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We present a short and direct derivation of Hawking radiation as a tunneling process, based on particles
in a dynamical geometry. The imaginary part of the action for the classically forbidden process is
related to the Boltzmann factor for emission at the Hawking temperature. Because the derivation respects
conservation laws, the exact spectrum is not precisely thermal. We compare and contrast the problem of
spontaneous emission of charged particles from a charged conductor.
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I. Introduction.—Several derivations of Hawking radia-
tion exist in the literature [1,2]. None of them, however,
correspond very directly to one of the heuristic pictures
most commonly proposed to visualize the source of the ra-
diation, as tunneling. According to this picture, the radia-
tion arises by a process similar to electron-positron pair
creation in a constant electric field. The idea is that the
energy of a particle changes sign as it crosses the horizon,
so that a pair created just inside or just outside the horizon
can materialize with zero total energy, after one member
of the pair has tunneled to the opposite side.

Here we shall show that this schematic can be used to
provide a short, direct semiclassical derivation of black
hole radiance. In what follows, energy conservation plays
a fundamental role: one must make a transition between
states with the same total energy, and the mass of the
residual hole must go down as it radiates. Indeed, it is
precisely the possibility of lowering the black hole mass
which ultimately drives the dynamics. This supports the
idea that, in quantum gravity, black holes are properly
regarded as highly excited states.

Broadly speaking, there are two standard approaches
to Hawking radiation. In the first, one considers a col-
lapse geometry. The response of external fields to this can
be done explicitly or implicitly by abstracting appropriate
boundary conditions. In the second, one treats the black
hole immersed in a thermal bath. In this approach, one
shows that (in general, metastable) equilibrium is possible.
By detailed balance, this implies emission from the hole.
In both of the standard calculations, the background ge-
ometry is considered fixed, and energy conservation is not
enforced during the emission process.

Here we will consider a hole in empty Schwarzschild
space, but with a dynamical geometry so as to enforce en-
ergy conservation. (Despite appearances, the geometry is
not truly static, since there is no global Killing vector.)
Because we are treating this aspect more realistically, we
must — and do — find corrections to the standard results.
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These become quantitatively significant when the quan-
tum of radiation carries a substantial fraction of the mass
of the hole.

II. Tunneling.—To describe across-horizon phenom-
ena, it is necessary to choose coordinates which, unlike
Schwarzschild coordinates, are not singular at the horizon.
A particularly suitable choice is obtained by introducing
a time coordinate,

t � ts 1 2
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where ts is Schwarzschild time. With this choice, the line
element reads
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µ
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1 dr2 1 r2dV2. (2)

There is now no singularity at r � 2M, and the true char-
acter of the spacetime, as being stationary but not static,
is manifest. These coordinates were first introduced by
Painlevé [3] (who used them to criticize general relativity,
for allowing singularities to come and go!). Their utility
for studies of black hole quantum mechanics was empha-
sized more recently [4].

For our purposes, the crucial features of these coordi-
nates are that they are stationary and nonsingular through
the horizon. Thus it is possible to define an effective
“vacuum” state of a quantum field by requiring that it
annihilate modes which carry negative frequency with re-
spect to t; such a state will look essentially empty (in any
case, nonsingular) to a freely falling observer as he or she
passes through the horizon. This vacuum differs strictly
from the standard Unruh vacuum, defined by requiring
positive frequency with respect to the Kruskal coordinate
U � 2

p
r 2 2M exp�2 ts2r

4M � [5]. The difference, how-
ever, shows up only in transients, and does not affect the
late-time radiation.
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The radial null geodesics are given by
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with the upper (lower) sign in Eq. (3) corresponding to
outgoing (ingoing) geodesics, under the implicit assump-
tion that t increases towards the future. These equations
are modified when the particle’s self-gravitation is taken
into account. Self-gravitating shells in Hamiltonian grav-
ity were studied by Kraus and Wilczek [6]. They found
that, when the black hole mass is held fixed and the total
Arnowitt-Deser-Misner mass is allowed to vary, a shell of
energy v moves in the geodesics of a spacetime with M
replaced by M 1 v. If instead we fix the total mass and
allow the hole mass to fluctuate, then the shell of energy
v travels on the geodesics given by the line element
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so we should use Eq. (3) with M ! M 2 v.
Since the typical wavelength of the radiation is of the

order of the size of the black hole, one might doubt whether
a point particle description is appropriate. However, when
the outgoing wave is traced back towards the horizon, its
wavelength, as measured by local fiducial observers, is
ever increasingly blueshifted. Near the horizon, the radial
wave number approaches infinity and the point particle, or
WKB, approximation is justified.

