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Abstract. We provide a concise exposition of theoretical results that appear in
modeling default time as a random time, we study in details the invariance martin-
gale property and we establish a representation theorem which leads, in a complete
market setting, to the hedging portfolio of a vulnerable claim. Our main result is
that, to hedge a defaultable claim one has to invest the value of this contingent claim
in the defaultable zero-coupon.
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1 Introduction

We study an arbitrage free financial market, where a risk-free asset S0 and a risky
asset S are traded. The filtration generated by the discounted prices S/S0 is denoted
by FS . The agents have some information on the asset prices modeled by a filtration
F. In the structural approach, the default time τ is a stopping time in the filtration
FS and it is assumed that the agents have all the information contained on the
prices, i.e., F = FS , whereas in the reduced-form approach, the default arrives “by
surprise", as in Cox modeling (see Lando [16]). An intermediary case is when τ is
a FS-stopping time and F ⊂ FS , for example when the filtration F is the trivial
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one or when F is the filtration generated by the information of prices observed at
discrete times, as in Duffie and Lando [10]. The reader can refer to Bielecki and
Rutkowski [4] and Cossin and Pirotte [6] for a full treatment. Crucial problems of
hedging are studied for example in Bélanger et al. [3]

In a first section, we present the model and we establish a general representation
theorem. In a second section, we discuss the role of the hypothesis of invariance
of martingales and establish that this hypothesis holds as soon as the default-free
market is complete and arbitrage free and the defaultable market is arbitrage free.
We show that under some regularity condition, the default time is the first time
when a stochastic barrier is reached, as in Cox process modeling. We give the
hedging of vulnerable contingent claims using defaultable zero-coupon (DZC in
short) and default-free assets, when the default-free market is complete. Our main
result shows that to hedge a defaultable claim one has to invest the value of this
contingent claim in the defaultable zero-coupon. This result is not surprising and
is linked with the hazard process approach: the default arrives by surprise so that
the jump in the hedging portfolio value is equal to the jump in the DZC.

2 The model

All the processes and random variables are constructed on a given probability space
(Ω, G, P ). In what follows, we limit our study, mainly for simplicity of notation,
to the case where there is only one risky financial asset, whose price at time t is
denoted by St. As in Musiela and Rutkowski [17], the interest rate is supposed to

be a non-negative process r, we denote by Rt = exp
(

−
∫ t

0
rsds

)
the discounted

factor and by S0
t = exp

(∫ t

0
rsds

)
the savings account. The filtration generated

by the discounted price process S̃t = St/S0
t is denoted by FS = (FS

t = σ(S̃s, s ≤
t); t ≥ 0). We refer to the market where the savings account and the risky asset S are
traded up to time T as the default-free market. We assume that there exists at least
one probability Q equivalent to P on FS

T such that (S̃t, t ≤ T ) is a FS-martingale,
so that the default-free market is arbitrage free.

A default occurs at a random time τ (i.e., a non-negative random variable).
In the defaultable world, the payment of a contingent claim depends whether or
not the default has appeared before the maturity. In particular, a defaultable zero-
coupon bond (DZC) with maturity T pays 1 unit at maturity if and only if the
default has not appeared before T . More generally, we investigate the case where
a promised payoff X ∈ FS

T is paid at maturity if the default has not appeared and
where a compensation is paid at hit (at the default time) if the default occurs before
maturity.

2.1 Filtrations and equivalent martingale measures

We assume, as in [12] that the t-time information available to the agents in the
default-free market is a σ-algebra Ft. We do not assume that the agents have
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complete information on the prices: the filtration F = (Ft, t ≥ 0) can be smaller
than FS .

We denote by D the filtration D = (Dt; t ≥ 0) with Dt = σ(Ds, s ≤ t) where
D is the default process defined as Dt = 11{τ≤t}. At time t, the agent’s information
on the prices and on default time is Gt = Ft ∨ Dt: at any time the agent knows
whether or not the default has appeared. Hence, the default time τ is a G-stopping
time where G = (Gt, t ≥ 0). In fact, G is the smallest filtration which contains F,
satisfying the usual hypotheses, such that τ is a G-stopping time.

