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Abstract

In this paper, we define the Erlang kernel and use it to nonparametically estimation

of the probability density function (pdf) and the hazard rate function for inde-

pendent and identically distributed (iid) data.The bias, variance and the optimal

bandwidth of the proposed estimator are investigated. Moreover, the asymptotic

normality of the proposed estimator is investigated. The performance of the pro-

posed estimator is tested using simulation study and real data.
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1. Introduction

Hazard rate functions can be used for several statistical analyses in medicine,
engineering and economics. For instance, they are commonly used when pre-
senting results in clinical trials involving survival data.

Several methods for hazard function estimation have been considered in the
literature. Hazard function estimation by nonparametric methods has an ad-
vantage in flexibility because no formal assumptions are made about the mech-
anism that generates the sample order than the randomness.
Estimators of the hazard function based on kernel smoothing have been stud-
ied extensively. For instance, see Salha [8, 7], O. Scaillet [5], Watson and
Leadbetter [12] and Rice and Rosenblatt [6].

The performance off the estimator at boundary points differs from the in-
terior points due to so-called ”boundary effects ” that occur in nonparametric
curve estimation problems. More specifically, the bias off the estimator at
boundary points. To remove those boundary effects in kernel density esti-
mation, a variety of methods have been developed in the literature. Some
well-known methods are summarized below:
(i) The reflection method (Cline and Hart [3]; Schuster [10]; Silverman, [11].
(ii) The local linear method (Cheng [2]; Zhang and Karunamuni [13]).

Chen [1] solved this problem by replacing the symmetric kernels by asym-
metric Gamma kernel which never assigns weight outside the support.

A lot of people who care of estimation do many specific distributions, such as
normal, log-normal, gamma and inverse-gamma distributions, and this made
us pose a question which is: Is there any other distributions which can be used
as a kernel in the estimation and then give us acceptable results?

In this paper, we propose the Erlang kernel which also never assigns weight
outside the support. The Erlang distribution is a continuous probability distri-
bution with wide applicability primarily due to its relation to the exponential
and Gamma distributions. The Erlang distribution was developed by A. K.
Erlang to examine the number of telephone calls which might be made at the
same time to the operators of the switching stations.

This paper is organised in six sections. In the first section, we present some
information about kernel smoothing, hazard functions and the proposed kernel.
In the second section, we introduce some definitions and relations, and state
the conditions under which the results of the paper will be proved. In the
third section, we investigate the bias, variance and optimal bandwidth of the
Erlang kernel estimator. In the fourth section, we investigate the asymptotic
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normality of the Erlang kernel estimator of the pdf and of the hazard function
estimator. In the fifth section, the performance of the proposed estimator
will be tested via two applications, simulated and real life data. In the sixth
section, we introduce comments and the conclusion.

2. Preliminaries

In this section, we state the conditions under which the results of the paper
will be proved. Also, we mention the definition of gamma function and some
relations related to it, then we will define Erlang kernel.

Conditions

(1) Let {xi}ni=1 be a random sample from a distribution of unknown proba-
bility density function f defined on [0,∞) such that f has a continuous
second derivative.

(2) 0 <
∫
x4(

´́
f)2(x)dx <∞ and

∫ f(x)
x
dx <∞

(3) h is smoothing parameter satisfying h+ 1
nh5
−→ 0 as n→∞ .

The Gamma function is defined to be the improper integral:

Γ(x) =

∫ ∞
0

tx−1exp(−t)dt, x ≥ 1

The Taylor expansion about zero of 1
Γ(x)

is available and given by:

1
Γ(x)

= x+ γx2 + 1
2
(γ2 − π2

6
)x3 + o(x3)

≈ x.
Also, through this paper we will approximate the folloing:
The beta function

B(
1

h
,

1

h
) =

(Γ( 1
h
))2

Γ( 2
h
)
≈ 4h3,

(
1

2

)2h+1
h

≈ h

4
,

h1+ 1
h ≈ h2.

This approximation because we concern with values of h close to zero.

