
(LM). These figures are reproduced from Ref. [55].
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the authors, “Mutually exciting Jump-Diffusion”, the log-price vector satisfies:

dXt = µt + σtdWt + ZtdNt (67)

where Wt is a D-dimensional Brownian motion, σt is a stochastic volatility and Nt is
a D-variate Hawkes process that accounts for the self-excited nature of price jumps
occurrence (Zt is a random variable accounting for the direction and the intensity of
the jump). A GMM estimation procedure is proposed in [63] based on a closed-form
expressions of some moments associated with the returns variations in the monovariate
and bivariate cases with exponential Hawkes kernels. This estimation has been applied
to five international equity indices data associated with respectively US, Europe, Asian,
Pacian and Latin America zones. The authors found that the jumps terms have sig-
nificant self-excitation components and as far as the “contagion” effect is concerned, it
seems that the US equities are the ones with the greatest influence on other markets.

In Ref. [29], Errais et al. proposed to model credit default events in a portfolio
of securities as correlated point processes. More specifically they considered that the
dynamics of such events is described by a marked Hawkes process with exponential
kernels. A stated by Prop. 2, in this case, the couple of processes (λ,N) is a Markov
process. Thanks to the Dynkin formula, the authors provided explicit expressions for
the conditional distribution of both the marked and counting processes. This result
was used to price portfolios if credit derivatives such as index and tranch swaps. Their
model was then calibrated from index and swap data during September 2008 that
witnessed several credit default notably Lehman-Brothers default. The authors have
shown that by, capturing the dependence of default events, their model provided good
fits of market data, unlike standard approaches that failed during this period. Errais
et al. emphasized that marked Hawkes models with exponential kernels belong to the
more general class of affine point processes introduced by Duffie et al. [26]. An affine
point process involves a stochastic intensity vector which is a Markov process with
drift, diffusion and jump terms. Errais et al. [29] have shown that their approach
remains tractable within the class of affine point processes that provides a richer jump
interaction structure.

Let us also quote the recent similar work of Dassios and Zhao [23] who addressed
the question of default risk modelling and contagion propagation within the framework
of the so-called “Dynamic Contagion Process” that is an exponential marked Hawkes
model but where the Poisson exogenous events (the “immigrants”) are replaced by a
shot-noise (constructed as the first generation of the same exponential Hawkes model
with a different mark probability density). The authors have established the theo-
retical distributional properties of this new process (that remains a Markov process)
and provided analytic expressions for the its probability generating function. As in
Errais et al. [29], they showed that their approach is particularly suitable for modelling
the dependence structure of arriving events with dynamic contagion and proposed an
application to credit risk,

7.2 Accounting for news

In [61], Rambaldi et al. used Hawkes processes for modeling the impact of news on the
EBS (foreign exchange market) quotation time-series, consisting in a list of quotation
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timestamps. Let us note that, since EBS data are throttled (aggregated below a
window of 0.1s), a randomization procedure has been used for homogenization. The
model for the quotation arrival times is a 1-dimensional Hawkes model involving either
a double exponential or a power-law (expressed as a sum of 15 exponentials so to
have a convenient Maximum Likelihood Estimation procedure). The impact of the
news (on the quotation time-series) can be seen as particular instances of localized
non stationarities. Thus, Rambaldi et al. introduced an exogenous kernel φ(news) (an
exponential function) that accounts for the impact of a particular instance of a news,
leading to the model 10:

λt = µ+ φ ? dNt + φ(n)(t− t0), (68)

where t0 is the time of occurence of a particular news. Let us point out that φ(n)

(where (n) stands for news) is allowed to have a non-causal component (i.e., φ(n)(t) is
non zero for t < 0) in order to account for anticipation effects. Estimation is performed
(using regular Maximum Likelihood Estiamtion procedure) on a 3 hour period around
the considered news. Though the results are very noisy, the authors showed that the
model captures nicely both the amplitude and the time scale of the news effect. The
distribution of the L1 norm ||φ(n)|| for the different news has broad distribution (that
goes beyond 1) that clearly reflects the diverse effects of news on the market. Moreover,
using some proxies for quantifying how unexpected a particular news is, Rambaldi et
al. clearly showed that the norm ||φ(n)|| is not only related to the news impact but also
to its degree of surprise.

