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Abstract: With the economic development in China, haze risks are frequent. It is important to study
the urban haze risk assessment to manage the haze disaster. The haze risk assessment indexes
of 11 cities in Fenwei Plain were selected from three aspects: the sensitivity of disaster-inducing
environments, haze component hazards and the vulnerability of disaster-bearing bodies, combined
with regional disaster system theory. The haze hazard risk levels of 11 cities in Fenwei Plain were
evaluated using the matter-element extension (MEE) model, and the indicator weights were deter-
mined by improving the principal component analysis (PCA) method using the entropy weight
method, and finally, five haze hazard risk assessment models were established by improving the
particle swarm optimization (IPSO) light gradient boosting machine (LightGBM) algorithm. It is used
to assess the risk of affected populations, transportation damage risk, crop damage area risk, direct
economic loss risk and comprehensive disaster risk before a disaster event occurs. The experimental
comparison shows that the haze risk index of Xi’an city is the highest, and the full index can improve
the evaluation accuracy by 4–16% compared with only the causative factor index, which indicates
that the proposed PCA-MEE-ISPO-LightGBM model evaluation results are more realistic and reliable.

Keywords: haze hazard; principal component analysis; entropy weight method; matter-element
extension model; risk assessment; ISPO-LightGBM

1. Introduction

Air pollution in 2017 was estimated to have caused about 4.9 million deaths globally,
while PM2.5 alone was responsible for 2.94 million deaths [1]. In China, the WHO’s annual
median PM2.5 concentration model shows that only parts of Tibet meet the organization’s air
quality guidelines [2]. The severely hazardous haze also causes between 1.2 and 1.6 million
premature deaths per year [3]. The excessive consumption of fossil fuels, such as coal,
has been shown in previous studies to be responsible for significant deteriorations in
air quality [4,5]. The contribution of the secondary aerosol formation of VOCs to haze
formation is significant [6,7]. VOCs are a key precursor for the formation of O3 and
secondary organic aerosols (SOA) [8]. SOA are an important component of fine particulate
matter and a major contributor to haze pollution [9,10]. Studies have shown that haze
pollution in China is mainly driven by SOA [11]. Severe haze pollution leads to poor air
quality and an estimated 2.6 to 4.8 million premature deaths worldwide each year [12–14].
There is direct evidence of the human health effects of haze air pollution exposure related
to respiratory VOC biomarkers, such as propanol and isoprene, in haze pollution [15].

How to prevent and control urban haze disasters has become one of the major issues
facing China’s sustainable economic development and harmonious urban development.
The formation of urban haze has many causal factors, a wide impact, and a social and
complex nature. The risk components of urban haze vary from place to place, and the study
of urban haze risk assessment is important for proposing countermeasures for urban haze
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management from the perspective of risk prevention and control. This paper is expected
to provide decision-making references for the development of targeted urban disaster
prevention and mitigation systems, energy conservation and environmental protection,
and haze management.

Haze events are frequent in China’s highly industrialized, economically developed
and densely populated urban areas with a long duration and record air pollutant con-
centrations [16]. Urbanization has provided inexhaustible impetus for China’s economic
development, which raises the question of the relationship between the advancement of
urbanization and haze pollution. Some scholars have used the development of urbanization
as the main research variable through the construction of mathematical models to show
that the development of urbanization exacerbates haze pollution [17,18]. Singh et al. also
showed that for most PM2.5 haze-causing studies in South Asia, vehicle emissions emerged
as the dominant source [19]. Latif et al. found that local vehicle emissions and industrial
activities are significant contributors to haze pollutants in Malaysia [20].

Researchers have studied the atmospheric haze causality of haze systems using a
variety of methods, such as Zhang et al. who combined causal analysis and stochastic
nonlinear features to construct a haze hazard prediction model for Beijing and simulated
haze hazard trends under different governance and control policies [21]. Several researchers
have studied mathematical models for haze prediction, including nonparametric regres-
sion models [22,23], deep recurrent neural networks [24,25], inverse matrix-free machine
learning models [26], the nonlinear gray model [27] and graphical networks [28,29]. These
methods avoid the analysis of the complex details and mechanisms of haze hazards. Clari-
fying the causal relationships among the factors influencing haze hazards is a prerequisite
for building haze prediction models. To explore the atmospheric haze causality of haze sys-
tems, some other methods have been applied including Granger causality analysis [30,31],
convergent cross mapping [32] and machine learning [33,34]. Factors influencing the haze
hazard include oceanic transport at the marine level [35,36], local and global pollution emis-
sions [37,38] and the interaction of industrial emissions with atmospheric dispersion [39,40].

