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Abstract

Let X = (X1, X2, . . . , Xn) be an exchangeable random vector, and write X(1:i) =
min{X1, X2, . . . , Xi}, 1 ≤ i ≤ n. In this paper we obtain conditions under which
X(1:i) decreases in i in the hazard rate order. A result involving more general (that is,
not necessarily exchangeable) random vectors is also derived. These results are applied
to obtain the limiting behaviour of the hazard rate function of the lifetimes of various
coherent systems in reliability theory. The notions of the Samaniego signatures and the
minimal signatures of such systems are extensively used in the paper. An interesting
relationship between these two signatures is obtained. The results are illustrated in a
series of examples.
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1. Introduction

Let X = (X1, X2, . . . , Xn) be an exchangeable random vector, and write X(1:i) = min{X1,

X2, . . . , Xi}, 1 ≤ i ≤ n. Intuitively we expect X(1:i) to get smaller as i gets larger. Indeed,
it is not hard to verify that X(1:i) decreases in i in the usual stochastic order (see Section 2 for
more details). In this paper we study the (possible) monotonicity of X(1:i) in the hazard rate
order (see Section 2 for the exact definition of this order). The hazard rate order is stronger
than the usual stochastic order, and it turns out that it is not always true that X(1:i) decreases
in i in the hazard rate order; this is shown in Section 2. The purpose of this paper is to obtain
conditions under which X(1:i) indeed decreases in i in the hazard rate order. This is also done
in Section 2, where we actually obtain a result involving more general (that is, not necessarily
exchangeable) random vectors. Throughout the paper, the notions ‘increasing’and ‘decreasing’
are used in the weak sense.

In Section 3 we apply the results of Section 2 to obtain the limiting behaviour of the hazard
rate function of the lifetimes of various coherent systems in reliability theory. The notions of
the Samaniego signatures and the minimal signatures of such systems are extensively used in

Received 29 April 2005; revision received 17 January 2006.
∗ Postal address: Facultad de Matematicas, Universidad de Murcia, 30100 Murcia, Spain.
Email address: jorgenav@um.es
∗∗ Postal address: Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA.
Email address: shaked@math.arizona.edu
Partially supported by the Ministerio de Ciencia y Tecnologia under grant BFM2003-02947 and Fundacion Seneca
under grant 00698/PI/04.

391

https://doi.org/10.1239/jap/1152413730 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1152413730


392 J. NAVARRO AND M. SHAKED

that section. There we also obtain an interesting relationship between these two signatures.
The results are illustrated in a series of examples.

2. A basic result

Let X = (X1, X2, . . . , Xn) be a random vector with an absolutely continuous distribution
function F . Denote its survival function by F̄ , i.e.

F̄ (x) = F̄ (x1, x2, . . . , xn) = P{X1 > x1, X2 > x2, . . . , Xn > xn},
and let R = −logF̄ be the corresponding multivariate hazard function. For i = 1, 2, . . . , n,
define r(i) by

r(i)(x1, x2, . . . , xn) = ∂

∂xi

R(x1, x2, . . . , xn) for x ∈ {x : F̄ (x) > 0}.

The vector r = (r(1), r(2), . . . , r(n)) is called the hazard gradient of X; see Johnson and Kotz
(1975) and Marshall (1975). Note that r(i)(x) can be interpreted as the conditional hazard rate
of Xi evaluated at xi , given that Xj > xj for all j �= i; i.e.

r(i)(x) = fi(xi | Xj > xj , j �= i)

F̄i(xi | Xj > xj , j �= i)
,

where fi(· | Xj > xj , j �= i) and F̄i(· | Xj > xj , j �= i) are the conditional density and
survival functions of Xi , given that Xj > xj for all j �= i. For convenience, we set r(i)(x) = ∞
for all x ∈ {x : F̄ (x) = 0}.

For any subset P ⊆ {1, 2, . . . , n}, define

YP = min
i∈P

Xi.

Let

1P (i) =
{

0 if i /∈ P,

1 if i ∈ P,
1P = (1P (1), 1P (2), . . . , 1P (n)), and 1P c = 1 − 1P ,

where 1 = (1, 1, . . . , 1) and P c denotes the complement of P in {1, 2, . . . , n}. Also let

∞ · 1P c(i) =
{

0 if i /∈ P c,

∞ if i ∈ P c,

and ∞ · 1P c = (∞ · 1P c(1), ∞ · 1P c(2), . . . , ∞ · 1P c(n)). Then the survival function, ḠP ,
of YP can be expressed as

ḠP (t) = F̄ (t · 1P −∞ · 1P c), t ∈ R.

Alternatively, ḠP (t) = F̄P (t, t, . . . , t), where F̄P denotes the survival function of {Xi :
i ∈ P }. Denoting by (∂/∂xi)F̄ the partial derivative of F̄ with respect to its ith argument,
the density function, gP , of YP can be obtained by differentiating ḠP as follows:

gP (t) = −
∑
i∈P

∂

∂xi

F̄ (t · 1P −∞ · 1P c), t ∈ R.
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Therefore, the hazard rate function, rP , of YP is given by

rP (t) = gP (t)

ḠP (t)
=

∑
i∈P

r(i)(t · 1P −∞ · 1P c), t ∈ R. (2.1)

Theorem 2.1. Let (X1, X2, . . . , Xn) be a random vector with an absolutely continuous distri-
bution function. Let P and Q be two subsets of {1, 2, . . . , n} such that P ⊂ Q. If

r(i)(t · 1P −∞ · 1P c) ≤ r(i)(t · 1Q −∞ · 1Qc), t ∈ R, i ∈ P, (2.2)

then
rP (t) ≤ rQ(t), t ∈ R. (2.3)

Proof. For each t ∈ R, we note that

rP (t) =
∑
i∈P

r(i)(t · 1P −∞ · 1P c)

≤
∑
i∈P

r(i)(t · 1Q −∞ · 1Qc)

≤
∑
i∈Q

r(i)(t · 1Q −∞ · 1Qc)

= rQ(t),

where the first inequality follows from (2.2) and the second inequality follows from P ⊂ Q.