7.3 High-dimensional models

Modeling co-jumps. In [12], Bormetti et al. modeled the complex dynamics of
the extreme returns in a basket of stocks. They started by elaborating a rather elab-
orate procedure for identifying extreme returns (referred to as “jumps” in the paper,
corresponding to anomalous values) from 1-minute returns time-series. On a basket
of N = 20 Italian stocks they found up to 280 jumps on a single stock on the overall
period (of 88 days) and up to a total of 505 jumps per day on all the stocks. They
clearly established that some jumps arrive at the same time, i.e., within the same time-
window. This prevents from modeling the overall process as an N -dimensional Hawkes
process: Within such a framework, co-jumps cannot occur without introducing an im-
pulsive component inside the kernel Φ. Bormetti et al. finally suggested the following
model
• A 1-dimensional Hawkes process is used for modeling the co-jumps arrival times.

The kernel of the Hawkes process is chosen to be a sum of exponential functions.
• Each time t a co-jump occurs, each stock i, independently one form each other,

has a probability pi to jump. These probabilities are estimated empirically from
real data.

• For each stock i, a 1-dimensional Hawkes process is used to model the idiosyn-
cratic jumps of that stock, i.e., the jumps that are do not correspond to co-jumps.

10Formally, this model can be seen as a 1-dimensional version of the 2-dimensional price impact model
of Eq. (65) in which f(rt) is replaced by the Dirac distribution centered at time t0, δ(t− t0).
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Again, the kernels of the Hawkes process is chosen to be a sum of exponential
functions.

In their paper, Bormetti et al. developed a precise procedure to perform estimation of
this model which is shown to be quite robust. Moreover they showed that it is able to
capture simultaneously the time clustering of jumps and the high synchronization of
jumps across assets.

Clustering with graph models. In [49], Linderman and Adams developed a
probabilistic model that combines Hawkes processes with random graphs models, that
they applied on S&P100 data. Each component of the Hawkes kernel codes the changes
(of more than 0.1%) in the last traded price of a given asset during a whole week. Thus
a 100-dimensional point process with 182.037 events is obtained. The kernels are chosen
as

φij(t) = AijW ijhθij (t), (69)

where A is a random binary (0 or 1) valued matrix, W a random matrix with positive
entries and hθ(t) a parametric kernel (of parameters θ) such that

∫
hθ = 1 (a logistic

normal density with two parameters is chosen). Intraday seasonality is modeled us-
ing an exogenous intensity of the form µ = m + νey(t) where ν is a constant matrix
and y(t) is univariate Gaussian process. The random graph model is used to reflect
the probability of the different network structures through the prior distributions of
the matrices A and W . They basically depend on a latent distance which is chosen
in R2 imposing an overall sparsity (20%) and a characteristic distance scale. Thus
each stock k corresponds to a latent coordinate xk in R2 that is estimated through a
fully-Bayesian, parallel inference algorithm. A figure is displayed where each stock is
represented as a dot in the latent 2-dimensional space with a color coding correspond-
ing to its corresponding sector (among six sectors). Linderman and Adams showed
that some sectors, notably energy and financials, tend to cluster together, indicating
an increased probability of interaction between stocks in the same sector. Other sec-
tors, such as consumer goods, are broadly distributed, suggesting that these stocks
are less influenced by others in their sector. One can think that this approach will
pave the way, with the framework of multivariate Hawkes processes, to very promiz-
ing applications where one will process large amounts of data associated with a great
number of interacting components/agents in order to shed new light on the complexity
of financial markets.

