
wind-driven suspension of bioparticles, dust and sea 
spray, volcanic eruptions, wildfi res and fossil fuel or 
biofuel combustion [5]. Secondary particle formation 
in the atmosphere proceeds through gas-to-particle 
conversion by chemical transformation, nucleation 
and condensation of gaseous precursors like volatile 
organic compounds (VOC) and sulphur gases [6]. As 
shown in Figure 1, fi ne particles with diameters in the 
range from about 1 nm – 1  μ m consist predominantly 
of sulphate, secondary organic aerosol and soot with 
typical number concentrations of the order of 10 3  
cm  �    3  in urban air [5]. Coarse particles with dia meters 
larger than 1  μ m are mostly dust, sea salt, and biopar-
ticles, with typical number concentrations  �    1 cm  �    3 . 
Note that technically there are different cut-off diam-
eters of 1, 2.5 and 10  μ m between fi ne and coarse 
particles. Cloud and fog droplets are in the same size 
range as coarse aerosol particles, but in atmospheric 
science, they are treated separately as they consist 
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 Abstract 
 This review outlines recent advances in the investigation of the chemical properties, molecular interactions and health effects 
of hazardous compounds in atmospheric aerosols, in particular reactive oxygen species (ROS), soot, polycyclic aromatic 
compounds (PACs) and allergenic proteins. Epidemiological studies show correlations between air particulate matter and 
adverse health effects of air pollution including allergy, asthma, cardiovascular and respiratory diseases, but the causative 
relations and mechanisms of interaction on the molecular level are still unclear. ROS generated by photochemical and het-
erogeneous reactions in the atmosphere seem to play a key role in aerosol health effects and provide a direct link between 
atmospheric and physiological multiphase processes. Soot and PACs can trigger formation of ROS  in vivo , leading to infl am-
mation and cellular damage. PACs as well as allergenic proteins are effi ciently oxygenated and nitrated upon exposure to 
ozone and nitrogen dioxide, which leads to an enhancement of their toxicity and allergenicity.  

  Keywords:   ozone  ,   nitrogen dioxide  ,   tyrosine nitration  ,   pollen allergy  ,   air pollution   

  Introduction 

 Aerosols consist of small particles that are suspended 
in a gas. They are ubiquitous in the atmosphere and 
play a central role in the Earth system, climate and 
public health. Aerosol particles serve as nuclei for 
cloud droplets and ice crystals involved in the forma-
tion of clouds and precipitation, they can scatter or 
absorb radiation affecting the Earth ’ s energy balance, 
and they participate in heterogeneous and multi-
phase chemical reactions affecting the abundance and 
distribution of trace gases [1]. Bioaerosol particles 
like airborne bacteria, fungal spores, pollen and 
viruses play an important role in the spread and prop-
agation of biological organisms and ecosystems. 
Moreover, the inhalation of pathogenic or toxic par-
ticles can cause diseases and oxidative stress posing a 
threat to public health [2 – 4]. 

 Primary aerosol particles are emitted from a wide 
range of natural and anthropogenic sources, including 
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mostly of water [2]. Particles larger than about 100 
 μ m are usually not regarded as aerosols, because they 
are rapidly lost by sedimentation [2]. 

 In the atmosphere, aerosol particles undergo phys-
ical and chemical transformation (aging) such as 
coagulation, condensation and chemical reactions 
leading to changes of particle size, morphology, phase 
states and chemical composition. Cloud and fog pro-
cessing are effi cient ways of particle aging that occur 
when water vapour condenses on aerosol particles 
that serve as nuclei for cloud or fog droplets and ice 
crystals [2]. If the clouds or fogs evaporate rather than 
precipitate, the transformed particles are again 
released to the atmosphere. Key processes of chemi-
cal aging are reactions with atmospheric oxidants 
such as ozone, nitrogen dioxide, hydroxyl, nitrate and 
halogen radicals [7]. The reactants are partitioned 
between gas and particle phase depending on the 
volatility, and heterogeneous or multi-phase chemical 
reactions can occur at the interface and in the bulk 
of gas, liquid and solid phases. These processes can 
signifi cantly alter the chemical composition and prop-
erties of aerosols such as hygroscopicity, volatility, 
toxicity and allergenicity [8]. Therefore, it is essential 
to understand and quantify the chemical aging of 
aerosols for reliable assessment of the effects of air 
pollution on public health. 