The conclusion, (2.3), of Theorem 2.1 can be rewritten as

YP ≥hr YQ, (2.4)

where ‘≤hr’denotes the hazard rate stochastic order; see, e.g. Shaked and Shanthikumar (1994).
Inequality (2.4) implies that

YP ≥st YQ, (2.5)

where ‘≤st’denotes the usual stochastic order; again see, e.g. Shaked and Shanthikumar (1994).
Intuitively, (2.4) and (2.5) state that the smallest random variable from a set, P , of random
variables is larger, in the respective stochastic order, than the smallest random variable from a
larger set, Q, of random variables. Inequality (2.5) is weaker than inequality (2.4) because the
hazard rate order implies the usual stochastic order. In fact, (2.5) always holds (i.e. a condition
such as (2.2) is not needed) because YP ≥ YQ with certainty. However, in general, (2.4) need
not always hold (i.e. without a condition such as (2.2)). This will be shown in Example 2.2
below.

In order to better understand the meaning of (2.2), let us look at it when n = 2. Thus,
let X = (X1, X2), P = {1}, and Q = {1, 2}. Then, on the one hand,

r(1)(t · 1P −∞ · 1P c) = r(1)(t, −∞) = f1(t | X2 > −∞)

F̄1(t | X2 > −∞)
= r1(t),

where r1 is the marginal hazard rate function of X1. On the other hand,

r(1)(t · 1Q −∞ · 1Qc) = r(1)(t, t) = f1(t | X2 > t)

F̄1(t | X2 > t)
= r1(t | X2 > t),
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where r1(· | X2 > t) denotes the hazard rate function of [X1 | X2 > t]. Thus, (2.2) reduces to

r1(t) ≤ r1(t | X2 > t), t ∈ R. (2.6)

Roughly speaking, (2.6) indicates a negative dependence relationship between X1 and X2 in the
following sense. For ease of exposition, let us here assume that X1 and X2 are the respective
positive lifetimes of two components, A and B, say. Then, for t > 0, (2.6) means that the
unconditional hazard rate of X1 (i.e. conditioned on X2 > 0) at time t is smaller than the
hazard rate of X1, given that X2 > t , at time t . In other words, given that X2 > t , component A
is more likely to fail at time t than it is when nothing is known about X2 (except, of course,
that it is positive).

Let us denote the right-hand side of (2.6) by h1, and write it as

h1(t) = lim
�t↓0

1

�t
P{t < X1 ≤ t + �t | X1 > t, X2 > t}, t ∈ R.

Similarly define h2. In the biometrics literature the functions hi are called the cause-specific
hazard rate functions; see, e.g. Holt (1978), Prentice et al. (1978), and references therein. In the
setting of reliability theory the functions hi are called the initial hazard rate functions; see, e.g.
Scarsini and Shaked (1999) and references therein. Thus, in the bivariate case, condition (2.6)
means that the marginal hazard rate function of X1 is pointwise no larger than the initial hazard
rate function of X1.

Condition (2.2) is sufficient, but not necessary, for the conclusion (2.3) to hold. This is
shown in the following example.

Example 2.1. Let (X1, X2) have the bivariate Freund (1961) distribution with a density
function, f , given by

f (x1, x2) =
{

αβ ′e−β ′x2−(α+β−β ′)x1 for 0 ≤ x1 ≤ x2,

βα′e−α′x1−(α+β−α′)x2 for 0 ≤ x2 ≤ x1,

where α, β, α′, and β ′ are positive parameters. It is helpful to think of X1 and X2 as being the
respective lifetimes of two components, A and B, say. Then α is the failure rate of component
A when component B is still functioning, and β is the failure rate of component B when
component A is still functioning. Furthermore, α′ is the failure rate of component A after
component B has failed, and β ′ is the failure rate of component B after component A has
failed. Take P = {1} and Q = {1, 2}. Then, obviously, rQ(t) = α +β for t > 0. The marginal
density, f1, of X1 is given by (see Freund (1961))

f1(x1) = 1

α + β − α′ [(α − α′)(α + β)e−(α+β)x1 + α′βe−α′x1 ], x1 > 0,

provided that α + β − α′ �= 0. Thus, the survival function, F̄1, of X1 is given by

F̄1(x1) = 1

α + β − α′ [(α − α′)e−(α+β)x1 + βe−α′x1 ], x1 > 0,

and the hazard rate function of X1, namely rP , is given by

rP (t) = (α − α′)(α + β)e−(α+β)t + α′βe−α′t

(α − α′)e−(α+β)t + βe−α′t for t > 0. (2.7)

https://doi.org/10.1239/jap/1152413730 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1152413730


Hazard rate ordering of order statistics and systems 395

It can be verified that rP (t) ≤ rQ(t) for all t > 0, i.e. that (2.3) holds. (To verify that
rP (t) ≤ rQ(t), we must consider two cases: (i) α + β − α′ > 0, in which case both the
numerator and the denominator of (2.7) are positive, and (ii) α + β − α′ < 0, in which case
both the numerator and the denominator of (2.7) are negative.)

However, if α < α′ then (2.2) does not hold. With P and Q as above we have
r(1)(t · 1P −∞ · 1P c) = rP (t), whereas r(1)(t · 1Q −∞ · 1Qc) = r1(t | X2 > t) = α. It
is straightforward to see that rP (t) > α for all t > 0 (again, for the purpose of verifying this,
note that if α + β − α′ > 0 then both the numerator and the denominator of (2.7) are positive,
and if α + β − α′ < 0 then both the numerator and the denominator of (2.7) are negative).
Thus, (2.2) fails to hold.

In the next example we show that (2.4), or, equivalently, (2.3), need not always hold
(i.e. without a condition such as (2.2)).