The imaginary part of the action for an s-wave outgo-
ing positive energy particle which crosses the horizon out-
wards from rin to rout can be expressed as
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Remarkably, this can be evaluated without entering into the
details of the solution, as follows. We multiply and divide
the integrand by the two sides of Hamilton’s equation �r �
1

dH
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jr , change the variable from momentum to energy,
and switch the order of integration to obtain
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where we have used the modified Eq. (3), and the minus
sign appears because H � M 2 v0. But now the integral
can be done by deforming the contour, so as to ensure that
positive energy solutions decay in time (that is, into the
lower half v0 plane). In this way we obtain

ImS � 14pv
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M 2
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2

∂
, (7)

provided rin . rout. To understand this ordering—which
supplies the correct sign —we observe that when the inte-
grals in Eq. (5) are not interchanged, and with the contour
evaluated via the prescription v ! v 2 ie, we have
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Hence rin � 2M and rout � 2�M 2 v�. (Incidentally, by
comparing the above equation with Eq. (5), we also find
that Impr � 2pr .) Although this radially inward mo-
tion appears at first sight to be classically allowed, it is
nevertheless a classically forbidden trajectory because the
apparent horizon is itself contracting. Thus, the limits on
the integral indicate that, over the course of the classi-
cally forbidden trajectory, the outgoing particle starts from
r � 2M 2 e, just inside the initial position of the hori-
zon, and traverses the contracting horizon to materialize at
r � 2�M 2 v� 1 e, just outside the final position of the
horizon.

Alternatively, and along the same lines, Hawking radia-
tion can also be regarded as pair creation outside the hori-
zon, with the negative energy particle tunneling into the
black hole. Since such a particle propagates backward in
time, we have to reverse time in the equations of motion.
From the line element, Eq. (2), we see that time reversal

corresponds to
q

2M
r ! 2

q
2M
r . Also, since the antiparti-

cle sees a geometry of fixed black hole mass, the upshot
of self-gravitation is to replace M by M 1 v, rather than
M 2 v. Thus an ingoing negative energy particle has
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where to obtain the last equation we have used Feynman’s
“hole theory” deformation of the contour: v0 ! v0 1 ie.

Both channels —particle or antiparticle tunneling—
contribute to the rate for the Hawking process so, in a
more detailed calculation, one would have to add their
amplitudes before squaring in order to obtain the semiclas-
sical tunneling rate. Such considerations, however, only
concern the prefactor. In either treatment, the exponential
part of the semiclassical emission rate, in agreement with
[7], is

G � e22 ImS � e28pv�M2v�2� � e1DSB-H , (10)

where we have expressed the result more naturally in terms
of the change in the hole’s Bekenstein-Hawking entropy,
SB-H. When the quadratic term is neglected, Eq. (10) re-
duces to a Boltzmann factor for a particle with energy v

at the inverse Hawking temperature 8pM. The v2 cor-
rection arises from the physics of energy conservation,
which (roughly speaking) self-consistently raises the ef-
fective temperature of the hole as it radiates. That the ex-
act result must be correct can be seen on physical grounds
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by considering the limit in which the emitted particle car-
ries away the entire mass and charge of the black hole
(corresponding to the transmutation of the black hole into
an outgoing shell). There can be only one such outgoing
state. On the other hand, there are exp�SB-H� states in to-
tal. Statistical mechanics then asserts that the probability
of finding a shell containing all of the mass of the black
hole is proportional to exp�2SB-H�, as above.

Following standard arguments, Eq. (10) with the
quadratic term neglected implies the Planck spectral flux
appropriate to an inverse temperature of 8pM:

r�v� �
dv

2p

jT �v�j2

e18pMv 2 1
, (11)

where jT �v�j2 is the frequency-dependent (graybody)
transmission coefficient for the outgoing particle to
reach future infinity without backscattering. It arises
from a more complete treatment of the modes, whose
semiclassical behavior near the turning point we have
been discussing.

The preceding techniques can also be applied to emis-
sion from a charged black hole. However, when the out-
going radiation carries away the black hole’s charge, the
calculations are complicated by the fact that the trajecto-
ries are now also subject to electromagnetic forces. Here
we restrict ourselves to uncharged radiation coming from
a Reissner-Nordström black hole. The derivation then pro-
ceeds in a similar fashion to that above.