 Ozone is one of the most abundant atmospheric 
photo-oxidants, and it is central to the formation of 
reactive oxygen species (ROS) in atmospheric aero-
sols as discussed below (Section on ROS). In the 
lower atmosphere, ozone is mostly produced through 
photochemical reactions involving nitrogen oxides 
(NO x ) and VOC, including methane and non-methane 
hydrocarbons (NMHCs) [9,10]. Motor vehicles and 
the combustion of fossil fuels are major sources of 
NO x  and anthropogenic NMHCs including alkenes 
and aromatic hydrocarbons. Biogenic NMHCs such 
as isoprene and terpenes are emitted from the vegeta-
tion [11,12]. The typical surface concentration of 
ozone is  ∼ 30 ppb (parts per billion, 10  �    9 ) in rural 
areas, and it can be as high as 100 – 400 ppb in pol-
luted urban air [5]. Near-surface ozone concentra-
tions have increased over the past decades globally 
and, especially, in densely populated areas of Europe 

and East Asia [13], which can be explained by 
enhanced anthropogenic emissions and atmospheric 
photochemistry [14 – 17]. This is not just a local but 
indeed a regional and global phenomenon. In Tokyo, 
for example, an increase of ozone is observed and 
likely due to the outfl ow of polluted air from conti-
nental Asia [18 – 20], although local emissions of NO x  
and NMHCs are decreasing due to air quality control 
regulations [21]. 

 Epidemiological studies show clear correlations 
between fi ne particulate matter (PM) in the polluted 
air and adverse health effects including cardiovascu-
lar, respiratory and allergic diseases [22 – 25]. Expo-
sure to high concentration of aerosol particles 
including soot, sulphate, organics and dust can lead 
to infl ammation and damage to cellular proteins and 
DNA [3,26 – 31]. Moreover, inhalation of transition 
metals such as copper and iron, or organic compounds 
such as soot and polycyclic aromatic compounds 
(PACs) can trigger the formation of free radicals and 
ROS  in vivo,  which can cause oxidative stress, cell 
death, biological aging and diseases [32]. 

 Asthma and allergies are major health problems in 
most modern societies, and numerous studies indi-
cate that allergic diseases have been increasing during 
the past decades [33 – 36]. The reasons for the increase 
in allergic diseases are still unclear. There are several 
hypotheses such as increased awareness and improved 
diagnostics, genetic susceptibility, psycho-social infl u-
ences, nutrition, hygiene hypothesis, underlying dis-
ease and environmental pollution, which are discussed 
by several authors in more detail [35,37 – 41]. Immune 
responses can be affected by air pollutants including 
atmospheric particles, semi-volatile hydrocarbons 
and exhaust gases, which drive pro-allergic infl amma-
tion through the generation of oxidative stress [42]. 
Traffi c-related air pollution with ozone, nitrogen 
dioxide, sulphur dioxide and PM appears to link cel-
lular infl ammation, allergic diseases and childhood 
respiratory health [25,42 – 45]. However, the effects of 
air pollution on the occurrence of allergic diseases are 
complex and poorly understood [35]. 

 In the following sections, we review the important 
hazardous atmospheric aerosol components: ROS, 
soot and polycyclic aromatic hydrocarbons (PAHs) 

Clouds & Fog Precipitation g
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Molecules 
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 Figure 1.     Size range of atmospheric aerosols and hydrometeors.  
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and allergenic proteins. Especially, we focus on for-
mation and chemical transformation of such hazard-
ous compounds.   