Example 2.2. Let (X1, X2) be a nonnegative random vector with the density function
described in Figure 1. A straightforward computation shows that the marginal density, f1,
of X1 is given by

f1(x1) =
{

(2x1 + 1)e−2x1 , 0 ≤ x1 < 1,

35
4 e−(10x1−8) + 9

4 e−2x1 , x1 ≥ 1,

and the survival function, F̄1, of X1 is given by

F̄1(x1) =
{

(x1 + 1)e−2x1 , 0 ≤ x1 < 1,

7
8 e−(10x1−8) + 9

8 e−2x1 , x1 ≥ 1.

Thus, the hazard rate function, r1, of X1 is given by

r1(t) =

⎧⎪⎪⎨
⎪⎪⎩

2t + 1

t + 1
, 0 ≤ t < 1,

70e−(10t−8) + 18e−2t

7e−(10t−8) + 9e−2t
, t ≥ 1.

A lengthy yet again straightforward computation then shows that the hazard rate function,
rmin{X1,X2}, of min{X1, X2} is given by

rmin{X1,X2}(t) = 2, t ≥ 0.

Let P = {1} and Q = {1, 2}. Then rP = r1 and rQ = rmin{X1,X2}. Since

rP (2) = 70e−12 + 18e−4

7e−12 + 9e−4 > 2 = rQ(2),

we see that (2.4) fails to hold.

A sufficient condition for (2.2) to hold is that

r(i)(x1, x2, . . . , xn) is increasing in xj , j �= i, i = 1, 2, . . . , n.
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Figure 1: Density for Example 2.2.

This is easily seen to be equivalent to the requirement that

F̄ (x1, . . . , xi−1, x
′
i , xi+1, . . . , xn)

F̄ (x1, . . . , xi−1, xi, xi+1, . . . , xn)
is decreasing in xj , j �= i, whenever xi ≤ x′

i ,

i = 1, 2, . . . , n. (2.8)

Condition (2.8) means that F̄ is RR2 (reverse regular of order 2) in pairs; this is a notion of
negative dependence that was studied in Block et al. (1982). They showed that some multivariate
normal distributions, as well as the Dirichlet distribution, are RR2 in pairs; see also Karlin and
Rinott (1980). Theorem 2.1 thus applies to these distributions.

If X1, X2, . . . , Xn are independent (but not necessarily identically distributed), absolutely
continuous random variables, then (2.8) holds trivially. Recall that X(1:i) = min{X1, X2,

. . . , Xi}, i = 1, 2, . . . , n. From Theorem 2.1 we thus find that if X1, X2, . . . , Xn are indepen-
dent, then X(1:1) ≥hr X(1:2) ≥hr · · · ≥hr X(1:n). This result can also be obtained from results of
Korwar (2003).

In the following corollary we specialize Theorem 2.1 to the case in which (X1, X2, . . . , Xn)

has an exchangeable distribution function. The corresponding multivariate hazard function,
R, is then permutation symmetric. Therefore, each r(i) can be expressed by means of r(1) as
follows:

r(i)(x1, x2, . . . , xi−1, xi, xi+1, . . . , xn)

= r(1)(xi, x2, . . . , xi−1, x1, xi+1, . . . , xn), i = 2, 3, . . . , n.

Corollary 2.1. Let (X1, X2, . . . , Xn) be a random vector with an absolutely continuous,
exchangeable distribution function. If

r(1)(t, t, . . . , t︸ ︷︷ ︸
i times

, −∞, −∞, . . . ,−∞︸ ︷︷ ︸
n−i times

)

≤ r(1)(t, t, . . . , t︸ ︷︷ ︸
i+1 times

, −∞, −∞, . . . ,−∞︸ ︷︷ ︸
n−i−1 times

), t ∈ R, i = 1, 2, . . . , n − 1, (2.9)

then
X(1:1) ≥hr X(1:2) ≥hr · · · ≥hr X(1:n). (2.10)
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If (2.9) is not imposed then (2.10) need not be true; this follows from a variant of
Example 2.2 in which (X1, X2) has an exchangeable distribution function.

Note that

r(1)(t, t, . . . , t︸ ︷︷ ︸
i times

, −∞, −∞, . . . ,−∞︸ ︷︷ ︸
n−i times

) = r1|23···i (t | X2 > t, X3 > t, . . . , Xi > t),

where r1|23···i (· | X2 > t, X3 > t, . . . , Xi > t) denotes the hazard rate function of X1
conditioned on the given condition. Thus, (2.9) implies that

r1(t) ≤ r1|2(t | X2 > t) ≤ r1|23(t | X2 > t, X3 > t)

≤ · · · ≤ r1|23···n(t | X2 > t, X3 > t, . . . , Xn > t), t ∈ R,

where r1 is the marginal hazard rate function of X1. Again, this is a condition that indicates
a negative dependence relationship among the Xi . For example, if the Xi are the lifetimes of
n components, then the above sequence of inequalities roughly says that the larger is the number
of known ‘old’ components (i.e. older than t), the more likely is it that any other component
will not become ‘much older’ (i.e. fail shortly after time t).

3. Tail behaviour of system hazard rate functions

In this section we describe some applications of Theorem 2.1 and Corollary 2.1 in reliability
theory. Let X1, X2, . . . , Xn be the lifetimes of n components of a coherent system; a compre-
hensive study of coherent systems can be found in Barlow and Proschan (1975). Let τ be the
life function of the coherent system; i.e. T = τ(X1, X2, . . . , Xn) is the lifetime of the system
with the above components. Then T can be represented as

T = max
1≤j≤s

min
i∈Pj

Xi,

where the sets P1, P2, . . . , Ps are called the minimal path sets of the coherent system.