The charged counterpart to the Painlevé line element is
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which is obtained from the standard Reissner-Nordström
line element by the coordinate transformation,
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where tr is the Reissner time coordinate. The line element
now manifestly displays the stationary, nonstatic, and non-
singular nature of the spacetime.

The equation of motion for an outgoing massless particle
is

�r �
dr
dt

� 11 2
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2
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r2 , (14)

with M ! M 2 v when self-gravitation is included [8].
The imaginary part of the action for a positive energy
outgoing particle is
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which is again evaluated by deforming the contour in
accordance with Feynman’s w0 ! w0 2 ie prescription.
The residue at the pole can be read off by substituting
u �

p
2�M 2 v0�r 2 Q2. This yields an emission rate

of
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To first order in v, Eq. (16) is consistent with Hawking’s
result of thermal emission at the Hawking temperature, TH ,
for a charged black hole:

TH �
1

2p

p
M2 2 Q2
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Again, energy conservation implies that the exact result
has corrections of higher order in v; these can all be col-
lected to express the emission rate as the exponent of the
change in entropy. Moreover, since the emission rate has
to be real, the presence of the first square root in Eq. (16)
ensures that radiation past extremality is not possible. Un-
like in the traditional formulas, the third law of black hole
thermodynamics is here manifestly enforced.

Note that only local physics has gone into our deriva-
tions. There was neither an appeal to Euclideanization
nor any need to invoke an explicit collapse phase. The
time asymmetry leading to outgoing radiation arose instead
from use of the “normal” local contour deformation pre-
scription in terms of the nonstatic coordinate t.

III. Relation to Electric Discharge.—The calculation
presented above is formally self-contained, but some addi-
tional discussion is in order, to elucidate its physical mean-
ing and to dispel a puzzle it poses.

When considered at the very broadest level, radiation
of mass from a black hole resembles tunneling of elec-
tric charge off a charged conducting sphere. Upon a mo-
ment’s reflection, however, the difference in the physics
of the two situations appears so striking as to pose a puz-
zle. For while the electric force between like charges is
repulsive, the gravitational force is always attractive. Re-
lated to this, the field energy of electric fields is positive,
while (heuristically) the field energy of gravitational fields
is negative. On this basis one might think that the elec-
tric process should proceed spontaneously, and need not
require tunneling, while the gravitational process has no
evident reason to proceed at all.

Consider a conducting sphere of radius R carrying
charge Q. The electric field energy can be lowered by
emitting a charge q so we expect this process to occur
spontaneously. If we neglect backreaction of the charge
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q on the conducting sphere, the force is repulsive at all
distances, and there is no barrier to emission. In a more
accurate treatment, however, we must take into account
the induced nonuniformity of the charge on the sphere,
which is easily done by using the method of images. The
effective potential is

V �r� � q

µ
Q 2 q

r
2

qR
r2 2 R2

∂
, (18)

where we consider configurations of image charge which
leave the potential on the sphere constant and the field at in-
finity fixed. In the formal limit Q ¿ q the first term domi-
nates, and the potential decreases monotonically with r ,
indicating no barrier. However the second term increases
monotonically with r , and always dominates for r ! R,
producing a barrier.

In the gravitational problem, the situation is just the re-
verse. With backreaction neglected, there is nothing but
barrier. Yet our calculation including backreaction indi-
cates the possibility of redistributing mass energy of the
gravitating sphere (black hole) into kinetic energy of emit-
ted radiation.

Since the intrinsic energy of the gravitational field is
negative, it is disadvantageous to reduce it, point by point.
However, since in general the spacetime containing a black
hole is not globally static, there exist freely propagating
negative energy modes inside the horizon which cause the
black hole to shrink. As a consequence, the black hole’s
radius decreases and the external volume of space, over
which one integrates the field, increases. This, kinemati-
cally, is why the radiation process is allowed. Were the
hole geometry to be regarded as fixed, there would be no
possible source for the kinetic energy of the radiation, and
a genuine tunneling interpretation of Hawking radiation
would appear to be precluded.

IV. Conclusion.—We have derived Hawking radiation
from the heuristically familiar perspective of tunneling.
Our derivation is in consonance with intuitive notions of
black hole radiance but, by taking into account global con-
servation laws, we are led to a modification of the emission
spectrum away from thermality. The resulting corrected
formula has physically reasonable limiting cases and, by
virtue of nonthermality, suggests the possibility of infor-
mation-carrying correlations in the radiation.
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