2.2 Hazard process

In this section, we work under a reference probability P . Later on, this probability
will be either the historical probability, or a risk neutral one.
Let F be the right-continuous version of the submartingale Ft = P (τ ≤ t|Ft)
and G the conditional survival probability Gt = 1 − Ft. We assume that Ft < 1
a.s. for any t (In particular, τ is not a F-stopping time. See Andreasen [1] and
Bélanger et al. [3] for generalization). We introduce the R

+-valued hazard process
Γt = − ln(Gt). We assume for simplicity that F0 = 0 so that Γ0 = 0. Obviously,
the hazard process depends of the reference probability. For typographical reasons,
we shall sometimes use F , G and Γ in the same formula.
We recall a key lemma stated as an example in Dellacherie [7] (p. 64) and its
corollary.

Lemma 1 Let X ∈ FT be integrable. Then,

E(X11T<τ |Gt) = 11{t<τ}
1
Gt

E(XGT |Ft) . (1)

Corollary 1 Let h be a F-predictable bounded process. Then,

a)

E(hτ |Gt) = 11{τ≤t}hτ − 11{t<τ}
1
Gt

E
(∫ ∞

t

hudGu |Ft

)
. (2)

b) In particular, if F is increasing and continuous,

E(hτ |Gt) = 11{τ≤t}hτ + 11{t<τ} E
(∫ ∞

t

hu exp
(
Γt − Γu

)
dΓu |Ft

)
. (3)

The proof of this lemma and its corollary is based on the important remark
that any Gt-measurable random variable is equal, on the set {t < τ}, to an Ft-
measurable random variable.
It is also useful to note that for any G-predictable process h, there exists an F-
predictable process h∗ such that both processes are equal on the set {t ≤ τ}, i.e.,
ht11{t≤τ} = h∗

t 11{t≤τ}. Moreover, under the hypothesis ∀t, Ft < 1, the process
(h∗

t , t ≥ 0) is unique (see [8], p. 186).
As an application of Lemma 1, it is easy to check that the discontinuous process

(Lt, t ≥ 0) where
Lt = 11t<τeΓt = (1 − Dt) eΓt

is a G-martingale.
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2.3 Decomposition of the F-martingales as G-semi-martingales

One major question is to describe the dynamics of the assets in the filtration G.
As mentioned in Hull and White [13] “When we move from the vulnerable world
to a default-free world, the stochastic processes followed by the underlying state
variables may change." We study here the reverse case, i.e. we move from the
default-free world to the vulnerable one.

The submartingale F admits a unique Doob-Meyer decomposition of the from
Ft = Zt + At, where Z is an F-martingale and A an F-predictable increasing
process. Moreover, the process Mt = Dt − Λt∧τ where dΛt = dAt/Gt− is a
G-martingale.
We require now, as in [2] that (C) holds, where
(C) One of the following conditions is satisfied

(i) Any F-martingale is continuous
(ii) For any F-stopping time θ, P (τ = θ) = 0.

Under this condition, an F-martingale has no common jump with the hazard pro-
cess, τ is a G-totally inaccessible stopping time and for any F-martingale m, the
process

m̂t∧τ = mt∧τ +
∫ t∧τ

0
eΓsd[m, Z]s

is a stopped G-martingale, where [X, Y ] is the quadratic covariation of two mar-
tingales X and Y (see Azéma et al. [2]; Dellacherie et al. [8], p. 188;Yor [18], p. 41
for proof of this result and comments on the condition (C)). We shall refer to m̂ as
the G-martingale part of the F-martingale m; in particular Ẑ is defined as

Ẑt∧τ = Zt∧τ +
∫ t∧τ

0
eΓsd[Z, Z]s .

2.4 Representation theorem

Our aim is now to establish a representation theorem for G-martingales. Such a
representation theorem is difficult to obtain for any G-martingale. Azéma et al.
[2] have studied the particular case where F is the natural filtration of a Brownian
motion W and τ is an honest time in F∞, that is the end of a predictable set
(see Dellacherie et al. [8], p.188; Yor [18], p.41). They established that any G-
martingale can be written as a sum of a stochastic integral with respect to the
G-martingale Ŵ , a stochastic integral with respect to M and a third martingale of
the form v11(τ≤t) where v ∈ F+

τ such that E(v|Fτ ) = 0, where F+
τ is generated

by the random variables hτ where h is F-progressively measurable. For example,
if τ = sup{t ≤ 1 : Wt = 0}, then v = V sgne(W1) with V ∈ L2(Fτ ) (see Yor
[18], p. 74).