Unfortunately, these studies were unable to describe the dynamic formation and evo-
lutionary mechanisms of cross-regional haze hazards. The above methods have improved
the efficiency of the assessment to a certain extent, but there are still obvious shortcomings,
mainly because it is not easy to explain the role of each model parameter, which is similar
to a “black box” operation and cannot explain the role of different indicators in the disaster
risk assessment. Meanwhile, the original risk assessment model of urban haze pollution
loss is slow in conducting risk assessments and has the problem of poor accuracy of the
assessment results. In this paper, we selected the haze disaster cases in Fenwei Plain of
China as training samples, collected 13 indicators that may affect the haze disaster risk at a
county level and established a haze disaster risk assessment process model based on the
PCA-MEE-ISPO-LightGBM algorithm.

2. Data Sources and Methods
2.1. Data Sources

Economic density and population density are from the Data Center for Resource and
Environmental Sciences, Chinese Academy of Sciences, 2016–2021 (https://www.resdc.cn/
Default.aspx) (accessed on 16 November 2022). The annual average concentrations of PM10,
PM2.5, SO2, VOCs and NO2 for 2016–2021 were calculated from the daily data downloaded
from the National Real-Time Urban Air Quality Release Platform (http://106.37.208.233:
20035/) (accessed on 16 November 2022). Other data are mainly from the Shaanxi Provincial
Statistical Yearbook 2016–2021, the Henan Provincial Statistical Yearbook 2016–2021, the
Shanxi Provincial Statistical Yearbook 2016–2021 and the statistical yearbooks of prefecture-
level cities. As shown in Figure 1, this paper selects the Fenwei Plain as the study area
including 11 cities in Shaanxi, Shanxi and Henan. Red dots indicate 129 counties’ data.

https://www.resdc.cn/Default.aspx
https://www.resdc.cn/Default.aspx
http://106.37.208.233:20035/
http://106.37.208.233:20035/
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Figure 1. Location of study area.

According to the regional hazard system theory [41], in the formation of a disaster,
the risk of disastrous factors, environmental sensitivity of the disaster and the disaster-
bearing body are indispensable. The environmental sensitivity of the disaster refers to the
earth’s surface environment, including the natural and man-made environment, where the
disaster-causing factors are formed in the disaster-causing environment and directly lead
to the occurrence of the disaster. The disaster-bearing body refers to the object that suffers
from the disaster and is adversely affected. The risk of disastrous factors, environmental
sensitivity of the disaster and disaster-bearing body jointly determine the magnitude of the
haze disaster risk. Research shows that the main material components of urban haze are
toxic gases and respirable particulate matter, which mainly come from human production
and life; the formation of urban haze is influenced by human factors. In terms of the
anthropogenic factors, the more developed the economy, the more motor vehicles owned
by urban residents, the more exhaust emissions from motor vehicles and the increased
risk of haze disasters. The development of the secondary industry is often accompanied
by pollution and damage to the environment. The more a region relies on the secondary
industry for its economic development, the more serious the pollution and damage to the
environment and the greater the sensitivity to haze disasters. The greater the consumption
of coal in a region, the more industrial emissions and the greater the risk of haze disaster.
In addition, building construction is also a major source of respirable particulate matter;
the larger the area of building construction in a region, the higher the concentration of
respirable particulate matter and the greater the risk of haze disaster.

The regional hazard system is an earth surface heterogeneous system composed of the
three aforementioned factors, and the disaster risk is influenced by the combined effect of
the three aforementioned factors. In this paper, five indicators are selected from anthro-
pogenic factors to quantitatively evaluate the sensitivity of the environmental sensitivity
of disaster in the Fenwei Plain, including economic density, which represents the degree
of economic development in a city; the number of motor vehicles, which represents the
amount of motor vehicle emissions; the share of secondary industry, which represents
the dependence of a region’s economy on the secondary industry; the share of coal con-
sumption, which represents the industrial pollution emissions of a city; and the area of
housing construction, which represents the housing construction projects of a region. The
harmfulness of haze components refers to the damage of various components of haze to
urban economy and residents’ health. As shown in Table 1, five indicators, including the
annual average concentration of VOCs, PM10, PM2.5, SO2 and NO2 were selected as the
evaluation indicators of haze component vulnerability in Fenwei Plain. The population
density, the number of health institutions and green areas in built-up areas are selected as
the evaluation indicators of the vulnerability of urban haze. In hazy weather, the concentra-
tion of aerosols in the air rises, the atmospheric layer is relatively stable and unfavorable
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for the convective diffusion of air, the humidity and visibility of the atmosphere change
dramatically, and people’s lives and health are greatly adversely affected. The greater the
population density of a city, the greater the number of people suffering from haze and the
greater the vulnerability of the disaster-bearing body. The greater the number of health
institutions, the more developed the medical care, and the higher the carrying capacity of
the medical system in the area, the more people can be treated and cured from the haze,
reducing the risk of the haze and the vulnerability of the city to haze. Urban greening can
absorb harmful gases and dust, reduce air pollution and reduce the vulnerability of the
disaster-bearing body. Therefore, the population density, number of health institutions
and green areas in built-up areas are selected as the evaluation indexes of urban haze
vulnerability.