 Reactive oxygen species 

 ROS play an important role in atmospheric chemistry 
as well as in physiological processes; ozone photo-
chemistry, oxidative self-cleaning of the atmosphere, 
biological aging, metabolism and oxidative stress 
[2,46,47]. The narrow defi nition of ROS includes sin-
glet oxygen ( 1 O 2 ), superoxide radical (O 2  

 �  ), hydrogen 
peroxide (H 2 O 2 ), hydroperoxyl (HO 2 ) and hydroxyl 
radical (  ·  OH). In physiology and biochemistry, the 
umbrella term ROS has been broadly defi ned to com-
prise a wide range of oxygen-centred and related free 
radicals, ions and molecules, including organic 
hydroperoxide (ROOH), organic peroxy radical 
(RO 2  

 ·  ), phenoxy radical (RO  ·  ), ozonide (OZ) and 
hypochlorite ion (OCl  �  ) [46 – 48]. The biomedical 
defi nition of ROS also includes reactive nitrogen spe-
cies (RNS) like NO, NO 2  and ONO 2  

 �   [47]. In atmo-
spheric science; however, RNS are usually treated 
separately from oxy-, hydroxy- and peroxy radicals 
[5,8]. Reactive oxygen intermediates (ROIs) is the 
subset of ROS potentially involved in the reaction of 
ozone with surfaces, including organic and inorganic 
species with reactive oxygen atoms or groups (O, RO, 
RO 2 , etc.) [49]. 

 As shown in Figure 2, the physiological sources of 
ROS are intracellular metabolism and cytosolic 
enzymes. Toxins and therapeutics can also stimulate/
trigger the formation of ROS  in vivo . Once they are 
formed in the human body, they can cause oxidative 
stress, cell death, biological aging and various diseases 
[47]. The atmospheric sources are photochemistry 
and gas phase and multiphase reactions. ROS in the 

atmosphere may affect the chemical transformation 
of hazardous aerosol particles and formation and 
growth of secondary organic aerosol [49]. Moreover, 
different types of ROS are closely coupled by radical 
reactions and cyclic transformation [2,8]. The cou-
pling and exchange of atmospheric and physiological 
ROS can proceed through various interfaces like plant 
surfaces and the human respiratory tract (emission 
and deposition of trace gases and particle deposition). 
For example, the ROS in the atmosphere can eventu-
ally deposit to the lungs or skin and cause physiolog-
ical effects such as oxidative stress. 

 In the atmosphere, ROS are present both in the gas 
phase and particle phase. The sources of gas phase, 
ROS are photolysis of ozone and subsequent radical 
and multiphase reactions. Gas phase   ̇   OH are one of 
the most important oxidants in the atmosphere, and 
they play a major role in atmospheric cleaning capa-
city. However, due to their low concentration levels 
of ppt (parts per trillion, 10  �    12 ) and short lifetime of 
seconds [8], they may not cause adverse health effects 
directly. H 2 O 2  and ROOH are also ubiquitous in the 
atmosphere with concentration levels of ppb [8]. They 
are water soluble, hence partition between the gas 
phase and cloud droplets and fogs [50 – 52]. Several 
studies have measured the concentration of H 2 O 2  in 
the particle phase with a fl uorogenic probe. They 
reported the mass loadings of about 10 ng m  �    3  and 
the concentration is higher for smaller particles 
[50,53 – 55]. ROOH and organic peroxide (ROOR) 
are found to be major constituents of biogenic second-
ary organic aerosol (SOA) and aged organic aerosol 
[56 – 61]. Moreover, substantial amounts of particle-
bound ROS are found on biogenic SOA produced 
from  α -pinene, linalool and limonene in a laboratory 
chamber [62 – 64]. 

 Freshly fractured silica dust and welding fumes 
contain high concentration of free radicals [65 – 67]. 
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 Figure 2.     Illustration of the atmospheric and physiological sources, coupling and effects of reactive oxygen species (ROS) [adapted from 
Shiraiwa et al. 2011 [49].  
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The cigarette smoke, wood smoke and the smoke from 
plastics contain high concentration of free radicals and 
ROS [68,69]. The cigarette tar contains a semiqui-
none radical that is long-lived and stable enough to be 
directly observable by electron spin resonance (ESR) 
method [70]. Indeed large quantities of semiquinone 
radicals and other free radicals were found in ambient 
PM2.5 samples [71,72]. As shown in Figure 3, if 
atmospheric ROS is inhaled to human lung, they can 
directly cause oxidative stress. Moreover, the semiqui-
none radical reacts readily with molecular oxygen to 
generate O 2 , which is further converted into H 2 O 2  
through chemical disproportionation reaction. The 
generated H 2 O 2  interacts with metals such as Fe 3  �    
(Fenton reaction) leading to the formation of   ·  OH, 
which is very reactive and can cause damage to DNA, 
proteins, tissues and lipids [73]. 

