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Abstract: Hawking radiation is an essential property of the quantum black hole. It results in the
information loss paradox and provides an important clue with regard to the unification of quantum
mechanics and general relativity. In previous work, the boundary scalar fields on the horizon of
black holes were used to determine the microstates of BTZ black holes and Kerr black holes. They
account for Bekenstein–Hawking entropy. In this paper, we show that the Hawking radiation can
also be derived from those scalar fields. Hawking radiation is a mixture of the thermal radiation of
right- and left-moving sectors at different temperatures. Based on this result, for static BTZ black
holes and Schwarzschild black holes, we propose a simple solution for the information loss paradox;
i.e., the Hawking radiation is pure due to its entanglement between the left-moving sector and the
right-moving sector. This entanglement may be detected in an analogue black hole in the near future.
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1. Introduction

One important contribution by Steven Hawking is the discovery of Hawking radi-
ation [1,2]. A black hole can radiate with a black body temperature, TH . The thermal
nature of such radiation lies at the heart of the “information loss paradox” [3–5], which
refers to how the evaporation of a black hole will break the unitary, or, in other words,
how a pure state can evolve into a mixed state. There have been many proposals for its
resolution. For example, recently, in [6], it was shown that the radiation fields represent a
pure quantum state for black hole evaporation based on the moving mirror model. On the
other hand, based on string theory, the Page curve was semi-classically reproduced by
evaluating the island [7–9] in the quantum external surface or replica wormholes [10,11].
Since Hawking’s seminal works, there have been many other derivations that confirm
Hawking’s results. For a review, see [12] and the references therein.

However, Hawking’s analysis is semi-classical: the black hole spacetime is treated as a
classical background. This implies that, if the black hole spacetime is treated as a quantum
object, the thermal Hawking radiation may need modifications to contain information.
Bekenstein [13–15] proposed that black holes play the same role in gravity as the atoms play
in quantum mechanics. This analogy suggests that the area may have a discrete spectrum:

An = αnh̄, n = 1, 2, 3, · · · , (1)

where α is a dimensionless constant. Two possible values of α are often used: α = 8π [14,16]
and α = 4 log k with k = 2, 3, · · · [17–19]. The discrete area spectrum implies the discrete
energy spectrum, which changes the continuous Hawking radiation to a discrete line
emission. Bekenstein and Mukhanov [18] later suggested that the radiation of a quantum
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Schwarzschild black hole of mass M should be at integer multiples of the fundamen-
tal frequency:

ω0 = αTH =
α

8πM
. (2)

In [20], the authors suggest that this special frequency may be observed from the
gravitational wave signals.

In [21], we provide the microstates for Bañados–Teitelboim–Zanelli (BTZ) black holes
and Kerr black holes from boundary scalar fields. Those microstates can account for the
Bekenstein–Hawking entropy. Due to the compactness of the scalar fields, one can find
that the area of the the Kerr black hole has a discrete spectrum (1) with α = 8π. In this
paper, we will show that those states can also provide the Hawking radiation with some
modifications that are similar to Bekenstein and Mukhanov’s suggestions. The Hawking
radiation is a mixture of the thermal radiation of right- and left-moving sectors at different
temperatures. Based on this result, for static BTZ black holes and Schwarzschild black
holes, we propose a simple solution for the information loss paradox, which is that the
Hawking radiation is pure due to its entanglement between the left-moving sector and
right-moving sector.

The paper is organized as follows. In Section 2, the BTZ black hole is analyzed.
In Section 3, the same method is applied to the Kerr black hole. In Section 4, we propose
that the Hawking radiation is pure. Section 5 is the conclusion. In this paper, we set G = 1.

2. The BTZ Black Hole

In this section, we analyze the BTZ black hole in three dimensional spacetime.

