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HAWKES PROCESSES ON LARGE NETWORKS
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We generalise the construction of multivariate Hawkes processes to a
possibly infinite network of counting processes on a directed graph G. The
process is constructed as the solution to a system of Poisson driven stochastic
differential equations, for which we prove pathwise existence and uniqueness
under some reasonable conditions.

We next investigate how to approximate a standard N -dimensional
Hawkes process by a simple inhomogeneous Poisson process in the mean-
field framework where each pair of individuals interact in the same way, in
the limit N → ∞. In the so-called linear case for the interaction, we further
investigate the large time behaviour of the process. We study in particular the
stability of the central limit theorem when exchanging the limits N,T → ∞
and exhibit different possible behaviours.

We finally consider the case G = Z
d with nearest neighbour interactions.

In the linear case, we prove some (large time) laws of large numbers and
exhibit different behaviours, reminiscent of the infinite setting. Finally, we
study the propagation of a single impulsion started at a given point of Zd at
time 0. We compute the probability of extinction of such an impulsion and,
in some particular cases, we can accurately describe how it propagates to the
whole space.

1. Introduction.

1.1. Motivation. In several apparently different applied fields, a growing inter-
est has been observed recently for a better understanding of stochastic interactions
between multiple entities evolving through time. These include: seismology for
modelling earthquake replicas (Helmstetter and Sornette [21], Kagan [27], Ogata
[36], Bacry and Muzy [4]), neuroscience for modelling spike trains in brain ac-
tivity (Grün et al. [17], Okatan et al. [37], Pillow et al. [38], Reynaud et al. [39,
40]), genome analysis (Reynaud-Bouret and Schbath [41]), financial contagion
(Ait-Sahalia et al. [1]), high-frequency finance (order arrivals, see Bauwens and
Hautsch [6], Hewlett [22], market microstructure see Bacry et al. [2] and market
impact see Bacry and Muzy [4, 5]), financial price modelling across scales (Bacry
et al. [3], Jaisson and Rosenbaum [25]), social networks interactions (Blundell
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et al. [7], Simma and Jordan [42], Zhou et al. [46]) and epidemiology like for in-
stance viral diffusion on a network (Hang and Zha [45]), to name but a few. In
all these contexts, observations are often represented as events (like spikes or fea-
tures) associated to agents or nodes on a given network, and that arrive randomly
through time but that are not stochastically independent.

In practice, we observe a multivariate counting process (Z1
t , . . . ,Z

N
t )t≥0, each

component Zi
t recording the number of events of the ith component of the system

during [0, t], or equivalently the time stamps of the observed events. Under rela-
tively weak general assumptions, a multivariate counting process (Z1

t , . . . ,Z
N
t )t≥0

is characterised by its intensity process (λ1
t , . . . , λ

N
t )t≥0, informally defined by

Pr
(
Zi has a jump in [t, t + dt]|Ft

) = λi
t dt, i = 1, . . . ,N,

where Ft denotes the sigma-field generated by (Zi)1≤i≤N up to time t . For mod-
elling the interactions, a particularly attractive family of multivariate point pro-
cesses is given by the class of (mutually exciting) Hawkes processes (Hawkes
[19], Hawkes and Oakes [20]), with intensity process given by

λi
t = hi

(
N∑

j=1

∫ t−
0

ϕji(t − s) dZj
s

)
,

where the causal functions ϕji : [0,∞) →R model how Zj acts on Zi by affecting
its intensity process λi . The nonnegative functions hi account for some nonlinear-
ity, but if we set hi(x) = μi + x with μi ≥ 0, we obtain linear Hawkes processes
where μi can be interpreted as a baseline Poisson intensity. In the degenerate case
ϕji = 0, we actually retrieve standard Poisson processes.

Multivariate Hawkes processes have long been studied in probability theory
(see, e.g., the comprehensive textbook of Daley and Vere-Jones [12] and the refer-
ences therein, Brémaud and Massoulié [9] and Massoulié [32] or the recent results
of Zhu [47, 49]). Their statistical inference is relatively well understood, too, from
a classical parametric angle (Ogata [34]) together with recent significant advances
in nonparametrics (Reynaud-Bouret and Schbath [41], Hansen et al. [18]). How-
ever, the frontier is progressively moving to understanding the case of large N ,
when the number of components may become increasingly large or possibly infi-
nite; see Massoulié [32] and Galvez and Löcherbach [15] for some constructions
in that direction. This context is potentially of major importance for future devel-
opments in the aforementioned applied fields. This is the topic of the present paper.

1.2. Setting. We work on a filtered probability space (�,F, (Ft )t≥0,Pr). We
say that (Xt)t≥0 is a counting process if it is nondecreasing, càdlàg, integer-valued
(and finite for all times), with all its jumps of height 1. For (Xt)t≥0 a (Ft )t≥0-
adapted counting process, there is a unique nondecreasing predictable process
(�t)t≥0, called compensator of (Xt)t≥0, such that (Xt − �t)t≥0 is a (Ft )t≥0-local
martingale; see Jacod and Shiryaev [24], Chapter I.
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We consider a countable directed graph G = (S,E) with vertices (or nodes)
i ∈ S and (directed) edges e ∈ E . We write e = (j, i) ∈ E for the oriented edge.
We also need to specify the following parameters: a kernel ϕ = (ϕji, (j, i) ∈ E)

with ϕji : [0,∞) �→ R, and a nonlinear intensity component h = (hi, i ∈ S) with
hi :R �→ [0,∞). The natural generalisation of finite-dimensional Hawkes pro-
cesses is the following.

DEFINITION 1. A Hawkes process with parameters (G,ϕ,h) is a family of
(Ft )t≥0-adapted counting processes (Zi

t )i∈S,t≥0 such that:

(i) almost surely, for all i �= j , (Zi
t )t≥0 and (Z

j
t )t≥0 never jump simultane-

ously,
(ii) for every i ∈ S , the compensator (�i

t )t≥0 of (Zi
t )t≥0 has the form �i

t =∫ t
0 λi

s ds, where the intensity process (λi
t )t≥0 is given by

λi
t = hi

(∑
j→i

∫ t−
0

ϕji(t − s) dZj
s

)
,

with the notation
∑

j→i for summation over {j : (j, i) ∈ E}.

This model can be seen as a particular case of that introduced by Massoulié
[32] who considers more general sets of sites (possibly R

d ) and a larger class of
intensities. We say that a Hawkes process is linear when hi(x) = μi + x for every
x ∈ R, i ∈ S , with μi ≥ 0 and when ϕji ≥ 0. We will give some general existence,
uniqueness and approximation results for nonlinear Hawkes processes, but in all
the precise large-time estimates we will prove concern for the linear case.

A Hawkes process (Zi
t )i∈S,t≥0 with parameters (G,ϕ,h) behaves as follows.

For each i ∈ S , the rate of jump of Zi is, at time t , λi(t) = hi(
∑

j→i

∑
k≥1 ϕji(t −

T
j
k )1{T j

k <t}), where (T
j
k )k≥1 are the jump times of Zj . In other words, each time

one of the Zj ’s has a jump, it excites its neighbours in that it increases their rate
of jump (in the natural situation where h is increasing and ϕ is positive). If ϕ is
positive and decreases to 0, the case of almost all applications we have in mind,
the influence of a jump decreases and tends to 0 as time evolves.

1.3. Main results. In the case where G is a finite graph, under some appro-
priate assumptions on the parameters, the construction of (Zi

t )i∈S,t≥0 is standard.
However, for an infinite graph, the situation is more delicate: we have to check, in
some sense, that the interaction does not come from infinity.

The first part of this paper (Section 2) consists of writing a Hawkes process as
the solution to a system of Poisson-driven SDEs and of finding a set of assumptions
on G and on the parameters (ϕ,h) under which we can prove the pathwise exis-
tence and uniqueness for this system of SDEs. Representing counting processes as
solutions to SDEs is classical; see Lewis and Shedler [31], Ogata, [35], Brémaud
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and Massoulié [9], Chevallier [11]. However, the well-posedness of such SDEs is
not obvious when G is an infinite graph.

In a second part (Section 3), we study the mean-field situation: we assume that
we have a finite (large) number N of particles behaving similarly, with no geom-
etry. In other words, S = {1, . . . ,N} is endowed with the set of all possible edges
E = {(i, j) : i, j ∈ S}, and there are two functions h and ϕ such that hi = h and
ϕij = N−1ϕ for all i, j ∈ S . We show that, as N → ∞, Hawkes processes can be
approximated by an i.i.d. family of inhomogeneous Poisson processes. Concerning
the large-time behaviour, we discuss, in the linear case, the possible law of large
numbers and central limit theorems as (t,N) → (∞,∞) and we observe some
different situations according to the position of

∫ ∞
0 ϕ(t) dt with respect to 1 (the

so-called critical case).
Finally, we consider in Section 4 the case where G is Zd , endowed with the set

of edges E = {(i, j) : |i − j | = 0 or 1}, where | · | denotes the Euclidean distance.
We study the large time behaviour, in the linear case where hi(x) = μi + x and
when ϕij = (2d + 1)−1ϕ does not depend on i, j . We first assume that μi does not
depend too much on i (consider, e.g., the case where the μi are random, i.i.d. and
bounded) and show that (i) if

∫ ∞
0 ϕ(t) dt > 1, then there is a law of large numbers

and the interaction makes everything flat, in the sense that for all i �= j , Zi
t ∼ Z

j
t

as t → ∞; (ii) if
∫ ∞

0 ϕ(t) dt < 1, then there is again a law of large numbers, but
the limiting value depends on i. We also explain why these results are reminiscent
of the infinite setting and of the interaction. Finally, we study the case where μi =
0 for all i but where there is an impulsion at time 0 at i = 0. We compute the
probability of extinction of such an impulsion and, in some particular cases, we
study how it propagates to the whole space (when it does not blow out).

1.4. Notation. The Laplace transform of ϕ : [0,∞) �→ R is defined, when it
exists, by

Lϕ(α) =
∫ ∞

0
e−αtϕ(t) dt.

We also introduce the convolution of h,g : [0,∞) �→ R as (if it exists) (g � h)t =∫ t
0 gsht−s ds = ∫ t

0 gt−shs ds. As is well known, when everything makes sense,
Lg�h(α) = Lg(α) ×Lh(α).

2. Well-posedness using a Poisson SDE. We will study Hawkes processes
through a system of Poisson-driven stochastic differential equations. This will al-
low us to speak of pathwise existence and uniqueness and to prove some propaga-
tion of chaos using some simple coupling arguments.

Consider, on a filtered probability space (�,F, (Ft )t≥0,Pr), a family
(πi(ds dz), i ∈ S) of i.i.d. (Ft )t≥0-Poisson measures with intensity measure ds dz

on [0,∞) × [0,∞).
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DEFINITION 2. A family (Zi
t )i∈S,t≥0 of càdlàg (Ft )t≥0-adapted processes is

called a Hawkes process with parameters (G,ϕ,h) if a.s., for all i ∈ S , all t ≥ 0

Zi
t =

∫ t

0

∫ ∞
0

1{z≤hi(
∑

j→i

∫ s−
0 ϕji(s−u)dZ

j
u)}π

i(ds dz).(1)

This formulation is consistent with Definition 1.

PROPOSITION 3. (a) A Hawkes process in the sense of Definition 2 is also a
Hawkes process in the sense of Definition 1.

(b) Consider a Hawkes process in the sense of Definition 1 (on some filtered
probability space (�,F, (Ft )t≥0,Pr)). Then we can build, on a possibly enlarged
probability space (�̃, F̃, (F̃t )t≥0, P̃r), a family (πi(ds dz), i ∈ S) of i.i.d. (F̃t )t≥0-
Poisson measures with intensity measure ds dz on [0,∞) × [0,∞) such that
(Zi

t )i∈S,t≥0 is a Hawkes process in the sense of Definition 2.

Point (a) is very easy: for a Hawkes process (Zi
t )i∈S,t≥0 in the sense of

Definition 2, it is clear that for every i ∈ S , the compensator of Zi is∫ t
0

∫ ∞
0 1{z≤hi(

∑
j→i

∫ s−
0 ϕji(s−u)dZ

j
u)} dzds, which is equal to

∫ t
0 hi(

∑
j→i ×∫ s−

0 ϕji(s − u)dZ
j
u) ds. Furthermore, the independence of the Poisson random

measures (πi(ds dz), i ∈ S) guarantees that for all i �= j , (Zi
t )t≥0 and (Z

j
t )t≥0 a.s.

never jump simultaneously.
Point (b) is more delicate but standard and a very similar result was given in

Brémaud and Massoulié [9]. Their proof is based on results found in the book of
Jacod [23], of which one of the main goals is exactly this topic: prove the equiva-
lence between martingale problems and SDEs. The many results of [23] generalise
those of Grigelionis [16]. See also the pioneering work of Kerstan [28]. We also
refer to Chevallier [11], Section IV, where a very complete proof is given as well as
a historical survey. Let us mention that the idea to integrate an indicator function
with respect to a Poisson measure in order to produce an inhomogeneous Poisson
process with given intensity was first introduced by Lewis and Shedler [31], and
later extended by Ogata [35] in the case of a stochastic intensity.

The following set of assumptions will guarantee the well-posedness of (1).

ASSUMPTION 4. There are some nonnegative constants (ci)i∈S , some posi-
tive weights (pi)i∈S and a locally integrable function φ : [0,∞) �→ [0,∞) such
that:

(a) for every i ∈ S , every x, y ∈ R, |hi(x) − hi(y)| ≤ ci |x − y|,
(b)

∑
i∈S hi(0)pi < ∞,

(c) for every s ∈ [0,∞), every j ∈ S ,
∑

i,(j,i)∈E cipi |ϕji(s)| ≤ pjφ(s).

Let us give a few examples of parameters (G,ϕ,h) satisfying Assumption 4.
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REMARK 5. (i) If S is finite, then Assumption 4 holds true, with the choice
pi = 1, as soon as hi is Lipschitz continuous for all i ∈ S and ϕji is locally inte-
grable for all (j, i) ∈ E .

(ii) If S = Z
d is endowed with E = {(i, j) : |i − j | = 0 or 1}, then Assumption 4

holds, with the choice pi = 2−|i|, if
∑

i∈Zd 2−|i||hi(0)| < ∞ and if there are c > 0
and ϕ ∈ L1

loc([0,∞)) such that |hi(x) − hi(y)| ≤ c|x − y| and |ϕjk(t)| ≤ ϕ(t) for
all i ∈ S , x, y ∈ R, (j, k) ∈ E and t ≥ 0.

(iii) Consider next S = Z
d endowed with the set of all possible edges E =

{(i, j) : i, j ∈ Z
d} and assume that there is c > 0 such that |hi(0)| ≤ c and |hi(x)−

hi(y)| ≤ c|x − y| for all i ∈ S , x, y ∈ R. Assume that there are ϕ ∈ L1
loc([0,∞))

and a nonincreasing a : [0,∞) �→ [0,∞) such that |ϕji(t)| ≤ a(|i − j |)ϕ(t) for
all (i, j) ∈ E and t ≥ 0. Then if

∑
i∈Zd a(|i|) < ∞, Assumption 4 holds true.

(iv) Consider the (strongly oriented) graph Z+ endowed with the set of edges
E = {(i, i + 1) : i ∈ Z+}. Then Assumption 4 holds true as soon as there is ϕ ∈
L1

loc([0,∞)) such that for every i ∈ Z+, there are ci > 0 and ai > 0 such that
|hi(x) − hi(y)| ≤ ci |x − y| and |ϕi(i+1)| ≤ aiϕ.

Points (ii) and (iii) of course extend to other graphs. In (iv), there is no growth
condition on |hi(0)|, ci and ai . This comes from the fact that the interaction is
directed: Z0 is actually a Poisson process with rate h0(0), the intensity of Z1 is
entirely determined by that of Z0, and so on. Hence, this example is not very
interesting. But we can mix (ii) and (iv): coefficients connected to the edges that
are directed to the origin have to be controlled.