 Aerosol particles contain chemical species that are 
capable of generating ROS upon deposition in the 
lung. For example, they contain transition metals 
such as iron, copper, chromium mercury, nickel and 
lead, whose natural sources are soil, crusts and sea, 
and whose anthropogenic sources are combustion, 
smelting and corrosion [74]. The most abundant 
transition metal in atmospheric aerosol is iron with 
mass concentration of  ∼ 1  μ g m  �    3  [74]. When parti-
cles with transition metals are inhaled, they can 
undergo Fenton-like reaction, resulting in the pro-
duction of ROS  in vivo  [75]. Indeed transition met-
al-enriched particles were found to exhibit strong 
cytotoxic effect [76]. Asbestos and other synthetic 
fi bres can also induce ROS and free radicals genera-
tion by catalysing the electron transfer reactions 
[77]. A class of organic molecules extracted from 
atmospheric aerosol particles and isolated from fog 
and cloud water is termed humic-like substances 
(HULIS) due to a certain resemblance to terrestrial 
and aquatic humic and fulvic acids [78,79]. HULIS 
represents up to 10% of total organic carbon in 

urban dust [78,79]. HULIS was found to be the 
major redox active constituent of the water-extract-
able organic fraction in PM and could be an active 
PM component in generating ROS [80 – 83]. 

 The atmospheric gas phase ozone is also known to 
induce synergistic harmful health effects to humans, 
animals and vegetation [84 – 87]. Biosurfaces are nat-
urally protected against ozone by fl uid fi lms contain-
ing antioxidants such as ascorbic acid, reduced 
glutathione, uric acid and  α -tocopherol, which scav-
enge ozone and ROS before they reach the underlying 
tissues [88 – 91]. However, the oxidative aggression of 
ozone and ROS could be still transduced across 
epithelial-lining fl uids (ELF) [92 – 94] by secondary 
oxidants such as secondary ozonide, epoxide and 
ROOR, generated in the ozonolysis of antioxidants 
and surfactant protein [95 – 100]. These secondary 
oxidants are stable enough to diffuse through ELF 
layers toward the biomembranes in a few microsec-
onds which can trigger infl ammatory responses 
[92,101,102]. The formation of such persistent sec-
ondary oxidants is enhanced especially in acidic con-
ditions (pH  ≈  5) [95,97]. Therefore, antioxidants, 
otherwise effi cient ozone scavenger under normal 
physiological conditions, may gradually lose its reac-
tivity in ELF layers that become locally acidifi ed 
by simultaneous inhalation of acidic airborne parti-
cles or by pre-existent pathologies such as asthma 
[95,103,104].   

 Soot and polycyclic aromatic compounds 

 Soot and PACs are one of the most prominent groups 
of toxic air pollutants related to health effects. Soot 
is the black solid product of incomplete combustion 
or pyrolysis of organic hydrocarbons, and it contains 
various amounts of organics including PACs, alkenes 
and carboxylic acids [105 – 107]. Soot and PACs are 
known to have high carcinogenic, mutagenic and 
allergenic potentials [8,31]. They are emitted from 
diesel exhaust, smoke and incomplete combustion 
and are in the submicron size range that can pene-
trate deep into human lungs [8]. 

 Many epidemiological, human and animal model 
studies have shown that diesel exhaust particles 
including soot and PACs can trigger the formation of 
ROS  in vivo  and increase airway infl ammation and 
exacerbate and initiate asthmas and allergy [25,108]. 
It is suggested that redox-cycling activity and toxicity 
of particles may be enhanced as they chemically age 
by oxidants like ozone [109]. Moreover, chemical 
transformation of PACs leads to the formation of oxy-
genated or nitrated derivatives (quinones, phenols, 
epoxides, lactones, etc.) which have enhanced toxicity 
[8,110 – 114]. Therefore, it is important to understand 
and quantify the chemical transformation of PACs in 
the atmosphere. 