2.1. The Entropy of the BTZ Black Hole

The metric of the BTZ black hole is [22]:

ds2 = −N2dv2 + 2dvdr + r2(dϕ + Nϕdv)2, (3)

where N2 = −8M + r2

l2 + 16J2

r2 , Nϕ = − 4J
r2 , l is the radius of the AdS spacetime, and (M, J)

represents the mass and angular momentum of the black hole, respectively. The black hole
has the event horizon at r = r+ and the inner horizon at r = r− with

r2
± = 4Ml2(1±

√
1− J2

M2l2 ). (4)

The thermodynamic quantities for the BTZ black hole are

TH =
r2
+ − r2

−
2πr+l2 , SBH =

2πr+
4

, ΩH =
r−
r+l

, (5)

and satisfy the first law
dM = THdS + ΩHdJ. (6)

The number distribution of Hawking radiation at infinity for the bosons is provided by

< Nm(ω) >=
1

eβ(ω−mΩH) − 1
, (7)

where β = 1
TH

is the inverse temperature, and m is the azimuthal angular momentum
number. From this distribution, one can obtain Planck’s thermal distribution for black holes.
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Now, let us consider this distribution from the boundary scalar field on the horizon.
Firstly, we will review some of the results in the previous work [21]. The scalar field has a
mode expansion

φ(v′, ϕ) = φ0 + pvv′ + pϕ ϕ +

√
8π

lA ∑
n 6=0

√
1

2ω′n
[ane−i(ω′nv′−kn ϕ) + a+n ei(ω′nv′−kn ϕ)], (8)

where v′ = v
γ = r+

l v, ω′n = |n|
r+ , kn = n, and A = 2πr+ is the length of the circle. The scalar

field φ(v′, ϕ) can be considered as collectives of harmonic oscillators, and a general quan-
tum state can be represented as |pv, pϕ; {nk} >∼ (a+1 )

n1 · · · (a+k )
nk |pv, pϕ >, where pv, pϕ

represents the zero mode parts, and {nk} represents the oscillating parts. The zero mode
parts provide important information about the fractional charges of the quasi-particles [23].
The oscillating parts are associated with the entropy and the radiation. The Hamiltonian
and angular momentum operators have the expression

Ĥ = Ĥ0 + ∑
k 6=0

|k|
r+

â+k âk = Ĥ0 + ∑
k 6=0

ε′kn̂k,

Ĵ = Ĵ0 + ∑
k 6=0

kâ+k âk = Ĵ0 + ∑
k 6=0

Jkn̂k, k ∈ Z,
(9)

where ε′k =
|k|
r+ , Jk = k represents the energy and angular momentum for the energy level

k, and n̂k = â+k âk is the number operator. The Hawking radiation is observed at infinity,
where the energy is red-shifted with

ω ∼ ∂

∂t
=

∂

∂v
=

∂

∂v′
1
γ
∼ ω′

γ
. (10)

We denote energy (temperature) as infinity un-primed, and that on the horizon with
prime ′. They can transform into each other with scalar-factor γ = l

r+ .
The calculation of the entropy for the BTZ black hole is as follows [23]. For the BTZ

black hole with parameters (M, J), the oscillating parts satisfy the constraints:

1
c ∑

|k|
r+

nk = Mγ,
1
c ∑ knk = J, nk ∈ N+, c = 3l/2. (11)

We denote the positive part k > 0 as the right-moving sector, and the negative part
k < 0 as the left-moving sector. They satisfy

1
c ∑

k>0
knR

k =
1
2
(Mγr+ + J),

1
c ∑

k<0
(−k)nL

k =
1
2
(Mγr+ − J). (12)

The problem transforms into a mathematical problem: How many different sequences
satisfy the above constraints? The solution is the famous Hardy–Ramanujan formula.
The entropy for the right- and left-moving sector can be calculated by the Hardy–Ramanujan
formula to obtain

SR = 2π

√
c

Ml + J
12

=
π

4
(r+ + r−),

SL = 2π

√
c

Ml − J
12

=
π

4
(r+ − r−).

(13)

The total entropy is

S = SR + SL =
2πr+

4
. (14)

Thus, we obtain the entropy for the BTZ black holes.
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2.2. The Hawking Radiation on the Horizon

Now, we consider the Hawking radiation on the horizon, which is the main goal of
this paper. For the right- and left-moving sector, from Equation (12), we can associate them
with the following energy:

E′R =
γ

2
(M +

J
γr+

), E′L =
γ

2
(M− J

γr+
). (15)

Now, we can define the dimensional temperatures on the horizon for the right- and
left-moving sectors using standard thermodynamics:

T′R = (
∂E′R
∂SR

)V =
r+ + r−
2πlr+

= γ
T̃R
l

= γTR, T′L = (
∂E′L
∂SL

)V =
r+ − r−
2πlr+

= γ
T̃L
l

= γTL, (16)

where V = 2πr+c is the volume, and T̃R/L = r+±r−
2πl represents dimensionless temperatures.