In this paper we consider the following Erlang kernel function:

KE(x,
1

h
)(t) =

1

Γ(1 + 1
h
)

[
1

x
(1 +

1

h
)

]h+1
h

t
1
h exp(− t

x
(1 +

1

h
)), t ≥ 0

If a random variable Y has a pdf KE(x, 1
h
)(t), then E(Y ) = x, and the vari-

ance is var(Y ) = x2h
1+h

.
We propose the following estimator of the probability density function f(.),
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the Erlang estimator

f̂(x) =
1

n

n∑
i=1

KE(x,
1

h
)(Xi)

3. Bias, Variance and optimal bandwidth

In this section, the bias and variance will be evaluated. Then we will discuss
the optimal bandwidth of the Erlang kernel estimator.

Proposition 1.
The bias of the proposed estimator is given by:

Bias(f̂(x)) =
1

2
x2 h

1 + h
´́
f(x) + o(1) (1)

Proof:

E(f̂(x) =

∫ ∞
0

KE(x,
1

h
)(y)f(y) dy = E(f(ξx)

where ξx follows an Erlang distribution with mean µx = E(ξx) = x and vari-

ance, Vx = V ar(ξx) = x2h
1+h

.
The Taylor expansion about µx for f(ξx) is:

f(ξx) = f(µx) + f́(µx)(ξx − µx) + 1
2

´́
f(µx)(ξx − µx)2 + o(1)

So, E(f̂(ξx)) = f(x) + 1
2

´́
f(x)var(ξx) + o(1)

E(f̂(ξx)) = f(x) +
1

2
x2 h

1 + h
´́
f(x) + o(1) (2)

Hence,

Bias(f̂(x)) =
1

2
x2 h

1 + h
´́
f(x) + o(1)

Proposition 2.
The variance of the proposed estimator is given by:

V ar(f̂(x)) =
(2 + h)(1

2
)2h+1

h

2nxh3
f(x) + o((nh2)−1) (3)

Proof:
V ar(f̂(x)) = 1

n
V ar

[
KE(x, 1

h
)(t)
]

= 1
n

[
E
(
K2
E(x, 1

h
)(t)
)]
−
[
E(KE(x, 1

h
)(t))

]2
where

K2
E(x, 1

h
)(t) = 1

[Γ(1+ 1
h

)]
2

[
1
x
(1 + 1

h
)
]2h+1

h t
2
h exp(−2 t

x
(1 + 1

h
))

= 1

[Γ(1+ 1
h

)]
2

(
1
2

)2h+1
h t−1Γ(2h+1

h
).
[

1
Γ(2h+1

h
)

[
2
x
(1 + 1

h
)
]2h+1

h t1+ 2
h exp(−2 t

x
(1 + 1

h
))
]

= Rx,ht
−1.
[

1
Γ(2h+1

h
)

[
2
x
(1 + 1

h
)
]2h+1

h t1+ 2
h exp(−2 t

x
(1 + 1

h
))
]
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where Rx,h =
(2+h)( 1

2)
2h+1
h

2h3
.

Therefore, E[K2
E(x, 1

h
)(t)] = E[Rx,hη

−1
x f(ηx)]

where ηx follows as Erlang distribution with mean µx = E(ηx) = x and

variance Vx = V ar(ηx) = hx2

2(h+1)
.

The Taylor expansion of η−1
x f(ηx) about µx is as follows:

η−1
x f(ηx) = µ−1

x f(µx)+
[
−1
µ2x
f(µx) + 1

µx
f̀(µx)

]
(ηx−µx)+1

2

[
2
µ3x
f(µx)− 2 1

µ2x
f̀(µx) + 1

µx

´́
f(µx)

]
(ηx − µx)2 + o(1)
So,

E [η−1
x f(ηx)] = x−1f(x) + 1

2

[
2
x3
f(x)− 2

x2
f̀(x) + 1

x

´́
f(x)

]
hx2

2(h+1)
+ o(1)

This implies that

E [Rx,hη
−1
x f(ηx)] =

(2+h)( 1
2)

2h+1
h

2h3x
f(x)+

(2+h)hx2( 1
2)

2h+1
h

8(h+1)h3

[
2
x3
f(x)− 2

x2
f̀(x) + 1

x

´́
f(x)