3.1. Results based on minimal signatures and path sets

Consider the case in which X1, X2, . . . , Xn have an exchangeable distribution function.
As in Section 2 we write X(1:i) = min{X1, X2, . . . , Xi}, and we let F̄(1:i) denote the survival
function of X(1:i), i = 1, 2, . . . , n. Under the above assumption of exchangeability, it has been
noted (see Navarro et al. (2004)) that the survival function, F̄ , of T can be expressed as a linear
combination of the survival functions, F̄(1,i), of X(1:i), i = 1, 2, . . . , n, i.e. that

F̄ =
n∑

i=1

aiF̄(1:i), (3.1)

for some negative and nonnegative integers ai that obviously satisfy
∑n

i=1 ai = 1. Navarro et al.
(2004) called the vector (a1, a2, . . . , an) the minimal signature of the coherent system. The
minimal signature of a coherent system can be obtained also from Equation (3.1) of Block et al.
(2003). The minimal signature of a series system of two components is of course (a1, a2) =
(1, 0), and the minimal signature of a parallel system of two components is (a1, a2) = (2, −1).
The minimal signatures of all five coherent systems of size 3, and of all twenty coherent systems
of size 4 are given in Tables 1 and 2. In these tables, and later in the paper, we denote by X(i:n)

the ith order statistic among X1, X2, . . . , Xn.
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Table 1: Minimal signatures of all systems of size 3.

System τ(X1, X2, X3) (a1, a2, a3)

Series X(1:3) (0, 0, 1)

Series–parallel min{X1, max{X2, X3}} (0, 2, −1)

2-out-of-3 X(2:3) (0, 3, −2)

Parallel–series max{X1, min{X2, X3}} (1, 1, −1)

Parallel X(3:3) (3, −3, 1)

Table 2: Minimal signatures of all systems of size 4.

System τ(X1, X2, X3, X4) (a1, a2, a3, a4)

1 X(1:4) (0, 0, 0, 1)

2 max{min{X1, X2, X3}, min{X2, X3, X4}} (0, 0, 2, −1)

3 min{X1, max2≤i<j≤4 min{Xi, Xj }} (0, 0, 3, −2)

4 min{X1, max{X2, X3}, max{X2, X4}} (0, 1, 1, −1)

5 min{X1, max{X2, X3, X4}} (0, 3, −3, 1)

6 X(2:4) (0, 0, 4, −3)

7 max{min{X1, X2}, min{X1, X3, X4}, min{X2, X3, X4}} (0, 1, 2, −2)

8 max{min{X1, X2}, min{X3, X4}} (0, 2, 0, −1)

9 max{min{X1, X2}, min{X1, X3}, min{X2, X3, X4}} (0, 2, 0, −1)

10 max{min{X1, X2}, min{X2, X3}, min{X3, X4}} (0, 3, −2, 0)

11 max{min{X1, max{X2, X3, X4}}, min{X2, X3, X4}} (0, 3, −2, 0)

12 max{min{X1, max{X2, X3, X4}}, min{X2, X3}} (0, 4, −4, 1)

13 min{max{X1, X2}, max{X3, X4}} (0, 4, −4, 1)

14 min{max{X1, X2}, max{X1, X3, X4}, max{X2, X3, X4}} (0, 5, −6, 2)

15 X(3:4) (0, 6, −8, 3)

16 max{X1, min{X2, X3, X4}} (1, 0, 1, −1)

17 max{X1, min{X2, X4}, min{X3, X4}} (1, 2, −3, 1)

18 max{X1, max2≤i<j≤4 min{Xi, Xj }} (1, 3, −5, 2)

19 max{X1, X2, min{X3, X4}} (2, 0, −2, 1)

20 X(4:4) (4, −6, 4, −1)

There exist several results in the literature which show, under certain conditions, that the
asymptotic behaviour, as t → ∞, of the failure rate function of a mixture is the same as the
asymptotic behaviour of the failure rate of the strongest member of the mixture; see Block and
Joe (1997), Block et al. (2003), Navarro and Hernandez (2004a), and Li (2005). Thus, we
might expect similar results to hold for F̄ in (3.1), although that F̄ is not a mixture of the F̄(1:i),
since some of the ai are negative.

In order to develop this idea let us now consider a general linear combination of survival
functions (called a ‘generalized mixture’ in Baggs and Nagaraja (1996) and in Navarro and
Hernandez (2004b)) of the form

Ḡ =
n∑

i=1

wiḠi, (3.2)

where the Ḡi are survival functions and the wi are some nonzero (and not necessarily
positive) constants that satisfy

∑n
i=1 wi = 1. In general, Ḡ in (3.2) need not be a survival
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function – some conditions on the wi are needed in order to guarantee that it is (see Navarro
and Hernandez (2004b)). However, for our purposes we can assume here that these conditions
are satisfied and that Ḡ in (3.2) is a survival function. We also suppose below that the Ḡi

are absolutely continuous with respective hazard rate functions r1, r2, . . . , rn. Then Ḡ is also
absolutely continuous, and we denote its hazard rate function by r . The following lemmas will
be used in the sequel; they are special cases of results in Navarro and Hernandez (2004b).

Lemma 3.1. Let Ḡ1 and Ḡ2 be two absolutely continuous survival functions with respective
hazard rate functions r1 and r2. If

lim inf
t→∞

r2(t)

r1(t)
> 1

then

lim
t→∞

Ḡ2(t)

Ḡ1(t)
= 0.

Lemma 3.2. Let Ḡ be as in (3.2). If

lim inf
t→∞

ri(t)

r1(t)
> 1, i = 2, 3, . . . , n, (3.3)

then w1 > 0.

Lemma 3.3. Let Ḡ be as in (3.2). If (3.3) holds and

lim sup
t→∞

ri(t)

r1(t)
< ∞, i = 2, 3, . . . , n, (3.4)

then

lim
t→∞

r(t)

r1(t)
= 1.

A variation of Lemma 3.3 that will be used in the sequel is the following; it also follows
from results of Navarro and Hernandez (2004b).

Lemma 3.4. Let Ḡ be as in (3.2). If (3.3) holds and

lim
t→∞

ri(t)Ḡi(t)

r1(t)Ḡ1(t)
= 0, i = 2, 3, . . . , n, (3.5)

then

lim
t→∞

r(t)

r1(t)
= 1.