Finally, let us note that Mastromatteo and Marsili [52] tried to overcome the prob-
lem of the estimation of a high-dimensional Hawkes process by mapping it onto a
graphical (Ising) model, so to describe the clustering of trading times in a set stocks.
They reconstructed the interaction network of the D = 100 most traded stocks of the
NYSE during the year 2003 by using machine learning techniques, and reported an
overall scaling of the weight matrix W ∝ D−1. Their study evidences the presence
of a large collective market mode of the matrix A, driving the overall level of market
activity close to the critical point.
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Appendices

A Table of financial applications found within each
discussed paper

Each of the academic works discussed throughout our paper involving numerical ex-
periments on financial data is listed in the following table. Apart from the comlumn
names that are explicit: D stands for dimension of the Hawkes model, T for the length
of the historical data used to calibrate the model, dt for the time resolution of the data,
Φ(t) for the shape of the Hawkes kernel. N -Exp stands for a sum of N exponential,
PL for “power-law ” and NP for “non-parametric”.
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Fitted Hawkes
D Nt Contracts T dt Φ(t) Comments

Section 2
[15] Bowsher 1-2 Trade Stocks 2 months 1s 2-Exp + seasonality
[18] Chavez et al. 1 Extreme ∆P Stocks 1 year 1ms 2-Exp Marked
[42] Jaisson et al. 8 Level-I Futures 1 year 1µs NP

Section 3
[2] Bacry et al. 1 Trade Futures 3.5 months 1ms NP

2 Price Futures 3.5 months 1ms NP
[8] Bacry et al. 1 Trade Futures 4.5 years 1ms NP

[21] Da Fonseca et al. 1 Trade
Stocks

Futures
2 years 1ms Exp

2 Mid-Price
Stocks

Futures
2 years 1ms Exp

[27] Embrechts et al. 2 Extreme ∆P Indices 17 years 1day Exp Marked
1 Extreme ∆P Indices 14 years 1h Exp 3d-Marked

[31] Filimonov et al. 1 Mid-Price Futures 13 years 1s Exp
[32] Filimonov et al. 1 Mid-Price Futures 15 years 1s Exp

1 Mid-Price Futures 15 years 1s PL
[34] Hardiman et al. 1 Mid-Price Futures 14 years 1ms N-Exp

1 Mid-Price Futures 1 year 1ms NP
[35] Hardiman et al. 1 Mid-Price Futures 16 years 1s Exp

1 Mid-Price Futures 16 years 1ms NP
[45] Lallouache et al. 1 Trade FX 3 months 0.1s 2-Exp

Section 4
[3] Bacry et al. 2 Price Futures 2 hours 1ms Exp

[30] Fauth et al. 4 Trades FX-Rates 2 months 1ms Exp Marked
[69] Zheng et al. 2 Trade FX 10 days 0.1s Exp Constrained

Section 5
[7] Bacry et al. 4 Price+Trade Futures 3.75 years 1ms NP
[5] Bacry et al. 2 Price Stocks 1 year 1ms PL

[40] Hewlett 2 Trades FX 2 months 1s Exp

Section 6
[46] Large 10 Level-I Stocks 22 days 1s Exp
[56] Muni Toke et al. 2 Trade-through Stocks 5 months 1ms Exp
[55] Muni Toke 2 Orderbook Stocks 15 days 1ms Exp

Section 7
[12] Bormetti et al. 1× 20 Price Stocks 88 days 1 mn Exp Co-jump
[29] Errais et al. 1 Default Credit 21 days 1day Exp

[49] Linderman et al. 100 Extreme ∆P Stocks 1 week 1s Exp
Fixed decay

Random Graph
[52] Mastromatteo et al. 100 Trades Stocks 1 year 1s Exp
[61] Rambaldi et al. 1 Quotation FX 1 year 0.1s N-Exp News
[63] Sahalia et al. 1-2 Price Indices [22, 33] years 1day Exp Contagion



B Simulation

There are two main frameworks for simulating Hawkes processes: an intensity-based

framework and a cluster-based framework, depending on whether it makes direct use of

the intensity regression Eq. (2) or of the cluster representation of the Hawkes process

(see Sec. 2.3.7). The most popular method being certainly the intensity-based thinning

method initially introduced by Lewis [48] in the general context of non homogenous

Poisson processes, and modified later by Ogata [58].