]
+

o(h−2)
Therefore,

V ar(f̂(x)) =
(2+h)( 1

2)
2h+1
h

2nxh3
f(x) + o(n−1h−2)− 1

n
(f(x) + o(1))2

=
(2+h)( 1

2)
2h+1
h

2nxh3
f(x) + o((nh2)−1)

Optimal Bandwidth:
First of all, we will define MSE and Mean Integrated Squared Error (MISE)
as follows:

MSE(f̂) =
(2+h)( 1

2)
2h+1
h

2nxh3
f(x) + o((nh2)−1) +

[
1
2
x2 h

1+h

´́
f(x) + o(1)

]2

=
(2+h)( 1

2)
2h+1
h

2nxh3
f(x) + o((nh2)−1) + 1

4
x4 h2

(1+h)2

[
´́
f(x)

]2

+ o(1)

≈ (2+h)( 1
2)

2h+1
h

2nxh3
f(x) + 1

4
x4 h2

(1+h)2

[
´́
f(x)

]2

Therefore,

MISE(f̂) =
(2 + h)

(
1
2

)2h+1
h

2nh3
I1 +

1

4

h2

(1 + h)2
I2 (4)

where, I1 =
∫ f(x)

x
dx and I2 =

∫
x4
[

´́
f(x)

]2

dx

Therefore, we can approximate MISE to be:

MISE(f̂) =
I1

4nh2
+
h2

4
I2 (5)

We will now find the optimal bandwidth by minimizing (5) with respect to h,
so we have
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d MISE(f̂)

dh
=
−I1

2nh3
+
h

2
I2, (6)

d2 MISE(f̂)

dh2
=

3I1

2nh4
+

1

2
I2 > 0. (7)

Setting (6) equal zero yields the optimal bandwidth hopt for the given pdf
and kernel:

hopt =

(
I1

nI2

) 1
4

(8)

In addition, (7) proves that this value minimize (5).
Substituting (8) for h in (5) gives the minimum MISE for the given pdf and
kerne which is given by:

MISEopt =

(
I1I2

n

) 1
2

(9)

Note that hopt depend on the sample size n, the kernel and on the unknown
pdf.

4. Asymptotic normality

In this section, we state the main two theorems talking about the asymp-
totic normality for the proposed estimator and an important lemma which we
will use in the second main theorem.

Definition 1. A hazard rate function is defined as the probability of an event
happening in a short time interval. More precisely, it is defined as:

r(x) = lim
∆x→0

P (X ≤ x+ ∆x|X > x)

∆x
, x > 0.

The hazard rate function can be written as the ratio between the pdf f(.)
and the survivor function S(.) = 1− F (.) as follows:

r(x) =
f(x)

S(x)

The kernel estimator of S(.) is Ŝ(x) = 1− F̂ (x) where,

F̂ (x) =

∫ x

0

f̂(u)du =
1

n

n∑
i=1

∫ x

0

KE(u,
1

h
)(Xi)du

Definition 2. we defined the proposed estimator for the hazard rate function
to be:

r̂(x) =
f̂(x)

Ŝ(x)
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Theorem 1. Under conditions 1, 2, and 3, the following holds

2
1
h

√
nh5

h+ 2
(f̂(x)− f(x))

d−−→ N

(
0,
f(x)

8x

)
(10)

Proof:
Let Vni = KE(x, 1

h
)(Xi), i = 1, 2, ..., n. Then f̂(x) = 1

n

∑n
i=1 Vni , where

Vni, i = 1, 2, ..., n are independent and identically distributions (iid) and
σ2
ni <∞.

We show now that the Liapounov condition is satisfied, that is for some δ > 0,

lim
n→∞

E|Vn − E(Vn)|2+δ

n
δ
2σ2+δ(Vn)

= 0

First of all, we have:

|Vn|2+δ = 1

[Γ(1+ 1
h

)]
2+δ

[
1
x
(1 + 1

h
)
](2+δ)h+1

h t
2+δ
h exp(−(2 + δ) t

x
(1 + 1

h
)), t ≥ 0

=
[ 1
x

(1+ 1
h

)]
δ h+1
h t

δ
h exp(−δ t

x
(1+ 1

h
))Γ(2h+1

h
)

[Γ(1+ 1
h

)]
2+δ .