Atmospheric Formation of ROS Emission/Formation of toxics  

- gas phase 
- aerosol particles 
- rain, clouds and fog

- gas phase (O3, NO2 ,etc)
- soot, PAHs, quinones, HULIS
- transition metals (Fe, Cu, etc.)
- asbestos, fly ash

Inhalation into lung

Formation of ROS
inhalation of ROS into lung

- Fenton reaction
- redox cycling reactions 

Damage to DNA, proteins, tissues, lipids

  Figure 3.     Two pathways for the formation of reactive oxygen species 
(ROS) in the lung: direct inhalation of ROS from the atmosphere 
and  in vivo  formation of ROS triggered by inhaled aerosol particles.  
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 Many laboratory studies have investigated the het-
erogeneous reaction of ozone with PAHs adsorbed on 
soot and other substrates [115 – 119]. Figure 4 shows 
the schematics of the gas-particle interaction between 
benzo[a]pyrene (BaP) on soot surface and ozone, 
nitrogen dioxide and water vapour. BaP is one of the 
most powerful carcinogens among PAHs, and it con-
sists of fi ve aromatic rings. The adsorption of ozone 
can be measured by analysing the gas phase ozone 
concentration, and the surface reaction rate can be 
obtained by the particle analysis. The results show a 
non-linear dependence of the fi rst-order PAH decay 
rate coeffi cient on gas phase ozone concentration. 
This observation is consistent with a Langmuir – Hin-
shelwood (LH) reaction mechanism, in which fi rst 
ozone adsorbs to the surface and then reacts with 
PAH [120]. 

 The ozone surface residence time (desorption life-
time) inferred from kinetic data, assuming a simple 
LH reaction between adsorbed ozone and surface 
PAH, are in the range of milliseconds to 10 seconds. 
However, according to quantum mechanical calcula-
tions based on density functional theory (DFT), the 
desorption lifetime of ozone on PAH should be only 
nanoseconds [121], which is more than six orders of 
magnitude less than the experimental values. Shiraiwa 
et al. (2011) [49] has resolved this discrepancy using 
the kinetic surface model [122] showing that adsorbed 
ozone decomposed to a long-lived reactive oxygen 
intermediate (ROI), which is a chemisorbed oxygen 
atom bound to the delocalized   π   electrons of an aro-
matic surface. The chemical lifetime of ROI exceeds 

100 seconds, and ROI can react with PAH to form 
stable products, for example, quinones and phenols. 

 ROIs can be directly inhaled by human beings as 
they are long-lived, and they can directly cause oxi-
dative stress because they are reactive. The quinones, 
primary products of heterogeneous reactions, are 
highly reactive organic chemical species that interact 
with biological systems by reducing oxygen to ROS, 
which promotes infl ammatory, anti-infl ammatory 
and anticancer actions to induce toxicities [112]. 
The mass loadings of quinones in suspended aerosol 
particle are typically 0.01 – 1 ng m  �    3  [123]. The qui-
nones can be directly emitted into the atmosphere 
from incomplete combustion sources [124]. Some 
studies reported a correlation between concentra-
tion of quinones and NO x  and O 3 , confi rming the 
secondary formation of quinones via heterogeneous 
reactions in the atmosphere [125,126]. The model-
ling studies suggest that the timescale of turnover of 
PAHs via ozone, nitrogen dioxide, hydroxyl and 
nitrate radicals range from a few minutes on the 
surface of soot [122,127,128] to multiple hours on 
organic and inorganic solid particles and days on 
liquid particles [122].   

 Allergenic proteins 

 Primary biological aerosol particles (PBAPs) such as 
pollen, fungal spores, bacteria, biogenic polymers and 
debris from larger organisms are known to infl uence 
atmospheric chemistry and physics, the biosphere 
and public health. PBAPs account for up to  ∼ 30% of 
fi ne and up to  ∼ 70% of coarse particulate matter in 
urban, rural and pristine environment [129]. Proteins 
account for up to  ∼ 5% of urban air particulate matter 
and can be found in coarse biological particles such 
as pollen grains (diameter  �    10  μ m) as well as in the 
fi ne fraction of air particulate matter with fi ne frag-
ments of pollen, microorganisms or plant debris and 
mixing of proteins in rain water with fi ne soil and road 
dust particles [45,130 – 132]. Some of these bioaero-
sols are known to be allergenic and their important 
sources are wind-dispersed pollen grains from trees, 
grasses, and weeds, followed by excretions of house 
dust mites and cockroaches, fungal spores, animal 
dender and insect venoms. Type 1 hypersensitivity 
such as allergic rhinitis and allergic asthma are medi-
ated by the production of IgE antibodies against, in 
principle, harmless proteins (allergens) [133]. 