Thinning. The thinning algorithm is an incremental procedure in which the suc-

cessive jumping times are generated sequentially. It can be easily adapted to the

multi-dimensional context and can be generalized to the marked case. In its simplest

version (valid for decreasing kernels), given a starting time t it basically consists in

sampling a candidate jumping time t+ ∆t using an exponentially distributed random

variable ∆t with parameter λ
(tot)
t =

∑D
k=1 λ

k
t . Then a random variable U is uniformly

drawn in the interval [0, λ
(tot)
t ]. If U < λ

(tot)
t − λ(tot)

t+∆t, the jump is rejected. If not re-

jected, the jump is assigned to the component i, where i is the largest index satisfying

U ≥ λt −
∑i−1
k=1 λ

k
t+∆t. Let us point out that the complexity of the algorithm can be

substantially reduced in the case of exponential kernels.

Time-change Another common intensity-based approach for simulating a non ho-

mogenous Poisson process Nt uses the following well known fact: if one defines the

cumulative intensity function Ft =
∫ t

0
λudu, then NF−1

t
is an homogenous Poisson pro-

cess of intensity 1. Thus in order to perform simulation one needs to know how to

simulate F−1
tm+1

− F−1
tm where tm+1 − tm is exponentially distributed. This algorithm

has been applied for instance in the case of exponential kernels in [24]. In fact, in this

simpler case it is possible to invert analytically the function F .

Cluster algorithm The cluster approach consists basically in simulating the branch-

ing structure described in Sec. 2.3.7. Hence, the algorithm is sequential in the genera-

tions index n rather then in real time t. One can see for instance [54] which describes

how one can perform simulation of marked Hawkes processes using the branching struc-

ture. A short survey and a more comprehensive list of references can be found in the

recent work [24].

C Statistical inference

C.1 Parametric estimation

Maximum Likelihood Estimation. The most commonly used technique for

parametric estimation of Hawkes processes is the Maximum Likelihood Estimator
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(MLE), which has been first introduced by Ogata in [60]. The log-likelihood of a

non-homogeneous, multi-dimensional Poisson defined as in Eq. (2) reads

logL(µ,Φ) =

D∑

i=1

∫ T

0

ln(λit)dN
i
t −

M∑

m=1

lnλkmtm , (70)

where the couples {(tm, km)}Mm=1 denote respectively event times and components.

Given a Hawkes kernel Φθ depending upon a set of parameters θ, it is possible to

estimate it from Eq. (70) by solving the problem

(µ∗, θ∗) = argmax
(µ,θ)

logL(µ,Φθ) . (71)

In the case of a general Hawkes process, the computation of the likelihood (or its

gradient) is of the order of O(M2D) where M is the total number of jumps. The

fact that it reduces to O(MD) when the kernels are exponential functions is one of the

major reasons why exponential kernels (or sum of exponential kernels) are so commonly

used in a parametric framework [27, 55, 56, 12, 61, 69].

EM based Estimation. In [67], the authors use an Expectation Maximization

(EM) based technique, an iterative procedure comprising the alternation of two steps

of expectation (E) and maximization (M), in order to exploit the cluster representation

of the Hawkes process described in Sec. 2.3.7. Given a paramterization of the Hawkes

kernel Φθ, and a set of parameters (µ, θ), each iteration consists in:

• E-step (µ, θ)→ {pmm′}: Estimating, for all ordered pair of jumps (tm, tm′) (with tm < tm′),

the probability pmm′ that, within the cluster framework described in Sec. 2.3.7, tm is an

ancestor of tm′ .

• M-step {pmm′} → (µ, θ): Computing the model parameters (µ, θ) from the probabilities

{pmm′} estimated in the E-step.

This algorithm converges very quickly when the product of the average intensity Λ and

the characteristic timescale τ of the support of Φ is small, i.e., Λτ � 1, meaning that

few jumps are detected in intervals of size τ .