Note that the limit in (3.5) can be written as limt→∞(gi(t)/g1(t)) = 0, where gi and g1
are respectively the density functions corresponding to Ḡi and Ḡ1. If (3.3) holds then the
conclusion of Lemma 3.4 holds even under the weaker condition that limt→∞(gi(t)/g1(t))

exists and is finite, for i = 2, 3, . . . , n; this follows from Lemma 3.1 and l’Hôpital’s rule
(i.e. limt→∞(Ḡi(t)/Ḡ1(t)) = limt→∞(gi(t)/g1(t))).

Note that if (3.3) holds then (3.4) implies (3.5). Thus, formally, Lemma 3.4 is a stronger
result than is Lemma 3.3. In fact, the implication just mentioned is strict; this will be seen in
the sequel (see Example 3.1). Here we have given both lemmas because both are used below.
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We can now apply Corollary 2.1 to state and prove a result which shows that for many a
coherent system the asymptotic behaviour of the failure rate function of its lifetime is the same
as the asymptotic behaviour of the failure rate of a certain series system. For this purpose
we consider an exchangeable random vector (X1, X2, . . . , Xn), and we respectively denote by
F̄(1:i) and r(1:i) the survival function and the hazard rate function of X(1:i), i = 1, 2, . . . , n.

Theorem 3.1. Let (X1, X2, . . . , Xn) be an absolutely continuous, exchangeable random
vector satisfying (2.9). Let T = τ(X1, X2, . . . , Xn), where τ is a coherent life function.
Suppose that the minimal signature of τ is of the form (0, 0, . . . , 0, ai, ai+1, . . . , am, 0, 0,

. . . , 0) for 1 ≤ i < m ≤ n, with ai �= 0 and am �= 0. If

lim sup
t→∞

r(1:m)(t)

r(1:i)(t)
< ∞, (3.6)

then ai > 0 and the hazard rate function, r , of T satisfies

lim
t→∞

r(t)

r(1:i)(t)
= 1.

Proof. In the exchangeable case, (2.1) yields

r(1:j)(t) = jφj (t), t ∈ R,

for j = 1, 2, . . . , n, where

φj (t) = r(1)(t, t, . . . , t︸ ︷︷ ︸
j times

, −∞, −∞, . . . ,−∞︸ ︷︷ ︸
n−j times

).

Hence, for j = i + 1, i + 2, . . . , m, we have

lim inf
t→∞

r(1:j)(t)

r(1:i)(t)
≥ lim inf

t→∞
r(1:i+1)(t)

r(1:i)(t)
= i + 1

i
lim inf
t→∞

φi+1(t)

φi(t)
≥ i + 1

i
> 1, (3.7)

where the first inequality follows from (2.10) and the second inequality follows from (2.9).
Furthermore, from (2.10) and (3.6) we see that

lim sup
t→∞

r(1:j)(t)

r(1:i)(t)
< ∞, j = i + 1, i + 2, . . . , m.

Since the survival function, F̄ , of T satisfies (3.1), it follows from Lemma 3.2 that ai > 0, and
it follows from Lemma 3.3 that limt→∞(r(t)/r(1:i)(t)) = 1.

Note that (3.6) can also be written as lim supt→∞(φm(t)/φi(t)) < ∞.
In Example 3.2 below it is shown that for every choice of i, m, and n with 1 ≤ i < m ≤ n,

there exists an absolutely continuous, exchangeable random vector (X1, X2, . . . , Xn) such
that (2.9) and (3.6) hold. Thus, every coherent system has a minimal signature of the form
(0, 0, . . . , 0, ai, ai+1, . . . , am, 0, 0, . . . , 0), with ai > 0 and am �= 0. Common examples are
the k-out-of-n systems; for such systems the minimal signature is of the form above with i = k

and ak = (
n
k

)
. The lifetime of a k-out-of-n system with component lifetimes X1, X2, . . . , Xn

is X(n+k−1:n). Thus, from Theorem 3.1 we obtain the following corollary.
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Corollary 3.1. Let (X1, X2, . . . , Xn) be an absolutely continuous, exchangeable random
vector satisfying (2.9). Let 1 ≤ k ≤ n. If

lim sup
t→∞

r(1:n)(t)

r(1:k)(t)
< ∞ (3.8)

then

lim
t→∞

r(n−k+1:n)(t)

r(1:k)(t)
= 1.

Below we will see a typical example in which (2.9) and (3.8) hold, and in which the limit
limt→∞ r(1:k) is both finite and easy to compute (see Example 3.2, which includes as a special
case that in which X1, X2, . . . , Xn are independent and identically distributed exponential
random variables). Then, from Corollary 3.1 we will be able to obtain limt→∞ r(n−k+1:n)(t)

explicitly (i.e. limt→∞ r(n−k+1:n)(t) will be equal to limt→∞ r(1:k)(t)).
A variation of Theorem 3.1 is the following.

Theorem 3.2. Let (X1, X2, . . . , Xn) be an absolutely continuous, exchangeable random
vector satisfying (2.9). Let T = τ(X1, X2, . . . , Xn), where τ is a coherent life function.
Suppose that the minimal signature of τ is of the form (0, 0, . . . , 0, ai, ai+1, . . . , am, 0, 0,

. . . , 0) for 1 ≤ i < m ≤ n, with ai �= 0 and am �= 0. If

lim
t→∞

r(1:j)(t)F̄(1:j)(t)

r(1:i)(t)F̄(1:i)(t)
= 0, j = i + 1, . . . , m, (3.9)

then ai > 0 and the hazard rate function, r , of T satisfies

lim
t→∞

r(t)

r(1:i)(t)
= 1.

Proof. From the proof of Theorem 3.1 it follows that (3.7) holds. Thus, by Lemma 3.4, the
inequalities (3.7) and (3.9) imply the stated result.