[ 1
x

(1+ 1
h

)]
2h+1
h t

2
h exp(−2 t

x
(1+ 1

h
))

Γ(2h+1
h

)

=
[ 1
x

(1+ 1
h

)]
δ h+1
h t

δ
h exp(−δ t

x
(1+ 1

h
))t−1( 1

2)
2h+1
h Γ(2h+1

h
)

[Γ(1+ 1
h

)]
2+δ .

[ 2
x

(1+ 1
h

)]
2h+1
h t1+

2
h exp(−2 t

x
(1+ 1

h
))

Γ(2h+1
h

)

= αt
δ
2
−1.

[ 2
x

(1+ 1
h

)]
2h+1
h t1+

2
h exp(−2 t

x
(1+ 1

h
))

Γ(2h+1
h

)

where, α =
[ 1
x

(1+ 1
h

)]
δ h+1
h ( 1

2)
2h+1
h Γ(2h+1

h
)exp(−δ t

x
(1+ 1

h
))

[Γ(1+ 1
h

)]
2+δ . Then we have:

E(|Vn|2+δ) =
∫∞

0
αy

δ
h
−1

[
[ 2
x

(1+ 1
h

)]
2h+1
h t1+

2
h exp(−2 t

x
(1+ 1

h
))

Γ(2h+1
h

)

]
f(y)dy = E(αξ

δ
h
−1

x f(ξx)),

where, ξx follows an Erlang distribution with mean µx = E(ξx) = x and

variance var(ξx) = x2h
2(1+h)

The Taylor expansion of ξ
δ
h
−1

x f(ξx) about the mean µx = E(ξx) = x as follows:

ξ
δ
h
−1

x f(ξx) = x
δ
h
−1f(x) +

[
( δ
h
− 1)x

δ
h
−2f(x) + x

δ
h
−1f́(x)

]
(ξx − x) +[

( δ
h
− 1)( δ

h
− 2)x

δ
h
−3f(x) + 2( δ

h
− 1)x

δ
h
−2f́(x) + x

δ
h
−1 ´́
f(x)

]
(ξx − x)2 + o(h−2)

E(ξ
δ
h
−1

x f(ξx)) = x
δ
h
−1f(x) +

h−2
[
(δ − h)(δ − 2h)x

δ
h
−3f(x) + 2h(δ − h)x

δ
h
−2f́(x) + h2x

δ
h
−1 ´́
f(x)

]
hx2

2(h+1)
+o(h−2)

= x
δ
h
−1f(x)+ h−1x

δ
h
−1

2(h+1)

[
(δ − h)(δ − 2h)f(x) + 2h(δ − h)xf́(x) + h2x2 ´́

f(x)
]
+

o(h−2)
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Therefore,

E(|Vn|2+δ) =

[
1
x
(1 + 1

h
)
]δ h+1

h
(

1
2

)1+ 2
h (h+ 2)exp(−δ t

x
(1 + 1

h
))

4h5
[
Γ(1 + 1

h
)
]δ x

δ
h
−1f(x)+o(h−7)

(11)
Now substituting δ = 0, the following is hold:

V ar(Vn) =

(
1
2

)1+ 2
h (h+ 2)

4h5
x−1f(x) + o(h−7).

Hence,
E|Vn−E(Vn)|2+δ

n
δ
2 σ2+δ(Vn)

≤ E|Vn|2+δ

n
δ
2 σ2+δ(Vn)

→ [ 1
x

(1+ 1
h

)]
δ h+1
h ( 1

2)
1+ 2

h (h+2)exp(−δ t
x

(1+ 1
h

))x
δ
h
−1f(x)

n
δ
2 [Γ(1+ 1

h
)]
δ
4h5

( 1
2)

1+ 2
h (h+2)

4h5
x−1f(x)


2+δ
2

=
x−δ−1[1+ 1

h ]
δ h+1
h ( 1

2)
1− δ

h exp(− tδ
x

(1+ 1
h

))(h+2)f(x)

n
δ
2 [Γ(1+ 1

h
)]
δ
[4h5]−

δ
2 [ 12 (h+2)x−1f(x)]

δ+2
2

=
x−δ−1[1+h]δ

h+1
h [4h5]

δ
2 exp(− tδ

x
(1+ 1

h
)) 1

2
(h+2)f(x)

n
δ
2 ( 1

4)
δ
2h [h]δ

h+1
h [Γ(1+ 1

h
)]
δ
[ 12 (h+2)x−1f(x)]

δ+2
2

→ 0
The last term by condition 3 vanishes as n → 0. Also, the remaining com-

ponent of the last term are bounded.