It is easy to show that those temperatures satisfy the relation

2
TH

=
1

TR
+

1
TL

. (17)

The constraints (12) can be written as

∑
k>0

ε′knR
k = cE′R, ∑

k<0
ε′knL

k = cE′L. (18)

From statistical mechanics, it is well known that the most probable distribution that
satisfies the above constraint is the Bose–Einstein distribution with zero chemical potential:

< nR
k (ε
′
k) >=

1

eβ′Rε′k − 1
, < nL

k (ε
′
k) >=

1

eβ′Lε′k − 1
. (19)

The radiation between energy level k, k′ has the following energy and angular momen-
tum spectrum:

ω′n =
|n|
r+

, m = n, n ≡ k− k′. (20)

Thus, for Hawking radiation at infinity, the real energy for radiation is

ωn =
|n|
r+

1
γ
=
|n|
l

. (21)

They have constant frequency spacing and a minimal frequency:

∆ω = ω0 =
1
l
= ωmin. (22)

We now provide the main result of this paper. The distribution (7) can be rewritten
as follows:

< Nm(ωn) >=
1

eβ(ωn−mΩH) − 1
=

1

eβ( |n|l −n r−
r+ l ) − 1

=
1

eβRωn − 1
H(n) +

1
eβLωn − 1

H(−n) =< nR
n (ωn) > + < nL

n(ωn) >

=
1

eβ′Rω′n − 1
H(n) +

1

eβ′Lω′n − 1
H(−n) =< nR

n (ω
′
n) > + < nL

n(ω
′
n) >,

(23)

where H(n) is the Heaviside step function. That is to say, the Hawking radiation is a
mixture of the thermal radiation (19) of the right- and left-moving sector at different
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temperatures. As stated, the thermal distribution is the most probable distribution, but not
the only possible distribution.

With those temperatures, the entropy and energy can be rewritten as some suggest-
ing forms:

SR/L =
π

6
VT′R/L, E′R/L =

π

12
VT′2R/L. (24)

They are only the entropy and energy for phonon gas in a one-dimensional circle with
the length V = 2πr+c.

Different from Bekenstein’s suggestion, we now consider black holes as quantum
many-body systems composed of many atoms. The thermal radiation of the right- and
left-moving sector is not exactly a continuous distribution, since the energy has discrete
levels and a minimal energy, as in Equation (22).

3. The Kerr Black Hole

The same method can be applied to Kerr black holes.

3.1. The Entropy of the Kerr Black Hole

The metric of a Kerr black hole can be written as [24]:

ds2 = −(1− 2Mr
ρ2 )dv2 + 2dvdr− 2a sin2 θdrdϕ− 4aMr sin2 θ

ρ2 dvdϕ + ρ2dθ2 +
Σ2 sin2 θ

ρ2 dϕ2, (25)

where ρ2 = r2 + a2 cos2 θ, ∆2 = r2 − 2Mr + a2, and Σ2 = (r2 + a2)ρ2 + 2a2Mr sin2 θ,
with (M, J = Ma) represent the mass and angular momentum of the Kerr black hole.
The event horizon is localized at r = r+ = M +

√
M2 − a2.

The thermodynamics quantities for the Kerr black hole with parameters (M, J) are:

TH =
r+ − r−
8πr+M

, SBH =
4π(r2

+ + a2)

4
, ΩH =

a
r2
+ + a2

. (26)

Similar to the BTZ black hole case, the boundary can also support a massless scalar
field [21]:

φ(v′, θ, ϕ) = φ0 + pvv′ + pθ ln(cot
θ

2
) + pϕ ϕ +

√
2π

MA ∑
l 6=0

m=l

∑
m=−l

√
1

2ωl
[al,me−iωlv′Ym

l (θ, ϕ) + a+l,meiωl v′(Ym
l )∗(θ, ϕ)], (27)

where ω2
l = l(l+1)

r2
+

and Ym
l (θ, ϕ) are spherical harmonics, and A = 4πr2

+. The scalar field

φ(v′, θ, ϕ) can be considered collectives of harmonic oscillators, and a general quantum
state can be represented as |pv, pϕ; {nl,m} >, where pv, pϕ represents the zero mode part,
and {nl,m} represents the oscillator part.