Note that the limit in (3.9) can be written as limt→∞(f(1:j)(t)/f(1:i)(t)) = 0, where f(1:j)

and f(1:i) are respectively the density functions of X(1:j) and X(1:i).
Also note that if (2.9) holds then (3.6) implies (3.9). Thus, Theorem 3.2 is a stronger result

than is Theorem 3.1. In fact, the implication just mentioned is strict; this will be seen in
Example 3.1. Here we state both Theorems 3.1 and 3.2 because sometimes it is easier to verify
the stronger condition, (3.6), than it is to verify (3.9).

We now give a few examples in which the conditions of Theorems 3.1 and 3.2 are satisfied,
and in which the conclusions of these theorems can therefore be applied.

Example 3.1. Let (X1, X2) have the Gumbel exponential distribution with survival function
given by

F̄ (x1, x2) = exp{−x1 − x2 − θx1x2}, x1 ≥ 0, x2 ≥ 0,

where 0 ≤ θ ≤ 1. Here, for t ≥ 0, we have r(1)(t, 0) = 1 ≤ 1 + θt = r(1)(t, t), so (2.9) holds.
Also,

r(1:1)(t) = 1 and r(1:2)(t) = 2 + 2θt, t ≥ 0.

Hence,
r(1:2)(t)F̄(1:2)(t)

r(1:1)(t)F̄(1:1)(t)
= (2 + 2θt)e−t−θt2 → 0 as t → ∞,
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so (3.9) holds and Theorem 3.2 thus applies. The tail behaviour of the lifetime of a parallel
system (whose minimal signature is (2, −1)) with component lifetimes X1 and X2 is therefore
the same as the behaviour of an exponential random variable with rate 1.

Note that here, when θ > 0, we have

lim
t→∞

r(1:2)(t)

r(1:1)(t)
= lim

t→∞(2 + 2θt) = ∞,

meaning that (3.6) does not hold. This shows that when (2.9) holds, (3.6) is a strictly stronger
condition than is (3.9).

Example 3.2. Let (X1, X2, . . . , Xn) have a Farlie–Gumbel–Morgenstern distribution with
standard exponential marginals; that is, suppose that the survival function of (X1, X2, . . . , Xn)

is given by

F̄ (x1, x2, . . . , xn) = e− ∑n
i=1 xi

(
1 + α

n∏
i=1

(1 − e−xi )

)
, (x1, x2, . . . , xn) ≥ (0, 0, . . . , 0),

where |α| ≤ 1. It is not hard to verify that if α ≤ 0 then (2.9) holds (for example, it is not hard
to verify that F̄ is RR2 in pairs).

For j < n, every j -dimensional marginal distribution of F̄ is the joint distribution of j

independent standard exponential random variables. Therefore,

r(1:j)(t) = j, j = 1, 2, . . . , n − 1.

A straightforward computation yields

r(1:n)(t) = n − αne−t (1 − e−t )n−1

1 + α(1 − e−t )n
.

Note that limt→∞ r(1:n)(t) = n. Therefore,

lim
t→∞

r(1:m)(t)

r(1:i)(t)
= m

i
< ∞, 1 ≤ i < m ≤ n,

meaning that (3.6) holds. Thus, Theorem 3.1 applies to (X1, X2, . . . , Xn).
For example, if r is the hazard rate function of, say, System 2 of Table 2, with component

lifetimes, X1, X2, X3, and X4, that have the above survival function (with n = 4), then, by
Theorem 3.1, limt→∞(r(t)/r(1:3)(t)) = 1. Hence, limt→∞ r(t) = 3. Furthermore, if r is the
hazard rate function of a k-out-of-n system with component lifetimes X1, X2, . . . , Xn as above,
then, by Corollary 3.1, limt→∞(r(t)/r(1:k)(t)) = 1. Hence, limt→∞ r(t) = k.

Note that if α = 0 then X1, X2, . . . , Xn are independent and identically distributed
exponential random variables. Thus, the above limits apply to systems with independent and
identically distributed exponential component lifetimes.

Example 3.3. Let (X1, X2, . . . , Xn) have the Farlie–Gumbel–Morgenstern distribution with
gamma(2) marginals; that is, suppose that the survival function of (X1, X2, . . . , Xn) is given by

F̄ (x1, x2, . . . , xn) =
( n∏

i=1

(1 + xi)

)
e− ∑n

i=1 xi

(
1 + α

n∏
i=1

(1 − (1 + xi)e
−xi )

)
,

(x1, x2, . . . , xn) ≥ (0, 0, . . . , 0),

where |α| ≤ 1. It is not hard to verify that if α ≤ 0 then (2.9) holds.
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For j < n, every j -dimensional marginal distribution of F̄ is the joint distribution of j

independent gamma(2) random variables. Therefore,

r(1:j)(t) = j t

1 + t
, j = 1, 2, . . . , n − 1.

A straightforward computation yields

r(1:n)(t) = n − n

1 + t
− αnte−t (1 − (1 + t)e−t )n−1

1 + α(1 − (1 + t)e−t )n
.

Note that
lim

t→∞ r(j :n)(t) = j, j = 1, 2, . . . , n.

Therefore,

lim
t→∞

r(1:m)(t)

r(1:i)(t)
= m

i
< ∞, 1 ≤ i < m ≤ n,

meaning that (3.6) holds. Thus, Theorem 3.1 applies to (X1, X2, . . . , Xn).

Using Theorem 2.1 (rather than Corollary 2.1), Theorem 3.1 can be generalized to the case in
which the distribution function of (X1, X2, . . . , Xn) is not necessarily exchangeable, as follows.
Recall from Section 2 that rP denotes the hazard rate function of mini∈P Xi .