In what follows, we restrict our attention to the class of G-martingales of the
form E(hτ | Gt) , or E(X11T<τ | Gt).
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Theorem 1 Suppose that (C) holds and let F = Z + A be the Doob-Meyer de-
composition of F . Let h be an F-predictable process such that hτ is integrable,
and Ht = E(hτ | Gt). Then, the G-martingale H admits a decomposition in mar-
tingales as follows

Ht=mh
0 +

∫ t∧τ

0
eΓs−(dm̂h

s−(hs−Jh
s−)dẐs)+

∫
]0,t∧τ ]

e∆Γs(hs−Jh
s−) dMs .

(4)

Here mh is the F-martingale

mh
t = E

(∫ ∞

0
hudFu| Ft

)
= E

(∫ ∞

0
hudAu| Ft

)
.

The processes m̂h and Ẑ are the G-martingale parts of the F-martingales mh

and Z, Jh
t = eΓt(mh

t −
∫ t

0
hudFu) and M is the discontinuous G-martingale

Mt = Dt − Λt∧τ where dΛt =
dAt

1 − Ft−
.

Furthermore,
Jh

t 11t<τ = Ht11t<τ .

Proof The rather technical proof is based on Itô’s calculus and property (C). We
give the proof in the Appendix. ��
Corollary 2 Suppose that (C) holds and that F is continuous. Let Y ∈ FT be
integrable and

Yt = E(Y 11T<τ |Gt) = 11t<τeΓtE(Y GT | Ft) = 11t<τeΓtmY
t ,

where mY is the F-martingale

mY
t = E(Y GT | Ft) .

Then,

Yt = mY
0 +

∫ t∧τ

0
eΓs

(
dm̂Y

s + Ys−dẐs

)
−
∫

]0,t∧τ ]
Ys− dMs . (5)

Proof The proof follows from Theorem 1 with ht = Y 11T<t. Nevertheless, when
F is continuous, a direct proof can be established from the remark that Yt = Ltm

Y
t

and some Itô’s calculus which leads in particular to

dLt = −dDt

Gt
+ (1 − Dt−)

(
dFt

G2
t

+
d〈F 〉t

G3
t

)
= − 1

Gt
dMt +

(1 − Dt−)
G2

t

dẐt .

It remains to apply integration by parts formula. ��
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3 Invariance of martingale hypothesis

We assume that the knowledge of the default time does not induce arbitrages in the
market,1 hence there exists a G-equivalent martingale measure, i.e., a probability
Q∗ on GT , equivalent to P , such that (S̃t, t ≤ T ) is a martingale. Let us remark
that, if F = FS , the restriction of any G e.m.m. to FS

T is an FS-e.m.m. Indeed, if

EQ∗(S̃T |Gt) = S̃t

taking the expectation with respect to FS
t of both members, we get

EQ∗(S̃T |FS
t ) = S̃t .

We introduce an invariance of martingale hypothesis denoted by (H), which
implies that the dynamics of the asset price are the same in the default-free world
and in the defaultable world. We discuss the meaning of that hypothesis, its stability
under a change of probability measure, its links with absence of arbitrage opportu-
nities in the defaultable world, and we study the hedging of defaultable contingent
claims in that setting.

(H) Any F-square integrable martingale is a G-square integrable martingale.

3.1 Arbitrage free markets

We discuss now the hypothesis on the modeling of default time that we require in
order to avoid arbitrages in the defaultable market. We show that under completion
of the default-free market, (H) hypothesis holds under any G-e.m.m.

Proposition 1 Assume that there exists a unique probability Q, equivalent to P
on FS

T such that the discounted price process (S̃t, t ≤ T ) is an FS-martingale
under the probability Q. Assume moreover that there exists at least one probability
Q∗, equivalent to P on GT such that (S̃t, t ≤ T ) is a G-martingale under the
probability Q∗. Then, (H) holds under Q∗.

Proof We give a “financial proof” of this obvious and important result. From the
hypothesis, any square integrable r.v. X , such that XRT ∈ FS

T (any contingent
claim) can be written as a stochastic integral with respect to the discounted price, i.e.,
there exists x and a square integrable FS predictable process θ such that RT X =
x +

∫ T

0 θsdS̃s. The t-time price of the contingent claim is EQ(XRT /Rt|FS
t ).