However, different from the BTZ black hole case, the scalar field of a Kerr black hole
should have an interaction, and a special interaction results in a particular form for the
Hamiltonian and angular momentum operator [23]:

Ĥ f ull = Ĥ0 + ∑
m

|m|
r+

n̂m = Ĥ0 + ∑
m

ε′mn̂m,

Ĵ = Ĵ0 + ∑
m

mn̂m = Ĵ0 + ∑
m

Jmn̂m, m 6= 0,
(28)

which have the same forms as those for the BTZ black hole, as shown in Equation (9).
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The microscopic states of the Kerr black hole are represented by |0, 0; {nm} > and
satisfy the following constraints:

∑
m 6=0
|m|nm =

cMr+γ

4
, ∑

m 6=0
mnm =

cJ
2

, γ ≡
r2
+ + a2

r2
+

, c = 12Mr+. (29)

We separate the sequence {m} into the right-moving sector {m+}, with all m+ > 0,
and the left-moving sector {m−}, with all m− < 0. The constraints then become

∑
m>0

mn+
m =

γ

4
(

Mr+
2

+
J
γ
), ∑

m<0
(−m)n−m =

γ

4
(

Mr+
2
− J

γ
). (30)

For the right- and left-moving sectors on the horizon, we can associate them with the
following energy and entropy:

E′R =
γ

4
(

M
2

+
J

γr+
) =

γ

8
(M + a), E′L =

γ

8
(M− a),

SR = 2π

√
c

M2 + J
24

= πM(r+ + a),

SL = 2π

√
c

M2 − J
24

= πM(r+ − a).

(31)

The total entropy is
S = SR + SL = 2πMr+, (32)

which is the Bekenstein–Hawking entropy for the Kerr black hole.

3.2. The Hawking Radiation on the Horizon

In the following, we consider the radiation on the horizon. We can define the dimen-
sional temperatures for the right- and left-moving sectors:

T′R = (
∂E′R
∂SR

)V = γ
r+ + a

8πMr+
≡ γTR =

T̃R
r+

, T′L = (
∂E′L
∂SL

)V = γ
r+ − a

8πMr+
≡ γTL =

T̃L
r+

, (33)

where V = 2πr+c is the volume, and T̃L/R = 1
4π (1±

a
r+ ) represents dimensionless temper-

atures. This volume is related to the geometrical volume [25,26] V′ = 1
3 AHrH = 8π

3 Mr2
+ by

V = 9V′. It is easy to show that those temperatures satisfy the following relation:

2
TH

=
1

TR
+

1
TL

. (34)

From the expression (28), one can see that the energy and the azimuthal angular
momentum for the radiation between two levels k, k′ are as follows:

ω′m =
|m|
r+

, m = m, m ≡ k− k′. (35)

Similar to the BTZ black hole case, the energy at infinity should be

ωm =
|m|
r+

1
γ
=
|m|
2M

. (36)

They have constant frequency spacing and a minimal frequency:

∆ω = ω0 =
1

2M
= ωmin. (37)
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Now, we can rewrite the distribution as follows:

< Nm(ωm) >=
1

eβ(ωm−mΩH) − 1
=

1

e
β( |m|2M−m a

r2
++a2 ) − 1

=
1

eβRωm − 1
H(m) +

1
eβLωm − 1

H(−m) =< nR
m(ωm) > + < nL

m(ωm) >

=
1

eβ′Rω′m − 1
H(m) +

1

eβ′Lω′m − 1
H(−m) =< nR

m(ω
′
m) > + < nL

m(ω
′
m) > .

(38)

This is a new result. The Hawking radiation is also a mixture of the thermal radiation
of the right- and left-moving sector at different temperatures, as in the BTZ black hole case.

With those temperatures, the energy and entropy can be rewritten as

SR/L =
π

6
VT′R/L, E′R/L =

π

12
VT′2R/L. (39)

They are the entropy and energy for phonon gas in a one-dimensional circle with length
V = 2πr+c, similar to the BTZ black hole case. This suggests that the four-dimensional
Kerr black hole might essentially be a (1 + 1) object [27,28].

