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Haze Detection and Removal in Remotely

Sensed Multispectral Imagery
Aliaksei Makarau, Rudolf Richter, Rupert Müller, and Peter Reinartz

Abstract—Haze degrades optical data and reduces the accuracy
of data interpretation. Haze detection and removal is a challenging
and important task for optical multispectral data correction. This
paper presents an empirical and automatic method for inhomoge-
neous haze detection and removal in medium- and high-resolution
satellite optical multispectral images. The dark-object subtraction
method is further developed to calculate a haze thickness map,
allowing a spectrally consistent haze removal on calibrated and
uncalibrated satellite multispectral data. Rare scenes with a uni-
form and highly reflecting landcover result in limitations of the
method. Evaluation on hazy multispectral data (Landsat 8 OLI
and WorldView-2) and a comparison to haze-free reference data
illustrate the spectral consistency after haze removal.

Index Terms—Haze removal, Landsat 8 OLI, spectral consis-
tency, WorldView-2.

I. INTRODUCTION

HAZINESS is a common artifact in optical remotely

sensed data originating from fractions of water vapor,

ice, fog, sand, dust, smoke, or other small particles in the at-

mosphere. Haze transparency leaves an opportunity for optical

imagery restoration; nevertheless, for an inhomogeneous and

structured haziness (see the example shown in Fig. 1), a precise

detection is necessary, and a haze thickness map (HTM) has to

be calculated. An efficient method for multi- and hyperspectral

remotely sensed optical data dehazing handling all types of

haziness and haze thickness is still a challenge.

Richter [1] developed a dehazing method accurately dealing

with haze transition (haze–nonhaze) regions. Clear, hazy, and

cloud regions are separated and stored. A haze boundary region

is introduced to generate a smoother transition from haze to

clear areas. The algorithm matches the histogram of the haze

areas to the histogram of the clear part leading to dehazing.

Moro et al. [2] presented a framework to reduce haze and

calculate some vegetation indices. Haze removal is performed

based on the haze optimized transform (HOT; see original

work of [3]) technique. The improved HOT consists of the

following: determination of a man-made feature mask, masking

of estimated haze for water bodies and man-made features, in-

terpolation of masked-out areas, and final haze subtraction from

the image. Dark-object subtraction (DOS) is then performed
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on the dehazed scene in order to estimate approximate soil

reflectances necessary to calculate the vegetation indices.

Liu et al. [4] developed a technique to remove spatially vary-

ing haze contamination, comprising three steps: haze detection,

haze perfection, and haze removal. The background suppressed

haze thickness index (BSHTI) is used to indicate relative haze

thickness. The virtual cloud point method based on BSHTI

is used in haze removal. Human intervention is necessary to

outline thick haze and clear regions. Here, 76 paired (dehazed

and haze-free) regions were compared, resulting in a correlation

coefficient higher than 0.7.

He et al. [5] proposed an efficient haze removal and depth

map estimation method for outdoor colored RGB images. The

method is based on dark channel prior calculation (a search

of local patches in the image containing pixels with very low

intensity). The hazy image dark channel values are mainly

contributed by the airlight (path radiance), and the dark pixels

can provide an estimation of the haze transmission. A haze

imaging model allows us to recover a high-quality haze-free

image and a corresponding depth map.

Chavez [6], [7] proposed an improvement for DOS technique

to correct optical data for atmospheric scattering. The method

assumes to find a pixel or several pixels with a very low

reflectance. Due to the haziness in the scene, these pixels are not

completely dark, and the digital numbers (DNs) in the pixels

are nonzero. The values of the DNs are assumed to be the

haze thickness in the image. Assuming a constant haze over

the image, a subtraction of the DN value from the whole image

allows us to perform dehazing.

In this paper, we present a further development of the DOS

technique by Chavez [6]. Instead of searching only several dark

objects in the whole scene, it is proposed to search dark objects

locally in the whole image. A local search of the dark objects

allows us to construct an HTM. Assuming an additive model

of the haze influence, a subtraction of the HTM from a hazy

image allows us to restore the haze-free signal at the sensor. The

dehazed data can be later employed for atmospheric correction

[8] and for further processing like landcover classification [9]–

[11] or change detection [12].

This paper is organized as follows. In Section II, the new

haze removal algorithm is presented. The method of the HTM

calculation as well as a correction for large highly reflective ob-

jects is given. Haze thickness estimation per band is developed,

allowing multispectral image dehazing. Section III contains a

description of hazy and haze-free data, data properties, and ex-

amples of dehazed data evaluation. The conclusion and possible

further developments of the method are given at the end of this

paper.
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Fig. 1. Typical types of haziness in optical imagery. (a) Uniform haze (WorldView-2). (b) Moderately thick haze (WorldView-2). (c) Moderately thin haze
(WorldView-2). (d) Thick structured haze (AVNIR).