Table 1. Fenwei Plain haze disaster risk assessment index system.

First-Grade Indexes Second-Grade Indexes Unit Abbreviations Positive/Negative
Indicators

Risk of disastrous
factors (RD)

Economic density CNY Billion/km2 ED Positive indicators
Number of motor vehicles Num. NMV Positive indicators
Percentage of secondary

industry % SSVP Positive indicators

House construction area m2 HCA Positive indicators
Share of coal consumption % COC Positive indicators

Environmental
sensitivity of disaster

(ESD)

VOCs µg/m3 - Positive indicators
PM10 µg/m3 - Positive indicators
PM2.5 µg/m3 - Positive indicators
SO2 µg/m3 - Positive indicators
NO2 µg/m3 - Positive indicators

Disaster-bearing body
(DBB)

Population density Persons/km2 PD Positive indicators
Number of health institutions Num. NHI Negative indicators
Greening area of built-up area hm2 ACB Negative indicators

2.2. Methods
2.2.1. Matter-Element Extension Model

The basic idea of the matter-element extension model is to first delineate the categories
of objects to be evaluated and delineate the different categories according to the relevant
research results. Extension is a subject based on extension mathematics and matter element
theory; matter element is the logical cell of extension [42]. Assuming that the name of the
thing is N, the response thing feature is C, and the value range of C is V, the ordered triple
R = {N, C, V} can be used as the basic matter element to describe the thing. The risk of haze
disaster caused by VOCs is defined as the basic matter element R, then N represents the
risk of haze disaster, C represents the risk characteristics, and V is the characteristic value.
If N has n features C1, C2, . . . , Cn, then

R =

∣∣∣∣∣∣∣∣∣
N C1 V1

C2 V2
...

...
Cn Vn

∣∣∣∣∣∣∣∣∣ (1)

(1) Determine the classical domain

According to the risk of haze disaster caused by VOCs, the risk assessment of haze
disaster caused by VOCs is divided into e classification levels (e = 1, 2, . . . , s). The risk level
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of haze disaster is set, and Cj is the evaluation index of emergency management ability (j =
1,2 . . . , n). The value range of Cj is V0ej, and its classical domain can be expressed as

R0e = (N0e, Cj, V0ej)

∣∣∣∣∣∣∣∣∣
N C1 < a0e1, b0e1 >

C2 < a0e2, b0e2 >
...

...
Cn < a0en, b0en >

∣∣∣∣∣∣∣∣∣ (2)

R0e is the classical domain matter element.

(2) Determine the nodal domain

The matter-element of VOC-induced haze disaster risk assessment is essentially the
atmosphere corresponding to each evaluation index (the range from the lowest value
to the highest value). The eigenvalues of the object unit Np (p = 1, 2, . . . , m) can be
evaluated according to the actual situation and scored according to the classification criteria,
establishing the matter-element to be evaluated. The matter-element to be evaluated can be
expressed as:

Rp = (Np, Cj, Vpj)

∣∣∣∣∣∣∣∣∣
Np C1 < ap1, bp1 >

C2 < ap2, bp2 >
...

...
Cn < apn, bpn >

∣∣∣∣∣∣∣∣∣ (3)

Rp is a nodal matter element; np is the individual to be tested for VOC-induced haze disaster
risk assessment; and Vpj =< apn, bpn > is the magnitude range of the node domain matter
element with respect to the characteristic Cj, where < a0ej, b0ej > . . . < apj, bpj >, (j = 1,2
. . . , n).