Lemma 1. Under conditions 1, 2 and 3 the following holds

√
nh|F̂ (x)− F (x)| p−−→ 0 (12)

Proof:
First of all, we have from the definition of F̂ (x) the following relations:

EF̂ (x) =
∫∞

0

∫ x
0
kE(u, 1

h
)(y)duf(y)dy

=
∫ x

0

∫∞
0
kE(u, 1

h
)(y)f(y)dydu

=
∫ x

0
E(f(ξx)))du

=
∫ x

0
(f(u) + 1

2
u2 h

h+1

´́
f(u))du+ o(1)

= F (x) + o(1)

where ξx is defined as in Proposition 1. This implies that, EF̂ (x)−F (x) = o(1)
Therefore,

(nh)
1
2 |EF̂ (x)− F (x)| = o((nh)

1
2 )

p−−→ 0 (13)

On the other hand, F̂ (x) can be written as follows:

F̂ (x) = 1
n

∑n
i=1

∫ x
0
kE(u, 1

h
)(y)du = 1

n

∑n
i=1Wi(x) whereWi(x) =

∫ x
0
kE(u, 1

h
)(y)du
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Now, given ε > 0, δ > 0, then we have:

P
[
(nh)

1
2 |F̂ (x)− EF̂ (x)| > ε

]
≤ E|F̂ (x)−EF̂ (x)|2+2δ

ε2+2δ(nh)−(1+δ)

= ε−2−2δ(nh)1+δE|F̂ (x)− EF̂ (x)|2+2δ

= ε−2−2δ(nh)1+δn−2−2δE|
∑n

i=1Wi(x)− EWi(x)|2+2δ

≤ ε−2−2δ(n−1h)1+δ
∑n

i=1E|Wi(x)|2+2δ+
ε−2−2δ(n−1h)1+δ

∑n
i=1 |EWi(x)|2+2δ

The second term vanishes as n −→∞ and h −→ 0, since from 2 we have

(n−1h)1+δ

n∑
i=1

|EWi(x)|2+2δ = o((n−1h)1+δ),

Further, by replacing δ with 2δ in (11) and assuming that

τh,δ =
[(1 + h)]2δ

h+1
h
(

1
2

)1+ 2
h (h+ 2)[

Γ(1 + 1
h
)
]2δ

we have:
P
[
(nh)

1
2 |F̂ (x)− EF̂ (x)| > ε

]
≤ ε2+2δ(n−1h)1+δ

∑n
i=1E|Wi(x)|2+2δ

= ε−2−2δn−1−δh1+δn
∫∞

0

∫ x
0

[
kE(u, 1

h
)(y)

]2+2δ
duf(y)dy

= ε−2−2δn−δh1+δ
∫ x

0

∫∞
0

[
kE(u, 1

h
)(y)

]2+2δ
f(y)dydu

= ε−2−2δ
∫ x

0

[
τh,δexp(−2δ t

u
(1+ 1

h
))

4nδhδ+
2δ
h

+4
u−2δ−1f(u)

]
du

+o((n−1h)δh−6)→ 0

(nh)
1
2 |F̂ (x)− EF̂ (x)| p−−→ 0. (14)

Since |F̂ (x)− F (x)| ≤ |F̂ (x)−EF̂ (x)|+ |EF̂ (x)− F (x)|, then by (13) and
(14), we have:

(nh)
1
2 |F̂ (x)− F (x)| ≤ (nh)

1
2 |F̂ (x)− EF̂ (x)|+ (nh)

1
2 |EF̂ (x)− F (x)

p−−→ 0
This complete the proof of the lemma..