II. PROPOSED METHOD FOR HAZE REMOVAL

A. Haze Model

Small field-of-view optical systems are employed to acquire

medium, high, or very high spatial resolution multispectral data.

Then, the distance from any object in the scene to the sensor

can be assumed as constant. Our simplified model (assumption

is verified in the experiments) can be described as follows (see

the additive model by Chavez [6]):

Lsensor = L0 +HR (1)

where Lsensor is the acquired radiance, L0 is the sum of the path

radiance and the surface reflected radiance, and HR is the haze

contribution.

Assuming a linear nature of the DN to radiance conversion,

the equation is adapted to band DN

DNsensor
i (x, y) = DNi(x, y) +HR′

i(x, y) (2)

where (x, y) are the coordinates of a pixel in an optical image,

i is the band number, DNsensor
i (x, y) is the acquired DN, and

DNi(x, y) is the DN without the influence of haze. The term

HR′
i(x, y) is dependent on the haze thickness and can be

defined as HTM HTMi(x, y).

B. HTM

Since the HTM is employed as an additive term (2), a

subtraction of the HTM from an optical image allows us to

restore the haze-free image. The task is to calculate HTMi(x, y)
for each band i.

Haze thickness is usually variable over a scene [e.g.,

Fig. 1(b)–(d)], and the HTM has to be calculated by searching

dark pixels (shaded objects [6]) over all of the image. A medium

to small ground sampling distance (GSD; 30–2 m) of a sensor

allows us to record shadows from objects. The shading can

be caused by a varying relief in the scene, natural or man-

made objects. These pixels have a very low DN value (small

ground reflectance+path radiance), and with the presence of

haze, the recorded DN value is also nonzero and higher than

the corresponding haze-free contribution. These nonzero DN

values can be employed to estimate the HTM of the image. It

should be noted that the HTM includes the thickness of the haze

and the aerosol thickness. The compensation for the subtracted

clear scene aerosol thickness is given in the dehazing section

(Section II-E).

The dark pixels are searched using a local nonoverlapping

window w (i.e., area w × w pixels). Pixelwise search for dark

pixels can result in an occasional selection of pixels over

nonshaded or bright objects, and these pixels cannot be used

to estimate haze thickness (the HTM will contain errors). The

window is employed to increase the chance to locate dark

pixels over shaded regions. The other pixels in the window

are assumed to have the same haze thickness as the thickness

estimated in the pixel with the minimal value. A larger window

allows easier detection of dark pixels, but the border as well

as the structure (density in each pixel or local area) of haze

can be smoothed, leading to an underestimation of the HTM

(Fig. 2). A smaller window allows better estimation of haze
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Fig. 2. HTM preciseness dependence on the nonoverlapping window size. (a) Example of an image (Landsat 8 OLI, RGB true color combination) with
inhomogeneous haze (thick in the middle but moderately thin over all of the subimage). (b) HTM calculated using the window size w = 5. (c) HTM calculated
using the window size w = 21.

Fig. 3. Example of the HTM calculation for an area containing large objects with moderately high reflectance (soils). The HTM is corrected for the regions with
the bright objects. (a) Landsat 8 OLI RGB true color band combination (haze noticeable at the upper part of the image). (b) Mask for large bright objects. (c) HTM
(large bright objects can be confused with haze). (d) Corrected HTM (the bright object pixels are interpolated by triangulation).

structure together with a possibility that outside the haze pure

dark pixels are not found (and the pixels with a moderately high

intensity are selected). The size of the window is set according

to the GSD of the sensor: the smaller the GSD, the smaller

size of the window can be set, and a more precise HTM can

be estimated. Usually, the size of the window is constant for

a selected sensor. By the experimental analysis, it is found that

the minimum window size should be three times higher than the

sensor GSD, e.g., Landsat 8 OLI (30-m GSD for multispectral

data) should have a minimum window size of 90 m × 90 m, and

WorldView-2 (2-m GSD for multispectral data) should have a

minimum window size of 6 m × 6 m, respectively. The dark

pixels selected using the window (the size is w × w) are stored

in a matrix with the size w times smaller than the original hazy

image. Then, the matrix is smoothed by a median filter (usually

3 × 3) and interpolated (cubic interpolation) up to the size of

the original band. Therefore, the possible haze overestimation

is suppressed.

The presence of large bright objects can make the selection

of dark pixels difficult using a small window (see Fig. 3).

Such objects can be agricultural fields, regions with bright

sand, uniform snow cover, etc. These objects are labeled by a

segmentation method (in this work, a mean-shift segmentation

is employed [13], but any other segmentation methods can be

also used). The HTM values in the regions of bright objects are

interpolated using a triangulation. In an extreme case having

a uniform landcover in the whole scene with a high reflectance

(e.g., snow), the HTM might be impossible to estimate. Usually,

such cases are rare in remotely sensed data and not of interest

for the use of this methodology.