PROOF OF REMARK 5. Point (i) is obvious. To check (ii), simply note that
for all j ∈ S ,

∑
i,(j,i)∈E c2−|i||ϕji | ≤ cϕ2−|j | ∑

i,(j,i)∈E 2|j |−|i| ≤ c2(2d +1)ϕ2−|j |
and define φ = c2(2d + 1)ϕ. Point (iv) holds with (pi)i∈Z+ defined by p0 = 1
and, by induction, pi+1 = min{2−i/(1+hi+1(0)),pi/(1+aici+1)}. This of course
implies that

∑
i∈Z+ pi |hi(0)| < ∞ and that for all j ≥ 1,

∑
i,(j,i)∈E cipi |ϕji | =

cj+1pj+1|ϕj(j+1)| ≤ cj+1pj+1ajϕ ≤ pjϕ as desired.
To prove (iii), we work with the sup norm |i| = |(i1, . . . , id)| = max{|i1|, . . . ,

|id |}. The delicate part consists in showing that there is b :N �→ [0,∞) and a con-
stant C > 0 such that

∑
i∈Zd b(|i|) < ∞ and, for all j ∈ Z

d ,
∑

i∈Zd b(|i|)a(|i −
j |) ≤ Cb(|j |). Then the result will easily follow, with the choices pi = b(|i|) and
φ = Ccϕ. We define b recursively, by b(0) = a(0) and b(k + 1) = max{a(k +
1), [(k + 1)/(k + 2)]2db(k)}. Using that a is nonincreasing, we easily check that b

is nonincreasing. We next check that
∑

i∈Zd b(|i|) < ∞, that is,
∑

k≥0 kd−1b(k) <

∞, knowing by assumption that
∑

k≥0 kd−1a(k) < ∞. We have, for k ≥ 0,

b(k + 1) − a(k + 1)

= ([
(k + 1)/(k + 2)

]2d
b(k) − a(k + 1)

)
+

≤ [
(k + 1)/(k + 2)

]2d(
b(k) − a(k)

)
+
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+ ([
(k + 1)/(k + 2)

]2d
a(k) − a(k + 1)

)
+

≤ [
(k + 1)/(k + 2)

]2d(
b(k) − a(k)

) + (
a(k) − a(k + 1)

)
.

Recalling that b(0) = a(0), one gets b(k) − a(k) ≤ ∑k

=1(a(
 − 1) − a(
))[(
 +

1)/(k + 1)]2d by iteration. Hence,

∑
k≥1

kd−1(
b(k) − a(k)

) ≤ ∑
k≥1

kd−1
k∑


=1

(
a(
 − 1) − a(
)

)[
(
 + 1)/(k + 1)

]2d

= ∑

≥1

(
a(
 − 1) − a(
)

)
(
 + 1)2d

∑
k≥


kd−1(k + 1)−2d

≤ C
∑

≥1

(
a(
 − 1) − a(
)

)

d.

This last quantity is nothing but C
∑


≥1 a(
)[(
+1)d −
d ] ≤ C
∑


≥1 a(
)
d−1 <

∞. We have thus checked that
∑

k≥0 kd−1b(k) = ∑
k≥1 a(k)kd−1 + ∑

k≥1 kd−1 ×
(b(k) − a(k)) < ∞.

We finally prove that for all j ∈ Z
d ,

∑
i∈Zd b(|i|)a(|i − j |) ≤ Cb(|j |). First, we

claim that there is C such that b(k) ≤ Cb(2k) for all k ≥ 0. This is easily checked,
iterating the inequality b(k) ≤ [(k + 2)/(k + 1)]2db(k + 1). Next we write, using
that a and b are nonincreasing,∑

i∈Zd

b
(|i|)a(|i − j |) ≤ ∑

|i|<|j |/2

b
(|i|)a(|i − j |) + ∑

|i|≥|j |/2

b
(|i|)a(|i − j |)

≤ a
(|j |/2

) ∑
i∈Zd

b
(|i|) + b

(|j |/2
) ∑
i∈Zd

a
(|i − j |)

≤ Ca
(|j |/2

) + Cb
(|j |/2

)
.

By definition of b, we have a(|j |/2) ≤ b(|j |/2). And we have just seen that
b(|j |/2) ≤ Cb(|j |). We finally have checked that

∑
i∈Zd b(|i|)a(|i −j |) ≤ Cb(|j |)

as desired. �

Our well-posedness result is the following.

THEOREM 6. Under Assumption 4, there exists a pathwise unique Hawkes
process (Zi

t )i∈S,t≥0 such that
∑

i∈S piE[Zi
t ] < ∞ for all t ≥ 0.

Observe that this result is not completely obvious in the case of an infinite graph.
In some sense, we have to check that the interaction does not come from infinity.
Let us insist on the fact that, even in simple situations, a graphical construction is
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not possible: consider, for example, the case of Z endowed with the set of edges
E = {(i, j) : |i − j | = 0 or 1}, assume that hi(x) = 1 + x for all i ∈ S and that
ϕij = 1 for all (i, j) ∈ E . Then one easily gets convinced that we cannot determine
the values of (Z0

t )t∈[0,T ] by observing the Poisson measures πi in a (random) finite
box.

As a second comment, let us mention that we believe it is not possible, or at
least quite difficult, to obtain the full uniqueness, that is, uniqueness outside the
class of processes satisfying

∑
i∈S piE[Zi

t ] < ∞ (or something similar). Indeed,
consider again the case of Z endowed with E = {(i, j) : |i − j | = 0 or 1}, assume
that hi(x) = 1+x for all i ∈ S and that ϕji = 1 for all (i, j) ∈ E . One easily checks
that for (Zi

t )i∈S,t≥0 a Hawkes process, for mi
t = E[Zi

t ], it holds that mi
t = t +∫ t

0 (mi−1
s +mi

s +mi+1
s ) ds for every i. This infinite system of equations is of course

closely related to the heat equation ∂tu(t, x) = 1 + ∂xxu(t, x) on [0,∞) × R and
with initial condition u(0, x) = 0. As is well known, uniqueness for this equation
fails to hold true without imposing some growth conditions as |x| → ∞. See, for
example, Tychonov’s counterexample of uniqueness, which can be found in John
[26], Chapter 7.

To compare Theorem 6 with the results of Massoulié [32], let us consider a
very simple situation. Let S = Z

d be endowed with E = {(i, j) : |i − j | = 0 or
1}, let hi(x) = 1 + x for all i ∈ S and ϕij (t) = ϕ(t) > 0 for all (i, j) ∈ E . Then
Theorem 6 applies as soon as ϕ ∈ L1

loc([0,∞)); see Remark 5(ii). Theorem 1 of
[32] does not apply for two reasons: supi∈S hi is not bounded and, more important,
it does not hold true that

∑
(i,j)∈E ϕij ∈ L1

loc([0,∞)) since
∑

(i,j)∈E ϕij (t) = +∞
for all t ≥ 0. On the contrary, [32], Theorem 2, applies, but only in the subcritical
case where (2d + 1)

∫ ∞
0 ϕ(t) dt < 1.

PROOF OF THEOREM 6. We first prove uniqueness. Let thus (Zi
t )i∈S,t≥0 and

(Z̃i
t )i∈S,t≥0 be two solutions to (1) satisfying the required condition. Set

�i
t =

∫ t

0

∣∣d(
Zi

s − Z̃i
s

)∣∣ for i ∈ S, t ≥ 0.

In other words, �i
t is the total variation norm of the signed measure d(Zi

s − Z̃i
s)

on [0, t]. We also put δi
t = E[�i

t ] and first prove that

δi
t ≤ ci

∫ t

0

∑
j→i

∣∣ϕji(t − s)
∣∣δj

s ds.(2)

We have

�i
t =

∫ t

0

∫ ∞
0

|1{z≤hi(
∑

j→i

∫ s−
0 ϕji(s−u)dZ

j
u)}

− 1{z≤hi(
∑

j→i

∫ s−
0 ϕji(s−u)dZ̃

j
u)}|πi(ds dz).
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Taking expectations, we deduce that

δi
t =

∫ t

0
E

[∣∣∣∣hi

(∑
j→i

∫ s−
0

ϕji(s − u)dZj
u

)

− hi

(∑
j→i

∫ s−
0

ϕji(s − u)dZ̃j
u

)∣∣∣∣]ds(3)

≤ ci

∑
j→i

E

[∫ t

0

∫ s−
0

∣∣ϕji(s − u)
∣∣d�j

u ds

]
by Assumption 4(a). Using Lemma 22, we see that∫ t

0
ds

∫ s−
0

∣∣ϕji(s − u)
∣∣d�j

u =
∫ t

0

∣∣ϕji(t − u)
∣∣�j

u du

which, plugged into (3), yields (2).
Set δt = ∑

i∈S piδ
i
t , where the weights pi were introduced in Assumption 4. By

assumption, δt is well defined and finite. We infer by (2) that

δt ≤
∫ t

0

∑
i∈S

pici

∑
j→i

∣∣ϕji(t − s)
∣∣δj

s ds.

By Assumption 4(c),

δt ≤
∫ t

0

∑
j∈S

δj
s

∑
i,(j,i)∈E

cipi

∣∣ϕji(t − s)
∣∣ds ≤

∫ t

0

∑
j∈S

pjδ
j
s φ(t − s) ds

=
∫ t

0
φ(t − s)δs ds.

Lemma 23(i) thus implies that δt = 0 identically, from which uniqueness follows.
We now quickly prove existence by a Picard iteration. Let Z

i,0
t = 0 and, for

n ≥ 0,

Z
i,n+1
t =

∫ t

0

∫ ∞
0

1{z≤hi(
∑

j→i

∫ s−
0 ϕji(s−u)dZ

j,n
u )}π

i(ds dz).(4)

We define δ
i,n
t = E[∫ t

0 |dZi,n+1
s − dZi,n

s |] and δn
t = ∑

i∈S piδ
i,n
t . As in the proof

of uniqueness, we obtain, for n ≥ 0,

δn+1
t ≤

∫ t

0
φ(t − s)δn

s ds.(5)

Next, we put m
i,n
t = E[Zi,n

t ]. By Assumption 4(a), hi(x) ≤ hi(0) + ci |x|, whence

m
i,n+1
t ≤ E

[∫ t

0

(
hi(0) + ci

∑
j→i

∫ s−
0

∣∣ϕji(s − u)
∣∣dZj,n

u

)
ds

]

≤
∫ t

0

(
hi(0) + ci

∑
j→i

∣∣ϕji(t − s)
∣∣mj,n

s

)
ds,
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where we used that, by Lemma 22,
∫ t

0
∫ s−

0 |ϕji(s − u)|dZ
j,n
u ds = ∫ t

0 |ϕji(t −
u)|Zj,n

u du. Setting un
t = ∑

i∈S pim
i,n
t and using Assumption 4(b)–(c),

un+1
t ≤ t

∑
i∈S

hi(0)pi +
∫ t

0

∑
i∈S

pici

∑
j→i

∣∣ϕji(s − u)
∣∣mj,n

s ds

(6)

≤ Ct +
∫ t

0
φ(t − s)un

s ds.

Since u0
t = 0 and φ is locally integrable, we easily check by induction that un

is locally bounded for all n ≥ 0. Consequently, δn is also locally bounded for
all n ≥ 0. Lemma 23(ii) implies that for all T ≥ 0,

∑
n≥1 δn

T < ∞. This classi-
cally implies that the Picard sequence is Cauchy, and thus converges: there exists
a family (Zi

t )i∈S,t≥0 of càdlàg nonnegative adapted processes such that for all
T ≥ 0, limn

∑
i∈S piE[∫ T

0 |dZi
s − dZi,n

s |] = 0. It is then not hard to pass to the
limit in (4) to deduce that (Zi

t )i∈S,t≥0 solves (1). Finally, Lemma 23(iii) implies
that supn un

t < ∞ for all t ≥ 0, from which
∑

i∈S piE[Zi
t ] < ∞ as desired. �

3. Mean-field limit. In this section, we work in the following setting.

ASSUMPTION 7. Let h :R �→ [0,∞) be such that |h|lip = supx �=y |x −
y|−1|h(x) − h(y)| < ∞ and let ϕ = [0,∞) �→ R be a locally square integrable
function.

For each N ≥ 1, we consider the complete graph GN with vertices SN =
{1, . . . ,N} and edges EN = {(i, j) : i, j ∈ SN }, that is, all pairs of points in SN

are connected. We put hN
i = h for all i ∈ SN and ϕN

ji = N−1ϕ for (i, j) ∈ EN .

Under Assumption 7, the triplet (GN,ϕN,hN) satisfies Assumption 4 (the
graph GN is finite) for each N ≥ 1. Therefore, a Hawkes process (Z

N,1
t , . . . ,

Z
N,N
t )t≥0 with parameters (GN,ϕN,hN) is uniquely defined by Theorem 6.
Introduce the limit equation


Zt =
∫ t

0

∫ ∞
0

1{z≤h(
∫ s

0 ϕ(s−u)dE[
Zu])}π(ds dz) for every t ≥ 0,(7)

where π(ds dz) is a Poisson measure on [0,∞) × [0,∞) with intensity mea-
sure ds dz. Also, dE[
Zu] is the measure on [0,∞) associated to the (necessar-
ily) nondecreasing function u �→ E[
Zu]. Note that a solution 
Z = (
Zt)t≥0, if
it exists, is an inhomogeneous Poisson process on [0,∞) with intensity λt =
h(

∫ t
0 ϕ(t − u)dE[
Zu]).

3.1. Propagation of chaos. The main result of this section reads as follows.
We denote by D([0,∞),R) the set of càdlàg R-valued functions on [0,∞) and by
P(D([0,∞),R)) the set of probability measures on D([0,∞),R).
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THEOREM 8. Work under Assumption 7.

(i) There is a pathwise unique solution (
Zt)t≥0 to (7) such that (E[
Zt ])t≥0 is
locally bounded.

(ii) It is possible to build simultaneously the Hawkes process (Z
N,1
t , . . . ,

Z
N,N
t )t≥0 with parameters (GN,ϕN,hN) and an i.i.d. family (
Zi

t )t≥0,i=1,...,N of
solutions to (7) in such a way that for all T > 0, all i = 1, . . . ,N ,

E

[
sup
[0,T ]

∣∣ZN,i
t − 
Zi

t

∣∣] ≤ CT N−1/2,

the constant CT depending only on h, ϕ and T (see Remark 9 below for some
bounds of CT in a few situations).

(iii) Consequently, we have the mean-field approximation

1

N

N∑
i=1

δ
(Z

N,i
t )t≥0

−→ L
(
(
Zt)t≥0

)
in probability, as N → ∞,

where P(D([0,∞),R)) is endowed with the weak convergence topology associ-
ated with the topology (on D([0,∞),R)) of the uniform convergence on compact
time intervals.

PROOF. For (
Zt)t≥0 a solution to (7), the equation satisfied by mt = E[
Zt ]
writes

mt =
∫ t

0
h

(∫ s

0
ϕ(s − u)dmu

)
ds for every t ≥ 0.(8)

By Lemma 24, we know that this equation has a unique nondecreasing locally
bounded solution, which furthermore is of class C1 on [0,∞). We now split the
proof in several steps.

Step 1. Here we prove the well-posedness of (7). For (
Zt)t≥0 a solution
to (7), its expectation mt = E[
Zt ] solves (8) and is thus uniquely defined.
Thus, the right-hand side of (7) is uniquely determined, which proves unique-
ness. For the existence, consider m the unique solution to (8) and put 
Zt =∫ t

0
∫ ∞

0 1{z≤h(
∫ s

0 ϕ(s−u)dmu)}π(ds dz). We thus only have to prove that E[
Zt ] = mt .

But E[
Zt ] = ∫ t
0 h(

∫ s
0 ϕ(s −u)dmu)ds, which is nothing but mt since m solves (8).

Step 2. We next introduce a suitable coupling. Let (πi(ds dz))i≥1 be an i.i.d.
family of Poisson measures with common intensity measure ds dz on [0,∞) ×
[0,∞). For each N ≥ 1, we consider the Hawkes process (Z

N,1
t , . . . ,Z

N,N
t )t≥0

Z
N,i
t =

∫ t

0

∫ ∞
0

1{z≤h(N−1 ∑N
j=1

∫ s−
0 ϕ(s−u)dZ

N,j
u )}π

i(ds dz).

Next, still denoting by m the unique solution to (8), we put, for every i ≥ 1,


Zi
t =

∫ t

0

∫ ∞
0

1{z≤h(
∫ s−

0 ϕ(s−u)dmu)}π
i(ds dz).