 Pollen allergy has become a global problem and the 
rapid prevalence of respiratory allergenic reactions 
induced by pollens has been on increase over the past 
decades [134 – 136]. Many studies have demonstrated 
that urbanization with high levels of air pollution are 
correlated with the increasing frequency of pollen-
induced respiratory allergy and people living in urban 
areas tend to be more affected by pollen allergy than 

  Figure 4.     Schematic illustration of the chemical transformation 
of benzo[a]pyrene (BaP) on soot by gas phase ozone, nitrogen 
dioxide and water vapour: reversible and competitive adsorption 
of gas species followed by surface reactions [adapted from P ö schl 
2002 [111]].  
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people living in rural areas [137 – 141]. Air pollution 
associated with ozone, nitrogen dioxide, sulphur diox-
ide, and particulate matter can interact with pollen 
grains, leading to increased release of antigens char-
acterized by modifi ed allergenicity [134,142]. More-
over, the interaction between pollens and particular 
diesel exhaust particles or dust can cause an adjuvant 
immunological effect on IgE synthesis in atopic sub-
jects [134,143]. Additionally, the bioavailability of 
pollen allergens is infl uenced by environmental fac-
tors such as light intensity, temperature and humidity 
[25,144 – 146]. 

 Recent laboratory experiments have shown that 
ozone and nitrogen dioxide can promote the nitration 
of protein molecules in polluted urban air [49,131,147]. 
Indeed, nitrated proteins were detected in dust sam-
ples from various urban environments [131]. The 
nitration reaction leads to the addition of nitro-groups 
on the aromatic rings of tyrosine residues in the poly-
peptide chain. This post-translational modifi cation 
can enhance the allergenic potential of proteins like 
the birch pollen allergen Bet v 1 [148], and it has also 
been shown that food allergens like the egg allergen 
ovalbumin (OVA) showed enhanced allergenicity after 
nitration [149]. Inhalation and deposition of these 
nitrated proteins in the human respiratory tract may 
lead to the adverse health effects. Accumulating data 
suggest a strong link between protein 3-nitrotyrosine 
and the mechanism involved in disease development 
[150]. This post-translational modifi cation provides a 
molecular rationale for the enhancement of allergic 
diseases by traffi c-related air pollution in urban and 
rural environments, which has been observed in epi-
demiological studies but remains to be elucidated on 
a molecular level [131,133,148]. 

 Nitration of proteins naturally occurs during infl am-
mation, oxidative stress and aging. Nitration may 
serve to optimize immune responses and has been 
reported in association with at least 50 diseases such 
as asthma, Alzheimer ’ s disease or diabetes [151]. 
Under physiological conditions the reaction between 
free nitrogen oxide radicals (NO) and superoxide 
anion (O 2  

� ) can form strong oxidizing and nitrating 
intermediates such as peroxynitrite (ONO 2  

� ) which 
can nitrate tyrosine residues in proteins [152 – 154]. 
The biological precursors NO   and O 2  

�  are produced 
by the nitric oxide synthase or NO-synthase [155] .  
3-nitrotyrosine has become generally accepted as a 
biomarker in several pathologies like for example asthma 
[156], cardiovascular disease [157], Alzheimer ’ s dis-
ease [158], Parkinson ’ s disease [159], kidney diseases 
[160] and diabetes [161]. 

 However, the kinetics of protein nitration and the 
dose-response relationship for nitrated proteins and 
allergies are not well known, and their investigation 
requires the development and application of suitable 
analytical methods. Nitration of tyrosine residues is a 
stable modifi cation that can be suitably analysed by 

different specifi c techniques [162] like immuno-
chemical techniques [163,164], HPLC coupled to 
ultra-visible (UV-vis) photometry [165] or fl uorescence 
[166], gas chromatography (GC) coupled to thermal 
energy analyser or mass spectrometer [167], immuno-
chemical enrichment methods [168], chemical labelling 
[169 – 171] or electrochemical methods [172] coupled 
to mass spectrometry or methods combining LC-MS 
and LC-MS/MS approaches [173,174]. 