The HTM calculation depends on the employed spectral band

for the dark pixel search and the size of the nonoverlapping
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Fig. 4. AVNIR-2 data dehazing example (subset). The employment of band 1 (0.42–0.50 µm) for the HTM calculation can lead to overdehazing in the same
band. (a) Original band 1. (b) Dehazed band 1 (overdehazing is notable). (c) Dehazed band 1 (HTM was calculated using a new band produced by extrapolation
of AVNIR-2 band 1 and band 2).

window

HTM(x, y) = DARK_PIX_SEARCH (Bandb(x, y), w)
(3)

where Bandb(x, y) is the employed image (usually a blue

band), w is the size of the nonoverlapping window, and

HTM(x, y) is the HTM (unitless). In our experiments, w
usually takes values ranging from 3 to 9. With w = 3, rea-

sonable results on medium- and high-resolution data (Land-

sat 7, Landsat 8 OLI, Advanced Visible and Near Infrared

Radiometer (AVNIR), AVIRIS, WorldView-2, and RapidEye)

were achieved.

It is necessary to label hazy and haze-free regions. The

information in haze-free regions is further employed in the

dehazing and compensating of clear scene aerosol. In order

to find haze-free regions, the haze mask is created. The haze

mask is calculated by the generation of an additional HTM

with moderately large window size (GSD ∗ 20, w = 21) and a

thresholding of the HTM. The HTM generated with the large

window size is used only to label hazy and haze-free regions.

The coefficient of 20 is estimated experimentally. The thresh-

old value is equal to the mean value (water area under haze

is segmented with the employment of the near infrared band

and excluded), and reasonable results were achieved for all

processed data. The haze mask as well as the water mask does

not necessarily have to be precise, and a mislabeling of objects

in the scene does not influence dehazing (the haze mask is used

only to calculate a relative haze thickness coefficient, and this

is robust to mislabeled outliers). The employment of such large

windows allows us to find dark pixels and estimate the HTM

irrespectively of large bright objects.

In multispectral data, the search of dark pixels should be

performed in a band with a minimal ground reflectance and

a maximal attenuation by haze. A spectral band in the blue

spectral region (0.37–0.49 µm) is most suitable for this purpose.

Spectral bands in the red or near infrared spectral regions ex-

hibit higher ground reflectance for land and are less influenced

by haziness; therefore, they are not suitable in detecting and

properly estimating haze thickness.

C. Band Extrapolation

The employment of a blue band from a multispectral image

for the HTM generation can lead to overdehazing of this band.

Fig. 4 illustrates such a situation on AVNIR-2 data (see [14]). A

per-band analysis should be carried out [compare Fig. 4(a) and

(b)]. In order to overcome this problem, a new synthetic band

is created by a linear extrapolation of two bands of the image

cube:

Bandextrapol(x, y)

= EXTRAPOL (Bandm(x, y), Bandn(x, y)) (4)

where Bandextrapol(x, y) is the extrapolated band and

Bandm(x, y) and Bandn(x, y) are two bands from the data

cube used for an extrapolated band creation. An employment
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Fig. 5. Estimation of the HTM in Landsat 8 OLI data. (a) RGB true color composite (bands 4, 3, and 2). (b) Band 1 (0.4430 µm). (c) Extrapolated band
Bandextrapol (λ = 0.4233; extrapolated using Landsat 8 OLI bands 1 and 2). (d) HTM calculated on the extrapolated band in (c).

Fig. 6. Example of varying haze thickness in WorldView-2 spectral channels.
(a) Band 1 (0.4283 µm). (b) Band 4 (0.6080 µm). (c) Band 7 (0.8277 µm).

of the extrapolated band yields better dehazing results [see

Fig. 4(a) and (c)]. Usually, the first two bands are selected

(in the case of Landsat 8 OLI, Bandm is 0.4430 µm, and

Bandn is 0.4825 µm band). Fig. 5 illustrates an example of

an extrapolated band: band 1 at 0.4430 µm [Fig. 5(b)] and an

extrapolated band (Fig. 5(c); λ = 0.4232 µm). The reflectance

of the surface in the extrapolated (a lower wavelength) band is

less, haze thickness is higher in comparison to the VNIR region

bands, and the HTM can be estimated more precisely. In the

case of noise in the interpolated band, a median filtering can be

applied.

D. Haze Thickness Per Band

In order to dehaze a multispectral image, a subtraction of the

HTM has to be done for each spectral band. The derived haze

thickness is different in bands and usually decreases from the

shortest to the longest wavelength band (Fig. 6). Subtraction of

a constant HTM from all of the bands can lead to overdehazing

in the red and near infrared bands and a loss of spectral

properties in the dehazed data. To preserve spectral consistency,

a band-specific HTM (HTMi) should be calculated. Taking into

account that spectral channels in the far short-wave infrared

range are only marginally influenced by haze, the dehazing is

performed for the visible, near infrared, and short-wave infrared

bands, terminating the dehazing wavelength at 2.2 µm.