Theorem 2. Under conditions 1, 2, and 3, the following holds

2
1
h

√
nh5

h+ 2
(r̂(x)− r(x))

d−−→ N(0,
r(x)

8xS(x)
) (15)
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Proof:

2
1
h

√
nh5

h+2
(r̂(x)− r(x)) = 2

1
h

√
nh5

h+2
( f̂(x)

Ŝ(x)
− f(x)

S(x)
)

= 2
1
h

√
nh5

h+2
( f̂(x)

Ŝ(x)
− f(x)

Ŝ(x)
− f(x)

S(x)
+ f(x)

Ŝ(x)
)

= 2
1
h

Ŝ(x)

√
nh5

h+2
(f̂(x)− f(x)− f(x)Ŝ(x)

S(x)
+ f(x))

= 2
1
h

Ŝ(x)

√
nh5

h+2
(f̂(x)− f(x))

− 2
1
h f(x)

S(x)Ŝ(x)

√
nh5

h+2
(Ŝ(x)− S(x))

−→d N(0, r(x)
8xS(x)

)

Note that the second term vanishes by (12), and the first term is asymptoti-
cally normally distributed by (10).
Moreover, from (10) and (15) too we have:

E(r̂(x)) = E((̂f)(x))

E((̂S)(x))

=
f(x)+ 1

2
x2 h

1+h
´́
f(x)

S(x)
+ o(1)

= r(x) +
1
2
x2 h

1+h
´́
f(x)

S(x)
+ o(1)

Therefore,

Bias(r̂(x)) =
1
2
x2 h

1+h

´́
f(x)

S(x)
+ o(1)

and,

V ar(r̂(x)) =
(2 + h)(1

2
)2h+1

h

2nxh3

r(x)

S(x)
+ o((nh2)−1)

5. Applications

In this section, the performance of the proposed estimator in estimating the
pdf and hazard rate function is tested upon two applications using a simulated
and real life data.

5.1. A Simulation Study. A sample of size 200 from the exponential distri-
bution with pdf f(x) = exp(−x) is simulated. We computed the bandwidth
using the relation

hopt = 0.79Rn−
1
5 , (16)

see [11] page 47 and it equals (0.36658).
The density and the hazard functions were estimated using the Erlang es-

timator. The estimated values and the true exponential pdf are plotted in
Figures 1(a), this figure shows that the performance of the Erlang estima-
tor is acceptable at the boundary near the zero. In the interior the behavior
of the pdf estimator becomes more similar for large values. Also figure 1(b)
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shows that the performance of the Erlang estimator of the hazard function is
acceptable at the boundary near the zero which we concern on. The mean
squared error (MSE) of proposed estimator of the density function is equal to
0.000266937 and for the hazard function is evaluated for the interval [0,0.5]
-because we concern about closest values to zero- and is equal to 0.02289262.

5.2. Real Data. In this subsection, we used the suicide data given in Silver-
man [11], to exhibit the practical performance of the Erlang estimator. The
data gives the lengths of the treatment spells (in days) of control patients in
suicide study. We used the logarithm of the data to draw figures 2(a) and
2(b)using bandwidth equals 0.480411 which computed by (16), these figures
exhibit the two estimated functions of the probability density and hazard rate
functions, respectively.
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Figure 1. (a) The Erlang kernel estimator of the density func-
tion, (b) the hazard rate function for the simulated data of the
exponential distribution
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Figure 2. (a) The Erlang kernel estimator of the density func-
tion, (b) the hazard rate function for the suicide data.
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6. Comments and Conclusion

In this paper, we have proposed a new kernel estimator of the hazard rate
function for (iid) data based on the Erlang kernel with nonnegative support,
we show that the bias is depends on the smoothing parameter h and the esti-
mated point x, and it goes to zero as h −→ 0, also it gets small for the values
of x closed to zero. The variance is investigated and we noticed that it depends
also on h and x. On the other hand, it goes to zero as h −→ 0, and gets large
at the values of x close to zero. Moreover, the optimal bandwidth and the
asymptotic normality were investigated.

In addition, the performance of the proposed estimator is tested in two ap-
plications. In a simulation study using exponential sample we noticed that the
performance of the proposed estimator is acceptable, and gives a small MSE.
Using real data, we exhibited the practical performance of the Erlang estima-
tor.
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