 Recently, a method was developed for the quanti-
fi cation of nitrotyrosine residues in protein mole-
cules by HPLC coupled to a diode array detector 
of UV-visible light absorption (DAD) [147]. This 
method enables effi cient determination of average 
nitration degrees in kinetic investigations of protein 
nitration, but additional site-specifi c information is 
required to elucidate reaction mechanisms and 
structure information. For site-specifi c quantifi ca-
tion of nitration degrees of individual tyrosine res-
idues a microfl uidic chip system with electrospray 
ionization and tandem mass spectrometry (HPLC-MS/
MS) can be used after tryptic digestion of nitrated 
proteins [174]. The nitration degrees determined for 
individual tyrosine residues provide information 
about site selectivity of the nitration reaction. Deter-
mining nitration sites of allergenic proteins may lead 
to a better understanding of the interactions between 
the immune system and the modifi ed allergen. The 
schematics of these analytical methods are presented 
in Figure 5 [175]. 

 Using these analytical approach, the site selectivity 
of nitration and its dependence on the nitrating agent 
and protein structure for bovine serum albumin 
(BSA) and OVA were investigated [174]. The proteins 
were nitrated either by tetranitro-methane (TNM) in 
liquid phase (Figure 6a) or by gaseous mixture of O 3  
and NO 2  under atmospheric relevant conditions. The 
sum of nitration degrees of each tyrosine residue 
(ND Y ) determined by HPLC-MS/MS exhibited 1:1 
correlations with the total protein nitration degree 
(ND) determined by HPLC-DAD, confi rming the 
applicability and robustness of both techniques. The 
ratio of ND Y  versus ND can be interpreted as a proxy 
for the relative rate or reaction probability of individual 
tyrosine residues [174]. 

 Recent kinetic experiments showed that the nitra-
tion reaction of proteins with O 3  and NO 2  proceeds 
through long-lived ROIs [49]. The protein fi rst reacts 
with ozone to form ROI  –  most likely phenoxy radical 
derivatives of tyrosine, then ROIs can persist over 
extended periods of time and react with NO 2  to 
form nitrotyrosine residues (Figure 6b). The reaction 
between protein particles and oxidants are kinetically 
limited by diffusion of oxidants into the protein bulk, 
confi rmed by numerical simulations using a kinetic 
model [176,177]. The reaction rate exhibits a pro-
nounced increase with relative humidity [176], which 
can be explained by an increase of bulk diffusivity of 
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oxidant due to hygroscopic water uptake transforming 
the amorphous protein from a glassy solid to a liquid 
state (moisture-induced phase transition) [176,178,179]. 
These experiments suggest that proteins on the sur-
face of aerosol particles are nitrated effi ciently within 
minutes under photochemical smog conditions with 
high concentrations of O 3  and NO 2 , but the nitration 
of protein in the bulk of aerosol particles proceeds 
slowly depending on ambient relative humidity and 
temperature. 

 The following mechanisms may be also essential for 
altered allergenic potential: conformational changes 
within the protein or the formation of higher order 
assemblies like dimers or multimers due to the mod-
ifi cation as well as direct nitration of B and T cell 
epitopes. Concerning direct epitope modifi cation, 
Untersmayr et al. showed that the most effi ciently 
nitrated tyrosine residue of nitrated egg allergen OVA 
is part of human as well as murine IgE epitopes and 
is found in OVA T-cell epitopes as well, which might 
explain the enhanced allergenic potential of nitrated 
OVA [149]. Changes in the quaternary structure due 
to nitration like dimerization or oligomerisation also 
might have a strong infl uence on immunogenicity. 
The cross-linking of IgE antibodies by allergens 
is a key event in the sensitization process, and it 
needs at least two allergen epitopes, which certainly are 

provided by an allergen dimer. The capacity of pro-
tein aggregates to enhance immune responses to the 
monomeric form is already known [180,181], and the 
dimerization is a common and essential feature for 
allergens like Bet v 1 [182].   