Let us point out that General Method of Moments (GMM) can be also used [21],

based, for instance, on auto-covariance analytical formula such as (29).

High-dimensional estimation. All the previous techniques cannot be applied

in a large dimensional context (e.g., D ≥ 100) without substantial modifications. For

instance, even in the case of “simple” exponential kernels, the number of parameters

is of the order of D2, so that applications to contexts in which D is large become

unfeasable due to overfitting and/or computational issues. In order to address the issue

of parametric estimation in large dimensions, one needs to use algorithms which involve

regularization. Within the last year, Hawkes processes in large dimension have been
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the subject of numerous academical papers (see for instance [70]). Most of them, adapt

more or less “classical” convex optimization techniques in the framework of Hawkes

processes with exponential kernels of the form αijβije−β
ijt. Let us point out that, in

all these papers, in order to get a convex log-likelihood (70), the parameters βij are a

priori fixed (i.e., they are not estimated), and generally not chosen to depend on i or j.

Thus, in that case, the kernel matrix Φ can be written in matrix form as Φ = αβe−βt,
where α is the so-called (weighted) adjacency matrix α = {αij}1≤i,j≤D. α describes

the “connections” between the different components of the Hawkes process. In order

to solve the so-obtained convex-optimization of the log-likelihood, penalizations terms

on α are customarily introduced. They are generally of two sorts: an L1 penalization

that ensures sparsity and a trace-norm penalization that ensures low-rank. To the best

of our knowledge, these types of algorithms have only been used once in the context of

finance (see Sec. 7.3 about [49]). Clearly, one can easily forecast that there will be, in

the near future, a huge number of new algorithms for parametric estimation in large

dimensions, some of them, improving the state of the art.

C.2 Non-parametric estimation

Very few non-parametric estimators of the kernel matrix of a Hawkes process have

appeared in the academic literature so far. We review them in the next section.

EM based estimation. Historically, the first one [47], corresponds to a non-

parametric version of the EM estimation algorithm described in the previous section.

It is based on regularization (via L2 penalization) of the method initially introduced

by [50] in the framework of ETAS model for seismology. It has been developed for 1-

dimensional Hawkes processes. The maximum likelihood estimator is computed using

the same two steps as in the parametric case. The E-step corresponds to estimating all

the pmm′ probabilities and the M-step corresponds to estimating φ(t) and µ from these

probabilities. In [47], some numerical experiments on particular cases are performed

successfully even when the exogenous intensity µ depends slowly on time: the whole

function µ(t) is estimated along with the kernel φ(t) with a very good approximation.

However, as explained in [8], this method has two main drawbacks:

• the convergence speed of the EM algorithm drastically decreases when the decay speed of the

kernel φ(t) is low (e.g., power-law decaying kernel),

• the probabilistic interpretation of the kernel values involved in the EM method prevents the

kernels to have negative values (see Sec. 2.2.4).

Contrast function based estimation. In a recent series of papers [62, 33],

some authors proposed, within a rigourous statistical framework, a second approach

for non-parametric estimation. It relies on the minimization of the so-called L2 contrast

function. Given a realization of a Hawkes process Ñt on an interval [0, T ], associated
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with the parameters (µ̃, Φ̃(t)), the estimation is based on minimizing the contrast func-

tion C(µ,Φ):

(µ∗,Φ∗) = argmin
(µ,Φ)

C(µ,Φ), (72)

where

C(µ,Φ) =

(
D∑

i=1

∫ T

0

λit(µ,Φ)2dt− 2

∫ T

0

λit(µ,Φ)dÑ i
t

)
(73)

and

λit(µ,Φ) = µi +

D∑

j=1

∫ t

−∞
Φij(t− s)dÑ j

s . (74)

Let us point out that, minimizing the expectancy of the contrast function is equivalent

to minimizing the L2 error on the intensity process. Indeed, if Ft is the information

available up to time t−, since E
[

dÑ i
t

∣∣Ft
]

= λ̃itdt, one has

argmin
(µ,Φ)

E [C(µ,Φ) ] = argmin
(µ,Φ)

D∑

i=1

(
E
[
λi(µ,Φ)2

]
− E

[
λi(µ,Φ)λ̃i

])
(75)

= argmin
(µ,Φ)

D∑

i=1

E
[

(λi(µ,Φ)− λ̃i)2
]
. (76)

The minimum value (zero) is of course uniquely reached for Φ = Φ̃ and µ = µ̃.