The thickness of the haze in each band (HTMi) is estimated

relative to the HTM calculated using the image Bandb(x, y)
[see (3)]. A temporary HTM HTM′

i(x, y) is calculated for each

band i, and the regression coefficient (slope of the fitted line

in linear regression) (ki) of HTM′
i(x, y) versus HTM(x, y) is

stored in an array (K) of regression coefficients. The regression

coefficient is calculated using the pixel values in the segmented

hazy regions (haze mask is employed). According to haze

thickness, the regression coefficients are expected to have a

decreasing trend for the bands from the shortest to the longest

wavelength. A check if K has a meaningful decreasing trend

and a correction of the trend are performed. Each ki+1 should

be less than ki and (ki+1 − ki) ≤ 0.1. The initial start value

of 0.1 is an empirical threshold, and it was calculated exper-

imentally on multispectral data. It might be changed during

the later iteration (7). A linear scaling of K into the range [1,

0] is performed [the maximal value corresponds to maximal

HTM density in the first band with shortest wavelength, and

the minimal value corresponds to haze thickness in the longest

wavelength band at 2.2 µm (haze is not visible)]. Therefore,

a band-specific haze thickness is subtracted from the original

data. Note on the linear scaling of K: in principle, a nonlinear

scaling with wavelength could also be used, requiring scene-

derived parameters that influence the radiative transfer, e.g., the

haze particle size distribution and scattering phase functions.

This information cannot usually be retrieved. However, we

checked the potential influence of the phase function: in the

relevant spectral region for haze removal (400–900 nm), the

change of haze scattering functions with wavelength is negli-

gible. This behavior was checked with the MODTRAN [15]

haze/fog models. Summarizing, HTMi is calculated as follows:

HTM′
i(x, y) = DARK_PIX_SEARCH (Bandi(x, y), w)

(5)

where the nonoverlapping window size is w = 21

ki = SLOPE (HTM(x, y),HTM′
i(x, y)) (6)

where ki is the regression coefficient (slope of the fitted line)

for band i and K is the array of the coefficients (ki ∈ K).
HTM(x, y) is the independent variable, and HTM′

i(x, y) is the

dependent variable. Note that the HTM(x, y) and HTM′
i(x, y)

values are taken only in the segmented hazy regions (haze mask

is employed)

K = LINEAR_SCALE (K, [1, 0]) for λ = [λblue, 2.2 µm].
(7)
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Fig. 7. Landsat 8 OLI band 3 (0.525–0.600 µm) dehazing (subset). (a) Original band 3. (b) Dehazed band 3. (c) Histogram of the original band 3 (dotted), dehazed
(dashed), and the compensated [aerosol thickness compensation (10)] band (solid line). Note that negative values can appear (regions of shadows, vegetation, deep
water, and dark objects) since the HTM is calculated using the extrapolated band and the HTM has higher thickness values than the original bands.

Note: after the K scaling, the initial 0.1 difference between the

consecutive bands might be changed

HTMi(x, y) = HTM′
i(x, y) ∗ ki, ki ∈ K. (8)

E. Dehazing and Compensating of Clear Scene Aerosol

A subtraction of HTMi(x, y) from the band DNsensor
i (x, y)

should recover the dehazed band

DNi(x, y) = DNsensor
i (x, y)− HTMi(x, y). (9)

The subtraction removes the HTM (haze plus clear scene

aerosol) thickness, and the data should be compensated for the

clear scene aerosol fraction. The HTM pixels outside the haze

contain values representing the clear scene aerosol thickness

(the aerosol thickness is also calculated in haze-free areas).

A compensation for the aerosol thickness is performed (see

example in Fig. 7)

DN′
i = DNi +ABS (MEAN (DNsensor

i [non_haze])

−MEAN (DNi[non_haze])) . (10)

The huge difference between the histograms of the original

and dehazed bands can be explained as follows. Landsat 8 OLI

data have a high dynamic range, and the lowest DN value in

band 3 (Fig. 7) is higher than 6000. Therefore, the darkest

objects in the band have a minimum value equal or higher than

6000. The subtraction of the generated HTM leads to such high

difference between the original and dehazed band histograms.

The dehazing on the data produced by a sensor with a low

radiometry (e.g., Landsat 7, 8-b data) will produce a much

smaller difference between the histograms.

F. Method Pseudocode

The method for multispectral image dehazing can be sum-

marized into a pseudocode for easy implementation:

begin

∗ x_size, y_size, b_size are the dimensions of the multispec-

tral data cube.

∗ Load multispectral data cube Bandi, i = [1, b_size].
∗ Apply mean-shift segmentation to the band in the red

spectral region.