Obviously, X is hedgeable by the G-adapted strategy θ and, from the uniqueness
of price for hedgeable claims, for any G-e.m.m. Q∗,

EQ(XRT |FS
t ) = EQ∗(XRT |Gt) .

Hence, EQ(Z|FS
t ) = EQ∗(Z|Gt) for any square integrable FT -measurable r.v. Z,

therefore any square integrable FS-Q∗-martingale is a G-Q∗-martingale.

1 This is a restrictive assumption on the time τ . See [12] for examples where this assumption is not
satisfied.
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Remark 1 It is easy to construct arbitrage free models where (H) does not hold.
For example, in a incomplete information case as in Duffie and Lando [10], a
straightforward computation establishes that the hazard process is not increasing,
hence (H) does not hold (see also Sect. 3.3).

3.2 Characterization of (H) hypothesis

It is well known [9] that (H) hypothesis holds under Q∗ if and only if

∀ t, Q∗(τ ≤ t|F∞) = Q∗(τ ≤ t|Ft). (6)

In particular, F and Γ , evaluated under Q∗ are increasing processes. This is in
particular the case for Cox processes (see e.g., Lando [16] ) where τ is defined via
a given non-negative F-adapted process γ as

τ = inf
{

t ≥ 0 ,

∫ t

0
γsds ≥ Θ

}
where Θ is a given random variable, independent of F, generally chosen with an
exponential law.

The following interesting lemma, which establishes that working under (H)
hypothesis is equivalent to a Cox process modeling is proved in [11].

Lemma 2 If (H) hypothesis holds and F is continuous, then the random variable
Γτ is exponentially distributed and independent of F∞. Hence,

τ = inf{t : Γt ≥ Θ}

where Θ is an exponential random variable, independent of F∞.

Proof We suppose that (H) holds, which implies that

Q∗(τ ≤ t|F∞) = e−Γt .

Setting Θ
def
= Γτ leads to

{t < Θ} = {t < Γτ} = {Ct < τ},

where C is the right inverse of Γ , so that ΓCt = t. Therefore

Q∗(Θ > u|F∞) = e−ΓCu = e−u.

We have thus established that Θ is an exponential random variable, independent of
the σ-field F∞. Furthermore, τ = inf{t : Γt > Γτ} = inf{t : Γt > Θ}. ��
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3.3 Brownian filtration, stability of (H) hypothesis

We have seen that if the default-free market is complete, and both markets are
arbitrage free (H) holds under any e.m.m. However, hypothesis on τ are generally
done under the historical probability measure. In general, (H) hypothesis is not
stable under a change of probability (see Kusuoka [15] for a counterexample). We
now check that if (H) holds under the historical probability P , and if the F-market
is complete and arbitrage free, then the defaultable market is arbitrage free. Under
our hypotheses, denoting by Q the e.m.m. for the F-market and by (ζt, t ≥ 0) its
Radon-Nikodym density, the process (ζtS̃t, t ≥ 0) is a P -F martingale, hence a P -
G martingale. Then, there exists at least a G-e.m.m. defined as dQ∗|Gt = ζtdP |Gt

and the G-market is arbitrage free.

3.4 Dynamics of defaultable zero-coupon

We assume now that a defaultable zero-coupon bond of maturity T is traded on the
market and we denote by ρ(t, T ) its t-time price.

We assume that the market where the asset, a default-free zero-coupon and
the DZC are traded, is arbitrage free. Then, there exists at least one G-e.m.m. Q∗

such that the discounted price of the DZC is a G-martingale, that is, ρ(t, T )Rt =
EQ∗(RT 11T<τ |Gt). We emphasize that the e.m.m. is chosen by the market which
trades the defaultable zero-coupon at the market price ρ(t, T ). We do not assume
the uniqueness of the e.m.m. Q∗; the DZC being traded, for any e.m.m., the equality

ρ(t, T )Rt = EQ∗(RT 11T<τ |Gt) = 11t<τeΓtm̃t = LtmtRt (7)

holds, where m̃t = mtRt = EQ∗(RT GT |Ft) and where the hazard process is
Γt = − ln(Gt) = − lnQ∗(τ > t|Ft).

Proposition 2 Suppose that (H) holds under Q∗ and that F is continuous. Then

dρ(t, T ) = Lt−dmt − ρ(t−, T )dMt .