Clearly, ((
Zi
t )t≥0)i≥1 is an i.i.d. family of solutions to (7).
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Step 3. Here we introduce �i
N(t) = ∫ t

0 |d(
Zi
u − ZN,i

u )| and δN(t) = E[�i
N(t)],

which obviously does not depend on i (by exchangeability). Observe that

sup
[0,t]

∣∣
Zi
u − ZN,i

u

∣∣ ≤ �i
N(t) whence E

[
sup
[0,t]

∣∣
Zi
u − ZN,i

u

∣∣] ≤ δN(t).(9)

The first inequality follows from the fact that |
Zi
u − ZN,i

u | ≤ | ∫ u
0 d(
Zi

r − ZN,i
r )| ≤∫ u

0 |d(
Zi
r − ZN,i

r )|. We show in this step that for all t > 0,

δN(t) ≤ |h|lipN−1/2
∫ t

0

(∫ s

0
ϕ2(s − u)dmu

)1/2

ds

(10)

+ |h|lip
∫ t

0

∣∣ϕ(t − s)
∣∣δN(s) ds.

First, �1
N(t) equals∫ t

0

∫ ∞
0

∣∣1{z≤h(N−1 ∑N
j=1

∫ s−
0 ϕ(s−u)dZ

N,j
u )} − 1{z≤h(

∫ s−
0 ϕ(s−u)dmu)}

∣∣πi(ds dz).

Taking expectations, we find

δN(t) =
∫ t

0
E

[∣∣∣∣∣h
(∫ s

0
ϕ(s − u)dmu

)
− h

(
N−1

N∑
j=1

∫ s

0
ϕ(s − u)dZN,j

u

)∣∣∣∣∣
]

ds,

whence

δN(t) ≤ |h|lip
∫ t

0
E

[∣∣∣∣∣
∫ s

0
ϕ(s − u)dmu − N−1

N∑
j=1

∫ s

0
ϕ(s − u)d
Zj

u

∣∣∣∣∣
]

ds

+ |h|lip
∫ t

0
E

[∣∣∣∣∣N−1
N∑

j=1

∫ s

0
ϕ(s − u)d

[
Zj
u − ZN,j

u

]∣∣∣∣∣
]

ds(11)

= |h|lip(A + B).

Using exchangeability and Lemma 22,

B ≤
∫ t

0
E

[∫ s

0

∣∣ϕ(s − u)
∣∣d�1

N(u)

]
ds =

∫ t

0

∣∣ϕ(t − u)
∣∣δN(u)du.(12)

Next, we use that X
j
s = ∫ s

0 ϕ(s − u)d
Zj
u are i.i.d. with mean

∫ s
0 ϕ(s − u)dmu,

whence

A ≤ N−1/2
∫ t

0

(
VarX1

s

)1/2
ds.(13)

But it holds that

X1
s =

∫ s

0

∫ ∞
0

1{z≤h(
∫ u

0 ϕ(u−r) dmr)}ϕ(s − u)π1(dudz).
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Since the integrand is deterministic, denoting by π̃1 the compensated Poisson mea-
sure,

X1
s −E

[
X1

s

] =
∫ s

0

∫ ∞
0

1{z≤h(
∫ u

0 ϕ(u−r) dmr)}ϕ(s − u)π̃1(dudz).

Recalling Assumption 7, we find

VarX1
s =

∫ s

0
ϕ2(s − u)h

(∫ u

0
ϕ(u − r) dmr

)
du =

∫ s

0
ϕ2(s − u)dmu.(14)

We used (8) for the last equality. Gathering (11), (12), (13) and (14) completes the
step.

Step 4. Here, we conclude that for all T ≥ 0, sup[0,T ] δN(t) ≤ CT N−1/2. This
will complete the proof of (ii) by (9). This is not hard: it suffices to start from (10),
to apply Lemma 23(i) and to observe that

∫ t
0 (

∫ s
0 ϕ2(s − u)dmu)

1/2 ds is locally
bounded (which follows from the assumption that ϕ is locally square integrable
and the fact that m is C1 on [0,∞)).

Step 5. Finally, (iii) follows from (ii): by Sznitman [43], Proposition 2.2, it suf-
fices to check that for each fixed 
 ≥ 1, ((Z

N,1
t )t≥0, . . . , (Z

N,

t )t≥0) goes in law, as

N → ∞, to 
 independent copies of (
Zt)t≥0 (for the uniform topology on compact
time intervals). This clearly follows from (ii). �

We now want to show that the constant CT we get can be quite satisfactory.

REMARK 9. Work under Assumption 7.
(a) Assume that |h|lip ∫ ∞

0 |ϕ(s)|ds < 1 (subcritical case) and that∫ ∞
0 ϕ2(s) ds < ∞. Then (ii) of Theorem 8 holds with CT = CT , for some con-

stant C > 0. This is a satisfactory slow growth.
(b) Assume that h(x) = μ + x for some μ > 0 and that ϕ(t) = ae−bt for

some a > b > 0 [if a < b, then point (a) applies]. Then mt = E[
Zt ] ∼ μa(a −
b)−2e(a−b)t as t → ∞ and (ii) of Theorem 8 holds with CT = Ce(a−b)T , for some
constant C > 0. This is again quite satisfactory: the error is of order N−1/2mT .

PROOF. We start with (a). Using the notation of the previous proof, it suffices
[see (9)] to show that δN(T ) ≤ CT N−1/2. Setting � = |h|lip ∫ ∞

0 |ϕ(s)|ds < 1,
starting from (10) and observing that δN is nondecreasing, we find δN(t) ≤
|h|lipN−1/2 ∫ t

0 (
∫ s

0 ϕ2(s − u)dmu)
1/2 ds + �δN(t), whence δN(t) ≤ CN−1/2 ×∫ t

0 (
∫ s

0 ϕ2(s − u)dmu)
1/2 ds. We thus only have to check that

∫ s
0 ϕ2(s − u)dmu is

bounded on [0,∞). Since
∫ ∞

0 ϕ2(s) ds < ∞, it suffices to prove that m′ is bounded
on [0,∞). But m′

t = h(
∫ t

0 ϕ(t − u)m′
u du) ≤ h(0) + |h|lip ∫ t

0 |ϕ(t − u)|m′
u du,

whence sup[0,T ] m′
t ≤ h(0) + � sup[0,T ] m′

t , and thus sup[0,T ] m′
t ≤ h(0)/(1 − �)

for any T > 0.
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We next check (b). First, (8) rewrites mt = μt + a
∫ t

0
∫ s

0 e−b(s−u) dmu ds, with
unique solution

mt = −μbt

a − b
+ μa(e(a−b)t − 1)

(a − b)2 ∼ μa

(a − b)2 e(a−b)t .

Next, using (10) and the explicit expressions of h, ϕ and m, we find

δN(t) ≤ N−1/2
∫ t

0

(∫ s

0
ϕ2(s − u)dmu

)1/2

ds +
∫ t

0
ϕ(t − s)δN(s) ds

≤ CN−1/2e(a−b)t/2 + a

∫ t

0
e−b(t−s)δN(s) ds.

Setting uN(t) = δN(t)ebt , we get uN(t) ≤ CN−1/2e(a+b)t/2 + a
∫ t

0 uN(s) ds. By
Grönwall’s lemma, uN(t) ≤ CN−1/2e(a+b)t/2 + a

∫ t
0 CN−1/2e(a+b)s/2ea(t−s) ds.

On easily deduces, since a > b, that uN(t) ≤ CN−1/2eat so that δN(t) ≤
CN−1/2e(a−b)t . The use of (9) completes the proof. �

3.2. Large time behaviour. We now address the important problem of the large
time behaviour. Since the solution (
Zt)t≥0 to (7) is nothing but an inhomogeneous
Poisson process, its large-time behaviour is easily and precisely described, pro-
vided we have sufficiently information on the solution to (8). The question is thus:
can we use the large time estimates of the mean-field limit to describe the large-
time behaviour of the true Hawkes process with a large number of particles? To fix
the ideas, we consider the linear case. For A a symmetric nonnegative matrix, we
denote by N (0,A) the centered Gaussian distribution with covariance matrix A.

We treat separately the subcritical and supercritical cases.

THEOREM 10. Work under Assumption 7 with ϕ nonnegative and h(x) = μ+
x for some μ > 0. Assume also that � = ∫ ∞

0 ϕ(s) ds < 1. For each N ≥ 1, con-

sider the Hawkes process (Z
N,1
t , . . . ,Z

N,N
t )t≥0 with parameters (GN,ϕN,hN).

Consider also the unique solution (mt)t≥0 to (8):

1. We have mt ∼ a0t as t → ∞, where a0 = μ/(1 − �).
2. For any fixed i ≥ 1, Z

N,i
t /mt tends to 1 in probability as t → ∞, uniformly

in N . More precisely, E[|ZN,i
t /mt − 1|] ≤ Cm

−1/2
t for some constant C.

3. For any fixed 
 ≥ 1 (m
1/2
t (Z

N,i
t /mt − 1))i=1,...,
 goes in law to N (0, I
) as

(t,N) → (∞,∞) (without condition on the regime).

Point 2 is of course related to the classical law of large numbers for multivari-
ate Hawkes processes; see, for example, Brémaud and Massoulié [9] or [3]. What
we prove here is that this law of large numbers is uniform in N . From this re-
sult, we deduce that Pr(|ZN,i

t /mt − 1| > ε) ≤ Cε−1m
−1/2
t , uniformly in N . In

view of the papers by Bordenave and Torrisi [8] and Zhu [48, 49], which concern
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one-dimensional processes, one might expect that a much more fast decay (large
deviation bound) could be proved, under a Cramér condition on ϕ. It would be
interesting to decide if such a bound is uniform in N .

THEOREM 11. Work under Assumption 7 with ϕ nonnegative and h(x) = μ+
x for some μ > 0. Assume also that � = ∫ ∞

0 ϕ(s) ds ∈ (1,∞]. Assume finally
that t �→ ∫ t

0 |dϕ(s)| has at most polynomial growth. For each N ≥ 1, consider the

Hawkes process (Z
N,1
t , . . . ,Z

N,N
t )t≥0 with parameters (GN,ϕN,hN). Consider

also the unique solution (mt )t≥0 to (8):

1. We have mt ∼ a0e
α0t as t → ∞, where α0 > 0 is determined by Lϕ(α0) = 1

and where a0 = μα−2
0 (

∫ ∞
0 tϕ(t)e−α0t dt)−1.

2. For any fixed i ≥ 1, Z
N,i
t /mt tends to 1 in probability as (t,N) → (∞,∞).

More precisely, there is a constant C such that E[|ZN,i
t /mt − 1|] ≤ m

−1/2
t +

CN−1/2(1 + m−1
t ).

3. For any fixed 
 ≥ 1:

(i) (m
1/2
t (Z

N,i
t /mt −1))i=1,...,
 goes in law to N (0, I
) if t → ∞ and N →

∞ with mt/N → 0;
(ii) (N1/2(Z

N,i
t /mt − 1))i=1,...,
 goes in law to (X, . . . ,X), if t → ∞ and

N → ∞ with mt/N → ∞. Here X is a N (0, σ 2)-distributed random variable,
where σ 2 = α2

0μ−2 ∫ ∞
0 e−2α0sm′

s ds.

Let us summarise. At first order (law of large numbers), the mean-field approxi-
mation is always good for large times. At second order (central limit theorem), the
mean field approximation is always good for large times in the subcritical case, but
fails to be relevant for too large times (depending on N ) in the supercritical case:
the independence property breaks down.

In the supercritical case, we have the technical condition that t �→ ∫ t
0 |dϕ(s)|

has at most polynomial growth. This is useful to have some precise estimates of
the solution m to (8). This is, for example, always satisfied when ϕ is bounded and
nonincreasing, as is often the case in applications. It is slightly restrictive, however,
since it forces ϕ(0) to be finite.

It should be possible to study also the critical case, but then the situation is more
intricate: many regimes might arise. With a little more work, we could also study,
in the supercritical case, the regime where mt/N → x ∈ (0,∞).

In order to prove Theorems 10 and 11, we will use the following central limit
theorem for martingales. For two càdlàg martingales M and N , we denote by
[M,N ] the quadratic covariation defined by [M,N ]t = MtNt − ∫ t

0 Ms− dNs −∫ t
0 Ns− dMs . When M and N are purely discontinuous, it holds that [M,N ]t =∑

s≤t �Ms�Ns ; see Jacod and Shiryaev [24], Chapter I, Section 4e.
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LEMMA 12. Let 
 ≥ 1 be fixed. For N ≥ 1, consider a family (M
N,1
t , . . . ,

M
N,

t )t≥0 of 
-dimensional local martingales satisfying M

N,i
0 = 0. Assume that

all their jumps are uniformly bounded and that [MN,i,MN,j ]t = 0 for every
N ≥ 1, i �= j and t ≥ 0. Assume also that there is a continuous increasing function
(vt )t≥0 : [0,∞) �→ [0,∞) such that for all i = 1, . . . , 
, lim(t,N)→(∞,∞) v

−2
t [MN,i,

MN,i]t = 1 in probability. In the case where v∞ = limt→∞ vt < ∞, assume more-
over that for all i = 1, . . . , 
, all t0 > 0, uniformly in t ≥ t0, limN→∞[MN,i,

MN,i]t = v2
t in probability.

Then v−1
t (M

N,1
t , . . . ,M

N,

t ) converges in law to the Gaussian distribution

N (0, I
) as (t,N) → (∞,∞), where I
 is the 
 × 
 identity matrix.

PROOF. Let (tN)N≥1 be a sequence of positive numbers such that tN → ∞.
We want to prove that v−1

tN
(M

N,1
tN

, . . . ,M
N,

tN

) converges in law to N (0, I
). For all
u ∈ [0,1], set

τN
u = inf

{
t ≥ 0 :v2

t ≥ uv2
tN

}
.

Since v is increasing and continuous, τN is also continuous and increasing for
each N . We also clearly have v2

τN
u

= uv2
tN

for all u ∈ [0,1] and τN
1 = tN . Finally,

for each u > 0 fixed, the sequence τN
u is increasing.

For all u ∈ (0,1], limN v−2
τN
u

[MN,i,MN,i]τN
u

= 1 in probability. Indeed, in the

case v∞ = ∞, this follows from the facts that limN τN
u = ∞ and

lim(t,N)→(∞,∞) v
−2
t [MN,i,MN,i]t = 1. When v∞ < ∞, the additional assump-

tion (uniformity in t ≥ t0 of the convergence as N → ∞) clearly suffices, since
the sequence τN

u is increasing, and thus bounded from below.
We define the martingales (LN,i

u )u∈[0,1] by LN,i
u = v−1

tN
M

N,i

τN
u

. All their jumps are

uniformly bounded (because those of MN,i are assumed to be uniformly bounded
and because supN v−1

tN
< ∞ since v is increasing). We also have [LN,i,LN,j ]u = 0

for all i �= j , all u ∈ [0,1]. Furthermore, using that v2
τN
u

= uv2
tN

,

[
LN,i,LN,i]

u = [MN,i,MN,i]τN
u

v2
tN

= [MN,i,MN,i]τN
u

v2
τN
u

u → u

in probability. Therefore, according to Jacod and Shiryaev [24], Theorem VIII-
3.11, the process (LN,1

u , . . . ,LN,

u )u∈[0,1] converges in law to (B1

u, . . . ,B

u)u∈[0,1]

where the Bi are independent standard Brownian motions. In particular,
(L

N,1
1 , . . . ,L

N,

1 ) goes in law to N (0, I
). To complete the proof, it thus suffices

to observe that L
N,i
1 = v−1

tN
M

N,i

τN
1

= v−1
tN

M
N,i
tN

. �

We can now give:
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PROOF OF THEOREM 10. In the present (linear) case, we can rewrite (8) as
mt = ∫ t

0 (μ + ∫ s
0 ϕ(s − u)dmu)ds = μt + ∫ t

0 ϕ(t − s)ms ds by Lemma 22. This
equation is studied in details in Lemma 25: recalling that � = ∫ ∞

0 ϕ(s) ds < 1,
we have m′

t ∼ a0 and mt ∼ a0t as t → ∞, where a0 = μ/(1 − �), which proves
point (i). The proof is now divided in several steps. Step 1 will also be used in the
supercritical case.

Step 1. Recall that, for some i.i.d. family (πi(ds dz))i≥1 of Poisson measures
on [0,∞) × [0,∞) with intensity measure ds dz,

Z
N,i
t =

∫ t

0

∫ ∞
0

1{z≤μ+N−1 ∑N
j=1

∫ s−
0 ϕ(s−u)dZ

N,j
u }π

i(ds dz).