Theorem 3.3. Let (X1, X2, . . . , Xn) be an absolutely continuous random vector satisfying
(2.2). Let T = τ(X1, X2, . . . , Xn), where τ is a coherent life function with minimal path sets
P1, P2, . . . , Ps . If

lim inf
t→∞

rPi
(t)

rP1(t)
> 1, i = 2, 3, . . . , s, (3.10)

and

lim sup
t→∞

r{1,2,...,n}(t)
rP1(t)

< ∞, (3.11)

then the hazard rate function, r , of T satisfies

lim
t→∞

r(t)

rP1(t)
= 1.

Proof. For A ⊆ {1, 2, . . . , n}, let PA = ⋃
k∈A Pk . Let A be such that PA �= P1. By (2.3),

we have
rPA

(t) ≥ max
k∈A

rPk
(t) for all t ≥ 0.

Thus, by (3.10),

lim inf
t→∞

rPA
(t)

rP1(t)
> 1 for all A ⊆ {1, 2, . . . , n}, PA �= P1.

Furthermore, by (2.3) we also have

r{1,2,...,n}(t) ≥ rPA
(t) for all A ⊆ {1, 2, . . . , n}.

Thus, by (3.11),

lim sup
t→∞

rPA
(t)

rP1(t)
≤ lim sup

t→∞
r{1,2,...,n}(t)

rP1(t)
< ∞ for all A ⊆ {1, 2, . . . , n}, PA �= P1.
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Let Ḡ denote the survival function of T . Then, by Equation (3.1) of Block et al. (2003),

Ḡ(t) =
∑

A⊆{1,2,...,n}
(−1)|A|+1ḠPA

(t),

where |A| denotes the cardinality of A; i.e. Ḡ is a generalized mixture of the ḠPA
. The stated

result now follows from Lemma 3.3.

It is worth mentioning that if the limits limt→∞(rPi
(t)/rP1(t)), i = 2, 3, . . . , s, exist, then,

under (3.11), the conclusion of Theorem 3.3 holds if (3.10) is replaced by the weaker condition

lim inf
t→∞

rPi
(t)

rP1(t)
≥ 1, i = 2, 3, . . . , s.

We omit the technical proof of this observation.
It is also worth mentioning that, under (3.10), the conclusion of Theorem 3.3 also holds if

(3.11) is replaced by the weaker condition (recall the notation PA = ⋃
k∈A Pk)

lim
t→∞

rPA
(t)ḠPA

(t)

rP1(t)ḠP1(t)
= 0 for all A ⊆ {1, 2, . . . , n}, PA �= P1,

or, equivalently, by

lim
t→∞

gPA
(t)

gP1(t)
= 0 for all A ⊆ {1, 2, . . . , n}, PA �= P1,

where gPA
and gP1 are the density functions of mini∈PA

Xi and mini∈P1 Xi , respectively.

Example 3.4. Let (X1, X2, . . . , Xn) have a Farlie–Gumbel–Morgenstern distribution with
(not necessarily identical) exponential marginals; that is, suppose that the survival function
of (X1, X2, . . . , Xn) is given by

F̄ (x1, x2, . . . , xn) = e− ∑n
i=1 λixi

(
1+α

n∏
i=1

(1−e−λixi )

)
, (x1, x2, . . . , xn) ≥ (0, 0, . . . , 0),

where λi > 0, i = 1, 2, . . . , n, and |α| ≤ 1. It is not hard to verify that if α ≤ 0 then (2.2)
holds.

For j < n, every j -dimensional marginal distribution of F̄ is the joint distribution of j

independent exponential random variables. Therefore,

rP (t) =
∑
j∈P

λj for all P ⊂ {1, 2, . . . , n}, P �= {1, 2, . . . , n}.

A straightforward computation yields

r{1,2,...,n}(t) =
n∑

i=1

λi − α
∑n

i=1(e
−λi t

∏
j �=i (1 − e−λj t ))

1 + α
∏n

i=1(1 − e−λi t )
.

Note that limt→∞ r{1,2,...,n}(t) = ∑n
i=1 λi . Therefore, (3.11) holds. Thus, Theorem 3.3 applies

to (X1, X2, . . . , Xn) in the sense that∑
j∈Pi

λj >
∑
j∈P1

λj , i = 2, 3, . . . , s �⇒ lim
t→∞ r(t) =

∑
j∈P1

λj .
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For example, consider the series–parallel system of Table 1 with component lifetimes, X1,
X2, and X3, that have the above survival function (with n = 3). The minimal path sets of this
system are {1, 2} and {1, 3}. Thus, from Theorem 3.3 we obtain

lim
t→∞ r(t) = min{λ1 + λ2, λ1 + λ3} = λ1 + min(λ2, λ3),

provided that λ2 �= λ3. By letting λ2 → λ3 (or by using the observation following
Theorem 3.3) it can be shown that the above limit holds also when λ2 = λ3.

It can similarly be shown, for the parallel–series system of Table 1 with component
lifetimes, X1, X2, and X3, that have the above survival function (with n = 3), that

lim
t→∞ r(t) = min{λ1, λ2 + λ3}.

If r is the hazard rate function of a k-out-of-n system, then the minimal path sets are all the
subsets of {1, 2, . . . , n} of cardinality k. Suppose that the component lifetimes X1, X2, . . . , Xn

have the above survival function with λ1 ≤ · · · ≤ λk < λk+1 ≤ · · · ≤ λn. Then, from
Theorem 3.3, we obtain

lim
t→∞ r(t) = λ1 + λ2 + · · · + λk.

Again, by letting λk+1 → λk (or by using the observation following Theorem 3.3) it can be
shown that the above limit holds also when λk+1 = λk .

3.2. Some results based on the Samaniego signature

For exchangeable component lifetimes, Theorems 3.1 and 3.2 describe the tail behaviour
of the system hazard rate function in terms of some series system. These theorems are based
on the notion of minimal signatures. In this subsection we obtain a similar result based on the
Samaniego signature.

Samaniego (1985) defined the signature of a coherent life function τ with component
lifetimes X1, X2, . . . , Xn as the vector, p = (p1, p2, . . . , pn), with

pi = P{τ(X1, X2, . . . , Xn) = X(i:n)}, i = 1, 2, . . . , n.