Proof The result follows from ρ(t, T ) = Ltmt and dLt = −Lt−dMt. ��

3.5 Representation theorem

In the case where F is continuous and (H) holds, the representation Theorem 1 and
the Corollary 2 write

Proposition 3 Suppose that (H) holds under Q∗ and F is continuous, and let
Mt = Dt − Γt∧τ where Γt = − lnQ∗(τ > t|Ft). Let h be an F-predictable
process such that hτ is integrable, and Ht = E(hτ | Gt). Then,

Ht = mh
0 +

∫ t∧τ

0
eΓsdmh

s +
∫

]0,t∧τ ]
(hs − Hh

s−) dMs . (8)
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Here mh is the F-martingale

mh
t = EQ

(∫ ∞

0
hudFu| Ft

)
,

Let Y ∈ FT be integrable. Then, the G-martingale Yt = EQ∗(Y 11T<τ | Gt) admits
a decomposition as follows

Yt = mY
0 +

∫ t∧τ

0
eΓudmY

u −
∫

]0,t]
Yu−dMu

where mY is the F-martingale

mY
t = EQ

(
Y GT |Ft

)
.

3.6 Hedging strategies

We suppose that F = FS , and that the default-free market is complete and arbitrage
free. We assume that a defaultable zero-coupon is available on the market and (H)
holds under the G-e.m.m. Q∗. We also assume that the process F is continuous.

We now make precise the hedging of a vulnerable claim.

3.6.1 Terminal payoff

We study in a first step the hedging strategy for X11T<τ based on savings account,
risky asset and defaultable zero-coupon.

We recall that a pair (α, β) of FS-adapted processes is an hedging strategy
for the contingent claim Y with Y RT ∈ FS

T if, denoting by Vt = αtS
0
t + βtSt

the value of this strategy, the self-financing relation dVt = αtdS0
t + βtdSt holds

and Y = αT S0
T + βT ST . A self-financing strategy is characterized by its initial

value x and the parameter β via RtVt = x +
∫ t

0 βsdS̃s = EQ(RT Y | cFS
t ). The

number of shares of riskless asset for this strategy is αt = Rt(Vt − βtSt). We
shall call “hedging portfolio" of Y the number β of shares of the asset held in the
self-financing portfolio.
In the same way, a triple (at, bt, ct; t ≥ 0) of G-adapted processes is an hedging
strategy for Y with Y RT ∈ GT if the value process Vt = atS

0
t + btSt + ctρt

satisfies VT = Y and the self-financing relation dVt = atdS0
t + atdSt + ctdρt.

The default-free market being complete and XGT RT ∈ FS
T , there exists a

predictable process (µX
t , t ≥ 0) (the hedging portfolio) and a constant mX

0 (the
price) such that

XGT RT = mX
0 +

∫ T

0
µX

s dS̃s , (9)

Let Q be the F-e.m.m. and m̃X
t = EQ(XGT RT |Ft) the discounted t-time price

of XGT . The strategy (Rt(mX
t − µX

t St), µX
t ) is a self-financing strategy hedging

the contingent claim XGT .
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We denote, as in (7)

mtRt = m̃1
t = EQ(GT RT |Ft) = m0 +

∫ t

0
µsdS̃s , (10)

the discounted price of GT .

Theorem 2 Assume that F = FS , the F-market is complete, the F and G-markets
are arbitrage free, and that Ft = Q∗(τ ≤ t|FS

t ) is continuous. Let Xd be the value
of the defaultable contingent claim X11T<τ , i.e.

Xd
t Rt = EQ∗(XRT 11T<τ |Gt) .

The self-financing hedging strategy (at, bt, ct; t ≥ 0) for the defaultable contingent
claimX11T<τ , based on the riskless bond, the asset and the defaultable zero-coupon
satisfies

atS
0
t + btSt + ctρ(t, T ) = Xd

t

and consists of, on t < τ

(i) ct =
Xd

t

ρ(t, T )
,

(ii) a position on the savings account and the risky asset such that

atS
0
t + btSt = 0 .

More precisely, the self financing hedging strategy is made of

(i) a long position of
mX

t

mt
defaultable zero-coupon,

(ii) a number of asset’ shares equal to eΓt

(
µX

t − mX
t

mt
µt

)
(iii) an amount in the riskless bond equal to

−eΓt

(
µX

t − mX
t

mt
µt

)
St ,

where the different values (mt, µt) and (mX
t , µX

t ) are defined in (10) and (9).