We have E[ZN,i
t ] = mt . Indeed, by exchangeability, we see that E[ZN,i

t ] =
E[ZN,1

t ] and that

E
[
Z

N,1
t

] =
∫ t

0

(
μ + N−1

N∑
j=1

∫ s

0
ϕ(s − u)dE

[
ZN,j

u

])
ds

=
∫ t

0

(
μ +

∫ s

0
ϕ(s − u)dE

[
ZN,1

u

])
ds,

whence (E[ZN,1
t ])t≥0 solves (8), of which the unique solution is (mt )t≥0 by

Lemma 24.
We next introduce U

N,i
t = Z

N,i
t − mt and the martingales [here π̃ i(ds dz) =

πi(ds dz) − ds dz]

M
N,i
t =

∫ t

0

∫ ∞
0

1{z≤μ+N−1 ∑N
j=1

∫ s−
0 ϕ(s−u)dZ

N,j
u }π̃

i(ds dz).

We consider the mean processes 
ZN
t = N−1 ∑N

1 Z
N,i
t , 
UN

t = N−1 ∑N
1 U

N,i
t and

finally 
MN
t = N−1 ∑N

1 M
N,i
t . An easy computation using (8) and Lemma 22

shows that

U
N,i
t = M

N,i
t +

∫ t

0
N−1

N∑
j=1

∫ s

0
ϕ(s − u)dZN,j

u ds − mt

= M
N,i
t +

∫ t

0

∫ s

0
ϕ(s − u)

(
N−1

N∑
j=1

dZN,j
u − dmu

)
ds

= M
N,i
t +

∫ t

0
ϕ(t − s)

(
N−1

N∑
j=1

ZN,j
s − ms

)
ds,

so that

U
N,i
t = M

N,i
t +

∫ t

0
ϕ(t − s)
UN

s ds.(15)
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This directly implies that


UN
t = 
MN

t +
∫ t

0
ϕ(t − s)
UN

s ds.(16)

Next, we observe that [MN,i,MN,j ]t = 0 for all i �= j (because these martin-
gales a.s. never jump simultaneously) and that [MN,i,MN,i]t = Z

N,i
t . Hence,

[ 
MN, 
MN ]t = N−1
ZN
t . We thus have E[(MN,i

t )2] = E[ZN,i
t ] = mt and

E[( 
MN
t )2] = N−1

E[
ZN
t ] = N−1mt .

Step 2. Recalling (16) and using that � = ∫ ∞
0 ϕ(s) ds < 1, we observe that

sup[0,t] |
UN
s | ≤ sup[0,t] | 
MN

s | + � sup[0,t] |
UN
s |. Consequently,

E

[
sup
[0,t]

∣∣
UN
s

∣∣] ≤ (1 − �)−1
E

[
sup
[0,t]

∣∣ 
MN
s

∣∣] ≤ CN−1/2m
1/2
t

by the Doob and Cauchy–Schwarz inequalities. We easily deduce that

E

[∫ t

0
ϕ(t − s)

∣∣
UN
s

∣∣ds

]
≤ �E

[
sup
[0,t]

∣∣
UN
s

∣∣] ≤ CN−1/2m
1/2
t ,

whence finally, recalling (15),

m−1
t E

[∣∣UN,i
t

∣∣] ≤ m−1
t E

[∣∣MN,i
t

∣∣] + Cm−1
t N−1/2m

1/2
t ≤ Cm

−1/2
t .

This says that E[|ZN,i
t /mt − 1|] ≤ Cm

−1/2
t , and thus proves point 2.

Step 3. We then fix 
 ≥ 1 and use (15) to write, for i = 1, . . . , 
,

m
1/2
t

(
Z

N,i
t /mt − 1

) = m
−1/2
t U

N,i
t = m

−1/2
t M

N,i
t + m

−1/2
t

∫ t

0
ϕ(t − s)
UN

s ds.

First, E[m−1/2
t

∫ t
0 ϕ(t − s)|
UN

s |ds] ≤ CN−1/2, which tends to 0 as (t,N) →
(∞,∞), by the estimate proved in step 2. To conclude the proof of point 3,
we thus only have to prove that (m

−1/2
t M

N,i
t )i=1,...,
 goes in law to N (0, I
) as

(t,N) → (∞,∞). To this end, we apply Lemma 12. The jumps of the martingales
MN,i are uniformly bounded (by 1) and we have seen that [MN,i,MN,j ]t = 0 for
all i �= j . The function (mt)t≥0 is continuous and increases to infinity. It thus suf-
fices to check that, as (t,N) → (∞,∞), m−1

t [MN,i,MN,i]t → 1 in probability.
Since [MN,i,MN,i]t = Z

N,i
t , this is an immediate consequence of point 2. �

We now turn to the supercritical case.

PROOF OF THEOREM 11. We rewrite (8) as mt = ∫ t
0 (μ + ∫ s

0 ϕ(s −
u)dmu)ds = μt + ∫ t

0 ϕ(t − s)ms ds by Lemma 22. This equation is studied in
details in Lemma 26: there is a unique α0 > 0 such that Lϕ(α0) = 1 and, defining
a0 ∈ (0,∞) as in the statement, we have mt ∼ a0e

α0t and m′
t ∼ a0α0e

α0t as t →
∞, which proves point 1. We also know that �(t) = ∑

n≥1 ϕ�n(t) ∼ (a0α
2
0/μ)eα0t ,

that ϒ(t) = ∫ t
0 �(s) ds ∼ (a0α0/μ)eα0t and further properties of m,m′,�,ϒ are

proved in Lemma 26.



234 S. DELATTRE, N. FOURNIER AND M. HOFFMANN

Step 1. We adopt the same notation as in the proof of Theorem 10, step 1,
of which all the results remain valid in the present case. Point 1 follows from
Lemma 26(a).

Step 2. First, (16) says exactly that 
UN = 
MN + ϕ � 
UN . Using Lemma 26(e),
we deduce that 
UN = 
MN + � � 
MN (the processes 
UN and 
MN are clearly a.s.
càdlàg, and thus locally bounded). Since E[( 
MN

t )2] = N−1mt by step 1,

E
[∣∣
UN

t

∣∣] ≤ E
[∣∣ 
MN

t

∣∣] +
∫ t

0
�(t − s)E

[∣∣ 
MN
s

∣∣]ds

≤ N−1/2m
1/2
t +

∫ t

0
�(t − s)N−1/2m1/2

s ds

≤ CN−1/2(1 + mt).

The last inequality easily follows from Lemma 26(b).
Using (16) again, we see that

∫ t
0 ϕ(t − s)
UN

s ds = 
UN
t − 
MN

t , whence

E

[∣∣∣∣∫ t

0
ϕ(t − s)
UN

s

∣∣∣∣] ≤ E
[∣∣ 
MN

t

∣∣] +E
[∣∣
UN

t

∣∣]
≤ N−1/2m

1/2
t + CN−1/2(1 + mt) ≤ CN−1/2(1 + mt).

On the other hand, we know from step 1 that E[(MN,i
t )2] = mt . Using (15), we

conclude that

E
[∣∣ZN,i

t /mt − 1
∣∣] = m−1

t E
[∣∣UN,i

t

∣∣] ≤ m
−1/2
t + CN−1/2(

1 + m−1
t

)
which completes the proof of 2.

Step 3. We then fix 
 ≥ 1 and write, for i = 1, . . . , 
, by (15),(
Z

N,i
t /mt − 1

) = m−1
t U

N,i
t = m−1

t M
N,i
t + m−1

t

∫ t

0
ϕ(t − s)
UN

s ds.

Step 3.1. We first consider the regime (t,N) → (∞,∞) with mt/N → 0 and
study

m
1/2
t

(
Z

N,i
t /mt − 1

) = m
−1/2
t M

N,i
t + m

−1/2
t

∫ t

0
ϕ(t − s)
UN

s ds.

The second term tends to 0 in probability, because we can bound, using step 2, its
L1-norm by Cm

−1/2
t N−1/2(1 + mt), which tends to 0 in the present regime. We

thus just have to prove that (m
−1/2
t M

N,i
t )i=1,...,
 goes in law to N (0, I
). We use

Lemma 12: the martingales MN,i have uniformly bounded (by 1) jumps and we
have seen that [MN,i,MN,j ]t = 0 for i �= j . The function (mt )t≥0 is continuous
and increases to infinity. It only remains to check that m−1

t [MN,i,MN,i]t tends
to 1 in probability. But [MN,i,MN,i]t = Z

N,i
t , so that the conclusion follows from

point 2.
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Step 3.2. We finally consider the regime (t,N) → (∞,∞) with mt/N → ∞
and study

N1/2(
Z

N,i
t /mt − 1

) = N1/2m−1
t M

N,i
t + N1/2m−1

t

∫ t

0
ϕ(t − s)
UN

s ds.

First, N1/2m−1
t M

N,i
t → 0 in probability, because its L1-norm is bounded by

N1/2m
−1/2
t (recall that E[(MN,i

t )2] = mt ), which tends to 0 in the present regime.
Since V N

t := N1/2m−1
t

∫ t
0 ϕ(t − s)
UN

s ds does not depend on i, it only remains to
prove that V N

t goes in law to N (0, σ 2). We write, using (16), recalling that 
UN =

MN + � � 
MN (see step 2) and integrating by parts [recall that ϒ(t) = ∫ t

0 �(s) ds]

V N
t = N1/2m−1

t

(
UN
t − 
MN

t

) = N1/2m−1
t

∫ t

0
�(t − s) 
MN

s ds

= N1/2m−1
t

∫ t

0
ϒ(t − s) d 
MN

s .

Introduce WN
t = (α0/μ)N1/2 ∫ t

0 e−α0s d 
MN
s and observe that, since E[[ 
MN,


MN ]t ] = N−1mt ,

E
[(

V N
t − WN

t

)2] = E

[
N

∫ t

0

(
m−1

t ϒ(t − s) − (α0/μ)e−α0s
)2

d
[ 
MN, 
MN ]

s

]
=

∫ t

0

(
m−1

t ϒ(t − s) − (α0/μ)e−α0s
)2

m′
s ds.

Lemma 26(c) tells us that this tends to 0 as t → ∞. We thus only have to prove
that WN

t goes in law to N (0, σ 2) as (t,N) → (∞,∞).
This follows again from Lemma 12 (with 
 = 1): the jumps of the martingale

(WN
t )t≥0 are bounded by (α0/μ)N−1/2 (because those of 
MN are bounded by

N−1). The function vt = (α0/μ)(
∫ t

0 e−2α0sm′
s ds)1/2 is continuous and increasing

to the finite limit v∞ = σ (which was defined in the statement). We thus only have
to prove that (a) v−2

t [WN,WN ]t → 1 in probability as (t,N) → (∞,∞), (b) for
all t0 > 0, uniformly in t ≥ t0, v−2

t [WN,WN ]t → 1 in probability as N → ∞.
By Lemma 12, we will deduce that v−1

t WN
t goes in law to N (0,1) as (t,N) →

(∞,∞), which of course implies that WN
t goes in law to N (0, σ 2) as desired.

We have, since [ 
MN, 
MN ]t = N−1
ZN
t ,[

WN,WN ]
t = (α0/μ)2N

∫ t

0
e−2α0s d

[ 
MN, 
MN ]
s = (α0/μ)2

∫ t

0
e−2α0s d
ZN

s .

Using that 
ZN
t = 
UN

t + mt and performing an integration by parts, we see that[
WN,WN ]

t = v2
t + (α0/μ)2

∫ t

0
e−2α0s d 
UN

s

= v2
t + (α0/μ)2e−2α0t 
UN

t + 2
(
α3

0/μ2) ∫ t

0
e−2α0s 
UN

s ds.
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Recalling that E[|
UN
t |] ≤ CN−1/2(1 + mt), we infer

E

[∣∣∣∣(α0/μ)2e−2α0t 
UN
t + 2

(
α3

0/μ2) ∫ t

0
e−2α0s 
UN

s ds

∣∣∣∣]
≤ C

N1/2

(
e−2α0t (1 + mt) +

∫ t

0
e−2α0s(1 + ms)ds

)
,

which is bounded by CN−1/2 by Lemma 26. We have proved that supt≥0 E[|[WN,

WN ]t − v2
t |] ≤ CN−1/2, from which points (a) and (b) above immediately follow.

The proof is complete. �

4. Nearest neighbour model. We consider here the case where G is a regular
grid, on which particles interact (directly) only if they are neighbours. We will
work on Z

d , endowed with the set of edges

E = {
(i, j) ∈ (

Z
d)2 : |i − j | = 0 or 1

}
,

where |(i1, . . . , id)| = (
∑d

r=1 i2
r )1/2. Thus, each point has 2d + 1 neighbours (in-

cluding itself). We hesitated to include self-interaction, but this avoids some need-
less complications due to the periodicity of the underlying random walk on Z

d .

ASSUMPTION 13. (i) The graph G = (S,E) is S = Z
d (for some d ≥ 1) en-

dowed with the above set of edges E .
(ii) There is a nonnegative locally integrable function ϕ : [0,∞) �→ [0,∞) such

that for all (j, i) ∈ E , ϕji = (2d + 1)−1ϕ.
(iii) For all i ∈ Z

d , there is μi ≥ 0 such that hi(x) = μi +x. The family (μi)i∈Zd

is bounded.

We next introduce some notation. In the whole section, we call vector (and write
in bold) a family of numbers indexed by Z

d . We call matrix a family indexed by
Z

d × Z
d . The identity matrix I is of course defined as I (i, j) = 1{i=j}. We will

often use the product of a matrix and a vector. The matrix A = (A(i, j))i,j∈Zd

defined by

A(i, j) = (2d + 1)−11{(i,j)∈E}(17)

will play an important role. Since A is a stochastic matrix, we can define, for any
� ∈ (0,1),

Q�(i, j) = ∑
n≥0

�nAn(i, j).(18)
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4.1. Large-time behaviour. Under Assumption 13, we can use Theorem 6
[with pi = 2−|i|; see Remark 5(ii)]: there is a unique Hawkes process (Zi

t )i∈Zd ,t≥0

with parameters (G,ϕ,h) such that
∑

i∈Zd 2−|i|
E[Zi

t ] < ∞. Let us state the first
results of this section. As usual, we treat separately the subcritical and supercritical
cases.

THEOREM 14. Work under Assumption 13 and assume further that � =∫ ∞
0 ϕ(t) dt < 1. Consider the unique Hawkes process (Zi

t )i∈Zd ,t≥0 with pa-
rameters (G,ϕ,h). For all i ∈ Z

d , t−1Zi
t goes in probability, as t → ∞, to∑

j∈Zd Q�(i, j)μj .

THEOREM 15. Work under Assumption 13 and assume further that � =∫ ∞
0 ϕ(t) dt ∈ (1,∞] and that t �→ ∫ t

0 |dϕ(s)| has at most polynomial growth. Con-
sider α0 > 0 uniquely defined by Lϕ(α0) = 1. Assume finally that the “mean
value”

μ = lim
r→∞

1

#{i ∈ Zd : |i| ≤ r}
∑
|i|≤r

μi exists and is positive.(19)

Consider the unique Hawkes process (Zi
t )i∈Zd ,t≥0 with parameters (G,ϕ,h). Then

for all i ∈ Z
d , e−α0tZi

t goes in probability, as t → ∞, to a0 = μα−2
0 (

∫ ∞
0 tϕ(t) ×

e−α0t dt)−1.

Let us comment on these results. In the subcritical case, the parameter μ =
(μi)i∈Zd is strongly present in the limiting behaviour: the limit of t−1Zi

t depends
on a certain mean of μ around the site i and thus depends on i. In the supercritical
case, the behaviour is very different: the limit value of e−α0tZi

t does not depend
on i, and depends on μ = (μi)i∈Zd only through a global mean value. Observe also
that for a finite-dimensional (e.g., scalar) Hawkes process, there is no law of large
numbers: one can get a limit of something like e−α0tZi

t , but the limit is random;
see Zhu [48], Section 5.4 (in particular Theorem 23 and Corollary 1). In that sense,
we can say that in the supercritical case, the law of large number is reminiscent of
the infinite dimension and of the interaction.