 Summary and outlook 

 Over the past decades, epidemiological studies have 
provided accumulating evidence of the effects of air 
pollution on public health. Even though these studies 
can provide statistical associations between adverse 
health effects such as asthma and allergy and expo-
sure dose of pollutants such as ozone and particulate 
matter, they cannot provide a causative relations and 
mechanism in the molecular level. Their elucidation, 
however, is critical for the policymaking of effective 
air quality control and for the medical treatment and 
new drug development of the related diseases. 

 The lifecycle of hazardous aerosol components in 
the atmosphere is still not fully understood. The iden-
tifi cation of their emission sources and deposition 
sinks is essential for charactering their spatial distri-
butions. Particularly, little is known about the physical 
and chemical transformation processes of aerosol par-
ticles in the atmosphere. The physical transformation 
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 Figure 5.     Quantifi cation of nitrotyrosine residues in protein molecules. Determination of (a) average nitration degrees with HPLC-DAD 
and of (b) individual nitration degrees of different tyrosine residues with HPLC-MS/MS [175].  
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 Figure 6.     Nitration (a) with tetranitro-methane (TNM) in the liquid phase and (b) with NO 2  and O 3  in the gas phase. In (b) the reactive 
oxygen intermediate-protein (ROI-protein) consists most likely of phenoxy radical derivatives of tyrosine [175].  
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(size and morphology change) may change the depo-
sition effi ciency of particles into human lung and on 
plant surfaces. The chemical transformation can lead 
to the formation and decomposition of hazardous 
compounds, hence change the toxicity and allerge-
nicity of particulate matters such as soot, PACs and 
allergenic proteins. 

 ROS is one of the most important constituents with 
regard to aerosol health effects. There are quite a few 
measurements of ROS in the gas phase (e.g. OH, 
H 2 O 2 ), and their distribution and concentration is 
relatively well-understood, whereas the measurements 
of ROS in aerosol particles, rain, clouds and fog are 
still very limited due to the lack of established mea-
surement methods and also lack of awareness of their 
importance for health effects. The detection of free 
radicals in the condensed phase can be easily subject 
to misidentifi cation when traditional extraction and 
chemical analysis methods are employed because free 
radicals are often not stable and reacted away in the 
course of analysis [72]. Electron resonance spectros-
copy is a powerful tool for identifi cation and quanti-
fi cation of free radicals and ROS in the condensed 
phase [68,71,72,108]. 

 The formation and decomposition kinetics of con-
densed phase ROS and hazardous chemical compo-
nents are poorly understood. More fi eld measurements 
on characterization and identifi cation of ROS are 
needed and their temporal variations (annual, sea-
sonal and diurnal cycles) should be investigated. 
Recently, ROIs were discovered in the reaction of 
ozone with aerosol particles, which play a key role in 
the formation of toxic organic aerosols [49]. More 
laboratory experiments and modelling are required to 
elucidate kinetics and mechanism of their formation 
and transformation. 

 The effects of diesel exhausted particles, ozone, 
nitrogen dioxide and allergenic pollen proteins on 
asthma and allergy are well established by a number 
of epidemiological studies, but the specifi c chemical 
reactions and molecular processes responsible for 
their effects have not yet been clearly identifi ed [2]. 
Recent investigations suggest that allergenic proteins 
can be nitrated by ozone and nitrogen dioxide in the 
polluted air masses, which may enhance allergic reac-
tions and infl uence infl ammatory processes upon 
inhalation to human body [49,131,147,148,174]. 
Further investigations on formation kinetics of 
nitrated protein, their abundance in ambient air and 
their immunological effects are required. 

 The research on aerosol health effects is highly 
interdisciplinary. We need to 1) understand emission, 
formation, transport, sink and abundance of toxic 
and allergenic compounds (atmospheric science, 
meteorology), 2) develop analytical methods for 
quantifi cation and identifi cation of these compounds 
(analytical chemistry), 3) quantify their toxicity and 
allergenicity (immunology, toxicology), 4) investigate 

health-characteristic or health-determinant patterns 
in a population (epidemiology) and 5) elucidate 
mechanism and processes of health effects on a molec-
ular level (biochemistry). For better understanding 
and assessments of aerosol health effects, knowledge 
of these research fi elds should be integrated that 
eventually allows optimized air quality control and 
improved medical treatments.   
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