∗ Threshold the segmented image (threshold value is equal to

the mean). Save result into bright_obj.
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TABLE I
PARAMETERS OF THE LANDSAT 8 OLI DATA SETS: HAZY AND HAZE FREE (REFERENCE)

∗ Create a new synthetic band by extrapolation

Bandextrapol = (Band0.4430µm + (Band0.4430µm
− 0.95 ∗Band0.4825µm)) > 0.0

∗ Calculate haze thickness map:

for x := w/2 to x_size step w do

for y := w/2 to y_size step w do

HTM(x, y)

=MIN(Bandextrapol(x−w/2 : x+w/2, y−w/2 : y+w/2))

od

od

∗ Resize the HTM to the size x_size, y_size.

∗ Calculate haze mask (w = 21):

for x := w/2 to x_size step w do

for y := w/2 to y_size step w do

HTMhaze_mask(x, y)

=MIN(Bandextrapol(x−w/2:x+w/2, y−w/2 : y+w/2))

od

od

∗ Resize the HTMhaze_mask to the size x_size, y_size.

∗ Threshold the HTMhaze_mask by the MEAN(HTMhaze_mask),
create haze_pixels and non_haze_pixels lists.

∗ Save haze (haze_pixels) and nonhaze (non_haze_pixels)

pixel lists.

∗ Calculate array ki ∈ K, i = [1, b_size] of regression coef-

ficients (w = 3):

for i := 1 to b_size step 1 do

for x := w/2 to x_size step w do

for y := w/2 to y_size step wdo

HTMi(x, y)

= MIN (Bandi(x− w/2 : x+ w/2, y − w/2 : y + w/2))

od

od

ki = SLOPE_COEFF

× (HTM[haze_pixels],HTMi[haze_pixels])

od

∗ Linear scaling of the array K :

K = LINEAR_SCALE(K, [1, 0])

∗ Perform triangular interpolation of the HTM pixels corre-

sponding to mask bright_obj.

∗ Perform dehazing:

for i := 1 to b_size step 1 do

Band′i =Bandi −HTM ∗ ki, ki ∈ K.

Band′′i =Band′i +ABS (MEAN (Bandi[non_haze])

−MEAN (Band′i[non_haze])) .

od

end

III. PRODUCT EVALUATION AND DISCUSSION

A. Landsat 8 OLI Dehazing and Evaluation With

Haze-Free Data

A quantitative evaluation of a dehazing method is a difficult

task since the appropriate hazy data together with ground truth

are difficult to collect. Since a strict validation is not possible,

a more realistic approach is chosen: a pair of hazy and haze-

free images was found. The images have minimal time differ-

ence and minimal difference of the Sun/sensor geometry. The

minimal difference of the image acquisition conditions allows

us to use the haze-free image as a reference and to perform

an evaluation of the dehazing method by a comparison of the

spectral information.

Landsat 8 OLI hazy and haze-free data were analyzed to

make an evaluation of the dehazed product. A pair of scenes for

one region (Montelimar, France) was selected for this purpose.

The data were acquired with a time difference of 7 days

and in the same acquisition geometry conditions. The detailed

information on the data is given in Table I. Taking into account

a negligible difference in the acquisition geometry and a small

time shift, the haze-free image can be employed as a reference

for haze-free data. An evaluation of the dehazing method can be

performed by a comparison of the dehazed and reference image

spectra.

Fig. 8 illustrates the dehazing results for a Landsat 8 OLI

subscene. Visual interpretation of the dehazed image [Fig. 8(b)]

and comparison to the reference [Fig. 8(c)] per band and using

a true color RGB composition confirm the conclusion that

the dehazing method performs well. The calculated coefficient

array is K = [1.0, 0.9010, 0.8164, 0.8863, 0.7813, 0.4022, 0.1]
for the channels 0.4430, 0.4825, 0.5625, 0.6650, 0.8700,

1.6100, and 2.2000 µm, respectively, without the cirrus band

B9 (at 1.38 µm).

Fig. 9 illustrates top of atmosphere (TOA) reflectance spectra

collected in the hazy, dehazed, and reference images. Fig. 9(a)

illustrates that the spectra collected in the haze-free regions

have the same shape. The plus symbol (hazy image) and the

asterisk symbol (dehazed image) closely agree, illustrating that

the dehazing of data outside the haze regions does not modify
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Fig. 8. Dehazing of Landsat 8 OLI data (subset). (a) Hazy data RGB true color band combination (July 14, 2013; scene ID: LC81960292013195LGN00). (b)
Dehazed data RGB band combination. (c) Haze-free reference data collected on another day (July 7, 2013; scene ID: LC81970292013186LGN00).

Fig. 9. Spectra collected (3 × 3 window average) in Landsat 8 OLI haze-free [cross 1; Fig. 8(a)] and hazy [cross 2; Fig. 8(a)] regions for the original hazy (plus
symbol), dehazed (asterisk symbol), and reference (diamond symbol) TOA reflectance images. (a) Haze-free spectra (the original and dehazed image spectra are
very close). (b) Spectra taken in the hazy region.