We will need a precise approximation for An(i, j) where A is defined by (17).
It is given by the local central limit theorem, since A is the transition matrix of an
aperiodic symmetric random walk on Z

d with bounded jumps. Precisely, we infer
from Lawler and Limic ([29], Theorem 2.1.1) and (2.5), that there is a constant C

such that for all n ≥ 1, all i ∈ Z
d ,∣∣An(0, i) − pn(i)

∣∣ ≤ C

n(d+2)/2 ,(20)

where, for t > 0 and x ∈ R
d ,

pt(x) =
(

2d + 1

4πt

)d/2

exp
(
−(2d + 1)|x|2

4t

)
.(21)
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To apply [29], Theorem 2.1.1, we needed to compute the covariance matrix �

corresponding to our random walk, we found � = 2(2d + 1)−1Id , Id being the
d × d identity matrix.

LEMMA 16. Consider the matrix (A(i, j))i,j∈Zd defined by (17).

(i) It holds that εn = ∑
j∈Zd (An(i, j))2 does not depend on i ∈ Z

d and tends
to 0 as n → ∞.

(ii) Let μ = (μi)i∈Zd be bounded and satisfy (19). Then for all i ∈ Z
d ,

limn→∞(Anμ)i = μ.

PROOF. In the following, we denote by C a constant depending only on d .
Point (i) is easy: since An(i, j) = An(0, j − i) and since A is stochastic, one

has εn = ∑
j∈Zd (An(0, j))2 ≤ supj∈Zd An(0, j). Moreover, by (20), An(0, j) ≤

pn(j) + Cn−(d+2)/2 ≤ Cn−d/2. We conclude that εn ≤ Cn−d/2 → 0 as desired.
Now we turn to the proof of (ii). Let i ∈ Z

d . First, we show that limn[(Anμ)i −∑
j∈Zd pn(j)μj ] = 0. Since (Anμ)i = ∑

j∈Zd An(i, j)μj = ∑
j∈Zd An(0, j −

i)μj and since the family (μj )j∈Zd is bounded, it suffices to prove that vn =∑
j∈Zd |An(0, j − i) − pn(j)| → 0. We write

vn ≤ ∑
|j |≤n1/2+1/4d

∣∣An(0, j − i) − pn(j)
∣∣ + ∑

|j |>n1/2+1/4d

(
An(0, j − i) + pn(j)

)
= v1

n + v2
n.

On the one hand, using that
∑

j∈Zd |j |2An(0, j) ≤ Cn (the variance of the ran-
dom walk at time n is of order n), so that

∑
j∈Zd |j |2An(0, j − i) = ∑

k∈Zd |i +
k|2An(0, k) ≤ C(|i|2 + n), and thus∑

|j |>n1/2+1/4d

An(0, j − i)

≤ Cn−1−1/2d
∑

j∈Zd

|j |2An(0, j − i) ≤ Cn−1−1/2d(|i|2 + n
)
.

Similarly, we have
∑

j∈Zd |j |2pn(j) ≤ Cn, and thus∑
|j |>n1/2+1/4d

pn(j) ≤ n−1−1/2d
∑

j∈Zd

|j |2pn(j) ≤ Cn−1/2d .

Consequently, limn v2
n = 0. On the other hand,

v1
n ≤ ∑

|j |≤n1/2+1/4d

∣∣An(0, j − i) − pn(j − i)
∣∣ + ∑

|j |≤n1/2+1/4d

∣∣pn(j − i) − pn(j)
∣∣.
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From (20), the first sum is bounded by Cn−(d+2)/2#{j ∈ Z
d : |j | ≤ n1/2+1/4d} ≤

Cn−3/4 → 0. For the second sum, we use that, with cd = (2d + 1)/4,∣∣pn(j − i) − pn(j)
∣∣ = pn(j)

∣∣∣∣1 − exp
(
−cd

n
|i|2 + 2cd

n
i.j

)∣∣∣∣.
Hence, for |j | ≤ n1/2+1/4d and for n large enough (e.g., so that |i|n−1/2+1/4d ≤ 1),∣∣pn(j − i)− pn(j)

∣∣ ≤ Cpn(j)
(|i|2n−1 + |i|n−1/2+1/4d) ≤ Cpn(j)

(
1 + |i|2)

n−1/4.

Thus,
∑

|j |≤n1/2+1/2d |pn(j − i) − pn(j)| ≤ C(1 + |i|2)n−1/4 and we deduce that
limn v1

n = 0.
We have shown that limvn = 0. It only remains to check that limn

∑
j∈Zd μj ×

pn(j) = μ. Let (rk)k≥0 be the increasing sequence of nonnegative numbers such
that {rk}k≥0 = {|j | : j ∈ Z

d} and observe that∑
j∈Zd

μjpn(j) = ∑
k≥0

pn(rk)
∑

|j |=rk

μj .

A discrete integration by parts shows that∑
j∈Zd

μjpn(j) = ∑
k≥0

(
pn(rk) − pn(rk+1)

) ∑
|j |≤rk

μj

= ∑
k≥0

v(rk)
(
pn(rk) − pn(rk+1)

) 1

v(rk)

∑
|j |≤rk

μj ,

where v(r) = #{j ∈ Z
d : |j | ≤ r}. We easily conclude that limn

∑
j∈Zd μjpn(j) =

μ as desired, because:

(a) limk→∞ 1
v(rk)

∑
|j |≤rk

μj = μ;

(b) for all k ≥ 0 fixed, limn v(rk)(pn(rk) − pn(rk+1)) = 0;
(c) limn→∞

∑∞
k=0 v(rk)(pn(rk) − pn(rk+1)) = 1.

Point (a) follows from our condition (19) on μ, point (b) is obvious (because
|v(rk)(pn(rk) − pn(rk+1))| ≤ v(rk) supi∈Zd pn(i) ≤ Cv(rk)n

−d/2 → 0). To check
(c), we write

∑∞
k=0 v(rk)(pn(rk)−pn(rk+1)) = ∑

j∈Zd pn(j) = ∑
j∈Zd An(0, j)+∑

j∈Zd [pn(j) − An(0, j)] = 1 + ∑
j∈Zd [pn(j) − An(0, j)]. This tends to 1, be-

cause limn

∑
j∈Zd |pn(j)−An(0, j)| = 0, as seen in the first part of the proof (this

is vn in the special case where i = 0). �

Let us now give the following.

PROOF OF THEOREM 14. We split the proof into several steps. We assume
that there is at least one i ∈ Z

d such that μi > 0, because else the result is obvious
(because then Zi

t = 0 for all i ∈ Z
d , all t ≥ 0). The first step will also be used in

the supercritical case.
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Step 1. We write as usual, for some i.i.d. family (πi(ds dz))i≥1 of Poisson mea-
sures on [0,∞) × [0,∞) with intensity measure ds dz,

Zi
t =

∫ t

0

∫ ∞
0

1{z≤μi+(2d+1)−1 ∑
j→i

∫ s−
0 ϕ(s−u)dZ

j
u}π

i(ds dz).

Let us put mi
t = E[Zi

t ] and mt = (mi
t )i∈Zd . A simple computation (using one more

time Lemma 22) gives us, for all i ∈ Z
d ,

mi
t = μit +

∫ t

0
(2d + 1)−1

∑
j→i

ϕ(t − s)mj
s ds.

Using the vector formalism, this rewrites mt = μt + ∫ t
0 ϕ(t − s)(Ams) ds. We fur-

thermore know (from Theorem 6) that for all t ≥ 0,
∑

i∈Zd 2−|i|mi
t < ∞. Applying

Lemma 27, we see that mi is of class C1 on [0,∞) for each i ∈ Z
d , that

m′
t = μ +

∫ t

0
ϕ(t − s)Am′

s ds(22)

and that

m′
t =

(
I + ∑

n≥1

An
∫ t

0
ϕ�n(s) ds

)
μ.(23)

Lemma 27 also tells us that ut = supi∈Zd sup[0,t](mi
s)

′ is locally bounded, which
of course implies that supi∈Zd sup[0,t] mi

s is also locally bounded (because mi
0 = 0

for all i ∈ Z
d ), and that

ut ≤ C +
∫ t

0
ϕ(t − s)us ds.(24)

We introduce the martingales, for i ∈ Z
d (we use a tilde for compensation),

Mi
t =

∫ t

0

∫ ∞
0

1{z≤μi+(2d+1)−1 ∑
j→i

∫ s−
0 ϕ(s−u)dZ

j
u}π̃

i(ds dz)

and observe as usual that [Mi,Mj ]t = 0 when i �= j (because these martingales
a.s. never jump at the same time) while [Mi,Mi]t = Zi

t . We finally introduce Ui
t =

Zi
t − mi

t , the vectors Ut = (Ui
t )i∈Zd and Mt = (Mi

t )i∈Zd and observe that

Ut = Mt +
∫ t

0
ϕ(t − s)AUs ds.(25)

Indeed, for every i ∈ Z
d , using Lemma 22 and the equation satisfied by mi

t , we
find

Ui
t = Mi

t +
∫ t

0
(2d +1)−1

∑
j→i

ϕ(t −s)
(
Zj

s −mj
s

)
ds = Mi

t +
∫ t

0
ϕ(t −s)(AUs)i ds.
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Equation (25) can be solved as usual as

Ut =
(

Mt + ∑
n≥1

∫ t

0
ϕ�n(t − s)AnMs ds

)
.(26)

Finally, we easily check that vt = supi∈Zd sup[0,t]E[|Ui
s |] is locally bounded (be-

cause E[|Ui
t |] ≤ E[|Zi

t |] + mi
t ≤ 2mi

t ) and satisfies (start from (25), use that
E[|Mi

t |] ≤ E[[Mi,Mi]t ]1/2 = E[Zi
t ]1/2 = (mi

t )
1/2 ≤ (

∫ t
0 us ds)1/2) and that A is

stochastic

vt ≤
(∫ t

0
us ds

)1/2

+
∫ t

0
ϕ(t − s)vs ds.(27)

Step 2. Here, we prove that there is a constant C such that for all i ∈ Z
d , (mi

t )
′ ≤

C (and thus also mi
t ≤ Ct). This follows from (24), which implies that ut ≤ C +

�ut , whence ut ≤ C/(1 − �).
Step 3. For all i ∈ Z

d , (mi
t )

′ ∼ (Q�μ)i , whence also mi
t ∼ (Q�μ)i t , as t →

∞. Indeed, starting from (23), using the monotone convergence theorem and that∫ ∞
0 ϕ�n(s) ds = (

∫ ∞
0 ϕ(s) ds)n = �n,

lim
t→∞

(
mi

t

)′ = ((
I + ∑

n≥1

�nAn

)
μ

)
i

= (Q�μ)i .

Step 4. There is a constant C such that for all i ∈ Z
d , all t ≥ 0, E[|Ui

t |] ≤ Ct1/2.
Indeed, this follows from (27) and step 2, which imply that vt ≤ Ct1/2 + �vt ,
whence vt ≤ Ct1/2/(1 − �).

Step 5. The conclusion follows immediately, writing

E

[∣∣∣∣Zi
t

t
− (Q�μ)i

∣∣∣∣] ≤ E

[∣∣∣∣Ui
t

t

∣∣∣∣] +
∣∣∣∣mi

t

t
− (Q�μ)i

∣∣∣∣,
which tends to 0 as t → ∞ by steps 3 and 4. �

We now turn to the supercritical case.

PROOF OF THEOREM 15. We consider m (not to be confused with m) the
unique solution to mt = μt + ∫ t

0 ϕ(t − s)ms ds, where μ is the mean value defined
by (19). This equation is studied in details in Lemma 26: with α0 and a0 defined
in the statement, we have mt ∼ a0e

α0t and m′
t ∼ a0α0e

α0t as t → ∞, as well as
�(t) = ∑

n≥1 ϕ�n(t) ∼ (a0α
2
0/μ)eα0t and ϒ(t) = ∫ t

0 �(s) ds ∼ (a0α0/μ)eα0t .

Step 1. We adopt the notation introduced in step 1 of the proof of Theorem 14.
Step 2. Here, we check that there is C such that for all i ∈ Z

d , (mi
t )

′ ≤
Ceα0t (and thus mi

t ≤ Ceα0t ). This follows from (24), which tells us that ut =
supi∈Zd (mi

t )
′ is locally bounded and satisfies ut ≤ C + ∫ t

0 ϕ(t − s)us ds. Setting
ht = ut − ∫ t

0 ϕ(t − s)us ds, we see that ht is locally bounded (from above and from
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below), because u is locally bounded and ϕ is locally integrable. We furthermore
have u = h + u � ϕ. Applying Lemma 26(e), we deduce that u = h + h � �. But h

is bounded from above by C. Consequently, u ≤ C +C �� = C(1 +ϒ), where ϒ

was defined in Lemma 26. The conclusion follows from Lemma 26(b).
Step 3. We now show that for all i ∈ Z

d , (mi
t )

′ ∼ (mt)
′ (whence mi

t ∼ mt )
as t → ∞. Let us fix i ∈ Z

d and set ri
t = (mi

t )
′ − (mt )

′, which satisfies ri
t =

μi − μ + ∑
n≥1((A

nμ)i − μ)
∫ t

0 ϕ�n(s) ds. We know from Lemma 16(ii) that
ηn = (Anμ)i − μ tends to 0 as n → ∞. Consequently, Lemma 26(d) tells us that
e−α0t

∑
n≥1((A

nμ)i −μ)
∫ t

0 ϕ�n(s) ds tends to 0 as t → ∞. Hence, e−α0t r i
t → 0 as

t → ∞. Using finally that m′
t ∼ a0α0e

α0t as t → ∞, we conclude that (mi
t )

′/m′
t =

1 + ri
t /m′

t ∼ 1 + (a0α0)
−1e−α0t r i

t → 1 as desired.
Step 4. Here, we check that for every i ∈ Z

d , e−α0tE[|Ui
t |] tends to 0 as t → ∞.

We start from (26) to write∣∣Ui
t

∣∣ ≤ ∣∣Mi
t

∣∣ + ∑
n≥1

∫ t

0
ϕ�n(t − s)

∣∣(AnMs

)
i

∣∣ds.

But E[|Mi
t |] ≤ E[Zi

t ]1/2 = (mi
t )

1/2 ≤ Ceα0t/2 by step 2 and E[(AnMt )
2
i ] =∑

j (A
n(i, j))2m

j
s ≤ Ceα0t

∑
j (A

n(i, j))2 ≤ Ceα0t εn by Lemma 16(i), with εn →
0 as n → ∞. Consequently,

e−α0tE
[∣∣Ui

t

∣∣] ≤ Ce−α0t/2 + Ce−α0t
∑
n≥1

ε1/2
n

∫ t

0
ϕ�n(t − s)eα0s/2 ds.

Lemma 26(d) allows us to conclude.
Step 5. The conclusion follows, writing

E

[∣∣∣∣ Zi
t

a0eα0t
− 1

∣∣∣∣] ≤ E

[∣∣∣∣ Ui
t

a0eα0t

∣∣∣∣] +
∣∣∣∣ mi

t

a0eα0t
− 1

∣∣∣∣,
and using steps 3, 4 and that mt ∼ a0e

α0t by Lemma 26(a). �

4.2. Study of an impulsion. Here, we want to study how an impulsion at time 0
at i = 0 propagates. To this end, we work under Assumption 13 with μi = 0 for
all i ∈ Z

d , but we assume that Z0 has a jump at time 0. Such a study is of course
important: it allows us to measure, in some sense, the range of the interaction.

We first define precisely the process under study.

DEFINITION 17. We work under Assumption 13(i)–(ii) and consider a family
(πi(ds dz), i ∈ Z

d) of i.i.d. (Ft )t≥0-Poisson measures on [0,∞) × [0,∞) with
intensity measure ds dz. We say that a family (Zi

t )i∈Zd ,t≥0 of (Ft )t≥0-adapted
counting processes is an impulsion Hawkes process if

∀i ∈ Z
d, Zi

t =
∫ t

0

∫ ∞
0

1{z≤∑
j→i (2d+1)−1[∫ s−

0 ϕ(s−u)dZ
j
u+ϕ(s)1{j=0}]}π

i(ds dz).
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As said previously, the term
∑

j→i ϕ(s)1{j=0} is interpreted as an excitation due
to a forced jump of Z0 at time 0: simply rewrite it as 1{0→i}

∫ s−
0 ϕ(s − u)δu(ds).

The following proposition is easy.

PROPOSITION 18. Adopt the assumptions and notation of Definition 17.
There exists a pathwise unique impulsion Hawkes process (Zi

t )i∈Zd ,t≥0 such that∑
i∈Zd E[Zi

t ] < ∞ for all t ≥ 0.

Exactly as Theorem 6, this result can be deduced from Massoulié [32], Theo-
rem 2, in the subcritical case where

∫ ∞
0 ϕ(s) ds < 1.