Proof One can prove this theorem as an application of the representation theorem.
However, we prefer to give a direct proof. The price of the defaultable claim X11T<τ

is Xd
t defined by

RtX
d
t = EQ∗(XRT 11T<τ |Gt) = 11t<τeΓtEQ(XRT GT |Ft)

= 11t<τeΓtm̃X
t = Ltm̃

X
t

and the price of the DZC satisfies

Rtρ(t, T ) = 11t<τeΓtm̃t .

Hence

Xd
t =

mX
t

mt
ρ(t, T )
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We now check that there exists a triple (a, b, c)determining a self-financing portfolio

such that ct =
mX

t

mt
and atS

0
t + btSt = 0. From Proposition 2 the self financing

condition reads

atS
0
t rtdt + btdSt + ct(Lt−dmt + mtdLt) = dXd

t = Lt−dmX
t + mX

t dLt .
(11)

Using atS
0
t + btSt = 0, equality (11) reduces to

−btStrtdt + btdSt + ctLt−dmt = Lt−dmX
t .

or, in terms of discounted processes

btdS̃t + ctLt−µtdS̃t = Lt−µX
t dS̃t .

Hence the form of b given in the theorem. ��
It is difficult to make explicit the hedging, since it requires the hedging of claims

of the form exp

(∫ T

0
γsds

)
where γ is a random process. This problem is similar

to hedging under a stochastic interest rate. However, in the very particular case
where F and r are deterministic we get

ct = EQ(X|Ft), µt = 0 .

Let ∆ be the hedging strategy of X:

XRT = x +
∫ T

0
∆sdS̃s .

Then,

RT X11T<τ = h +
∫ T∧τ

0
eΓs−ΓT ∆sdS̃s +

∫
]0,T∧τ ]

EQ(X|Fs)dρ̃s .

and the hedging strategy of the vulnerable claim X11T<τ consists of holding

(a) EQ(X|Ft) DZC, so that the wealth invested in DZC is EQ(X|Ft)ρ(t, T )

(b) eΓt−ΓT ∆t shares of risky asset.

3.6.2 Rebate part

We compute the quantity EQ∗(hτ11τ≤T Rτ |Gt), which corresponds to the dis-
counted price of the rebate, when the compensation is payed at hit.

Proposition 4 Let Ch
t be the value of the rebate, i.e.

Ch
t Rt=EQ∗ (hτRτ11τ<T |Gt) =hτRτ11τ≤t+11t<τeΓtEQ

(∫ T

t

RuhudFu|Ft

)
.

(12)

The hedging strategy before default time of the rebate part consists of
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(i) ct =
1
ρt

(Ch
t − ht) defaultable zero-coupon

(ii) a position on savings account and risky asset such that

atS
0
t + btSt = ht

and the strategy (at, bt, ct) is self financing.

More precisely the hedging strategy of the rebate part is made of (before the default
time)

(i)
1

ρ(t, T )
(Ch

t − ht) defaultable zero-coupon

(ii) eΓt

[
µh

t − 1
mt

µtC
h
t

]
+

1
mt

µtht shares of the asset

(iii) a cash amount of ht +St

[
eΓt

1
mt

µtC
h
t −

[
1

mt
µtht + eΓtµh

t

]]
, where µh is

defined by

E

(∫ T

0
RuhudFu|Ft

)
= mh

0 +
∫ t

0
µh

sdS̃s . (13)

Proof We denote by Ch
t the price of the rebate defined by (12) and by µh, defined in

(13), the hedging strategy for the discounted claim
∫ T

0 RuhudFu in the default-free
world. The representation theorem states that

EQ∗(hτRτ11τ≤T |Gt) = Ch
0 +

∫ t∧τ

0
eΓuµh

udS̃u +
∫

[0,t∧τ [
Ru(hu − Ch

u−)dMu .