Fig. 10. Band profiles (Fig. 8(a), vertical white line) taken from the original hazy (dotted line), dehazed (dashed line), and reference (solid line) Landsat 8 OLI
images. (a) Band 3 (0.5613 µm). (b) Band 6 (1.6100 µm). The difference in the hazy region between the two profile lines clearly illustrates that the dehazing
was performed, and the shape of the profile after dehazing shows a preservation of the scene structure (left part of the profiles). The profiles have almost identical
shapes in the haze-free region (right part of the profiles).

the spectral properties of the original data. These two spectra

have the same shape as the reference image spectrum (diamond

symbol). Fig. 9(b) presents the spectra collected in a hazy

region in the hazy (plus symbol), dehazed (asterisk symbol),

and reference (diamond symbol) images. The spectra collected

from the dehazed image have the same shape as the spectrum

collected in the reference image. Thus, the method produces

spectrally consistent dehazed data. The difference between the

dehazed and reference spectra can be attributed to residual

scene coregistration errors, different atmospheric conditions,

and residual haze thickness errors.

A comparison of the channel intensity profiles in the hazy

and dehazed image is another verification. Fig. 10 presents

band 3 (0.5613 µm) and band 6 (1.6091 µm; TOA reflectance)

profiles for the hazy (dotted), dehazed (dashed), and reference

(solid line) images. In the haze-free region (right part of the

graph in Fig. 10), the original and dehazed profiles have similar

shapes. In the hazy region (left part of the graph), the dehazed

profile illustrates a noticeable dehazing enhancement of the

band intensities together with a preservation of the surface

structure by comparing the dotted (hazy band) and solid (haze-

free reference band) lines. Again, the remaining differences
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Fig. 11. Parallax effect in WorldView-2 multispectral data leads to haze shift in the bands of multispectral image. A vertical shift of the haze is noticeable
between (a) band 1 (0.4283 µm) and (b) band 2 (0.4791 µm; the star has the same position on both images).

Fig. 12. Dehazing of WorldView-2 data (subset). (a) Hazy data RGB true color band combination. (b) Dehazed data RGB band combination. (c) Spectral profiles
of the hazy (plus symbol) and dehazed (asterisk symbol) images outside the haze (cross 1). (d) Spectral profiles of the hazy (plus symbol) and dehazed (asterisk
symbol) images inside the haze (cross 2).

are likely due to different atmospheric conditions and resi-

dual haze.

The execution time on a Landsat 8 OLI subset of size 2647 ×

5035 pixels (7 bands) is approximately 1 min on Intel Core 2

Duo, using an IDL implementation [16], [17] of the presented

algorithm.

B. WorldView-2

Dehazing of WorldView-2 multispectral data has one impor-

tant aspect: due to the parallax effect, the position of the haze in

bands 1, 4, 6, and 8 is different from bands 2, 3, 5, and 7. The

markers in Fig. 11(a) and (b) illustrate a vertical shift of the haze

in the scene (band 1 and band 2, respectively). The employment

of band 1 and band 2 does not allow us to extrapolate a new

band with a proper haze thickness because the HTM will be

calculated with parallax errors (haze borders and thickness will

not be precise). The employment of such an HTM does not

allow an accurate haze removal. To overcome this problem, it is

necessary to calculate two HTMs: HTM1 for bands 1, 4, 6, and

8 and HTM2 for bands 2, 3, 5, and 7. Bands 1 and 4 are used for

extrapolation to create a new band and further the calculation

of HTM1(λ = 0.4131) for bands 1, 4, 6, and 8. Bands 2 and

3 are used for extrapolation to create a new band and further

the calculation of HTM2(λ = 0.4131) for bands 2, 3, 5, and 7.

Then, HTM1 is linearly stretched to HTM2 using a local sliding

window (the size is 10 × 10 pixels) to match the HTMs.

A dehazing example for WorldView-2 data is presented in

Fig. 12. The eight-channel data were acquired on September

23, 2010, over the city of Munich at 11:15:44.08 UTC. The
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Fig. 13. Atmospheric correction (ATCOR-3) of haze-free Landsat 8 OLI and the same data after dehazing. (a) Haze-free RGB true color band combination.
(b) Dehazed data RGB band combination. (c)–(f) Spectral profiles of the haze-free (plus symbol) and the atmospherically corrected (asterisk symbol) for
crosses 1–4, respectively.

calculated coefficient array is K=[1.0, 0.9077, 0.7832, 0.6733,
0.5802, 0.4628, 0.2739, 0.1]. Since a different haze thickness is

subtracted from the bands, the dehazed spectra have the same

shape but with a slightly higher difference in the first four bands

[Fig. 12(d)] because these are more influenced by haze.