PROOF OF PROPOSITION 18. The proof resembles much that of Theorem 6,
so we only sketch it. We start with uniqueness and thus consider two impulsion
Hawkes processes (Zi

t )i∈Zd ,t≥0 and (Z̃i
t )i∈Zd ,t≥0 such that

∑
i∈Zd E[Zi

t + Z̃i
t ] <

∞. We set �i
t = ∫ t

0 |d(Zi
s − Z̃i

s)|, δi
t = E[�i

t ] and δt = ∑
i∈Zd δi

t (which is lo-
cally bounded by assumption). We may check that δi

t ≤ (2d + 1)−1 ∫ t
0

∑
j→i ϕ(t −

s)δ
j
s ds exactly as in the proof of Theorem 6. Summing in i and recalling that each

site has 2d +1 neighbours, we find δt ≤ ∫ t
0 ϕ(t − s)δs ds. Lemma 23(i) tells us that

δt = 0 for all t , whence pathwise uniqueness.
Existence follows from a Picard iteration. Let us only check an a priori estimate

implying that
∑

i∈Zd E[Zi
t ] < ∞ for all t ≥ 0. Set mi

t = E[Zi
t ] and mt = ∑

i∈Zd mi
t .

A direct computation using Lemma 22 shows that mi
t = (2d +1)−1 ∑

j→i[
∫ t

0 ϕ(t −
s)m

j
s ds + 1{j=0}

∫ t
0 ϕ(s) ds]. Summing in i, we find mt = ∫ t

0 ϕ(t − s)ms ds +∫ t
0 ϕ(s) ds. Using Lemma 23(i), that ϕ is locally integrable [and that

∫ t
0 ϕ(s) ds

is locally bounded], we deduce that sup[0,T ] mt ≤ C(T ,ϕ) as desired. �

We next compute the probability of the extinction event. Point 1 is a noticeable
property that makes the result very easy and precise.

THEOREM 19. Adopt the assumptions and notation of Definition 17 and con-
sider the impulsion Hawkes process (Zi

t )i,∈Zd ,t≥0.

1. The process Zt = ∑
i∈Z Zi

t is a scalar impulsion Hawkes process with exci-
tation function ϕ. In other words, (Zt )t≥0 is a counting process with compensator
At = ∫ t

0 λs ds, where

λt = ϕ(t) +
∫ t−

0
ϕ(t − s) dZs.

2. We introduce the extinction event defined by �e = {limt→∞
∑

i∈Zd Zi
t <

∞}. Setting � = ∫ ∞
0 ϕ(s) ds, we have (i) Pr(�e) = 0 if � = ∞; (ii) Pr(�e) =

exp(−γ��) if � ∈ (1,∞), where γ� ∈ (0,1) is characterised by γ�� + log(1 −
γ�) = 0; (iii) Pr(�e) = 1 if � ∈ (0,1].
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Of course, we can sometimes use this theorem, by a simple comparison argu-
ment, if ϕji depends on i, j . For example, to guarantee nonextinction with proba-
bility one, it suffices that all the ϕji are bounded below by some (2d + 1)−1ϕ such
that

∫ ∞
0 ϕ(s) ds = ∞.

When � ∈ (0,1), a detailed study of the tail distribution of the extinction time
is handled by Brémaud, Nappo and Torrisi [10], for a more general scalar model
with marks.

PROOF OF THEOREM 19. Point 1 is immediate: the compensator of the count-
ing process (Zt )t≥0 is

At =
∫ t

0

∑
i∈Zd

∑
j→i

(2d + 1)−1
[∫ s−

0
ϕ(s − u)dZj

u + ϕ(s)1{j=0}
]
ds

=
∫ t

0

∑
j∈Zd

[∫ s−
0

ϕ(s − u)dZj
u + ϕ(s)1{j=0}

]
ds

=
∫ t

0

[
ϕ(s) +

∫ s−
0

ϕ(s − u)dZu

]
ds.

We next prove point 2. It is well-known folklore that a scalar impulsion Hawkes
process can be related to a Poisson Galton–Watson process with Poisson(�) repro-
duction law, but we give a direct proof for the sake of completeness. If � = ∞, it
suffices to note that Pr(�e) = Pr(Z∞ < ∞) = Pr(A∞ < ∞) ≤ Pr(

∫ ∞
0 ϕ(s) ds <

∞) = 0. When � < ∞, we introduce the martingale, for γ ∈ (0,1), N
γ
t =

−γ (Zt − At) = −γZt + γ
∫ t

0 ϕ(s) ds + γ
∫ t

0 ϕ(t − s)Zs ds by Lemma 22. We
denote by M

γ
t = E(Nγ )t = eγAt

∏
s≤t (1 − γ�Zs) its Doléans–Dade exponential;

see Jacod and Shiryaev [24], Chapter 1, Section 4f. Since Z is a counting process,
we see that

M
γ
t = exp

(
γ

∫ t

0
ϕ(s) ds + γ

∫ t

0
ϕ(t − s)Zs ds + log(1 − γ )Zt

)
.

If γ� + log(1 − γ ) ≤ 0 then Mγ is bounded [because γ
∫ t

0 ϕ(s) ds + γ
∫ t

0 ϕ(t −
s)Zs ds + log(1 − γ )Zt ≤ γ�+ (γ�+ log(1 − γ ))Zt ≤ γ�], and thus converges
in L1. Consequently, E[Mγ∞] = 1 and [one easily verifies, using that Z is nonde-
creasing, that limt→∞

∫ t
0 ϕ(t − s)Zs ds = �Z∞]

E
[
exp

(
γ� + (

log(1 − γ ) + γ�
)
Z∞

)] = 1.

But for all x > 0, there is a unique γ (x) ∈ (0,1) such that γ (x)� + log(1 −
γ (x)) = −x, whence

E
[
exp(−xZ∞)

] = exp
(−�γ (x)

)
.

Consequently,

Pr(�e) = Pr(Z∞ < ∞) = lim
x→0+E

[
exp(−xZ∞)

] = exp
(−�γ (0+)

)
.
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If � ∈ (0,1], we see that γ (0+) = 0, so that Pr(�e) = 1. If now � > 1, γ (0+) is
the unique solution in (0,1) to γ (0+)� + log(1 − γ (0+)) = 0. �

We next study more deeply, in the super-critical case, how the impulsion prop-
agates. Unfortunately, the computations are really tedious: we decided to restrict
ourselves to a particular case (ϕ is an exponential function) where some compu-
tations are explicit. We believe that the result below can be extended to a general
class of functions ϕ, but a difficult technical lemma is required.

THEOREM 20. Work under Assumption 13(i)–(ii), with ϕ(t) = ae−bt , for
some a > b > 0. Consider the impulsion Hawkes process (Zi

t )i∈Zd ,t≥0. Since∫ ∞
0 ϕ(s) ds = a/b > 1, we know from Theorem 19 that Pr(�e) ∈ (0,1). We set

α0 = a − b [for which Lϕ(α0) = 1] and we recall that the Gaussian density pt(x)

is defined by (21).
(i) There are some constants C > 0 and t0 > 0 and a random variable H ≥ 0

such that for all i ∈ Z
d , all t ≥ t0,

E
[∣∣Zi

t − Hpat (i)e
α0t

∣∣] ≤ Ceα0t

td/2+1/3 .

(ii) For all x ∈ R
d , td/2e−α0tZ

xt1/2�
t → Hpa(x) in probability as t → ∞.

Here, we define the “integer part” y� of y = (y1, . . . , yd) ∈ R
d , by y� =

(y1�, . . . , yd�) ∈ Z
d .

(iii) The random variable H is positive on the event �c
e.

(iv) Actually, H = limt→∞ e−α0t
∑

i∈Zd Zi
t and H = limt→∞(4πt/(2d +

1))d/2e−α0tZ0
t in L1.

This result describes quite precisely how an impulsion propagates. Conditional
on nonextinction, the process (Zi

t )i∈Zd resembles a Gaussian profile, with height
t−d/2Heα0t and radius

√
t , for some positive random variable H .

Compared to the previous result (Theorem 15), the growth is only very slightly
slower: a single impulsion at the site 0 produces a growth in t−d/2eα0t , while we
have eα0t when all the sites are regularly excited (as is, e.g., the case when μi = 1
for all i).

It is important to note that, even if the growth “near 0” of the process is very
fast (exponential), the spatial propagation is quite slow (of order

√
t ).

Since H = limt→∞ e−α0tZt , where Zt := ∑
i∈Zd Zi

t is nothing but a scalar im-
pulsion Hawkes process by Theorem 19, much more information on the distribu-
tion of H can be found in the papers by Hawkes [19] and Lewis [30]. See also the
work of Torrisi and Leonardi [44] for related modelling purposes.

It is likely that these results could be proved for more general functions ϕ. Since
we assume that ϕ is an exponential function, the couple (Hawkes process, intensity
process) is actually a Markov process. See Oakes [33] in the scalar case. But we do
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absolutely not use the Markov property. What we use is that in Lemma 21 below,
many explicit computations are possible, that considerably simplifies the study.

We start with some preliminary computations.

LEMMA 21. Adopt the notation and assumptions of Theorem 20. Introduce
also, for i ∈ Z

d and t ≥ 0, �(i, t) = ∑
n≥1 An(0, i)ϕ�n(t).

(i) For all n ≥ 1, all t ≥ 0, ϕ�n(t) = (at)n−1e−bt /(n − 1)!.
(ii) For all t ≥ 0,

∑
i∈Zd �(i, t) = eα0t .

(iii) There is C such that for all t ≥ 0,
∑

i∈Zd |i|2�(i, t) ≤ C(1 + t)eα0t .
(iv) There are some constants C and t0 > 0 such that for all t ≥ t0, all i ∈ Z

d ,

∣∣�(i, t) − pat (i)e
α0t

∣∣ ≤ Ceα0t

td/2+1/3 ,(28) ∣∣∣∣∣
∫ t

0
�(i, s) ds − 1

α0
pat (i)e

α0t

∣∣∣∣∣ ≤ Ceα0t

td/2+1/3 .(29)

PROOF. Point (i) is well known and can be checked recursively. Using that An

is a stochastic matrix, we see that
∑

i∈Zd �(i, t) = ∑
n≥1 ϕ�n(t). Hence, (ii) follows

from (i).
Next, we recall that A is the transition matrix of a symmetric random walk on

Z
d (with bounded jumps), so that there is a constant C such that for all n ≥ 0,∑
i∈Zd |i|2An(0, i) ≤ Cn (its variance at time n is of order n). Consequently,

∑
i∈Zd

|i|2�(i, t) ≤ C
∑
n≥1

nϕ�n(t) = C
∑
n≥1

n(at)n−1e−bt

(n − 1)!

= C

[∑
n≥1

(at)n−1e−bt

(n − 1)! + ∑
n≥2

(at)n−1e−bt

(n − 2)!
]
.

This is easily computed: it gives Ceα0t [1 + at].
Point (iv) is more complicated. First, we need the Gaussian approximation of

An(0, i) given by (20). We will also need the following result, which can be found,
for example, in [14], Lemma 9(d) [plus the fact that for x ∈ (0,1), (x + 1) log(x +
1)−x ≥ x2/4]: for any λ > 0, for X a Poisson(λ)-distributed random variable, for
any x ∈ (0,1),

Pr
(|X − λ| ≥ λx

) ≤ 2 exp
(−λx2/4

)
.(30)

We now turn to our problem. Observing that
∑

n≥1 ϕ�n(t) = eα0t , we write

�(i, t) = ∣∣�(i, t) − pat (i)e
α0t

∣∣ =
∣∣∣∣∑
n≥1

ϕ�n(t)
(
An(0, i) − pat (i)

)∣∣∣∣.
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We now assume that t is large enough so that pt/a(i) ≤ 1 for all i and we write

�(i, t) ≤ ∑
n≥1

ϕ�n(t)1{|(n−1)−at |>(at)2/3}

+ ∑
n≥1

ϕ�n(t)1{|(n−1)−at |≤(at)2/3}
∣∣An(0, i) − pn(i)

∣∣
+ ∑

n≥1

ϕ�n(t)1{|(n−1)−at |≤(at)2/3}
∣∣pn(i) − pat (i)

∣∣
= �1(i, t) + �2(i, t) + �3(i, t).

First, using point (i) and (30) [with λ = at and x = (at)−1/3], we see that (if t is
large enough so that at > 1)

�1(i, t) ≤ eα0t
∑
n≥1

e−at (at)n−1

(n − 1)!1{|(n−1)−at |>(at)2/3} ≤ 2eα0t e−(at)1/3/4.

We next use (20) and assume that t is large enough so that |(n− 1)− at | ≤ (at)2/3

implies n ≥ at/2:

�2(i, t) ≤ C
∑
n≥1

n−(d+2)/2ϕ�n(t)1{|(n−1)−at |≤(at)2/3}

≤ C(at)−(d+2)/2
∑
n≥1

ϕ�n(t) ≤ Ct−(d+2)/2eα0t .

Finally, we observe that |∂tpt (x)| ≤ Ct−d/2−1, so that, if t is sufficiently large,
|(n − 1) − at | ≤ (at)2/3 implies |pn(i) − pat (i)| ≤ Ct−d/2−1/3. Consequently,

�3(i, t) ≤ Ct−d/2−1/3
∑
n≥1

ϕ�n(t) ≤ Ct−d/2−1/3eα0t .

We have proved that there are C and t0 such that for all t ≥ t0, all i ∈ Z
d ,∣∣�(i, t) − pat (i)e

α0t
∣∣ ≤ 2eα0t e−(at)1/3/4 + Ct−(d+2)/2eα0t + Ct−d/2−1/3eα0t

≤ Ct−d/2−1/3eα0t ,

which is (28).
It remains to deduce (29) from (28). We write

δ(t, i) =
∣∣∣∣∣
∫ t

0
�(i, s) ds − pat (i)e

α0t /α0

∣∣∣∣∣
≤

∫ t−t1/2

0
�(i, s) ds +

∫ t

t−t1/2

∣∣�(i, s) − pas(i)e
α0s

∣∣ds

+
∫ t

t−t1/2

∣∣pas(i)e
α0s − pat (i)e

α0s
∣∣ds + pat (i)

∣∣∣∣∣
∫ t

t−t1/2
eα0s ds − eα0t /α0

∣∣∣∣∣
= δ1(t, i) + δ2(t, i) + δ3(t, i) + δ4(t, i).
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First, point (ii) implies that

δ1(t, i) ≤
∫ t−t1/2

0
eα0s ds ≤ Ceα0(t−t1/2).

Next, (28) tells us, if t is sufficiently large (so that t − t1/2 ≥ t0 and t − t1/2 ≥ t/2),
that

δ2(t, i) ≤ C

∫ t

t−t1/2
s−d/2−1/3eα0s ds ≤ Ct−d/2−1/3eα0t .

Recalling that |∂tpt (x)| ≤ Ct−d/2−1, we get (still for t large enough so that t −
t1/2 ≥ t/2)

δ3(t, i) ≤ C

∫ t

t−t1/2
s−d/2−1(t − s)eα0s ds ≤ Ct−d/2−1/2eα0t .

Finally, if t is sufficiently large, we can bound pat (i) by 1 (for all i), whence

δ4(t, i) ≤ α−1
0

∣∣eα0t − eα0(t−t1/2) − eα0t
∣∣ ≤ Ceα0(t−t1/2).

All in all, we have proved that for all t large enough, all i ∈ Z
d ,∣∣∣∣∣

∫ t

0
�(i, s) ds − pat (i)e

α0t /α0

∣∣∣∣∣
≤ Ceα0(t−t1/2) + Ct−d/2−1/3eα0t + Ct−d/2−1/2eα0t ≤ Ct−d/2−1/3eα0t

as desired. �

We finally can give:

PROOF OF THEOREM 20. We divide the proof in several steps.

Step 1. As usual, we write

Zi
t =

∫ t

0

∫ ∞
0

1{z≤(2d+1)−1 ∑
j→i [

∫ s−
0 ϕ(s−u)dZ

j
u+ϕ(s)1{j=0}]}π

i(ds dz),

we set mi
t = E[Zi

t ] and mt = (mi
t )i∈Zd . A simple computation, using Lemma 22,

shows that

mi
t =

∫ t

0
(2d + 1)−1

∑
j→i

ϕ(t − s)mj
s ds + 1{0→i}(2d + 1)−1

∫ t

0
ϕ(s) ds.