In [33], the authors chose to decompose Φ on a finite dimensional-space (in practice,

the space of the constant piece-wise functions) and to solve directly the minimization

problem (72) in that space. For that purpose, in order to regularize the solution

(they are essentially working with some applications in mind for which only a small

amount of data is available, and for which the kernels are known to be well localized),

they chose to penalize the minimization with a Lasso term (which is well known to

induce sparsity in the kernels), i.e., the L1 norm of the components of Φ. Let us

point out, that minimizing the contrast function and minimizing the expectancy of

the contrast function are two different stories. The contrast function is stochastic, and

nothing guarantees that the associated linear equation is not ill-conditioned. In [33],

the authors prove that, under certain conditions on Φ, the linear equation is invertible,

i.e., the associated random Gram matrix is almost surely positive definite. In practice

(they study real signals from neurobiology), they choose the components of Φ to be

piece-wise constant.

The Wiener-Hopf approach. Let us point out that, since λit is expressed lin-

early in terms of µi and of the {φij(t)}Dij=1, minimizing the L2 error (75) is equivalent

to solving a linear equation, which is nothing but the Wiener Hopf Eq. (38). Conse-

quently, minimizing the expectancy of the contrast function is equivalent to solving

the Wiener-Hopf equation. In [7, 8], the authors chose to perform non-parametric
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estimation by directly inverting this system. They have proved that, as long as g(t)

corresponds to a conditional intensity of a Hawkes process, (38) has a unique solution

in χ(t) which is the kernel matrix Φ(t). The algorithm uses quadrature technique in

order to discretize the system. It can be summarized in the following way:

• Estimation of the vector Λ (simply using as an estimator of Λi the number of jumps of the

realization of N i divided by the overall time realization)

• Non-parametric estimation of the matrix g(t) defined by (36) (using kernel density estimation

techniques)

• Fix the number of quadrature points (e.g., gaussian quadrature) to be used as well as the

support for all the kernel functions.

• Disretize the Wiener-Hopf system on the quadrature points and inverse it. This leads to an

estimation of the kernel functions on the quadrature points. Estimation on a finer grid as well

as L1 norm can be obtained through simple quadrature formula.

• Estimation of the exogenous intensity µ using (21).

We refer the reader to [8] where the full algorithm (including the methodology for

choosing the bandwdith value for density kernel estimation as well as the number of

quadrature points) is described precisely along with the comparisons with the other

methods presented above. It has actually been improved in [6] to take particular care

of slowly decreasing kernels.

As compared to the approach developed in [33], this algorithm is better adapted to

the case large amount of data is available. As compared to the EM approach, we shall

advocate its use over the EM algorithm mainly in two cases (which are often statisfied

when dealing with finacial data)

• either the kernel functions are not localized (e.g., power-law). Indeed, in that case the EM

algorithm is known to be very slow to converge (see [47] and [8]),

• or some of the kernel functions have negative values (see second point on the EM algorithm

above). We refer the reader to [33] for justification why Wiener-Hopf approach allows to deal

with negative kernels.

Finally, let us point out that, in the particular case the kernel matrix is known to

be symmetric (which is always true if the dimension D = 1), the method developed

in [2] uses a spectral method for inverting (23) and deduces an estimation from the

second-order statistics. It can be seen as a particularly elegant way of solving the

Wiener-Hopf equation.
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[16] P. Brémaud and L. Massoulié. Stability of nonlinear hawkes processes. The Annals
of Probability, pages 1563–1588, 1996.
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