The execution time on a WorldView-2 subset of size 2525 ×

1919 pixels (8 bands; note that a calculation of two HTMs is

required, and HTM1 is locally stretched to HTM2) is approx-

imately 1 min on Intel Core 2 Duo, using an IDL implemen-

tation of the algorithm. The main part of the dehazing time is

required for the HTM calculation (in case of WorldView-2, two

HTMs are necessary to calculate), e.g., being 2.4 times smaller,

the WorldView-2 cube requires nearly the same time for the

dehazing as the Landsat 8 OLI data cube, respectively.

C. Atmospheric Correction of Dehazed Data

The dehazing method also has to properly operate on haze-

free multispectral data. Radiometric distortions should not be

introduced into the data, and the atmospheric correction of

both the original (haze-free) and haze-free data after dehazing

should result in a good agreement of the surface reflection

spectra. A comparison of spectra taken in the original (haze-

free) and dehazed images allows us to demonstrate that the

dehazing method does not influence the radiometric properties

of the data.

An example is given in Fig. 13: A haze-free subscene of

the original Landsat 8 OLI (see Section III-A) was processed

with our method, and both the original and dehazed images are

run for atmospheric correction in the ATCOR-3 software [8].

The calculated mean visibilities (dense dark vegetation based

method) for the original (haze-free) and dehazed subscenes are

the following: 19.9 and 20.6 km, respectively. Fig. 13 presents

the original haze-free [Fig. 13(a)] and dehazed [Fig. 13(b)] im-

ages. The plots in Fig. 13(c)–(f) demonstrate that the collected

spectra in the images have a negligible difference, leading to the

conclusion that the developed dehazing method does not distort

the radiometrical properties if applied to clear scenes.

IV. CONCLUSION

A new multispectral data dehazing method has been de-

veloped. The algorithm removes spatially varying haze based

on the HTM. An evaluation of the dehazing method using
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a clear and a hazy scene from the same area demonstrates

that the dehazing results are spectrally consistent. Spectrally

consistent dehazing is also achieved on other multi- and hy-

perspectral data such as AVNIR, Landsat 7, RapidEye, and

AVIRIS. The method can be applied to the original data DN

counts or the calibrated radiance data. It is fully automatic and

can be employed as a chain in batch processing systems of

remotely sensed data. The dehazed data can further be used for

atmospheric/topographic correction. A limitation of the method

is the following: in rare cases of scenes with absolutely flat

and highly reflective surfaces (desert and snow), it could be

impossible to locate dark objects and to estimate an HTM.

However, such scenes are usually not very common and not

of practical interest. Future improvements of the method will

deal with possible border effects caused by the triangulation

and haze removal for hyperspectral imagery.

ACKNOWLEDGMENT

The authors would like to thank European Space Imag-

ing (EUSI) for the collection and provision of Digitalglobe

WorldView-2 data.

REFERENCES

[1] R. Richter, “Atmospheric correction of satellite data with haze removal
including a haze/clear transition region,” Comput. Geosci., vol. 22, no. 6,
pp. 675–681, Jul. 1996.

[2] G. D. Moro and L. Halounova, “Haze removal for high-resolution satellite
data: A case study,” Int. J. Remote Sens., vol. 28, no. 10, pp. 2187–2205,
May 2007.

[3] Y. Zhang and B. Guindon, “Quantitative assessment of a haze suppression
methodology for satellite imagery: Effect on land cover classification per-
formance,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 5, pp. 1082–
1089, May 2003.

[4] C. Liu, J. Hu, Y. Lin, S. Wu, and W. Huang, “Haze detection, perfection
and removal for high spatial resolution satellite imagery,” Int. J. Remote
Sens., vol. 32, no. 23, pp. 8685–8697, 2011.

[5] K. He, J. Sun, and X. Tang, “Single image haze removal using dark
channel prior,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 12,
pp. 2341–2353, Dec. 2011.

[6] P. Chavez, “An improved dark-object subtraction technique for atmo-
spheric scattering correction of multispectral data,” Remote Sens. Envi-
ron., vol. 24, no. 3, pp. 459–479, Apr. 1988.

[7] P. Chavez, “Image-based atmospheric corrections–Revisited and im-
proved,” Photogramm. Eng. Remote Sens., vol. 62, no. 9, pp. 1025–1036,
Sep. 1996.

[8] ATCOR, Atmospheric/Topographic Correction for Satellite Imagery.
ReSe Applications Schläpfer, Langeggweg 3, CH-9500 Wil, Switzerland.
[Online]. Available: www.rese.ch

[9] B. Waske and S. van der Linden, “Classifying multilevel imagery from
SAR and optical sensors by decision fusion,” IEEE Trans. Geosci. Remote
Sens., vol. 46, no. 5, pp. 1457–1466, 2008.