Using the vector formalism and introducing δ = (δi)i∈Zd defined by δi = 1{i=0},
this rewrites mt = (Aδ)

∫ t
0 ϕ(s) ds + ∫ t

0 ϕ(t − s)(Ams) ds. Differentiating this for-
mula (see Lemma 27 for the justification of a very similar differentiation), we find
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m′
t = (Aδ)ϕ(t)+∫ t

0 ϕ(t −s)Am′
s ds, which can be solved as (see Lemma 27 again)

m′
t = ∑

n≥1 ϕ�n(t)Anδ. Hence, for all i ∈ Z
d ,(

mi
t

)′ = ∑
n≥1

An(0, i)ϕ�n(t).(31)

We introduce the martingales, for i ∈ Z
d (we use a tilde for compensation),

Mi
t =

∫ t

0

∫ ∞
0

1{z≤(2d+1)−1 ∑
j→i [

∫ s−
0 ϕ(s−u)dZ

j
u+ϕ(s)1{j=0}]}π̃

i(ds dz)

and observe as usual that [Mi,Mj ]t = 0 when i �= j (because these martingales
a.s. never jump at the same time) while [Mi,Mi]t = Zi

t . We will use several times
that for any family (αi)i∈Zd ,

E

[( ∑
i∈Zd

αiM
i
t

)2]
= ∑

i∈Zd

α2
i m

i
t .(32)

We finally introduce Ui
t = Zi

t −mi
t , the vectors Ut = (Ui

t )i∈Zd and Mt = (Mi
t )i∈Zd

and observe, exactly as in the proof of Theorem 14, step 1, that Ut = Mt +
A

∫ t
0 ϕ(t − s)Us ds, whence Ut = (Mt + ∑

n≥1 An
∫ t

0 ϕ�n(t − s)Ms ds), and thus,
for all i ∈ Z

d ,

Zi
t = mi

t + Mi
t + ∑

j∈Zd

∑
n≥1

∫ t

0
ϕ�n(t − s)An(i, j)Mj

s ds = mi
t + Mi

t + Wi
t ,(33)

the last equality defining Wi
t .

Step 2. Here, we treat the terms mi
t , Mi

t , and collect a few more information.
Recall that �(t, i) = ∑

n≥1 An(0, i)ϕ�n(t). Starting from (31), we see that mi
t =∫ t

0 �(i, s) ds and deduce from Lemma 21(iv) that there are C and t0 ≥ 0 such that
for all i ∈ Z

d , all t ≥ t0, ∣∣∣∣mi
t − 1

α0
pat (i)e

α0t

∣∣∣∣ ≤ Ceα0t

td/2+1/3 .

Next, Lemma 21(ii)–(iii) imply that
∑

i∈Zd mi
t = ∫ t

0 eα0s ds ≤ Ceα0t and∑
i∈Zd |i|2mi

t ≤ C
∫ t

0 (1 + s)eα0s ds ≤ C(1 + t)eα0t . Finally, we observe that

E
[∣∣Mi

t

∣∣] ≤ (
mi

t

)1/2 ≤
( ∑

j∈Zd

m
j
t

)1/2

≤ Ceα0t/2.

Step 3. We introduce

X = ∑
j∈Zd

∫ ∞
0

e−α0sMj
s ds
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and show that there are C > 0 and t0 > 0 such that for all i ∈ Z
d , all t ≥ t0,

E
[∣∣Wi

t − pat (i)e
α0tX

∣∣] ≤ Ceα0t

td/2+1/3 .

We observe that since An(i, j) = An(0, i − j), it holds that Wi
t = ∑

j∈Zd

∫ t
0 �(i −

j, t − s)M
j
s ds. We also introduce the auxiliary processes


Wi
t = ∑

j∈Zd

∫ t1/2

0
�(i − j, t − s)Mj

s ds,

W̃ i
t = ∑

j∈Zd

∫ t1/2

0
pa(t−s)(i − j)eα0(t−s)Mj

s ds,

Ŵ i
t = ∑

j∈Zd

∫ t1/2

0
pat (i)e

α0(t−s)Mj
s ds.

Step 3.1. Here, we show that E[|Wi
t − 
Wi

t |] ≤ C exp(α0t − (α0/2)t1/2). By def-
inition of � and using (32),

E
[∣∣Wi

t − 
Wi
t

∣∣] ≤
∫ t

t1/2

∑
n≥1

ϕ�n(t − s)E

[∣∣∣∣ ∑
j∈Zd

An(i, j)Mj
s

∣∣∣∣]ds

≤
∫ t

t1/2

∑
n≥1

ϕ�n(t − s)

( ∑
j∈Zd

(
An(i, j)

)2
mj

s

)1/2

ds.

Using that An(i, j) is bounded by 1 and that
∑

i∈Zd mi
t ≤ Ceα0t (see step 2), we

see that
∑

j∈Zd (An(i, j))2m
j
s ≤ Ceα0s/2. Next, the explicit expression of ϕ�n [see

Lemma 21(i)] gives
∑

n≥1 ϕ�n(t − s) = eα0(t−s). We finally find

E
[∣∣Wi

t − 
Wi
t

∣∣] ≤ C

∫ t

t1/2
eα0(t−s)eα0s/2 ds ≤ Ceα0t e−α0t

1/2/2.

Step 3.2. We next check that E[| 
Wi
t − W̃ i

t |] ≤ Ct−d/2−1/3eα0t . Using (32), we
get

E
[∣∣ 
Wi

t − W̃ i
t

∣∣] ≤
∫ t1/2

0

[ ∑
j∈Zd

mj
s

(
�(i − j, t − s) − pa(t−s)(i − j)eα0(t−s))2

]1/2

ds.

Using Lemma 21(iv), |�(i − j, t − s) − pa(t−s)(i − j)eα0(t−s)| ≤ C(t −
s)−d/2−1/3eα0(t−s) if t − s is large enough (which is the case for all s ∈ [0, t1/2] if
t is large enough). Since furthermore

∑
i∈Zd mi

t ≤ Ceα0t (see step 2), we find

E
[∣∣ 
Wi

t − W̃ i
t

∣∣] ≤ Ceα0t
∫ t1/2

0
(t − s)−d/2−1/3e−α0s/2 ds.
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For t large enough, we clearly have (t − s)−d/2−1/3 ≤ 2t−d/2−1/3 for all s ∈
[0, t1/2], whence

E
[∣∣ 
Wi

t − W̃ i
t

∣∣] ≤ Ct−d/2−1/3eα0t
∫ t1/2

0
e−α0s/2 ds ≤ Ct−d/2−1/3eα0t .

Step 3.3. We now prove that E[|W̃ i
t − Ŵ i

t |] ≤ Ct−d/2−1/2eα0t . As usual, we
start with

E
[∣∣W̃ i

t − Ŵ i
t

∣∣] ≤
∫ t1/2

0

( ∑
j∈Zd

mj
s

(
pa(t−s)(i − j) − pat (i)

)2
)1/2

eα0(t−s) ds.

But an easy computation (using that |∂tpt (x)| ≤ Ct−d/2−1 and |∇xpt (x)| ≤
Ct−d/2−1/2) shows that for all t > 0, all h ∈ (0, t/2), all x, y ∈ R

d , |pt−h(x −
y) − pt(x)| ≤ Cht−d/2−1 + |y|t−d/2−1/2. Hence, if t is large enough so that
t − t1/2 ≥ t/2, we can write

E
[∣∣W̃ i

t − Ŵ i
t

∣∣] ≤ C

∫ t1/2

0

( ∑
j∈Zd

mj
s

(
st−d/2−1 + |j |t−d/2−1/2)2

)1/2

eα0(t−s) ds

≤ Ct−d/2−1/2
∫ t1/2

0

( ∑
j∈Zd

mj
s

)1/2

eα0(t−s) ds

+ Ct−d/2−1/2
∫ t1/2

0

( ∑
j∈Zd

|j |2mj
s

)1/2

eα0(t−s) ds.

Finally, we know from step 2 that
∑

j∈Zd m
j
s + ∑

j∈Zd |j |2mj
s ≤ C(1 + s)eα0s ,

whence

E
[∣∣W̃ i

t − Ŵ i
t

∣∣] ≤ Ct−d/2−1/2
∫ t1/2

0
(1 + s)1/2eα0s/2eα0(t−s) ds ≤ Ct−d/2−1/2eα0t .

Step 3.4. We finally verify that E[|Ŵ i
t − pat (i)e

α0tX|] ≤ Ceα0t−(α0/2)t1/2
. We

note that

Ŵ i
t − pat (i)e

α0tX = pat (i)e
α0t

∑
j∈Zd

∫ t

t1/2
e−α0sMj

s ds.

For t large enough (not depending on i), we can bound pat (i) by 1. Hence, we
infer from (32) and the fact that

∑
j∈Zd m

j
s ≤ Ceα0s that

E
[∣∣Ŵ i

t − pat (i)e
α0tX

∣∣] ≤ Ceα0t
∫ t

t1/2
e−α0s

( ∑
j∈Zd

mj
s

)1/2

ds

≤ Ceα0t
∫ ∞
t1/2

e−α0s/2 ds,

from which the conclusion follows.
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Step 3.5. Gathering steps 3.1 to 3.4, we conclude that indeed, there are C >

0 and t0 > 0 such that for all t ≥ t0, all i ∈ Z
d , E[|Wi

t − pat (i)e
α0tX|] ≤

Ceα0t t−d/2−1/3.
Step 4. Define the random variable H = α−1

0 + X. Recall (33) and write Zi
t −

pat (i)e
α0tH = [mi

t −α−1
0 pat (i)e

α0t ]+Mi
t +[Wi

t −pat (i)e
α0tX]. Gathering steps

2 and 3, we see that there are C > 0 and t0 > 0 such that for all t ≥ t0, all i ∈ Z
d ,

E
[∣∣Zi

t − pat (i)e
α0tH

∣∣] ≤ Ceα0t

td/2+1/3 + Ceα0t/2 ≤ Ceα0t

td/2+1/3 .

To prove that H is nonnegative, it suffices to use the above inequality with i = 0,
divided by pat (0)eα0t . Recalling that pat (0) = ct−d/2 for some constant c, we
deduce that E[|H − Z0

t e
−α0t /pat (0)|] ≤ Ct−1/3. Consequently, H is the limit (in

L1) of Z0
t e

−α0t /pat (0), and is thus nonnegative. This completes the proof of (i).
Step 5. We now check (ii), which follows from (i): for x ∈ R

d , and t ≥ t0,

E
[∣∣td/2e−α0tZ

xt1/2�
t − Hpa(x)

∣∣] ≤ td/2e−α0tE
[∣∣Zxt1/2�

t − Heα0tpat

(⌊
xt1/2⌋)∣∣]

+E[H ]∣∣td/2pat

(⌊
xt1/2⌋) − pa(x)

∣∣.
The first term on the RHS is bounded, by (i), by Ct−1/3, which tends to 0 as
t → ∞. The second term also tends to 0, simply because

td/2pat

(⌊
xt1/2⌋) = pa

(
t−1/2⌊

xt1/2⌋) → pa(x) as t → ∞.

Step 6. It remains to prove (iii) and (iv). The fact that H = limt→∞(4πt/

(2d + 1))d/2e−α0tZ0
t in L1 follows from point (i) with i = 0. Next, note that

H = limt→∞ e−α0tZt in L1, where Zt = ∑
i∈Zd Zi

t . Indeed, recalling (33)

Zt = ∑
i∈Zd

mi
t + ∑

i∈Zd

Mi
t + ∑

i∈Zd

W i
t .

We have
∑

i∈Zd mi
t = ∫ t

0 eα0s ds = α−1
0 [eα0t − 1] by step 2, (32) implies that

E[(∑i∈Zd Mi
t )

2] = ∑
i∈Zd mi

t and finally
∑

i∈Zd W i
t = eα0t

∫ t
0 e−α0s

∑
i∈Zd Mi

s ds,
therefore, e−α0tZt converges to α−1

0 + 0 + X = H as t → ∞ in L1. We also note
that E[H ] = α−1

0 > 0 since E[X] = 0.
Next, we recall that by Theorem 19(i), (Zt )t≥0 is a scalar impulsion Hawkes

process: its compensator is given by At = ∫ t
0 [ϕ(s) + ∫ s−

0 ϕ(s − u)dZu]ds. We
claim that (Zt )t≥0 has the same law as (Z̃t )t≥0 built as follows:

• consider a Poisson process (Nt)t≥0 with intensity ϕ(t) dt , observe that N∞ is
Poisson(�)-distributed, denote by 0 < T1 < · · · < TN∞ its times of jump (we
adopt the convention that Ti = ∞ for i > N∞),

• consider an i.i.d. family (Z̃k
t )t≥0 of scalar impulsion Hawkes process with same

law as (Zt )t≥0,
• put Z̃t = Nt + ∑N∞

i=1 Z̃k
t−Tk

1{t≥Tk}.
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Indeed, (Z̃t )t≥0 is a counting process with compensator∫ t

0

[
ϕ(s) + ∑

i≥1

1{s>Tk}
(
ϕ(s − Tk) +

∫ (s−Tk)−
0

ϕ(s − Tk − u)dZ̃k
u

)]
ds

=
∫ t

0

[
ϕ(s) +

∫ s−
0

ϕ(s − u)dZ̃u

]
ds.

We define H̃ = limt→∞ e−α0t Z̃t and, for each k ≥ 1, H̃k = limt→∞ e−α0t Z̃k
t .

We obviously have H̃ = ∑N∞
k=1 e−α0Tk H̃k . Denoting by p = Pr(H = 0) [which also

equals Pr(H̃ = 0) and Pr(H̃k = 0) for all k ≥ 1], we deduce by independence of the
family (H̃k)k≥1, that p = ∑

n≥1 Pr(N∞ = n)pn. Hence p = ∑
n≥1 e−��npn/n! =

e−�(1−p). Since E[H ] > 0, we cannot have p = 1. Hence p is the unique solution
in (0,1) to p = e−�(1−p). Recalling that Pr(�e) = exp(−γ��) where γ� ∈ (0,1)

is characterised by γ�� + log(1 − γ�) = 0 by Theorem 19, 2(ii), we easily check
that p = Pr(�e).

By definition of H , we have �e ⊂ {H = 0}. Since Pr(�e) = Pr(H = 0) we
conclude that a.s., H > 0 on �c

e. �

APPENDIX: CONVOLUTION EQUATIONS

We collect here some technical results about convolution equations. We start
with an identity of constant use in the paper.

LEMMA 22. Let φ : [0,∞) �→ R be locally integrable and let α : [0,∞) �→ R

have finite variations on compact intervals and satisfy α(0) = 0. Then for all t ≥ 0,∫ t

0

∫ s−
0

φ(s − u)dα(u)ds =
∫ t

0

∫ s

0
φ(s − u)dα(u)ds =

∫ t

0
φ(t − s)α(s) ds.

PROOF. First, we clearly have that
∫ s−

0 φ(s − u)dα(u) = ∫ s
0 φ(s − u)dα(u)

for almost every s ≥ 0, whence
∫ t

0
∫ s−

0 φ(s−u)dα(u)ds = ∫ t
0
∫ s

0 φ(s−u)dα(u)ds.
Using twice the Fubini theorem,∫ t

0

(∫ s

0
φ(s − u)dα(u)

)
ds =

∫ t

0

(∫ t

u
φ(s − u)ds

)
dα(u)

=
∫ t

0

(∫ t−u

0
φ(v) dv

)
dα(u)

=
∫ t

0

(∫ t−v

0
dα(u)

)
φ(v) dv

=
∫ t

0
α(t − v)φ(v) dv,

from which the conclusion follows, using the substitution s = t − v. �
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We carry on with a generalised Grönwall–Picard lemma, which is more or less
standard.

LEMMA 23. Let φ : [0,∞) �→ [0,∞) be locally integrable and g : [0,∞) �→
[0,∞) be locally bounded.

(i) Consider a locally bounded nonnegative function u such that for all t ≥ 0,
ut ≤ gt + ∫ t

0 φ(t − s)us ds for all t ≥ 0. Then sup[0,T ] ut ≤ CT sup[0,T ] gt , for some
constant CT depending only on T > 0 and φ.