Hence, introducing m̃t, the discounted price of GT

EQ∗ (hτRτ11τ≤T |Gt) = Ch
0 +

∫ t∧τ

0
eΓuµh

udS̃u

−
∫

[0,t∧τ [
(huRu − C̃h

u )
1

Lum̃u
[dρ̃u − Ludm̃u]

which leads to

EQ∗ (hτRτ11τ≤T |Gt) = mh
0 +

∫ t∧τ

0

[
eΓu

(
µh

u − Ch
u

µh
u

mu

)
+

µuhu

mu

]
dS̃u

−
∫

[0,t∧τ [
(hu − Ch

u−)
1

Lumu
dρ̃u

��

Corollary 3 Under (H), if F is continuous, the defaultable-market is complete as
soon as a defaultable zero-coupon is traded.
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4 Conclusion

We have proved that, if the vulnerable market is complete, hedging strategies are
trivial and give a great importance to the DZC. It remains to study the case with
several correlated defaults. In the case where defaults are independents, the result
has the same form. The general case is a work in progress.

Appendix

Proof of theorem

As usual, Gc is the martingale continuous part of the semi-martingale G. We recall
that d[G]t = d[Gc]t + (∆Gt)2. Then, Itô’s formula leads to

d(G−1
t ) = − 1

(Gt−)2
dGt +

1
(Gt−)3

d[Gc]t +
(

eΓt − eΓt− +
1

(Gt−)2
∆Gt

)
=

1
(Gt−)2

(
−dGt +

1
Gt−

d[Gc]t

)
+

1
Gt (Gt−)2

(∆Gt)2

=
1

(Gt−)2

(
−dGt +

1
Gt−

d[Gc]t +
1
Gt

(∆Gt)2
)

(14)

The quadratic variation of the processes

Yt = mh
t −

∫ t

0
hudFu = mh

t +
∫ t

0
hudGu

and eΓt = G−1
t is

d[eΓ , Y ]t = d[eΓ , mh]t + htd[eΓ , G]t

=
1

(Gt−)2

[
−d[G, mh]t +

1
Gt

(∆Gt)2∆mh
t − htd[G]t +

ht

Gt
(∆Gt)3

]
=

1
(Gt−)2

[
−d[G, mh]t +

1
Gt

(∆Gt)2∆mh
t − htd[Gc]t

−ht(∆Gt)2 +
ht

Gt
(∆Gt)3

]
From integration by part formula, the dynamics of Jh

t = Yte
Γt are

dJh
t = eΓt−dYt + Yt−deΓt + d[eΓ , Y ]t

= −eΓt−(Jh
t− − ht)dGt +

Jh
t− − ht

(Gt−)2
d[Gc]t +

Jh
t− − ht

GtGt−
(∆Gt)2

+ eΓt−

(
dmh

t +
1

GtGt−
(∆Gt)2∆mh

t

)
− 1

(Gt−)2
d[G, mh]t

= eΓt−(Jh
t− − ht)

(
−dGt + eΓt−d[Gc]t +

1
Gt

(∆Gt)2
)

+ eΓt−

(
dmh

t +
1

GtGt−
(∆Gt)2∆mh

t − 1
Gt−

d[G, mh]t

)
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The decomposition of F in the filtration G is

Ft∧τ = Zt∧τ + At∧τ = Ẑt∧τ −
∫ t∧τ

0

1
Gs

d[Z]s + At∧τ

Then, on the set {τ > t}

dJh
t = eΓt−

[
(Jh

t− − ht)dẐt + dm̂h
t + (Jh

t− − ht)dCt + dKt

]
where

dCt =
1
Gt

(∆Gt)2 + eΓt−d[Gc] + dAt − 1
Gt

d[Z]t

dKt =
1

GtGt−
(∆Gt)2∆mh

t − 1
Gt−

d[G, mh]t +
1
Gt

d[G, mh]t

If G has no jump at time t, dKt = 0, if G has a jump

dKt = −(∆Gt) (∆mh
t )

1
GtGt−

(−∆Gt + Gt − Gt−
)

= 0 .

The first term is equal to

dCt =
1
Gt

(∆Gt)2 + eΓtd[Gc]t + dAt − 1
Gt

d[Z]t

=
1
Gt

d[G]t + dAt − 1
Gt

d[Z]t

=
1
Gt

d[A]t + dAt =
1
Gt

(∆At)2 + dAt

= e∆ΓtdAt

where we have used that, if the F martingales are continuous ∆A = ∆F and that
A is continuous in the case P (τ = θ) = 0 (see Jeulin [14], p. 65). It remains to
compensate the jump at time τ in order to obtain the result. ��
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(Part II: Some recent martingale problems)