[10] B. Waske and J. Benediktsson, “Fusion of support vector machines for
classification of multisensor data,” IEEE Trans. Geosci. Remote Sens.,
vol. 45, no. 12, pp. 3858–3866, Dec. 2007.

[11] F. Pacifici, F. Del Frate, W. Emery, P. Gamba, and J. Chanussot, “Urban
mapping using coarse SAR and optical data: Outcome of the 2007 GRSS
data fusion contest,” IEEE Geosci. Remote Sens. Lett., vol. 5, no. 3,
pp. 331–335, Jul. 2008.

[12] N. Longbotham, F. Pacifici, T. Glenn, A. Zare, M. Volpi, D. Tuia,
E. Christophe, J. Michel, J. Inglada, J. Chanussot, and Q. Du, “Multi-
modal change detection, application to the detection of flooded areas:
Outcome of the 2009–2010 data fusion contest,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 5, no. 1, pp. 331–342, Feb. 2012.

[13] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature
space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5,
pp. 603–619, May 2002.

[14] P. Schwind, M. Schneider, G. Palubinskas, T. Storch, R. Muller, and
R. Richter, “Processors for ALOS optical data: Deconvolution, DEM gen-
eration, orthorectification, atmospheric correction,” IEEE Trans. Geosci.
Remote Sens., vol. 47, no. 12, pp. 4074–4082, Dec. 2009.

[15] A. Berk, G. Anderson, P. Acharya, and E. Shettle, MODTRAN 5.2.0.0
User’s Manual. Hanscom AFB, MA, USA: Air Force Res. Lab., 2008,
pp. 01731–3010.

[16] D. W. Fanning, IDL Programming Techniques, 2nd ed. Fort Collins, CO,
USA: Fanning Software Consulting, 2000.

[17] Exelis visual information solutions. [Online]. Available: www.excelisvis.
com

Aliaksei Makarau received the Dipl.-Ing. degree in
computer science from Belarusian State University
of Informatics and Radioelectronics, Minsk, Belarus,
in 2003 and the Ph.D. degree in technical sciences
from the United Institute of Informatics Problems,
Minsk, in 2008.

His dissertation was on fast methods for multi-
spectral image fusion and processing. He is currently
with the Department of “Photogrammetry and Im-
age Analysis,” Remote Sensing Technology Institute
(IMF), German Aerospace Centre (DLR). His re-

search interests include atmospheric correction, multisensory data fusion, and
pattern recognition.

Rudolf Richter received the M.Sc. degree in physics
from the Technical University of Munich, Munich,
Germany, in 1973 and the Ph.D. (Dr.-Ing.) degree
in engineering from the Technical University of
Dresden, Dresden, Germany, in 1991.

He is a DLR Senior Scientist conducting concept
development, modeling, and simulation of airborne/
spaceborne hyperspectral instruments. It involves
advanced techniques and interaction with scientists
associated with theory and remote sensing exper-
iments. He developed the ATCOR model, one of

the standard codes for atmospheric and topographic correction of multi-/
hyperspectral imagery used at universities and research laboratories. His current
work focuses on the design of fully automatic processing chains for the
evaluation of remotely sensed optical data from the visible to the thermal
spectral region.

Rupert Müller received the Dipl.-Phys. degree
from the Ludwig Maximilians University of Munich,
Munich, Germany, in 1985.

He is currently a Team Leader of the “Proces-
sors and Traffic Monitoring” Group, Remote Sens-
ing Technology Institute, German Aerospace Center
(DLR), Wessling, Germany, and is responsible for
the Environmental Mapping and Analysis Program
processing, calibration, and validation part within the
ground segment as well as several European Space
Agency projects like “Prototype Processor for ALOS

Optical Data.” His main research interests include photogrammetric evaluation
of spaceborne satellite data and digital image processing.

Peter Reinartz received the Dipl.-Phys. degree in
theoretical physics from the University of Munich,
Munich, Germany, in 1983 and the Ph.D. (Dr.-Ing)
degree in civil engineering from the University of
Hannover, Hanover, Germany, in 1989.

His dissertation was on statistical optimization of
classification methods for multispectral image data.
He is the Head of the Department of “Photogram-
metry and Image Analysis,” Remote Sensing Tech-
nology Institute (IMF), German Aerospace Centre
(DLR), and is a Professor of geoinformatics with

the University of Osnabrueck, Osnabrueck, Germany. He has more than 20
years of experience in image processing and remote sensing and over 150
publications in these fields. His main interests are direct georeferencing, stereo
photogrammetry and data fusion, generation of digital elevation models, and
interpretation of VHR image data from sensors like WorldView, GeoEye, etc.
He is also engaged in using remote sensing data for disaster management
and using high-frequency time series of airborne image data for real-time
application in case of disasters as well as for traffic monitoring.

www.rese.ch
www.excelisvis.com
www.excelisvis.com