(ii) Consider a sequence of locally bounded nonnegative functions un such that
for all t ≥ 0, all n ≥ 0, un+1

t ≤ ∫ t
0 φ(t − s)un

s ds. Then sup[0,T ]
∑

n≥0 un
t ≤ CT , for

some constant CT depending only on T > 0, u0 and φ.
(iii) Consider a sequence of locally bounded nonnegative functions un such

that for all t ≥ 0, all n ≥ 0, un+1
t ≤ gt + ∫ t

0 φ(t − s)un
s ds. Then for all T ≥ 0,

sup[0,T ] supn≥0 un
t ≤ CT , for some constant CT depending only on T > 0, u0, g

and φ.

PROOF. We start with point (i). Fix T > 0 and consider A > 0 such that∫ T
0 φ(s)1{φ(s)≥A} ds ≤ 1/2. Then for all t ∈ [0, T ],

ut ≤ gt +
∫ t

0
1{φ(t−s)≤A}φ(t − s)us ds +

∫ t

0
1{φ(t−s)>A}φ(t − s)us ds

≤ gt + A

∫ t

0
us ds + sup

[0,t]
us/2,

from which we deduce that sup[0,t] us ≤ 2 sup[0,t] gs + 2A
∫ t

0 us ds. We then can
apply the standard Grönwall lemma to get sup[0,T ] us ≤ 2(sup[0,T ] gs)e

2AT .
To check point (iii), put vn

t = supk=0,...,n uk
t . One easily checks that for all n ≥ 0,

vn
t ≤ u0

t + gt + ∫ t
0 φ(t − s)vn

s ds. By point (i), sup[0,T ] vn
t ≤ CT sup[0,T ](gt + u0

t ).
Letting n increase to infinity completes the proof.

Point (ii) follows from point (iii), since vn
t = ∑n

k=0 uk
t satisfies vn+1

t ≤ u0
t +∫ t

0 φ(t − s)vn
s ds. �

We next prove an easy well-posedness result for a general convolution equation.

LEMMA 24. Let h :R �→ [0,∞) be Lipschitz-continuous and ϕ : [0,∞) �→ R

be locally integrable. The equation

mt =
∫ t

0
h

(∫ s

0
ϕ(s − u)dmu

)
ds(34)

has a unique nondecreasing locally bounded solution. Furthermore, m is of class
C1 on [0,∞).
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If h(x) = μ + x for some μ > 0 and if ϕ is nonnegative, equation (34) rewrites
as

mt = μt +
∫ t

0
ϕ(t − s)ms ds.(35)

PROOF. Let m and m̃ be two such solutions. Since h is Lipschitz-continuous,

vt =
∫ t

0

∣∣d(mu − m̃u)
∣∣ ≤ C

∫ t

0
ds

∫ s

0

∣∣ϕ(s − u)
∣∣∣∣d(mu − m̃u)

∣∣
= C

∫ t

0

∣∣ϕ(t − u)
∣∣vu du.

The last inequality follows from Lemma 22. Lemma 23(i) allows us to conclude
that vt = 0 for all t ≥ 0 (because vt ≤ mt + m̃t is locally bounded), whence
mt = m̃t for all t ≥ 0. For the existence, we consider the sequence of nondecreas-
ing functions m0

t = 0 and mn+1
t = ∫ t

0 h(
∫ s

0 ϕ(s − u)dmn
u) ds for every n ≥ 0. We

easily check that mn+1
t ≤ h(0)t + |h|lip ∫ t

0 |ϕ(t − u)|mn
u du, so that supn≥0 mn

t is
locally bounded by Lemma 23(iii). Setting, for n ≥ 0, δn

t = ∫ t
0 |d(mn+1

u − mn
u)|,

one readily gets δn+1
t ≤ |h|lip ∫ t

0 |ϕ(s − u)|δn
u du for all n ≥ 0. Lemma 23(ii) thus

implies that
∑

n≥0 δn
t < ∞. All this classically implies the existence of a locally

bounded nondecreasing m such that for all t ≥ 0, limn

∫ t
0 |d(mu−mn

u)| = 0. Check-
ing that m solves (34) is routine.

To prove that m is C1, we use the previous Picard iteration. One easily sees, by
induction, that mn is C1 for all n ≥ 0 and that (mn+1

t )′ = h(
∫ t

0 ϕ(t − u)(mn
u)

′ du)

[indeed, t �→ ∫ t
0 ϕ(t − u)(mn

u)
′ du = ∫ t

0 ϕ(u)(mn
t−u)

′ du is continuous because ϕ is
locally integrable and because (mn

t )
′ is continuous by the inductive assumption].

Next, a direct computation shows that |(mn+1
t )′ − (mn

t )
′| ≤ C

∫ t
0 |ϕ(t −u)||(mn

u)
′ −

(mn−1
u )′|du. Using Lemma 23(ii), we deduce that the sequence (mn)′ is Cauchy

(for the uniform convergence on compact time intervals). The conclusion classi-
cally follows.

The equivalence between (34) and (35) in the linear case directly follows from
Lemma 22. �

We now investigate the large-time behaviour of mt in the linear case. We start
with the subcritical case.

LEMMA 25. Consider μ > 0 and a function ϕ : (0,∞) �→ [0,∞) such that
� = ∫ ∞

0 ϕ(s) ds < 1. By Lemma 24, (35) has a unique nondecreasing locally
bounded solution (mt)t≥0, which is furthermore of class C1. It holds that m′

t ∼ a0
and mt ∼ a0t as t → ∞, where a0 = μ/(1 − �) > 0.

PROOF. We rather use (34), which writes mt = μt + ∫ t
0

∫ s
0 ϕ(s − u)m′

u duds.
Differentiating this expression, we find m′

t = μ + ∫ t
0 ϕ(t − s)m′

s ds. We first
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introduce ut = sup[0,t] m′
s . We have ut ≤ μ + �ut , whence ut ≤ μ/(1 − �)

for all t ≥ 0 and thus lim supt→∞ m′
t ≤ μ/(1 − �). We next introduce vt =

infs≥t m
′
s , which is nondecreasing, and thus has a limit 
 ∈ (0,∞]. We have

vt ≥ μ + vt/2
∫ t/2

0 ϕ(s) ds → μ + �
 as t → ∞. Consequently 
 ≥ μ + �
,
whence 
 ≥ μ/(1 − �) and finally lim inft→∞ m′

t ≥ μ/(1 − �). All this proves
that m′

t ∼ a0 and this implies that mt ∼ a0t . �

We now turn to the supercritical case.

LEMMA 26. Consider μ > 0 and a function ϕ : [0,∞) �→ [0,∞) such that
� = ∫ ∞

0 ϕ(s) ds ∈ (1,∞]. By Lemma 24, (35) has a unique nondecreasing locally
bounded solution (mt)t≥0, which is of class C1. Assume furthermore that t �→∫ t

0 |dϕ(s)| has at most polynomial growth. Let �(t) = ∑
n≥1 ϕ�n(t) and ϒ(t) =∫ t

0 �(s) ds.

(a) There is a unique α0 > 0 such that Lϕ(α0) = 1. The function � is locally
bounded. Setting a0 = μα−2

0 (
∫ ∞

0 tϕ(t)e−α0t dt)−1, we have, as t → ∞,

�(t) ∼ (
a0α

2
0/μ

)
eα0t , ϒ(t) ∼ (a0α0/μ)eα0t ,

mt ∼ a0e
α0t , m′

t ∼ a0α0e
α0t .

(b) There are some constants 0 < c < C such that for all t ≥ 0, ceα0t ≤ �(t) +
1 ≤ Ceα0t , ceα0t ≤ ϒ(t) + 1 ≤ Ceα0t , ceα0t ≤ mt + 1 ≤ Ceα0t and ceα0t ≤ m′

t +
1 ≤ Ceα0t .

(c) We also have

lim
t→∞

∫ t

0

(
ϒ(t − s)

mt

− α0

μ
e−α0s

)2

m′
s ds = 0.

(d) Consider a real sequence (ηn)n≥1 such that limn→∞ ηn = 0. Then we have
the property that limt→∞ e−α0t

∑
n≥1 ηn

∫ t
0 ϕ�n(t − s)eα0s/2 ds = 0.

(e) For any pair of locally bounded functions u,h : (0,∞) �→ R such that u =
h + u � ϕ, there holds u = h + h � �.

PROOF. We easily deduce from our assumptions on ϕ that there is some con-
stants C > 0, p > 0 such that for all t ≥ 0, ϕ(t) ≤ C(1 + t)p (in particular, ϕ is
locally bounded). Hence, its Laplace transform is clearly well defined on (0,∞),
of class C∞, and limα→∞Lϕ(α) = 0. Furthermore, Lϕ(0) = ∫ ∞

0 ϕ(t) dt ∈ (1,∞].
Hence, there indeed exists a unique α0 > 0 such that Lϕ(α0) = 1. We now divide
the proof into several steps.

Step 1. We first prove that � is locally bounded. To this end, we introduce �n =∑n
k=1 ϕ�k(t) and observe that �n+1 = ϕ + �n � ϕ. Since ϕ is locally bounded,

Lemma 23(iii) allows us to conclude that supn �n is locally bounded, whence the
result.
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Step 2. Here, we prove (e). Since h is locally bounded and since ϕ is locally
integrable, we easily deduce from Lemma 23(i) that the equation v = h + v � ϕ

(with unknown v) has at most one locally bounded solution. Since both u and
h + h � � are locally bounded solutions, the conclusion follows.

Step 3. The aim of this step is to verify that �(t) ∼ (a0α
2
0/μ)eα0t as t → ∞.

Observe that � solves � = ϕ + � � ϕ and introduce u(t) = �(t)e−α0t and f (t) =
ϕ(t)e−α0t . One easily checks that u = f +u�f . We now apply Theorem 4 of Feller
[13]. We have

∫ ∞
0 f (t) dt = 1 by definition of α0. We set b1 = ∫ ∞

0 tf (t) dt =∫ ∞
0 tϕ(t)e−α0t dt and b2 = ∫ ∞

0 t2f (t) dt = ∫ ∞
0 t2ϕ(t)e−α0t dt , which clearly both

converge, since ϕ(t) ≤ C(1 + t)p . Finally, it is not difficult to check that f (t),
tf (t) and t2f (t) have a bounded total variation on [0,∞) since we have assumed
that t �→ ∫ t

0 |dϕ(s)| has at most polynomial growth. Thus, Feller [13], Theorem 4,
tells us that u(t) → 1/b1 as t → ∞, which gives �(t) ∼ eα0t /b1. This completes
the proof, since 1/b1 = a0α

2
0/μ by definition of a0.

Step 4. We now conclude the proof of (a) and (b). Recall that mt = μt +∫ t
0

∫ s
0 ϕ(s − u)m′

u duds, so that m′ = μ + ϕ � m′. Applying (e), we deduce that
m′ = μ + μ � � = μ(1 + ϒ). By step 3, we know that �(t) ∼ (a0α

2
0/μ)eα0t as

t → ∞. This obviously implies that ϒ(t) ∼ (a0α0/μ)eα0t , whence m′
t ∼ a0α0e

α0t

and finally mt = ∫ t
0 m′

s ds ∼ a0e
α0t . Finally, (b) directly follows from (a) and the

facts that �, ϒ , m and m′ are nonnegative and locally bounded.
Step 5. Point (d) is not very difficult: using that ϕ(t) ≤ C(1 + t)p , we see that

ϕ�n(t) ≤ Cn(1 + t)pn for some constants Cn > 0 and pn > 0. We next introduce
εk = supn≥k |ηn|, which decreases to 0 as k → ∞, and write, for any k ≥ 1,

lim sup
t→∞

e−α0t
∑
n≥1

|ηn|
∫ t

0
ϕ�n(t − s)eα0s/2 ds

≤ lim sup
t→∞

e−α0t
k∑

n=1

|ηn|
∫ t

0
Cn(t − s)pneα0s/2 ds

+ εk lim sup
t→∞

e−α0t
∞∑

n=k+1

∫ t

0
ϕ�n(t − s)eα0s/2 ds.

The first term on the RHS is of course 0 (for any fixed k). We can bound the second
one, using (b), by

εk lim sup
t→∞

e−α0t
∫ t

0
�(t − s)eα0s/2 ds

≤ Cεk lim sup
t→∞

e−α0t
∫ t

0
eα0(t−s)eα0s/2 ds ≤ Cεk.

Letting k tend to infinity completes the proof.
Step 6. It only remains to check point (c). We use the Lebesgue dominated con-

vergence theorem. Define ht
s = (ϒ(t − s)/mt −α0e

−α0s/μ)2m′
s1{s≤t}. We have to



258 S. DELATTRE, N. FOURNIER AND M. HOFFMANN

prove that limt→∞
∫ ∞

0 ht
s ds = 0. First, it is obvious from (a) that for s > 0 fixed,

limt→∞ ht
s = 0. Next, we use (b) to write (for t large enough so that mt ≥ ceα0t )

ht
s ≤ C(e−α0s)2eα0s ≤ Ce−α0s , which does not depend on t and is integrable on

(0,∞). �

We next consider briefly a vector convolution equation.

LEMMA 27. Consider a family μ = (μi)i∈Zd of real numbers such that 0 ≤
μi ≤ C for all i ∈ Z

d , the stochastic matrix (A(i, j))i,j∈Zd defined by (17), and a

locally integrable function ϕ : (0,∞) �→ [0,∞). The equation mt = μt + ∫ t
0 ϕ(t −

s)Ams ds with unknown m = (mi
t )t≥0,i∈Zd has a unique solution such that for

all t ≥ 0,
∑

i∈Zd 2−|i| sup[0,t] mi
s < ∞. Furthermore, mi is of class C1 on [0,∞)

for all i ∈ Z
d , and it holds that m′

t = μ + ∫ t
0 ϕ(t − s)Am′

s ds and m′
t = (I +∑

n≥1 An
∫ t

0 ϕ�n(s) ds)μ. Finally, ut = supi∈Zd sup[0,t](mi
s)

′ is finite for all t ≥ 0
and it holds that ut ≤ C + ∫ t

0 ϕ(t − s)us ds.

PROOF. We proceed in a few steps.

Step 1. We first note that for any vector x = (xi)i∈Zd , it holds that
∑

i∈Zd 2−|i| ×
|(Ax)i | ≤ 2

∑
i∈Zd 2−|i||xi |. This easily follows from the explicit form of A.

Step 2. We next check uniqueness. Consider two solutions m and m̃ satisfy-
ing the required condition and put ht = ∑

i∈Zd 2−|i| sup[0,t] |mi
t − m̃i

t |. We have
ht ≤ ∑

i∈Zd 2−|i| ∫ t
0 ϕ(t − s)|A(ms − m̃s)i |ds. Using step 1, we deduce that

ht ≤ 2
∫ t

0 ϕ(t − s)hs ds and thus ht = 0 by Lemma 23(i).
Step 3. We define m′

t = (I + ∑
n≥1 An

∫ t
0 ϕ�n(s) ds)μ. Using that A is stochas-

tic and that μ is bounded (by C), we easily deduce that for all i ∈ Z
d , (mi

t )
′ ≤

C(1 + ∑
n≥1

∫ t
0 ϕ�n(s) ds). This function is locally bounded because ϕ is lo-

cally integrable: use that ϒk(t) = ∑k
n=1

∫ t
0 ϕ�n(s) ds satisfies ϒk(t) ≤ ∫ t

0 ϕ(s) ds +∫ t
0 ϕ(t − s)ϒk(s) ds and use Lemma 23(iii), which provides a uniform (in k)

bound. Consequently, ut = supi∈Zd sup[0,t](mi
s)

′ is finite for all t ≥ 0. Similar ar-
guments show that (mi

t )
′ is continuous on [0,∞), because |(mi

t+h)
′ − (mi

t )| ≤
C

∑
n≥1

∫ t+h
t ϕ�n(s) ds.

Step 4. A straightforward consequence of the definition of m′
t is that it solves

m′
t = μ+ ∫ t

0 ϕ(t − s)Am′
s ds. Using that A is stochastic and that μ is bounded, we

immediately deduce that ut ≤ C + ∫ t
0 ϕ(t − s)us ds. We finally define, for each i ∈

Z
d , mi

t = ∫ t
0 (mi

s)
′ ds. Integrating the equation satisfied by m′ and using Lemma 22,

we find that m = (mi
t )i∈Zd ,t≥0 is indeed a solution to mt = μt +∫ t

0 ϕ(t −s)Ams ds.
It only remains to check that

∑
i∈Zd 2−|i| sup[0,t] mi

t < ∞ for all t ≥ 0, but this
obviously follows from the facts that ut is locally bounded and that m0 = 0. �
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