Kochar et al. (1999) studied this notion further. It was shown that if X1, X2, . . . , Xn are
absolutely continuous, independent, and identically distributed, then

pi = number of orderings of X1, . . . , Xn for which the ith failure causes system failure

n! ,

i = 1, 2, . . . , n. (3.12)

In this case the system lifetime survival function, F̄ , is a mixture of the corresponding order
statistic survival functions F̄(i:n) with weights pi , as follows:

F̄ (t) =
n∑

i=1

piF̄(i:n)(t), t ∈ R. (3.13)

The Samaniego signatures of all the systems with three or four components are listed in Shaked
and Suarez-Llorens (2003). Navarro et al. (2005) noted that (3.12) and (3.13) continue to hold
when the components have an absolutely continuous, exchangeable joint distribution.
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Theorem 3.4. Let (X1, X2, . . . , Xn) be an absolutely continuous, exchangeable random
vector satisfying (2.9). Let T = τ(X1, X2, . . . , Xn), where τ is a coherent life function.
Suppose that the Samaniego signature of τ is of the form (p1, p2, . . . , pj , 0, . . . , 0) for 1 ≤
j ≤ n, with pj > 0. If

lim sup
t→∞

r(1:n)(t)

r(1:n−j+1)(t)
< ∞ (3.14)

then the hazard rate function, r , of T satisfies

lim
t→∞

r(t)

r(j :n)(t)
= 1.

Proof. If (2.9) holds then (2.10) holds. Therefore, for n − j + 1 ≤ s ≤ n, we have

r(1:n)(t)

r(1:s)(t)
≤ r(1:n)(t)

r(1:n−j+1)(t)
, t ∈ R.

It follows from (3.14) that

lim sup
t→∞

r(1:n)(t)

r(1:s)(t)
< ∞, n − j + 1 ≤ s ≤ n. (3.15)

From Corollary 3.1 we thus obtain

lim
t→∞

r(n−s+1:n)(t)

r(1:s)(t)
= 1, n − j + 1 ≤ s ≤ n,

or, equivalently,

lim
t→∞

r(m:n)(t)

r(1:n−m+1)(t)
= 1, 1 ≤ m ≤ j. (3.16)

Now write

r(m:n)(t)

r(m+1:n)(t)
= r(1:n−m+1)(t)

r(1:n−m)(t)

r(m:n)(t)

r(1:n−m+1)(t)

r(1:n−m)(t)

r(m+1:n)(t)
, t ∈ R, 1 ≤ m ≤ j − 1. (3.17)

By letting t → ∞ in (3.17) and using (3.16), we see that

lim inf
t→∞

r(m:n)(t)

r(m+1:n)(t)
= lim inf

t→∞
r(1:n−m+1)(t)

r(1:n−m)(t)
, 1 ≤ m ≤ j − 1.

From (3.7) (which, by (2.9) and (2.10), holds for all j and i with 1 ≤ j < i ≤ n, using the
notation of (3.7)), we see that lim inf t→∞(r(1:n−m+1)(t)/r(1:n−m)(t)) > 1. Hence,

lim inf
t→∞

r(m:n)(t)

r(j :n)(t)
≥ lim inf

t→∞
r(m:n)(t)

r(m+1:n)(t)
lim inf
t→∞

r(m+1:n)(t)

r(m+2:n)(t)
· · · lim inf

t→∞
r(j−1:n)(t)

r(j :n)(t)
> 1,

1 ≤ m ≤ j − 1. (3.18)

Again by letting t → ∞ in (3.17) and using (3.16), we see that

lim sup
t→∞

r(m:n)(t)

r(m+1:n)(t)
= lim sup

t→∞
r(1:n−m+1)(t)

r(1:n−m)(t)
, 1 ≤ m ≤ j − 1.
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Also, by (2.10) and (3.15),

lim sup
t→∞

r(1:n−m+1)(t)

r(1:n−m)(t)
≤ lim sup

t→∞
r(1:n)(t)

r(1:n−m)(t)
< ∞, 1 ≤ m ≤ j − 1.

Therefore,

lim sup
t→∞

r(m:n)(t)

r(m+1:n)(t)
< ∞, 1 ≤ m ≤ j − 1.

Hence,

lim sup
t→∞

r(m:n)(t)

r(j :n)(t)
≤ lim sup

t→∞
r(m:n)(t)

r(m+1:n)(t)
lim sup

t→∞
r(m+1:n)(t)

r(m+2:n)(t)
· · · lim sup

t→∞
r(j−1:n)(t)

r(j :n)(t)
< ∞,

1 ≤ m ≤ j − 1. (3.19)

We now apply Lemma 3.3 to the mixture (3.13), with (3.18) and (3.19) playing the roles of
(3.3) and (3.4) in that lemma. This yields the stated result.

An interesting relationship between the Samaniego signature and the minimal signature
follows from Theorems 3.1 and 3.4, as described in the next result.

Theorem 3.5. Suppose that the Samaniego signature of a coherent system is of the form
(p1, p2, . . . , pj , 0, 0, . . . , 0) for 1 ≤ j ≤ n, with pj > 0, and that the minimal signature
of the same system is of the form (0, 0, . . . , 0, ai, ai+1, . . . , an) for 1 ≤ i ≤ n, with ai > 0.
Then i + j = n + 1.

Proof. Example 3.2 shows that there exists an absolutely continuous, exchangeable random
vector such that (2.9) holds, and also such that (3.6) holds for all i and m with 1 ≤ i ≤ m ≤ n.
It follows that, for this random vector, (3.8) holds for all k, 1 ≤ k ≤ n, and (3.14) holds for
all j, 1 ≤ j ≤ n. Moreover, in this example limt→∞ r(1:i)(t) = i, i = 1, 2, . . . , n. Hence,
a combination of the conclusions of Theorem 3.1, Corollary 3.1, and Theorem 3.4 yields the
stated result.
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