4. Hawking Radiation Is Pure

In the previous sections, we analyzed the Hawking radiation for the BTZ black hole
and the Kerr black hole and obtained the main results of this paper (23) and (38). Both
these results can be considered a mixture of the thermal radiation of the right- and left-
moving sector at different temperatures. We will show that the entanglement between the
left-moving sector and the right-moving sector will keep the final state pure. However, we
first consider a similar situation: a key property of the ground state for a general quantum
Hall state [29,30]. Separate the whole region into two parts, A and B, with a common
boundary C. When the coupling between those two parts is ignored, there are chiral and
anti-chiral edge states propagating along the boundary. Due to the entanglement between
A and B, the reduced density matrix of the ground state for the right-moving sector is
thermal. The ground state |Ω > for an abelian fractional quantum Hall state with the fixed
topological sector is provided by the following [30]:

|Ω >=
1√
Z

∑
n

e−τ0(HR+HL)|k(n) >R ⊗| − k(n) >L . (40)

Here, τ0 is the extrapolation length that is determined by the energy gap. HL and HR
denote the Hamiltonian for the left-moving and right-moving edge sectors. k(n) denotes the
momentum of the state. Notice that, due to the chirality, the right-moving (or left-moving)
edge sector only contains excitations with positive (or negative) momentum. The reduced
density matrix for the right-moving sector is

ρR =
1
Z ∑

n
e−4τ0 HR |k(n) >R< k(n)|R, (41)

which is a thermal state.
For BTZ black holes, the horizon separates spacetime into two regions: the exterior

and interior of the black hole. Similar to the quantum Hall states, the boundary modes
on the horizon contain the left-moving sector and the right-moving sector. The entropy
for the right- or left-moving sector is provided in (13). We consider such entropy as the
entanglement entropy of Hawking radiation for the right- or left-moving sectors. To cause
the Hawking radiation to be a pure state, a necessary condition is that the entanglement
entropy for the two sectors should be equal, that is, r− = 0. Thus, in the following, we will
consider the static BTZ black holes.
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The thermal radiation for the right-moving sector < NR(ωk) > corresponds to a
thermal density matrix:

ρR =
1
Z ∑

k>0
e−βR HR |k, k >R< k, k|R, (42)

where the first k represents the energy, and the second k represents the angular momentum
of the state.

The entanglement between the exterior and interior of the black hole leads to the
entanglement between the left-moving edge state and right-moving edge state. Thus,
similar to the fractional quantum Hall state case (40), the state for the Hawking radiation
is pure:

|Ω >=
1√
Z

∑
k>0

e−βH(HR+HL)/2|k, k >R ⊗|k,−k >L, (43)

even though it appears as thermal. This state is an example of a maximally entangled
state, and, for any right-moving state with angular momentum k, there is a left-moving
edge state with opposite angular momentum −k. It is this entanglement that causes the
state to be pure. This entanglement can be detected in principle, unlike the case for the
Hartle–Hawking state for the eternal Schwarzschild black hole.

Similar to the static BTZ black hole, one can show that the Hawking radiation for
Schwarzschild black holes is also pure.

5. Conclusions

In this paper, we derived the Hawking radiation from the boundary scalar fields.
The Hawking radiation can be considered a superposition of the thermal radiation of
the right- and left-moving sectors on the horizon at different temperatures T′R/L. The en-
tropy and energy of black holes have the same form as phonon gas in a one-dimensional
circle, both for the BTZ black hole and the Kerr black hole. Based on these results, we
propose a simple solution to the information loss paradox for static BTZ black holes and
Schwarzschild black holes. The entanglement between the left-moving edge state (with
angular momentum k < 0) and right-moving edge state (with angular momentum k > 0)
is key to keeping the final state pure. Since the Hawking radiation is always pure, there is
no information loss.

For Kerr black holes, the above procedure requires some modifications. One possi-
bility is that a Kerr black hole first evolves into a Schwarzschild black hole caused by a
spontaneous quantum superradiance emission effect. This Schwarzschild black hole can
then radiate the Hawking radiation, which is always pure. However, the details require
further investigation.

It is impossible to detect Hawking radiation for real black holes due to technical
limitations. However, analogue Hawking radiation has been observed in an analogue black
hole [31]. We hope that the entanglement between the left-moving and right-moving edge
states (43) can also be observed in this type of experiment in the near future.
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