(3) Establish evaluation index correlation function

Calculating the correlation coefficient of evaluation index, the correlation function is:

ke(vi) =

{
ρ[vi(e),v0ej ]

ρ[vi(e),vpj ]−ρ[vi(e),v0ej ]
, (ρ[vi(e), vpj]− ρ[vi(e), v0ej] 6= 0)

−ρ[vi(e), v0ej]− 1, (ρ[vi(e), vpj]− ρ[vi(e), v0ej] = 0)
(4)

ρ
[
vi(e), V0ej

]
=
∣∣∣vi −

a0ej+b0ej
2

∣∣∣− b0ej−a0ej
2

ρ
[
vi(e), Vpj

]
=
∣∣∣vi −

apj+bpj
2

∣∣∣− bpj−apj
2

 (5)

(4) Define the entropy of evaluation indicators

fki =
rki

m
∑

k=1
rki

(6)

rki denotes the element of the kth row and ith column of the normalized matrix. Let fki
denote the element of the kth row andith column of the evaluation index after standardiza-
tion.

Then, the entropy Hi of the evaluation index is

Hi =
−1

ln m

m

∑
k=1

fki ln fki (7)

where the constant −1
ln m denotes the information entropy coefficient, lim

fki→0
fki ln fki = 0,0 ≤

Hi ≤ 1.
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Determine the entropy weight of each evaluation index wi. Calculate the entropy
weight of the evaluation index using the following formula:

wi =
1− Hi

n−
n
∑

i=1
Hi

and
n

∑
i=1

wi = 1. (8)

(5) Calculate the comprehensive correlation degree of each evaluation index

The comprehensive correlation degree of each evaluation index, also known as multi-
factor comprehensive correlation degree, refers to the degree of belonging of the evaluation
index to each evaluation grade, which can be expressed as:

ke(N) =
m

∑
i=1

wike(vi) (9)

In the formula, wi is the weight vector of each evaluation index and satisfies
m
∑

i=1
wi = 1.

(6) Calculate the VOCs’ haze disaster risk assessment level

The general matter-element extension model criterion adopts the principle of maxi-
mum membership degree; that is, kie0(N) = max{kti(N)|e=1,2,...,s }. Then, the risk level N
of VOCs haze disaster to be evaluated belongs to level e. This method sometimes cannot
contain complete evaluation information. The use of asymmetric closeness principle can
better solve the problem of maximum membership principle failure. The asymmetric
proximity method [43] is:

N(A, B) = 1− 1
n

n

∑
t=1

∣∣∣µq
A(µt)− µ

q
B(µt)

∣∣∣ 1
t

(10)

In the formula, µA(µt) and µB(µt) are the membership degrees of objects correspond-
ing to A and B, respectively, which belong to µt. Among them, q plays a regulatory role
in the calculation results and compensates with the role of 1/t, which can help make the
calculation results more conducive to classification. q > 0 can be used, and the value should
not be too large as this is not conducive to grading, and q = 3 is taken in this application
study. If N(A, B) = maxN(A, Bi)(i = 1, 2, · · · , n), the emergency management capability
level is e.

2.2.2. Index Weight Determination Method
Traditional Principal Component Analysis

Principal component analysis is a mathematical method to reduce the dimension of a
variety of sample data through certain mathematical means to improve the concentration of
sample information [44]. The specific steps of principal component analysis are as follows:

1© Calculate the covariance matrix. The covariance of normalized sample data is

skj =
1
n

n

∑
i=1

(Xik − Xk)(Xij − X j)(k, j = 1, 2, · · · , p) (11)

In the formula, skj is the covariance value of the k evaluation index and the j evaluation
index; and Xk is the normalized sample mean of the k evaluation index.

2© Calculate the eigenvalues and unit eigenvectors of the covariance matrix. Under the
condition of data sample normalization, the covariance matrix is the correlation coefficient
matrix. The eigenvalues λj (j = 1, 2, . . . p) and eigenvectors of the jth evaluation index
of the correlation coefficient matrix are obtained using the Jacobian determinant method.
The eigenvalues are sorted from large to small (λ1 ≥ λ2 ≥ . . . ≥ λp > 0). The
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variance contribution rate is the proportion of a certain eigenvalue to the total number of
eigenvalues:

G(λj) =
λj

p
∑

k=1
λk

(j, k = 1, 2, · · · , p) (12)

G(λj) is the variance contribution rate of λj.
3© Select the principal component. The cumulative variance contribution rate of the

principal component is

G(m) =
m

∑
j=1

λj/
p

∑
k=1

λk(m, j, k = 1, 2, · · · , p) (13)

In the formula, G(m) is the cumulative variance contribution rate of the first m eigen-
values. When G(m) > 85%, m is called the principal component.

4© Calculate principal component load:

lcj =
√

λcacj(c = 1, 2, · · · , m; j = 1, 2, · · · , p) (14)

In the formula, Fc is the c principal component score, and Xp is the p evaluation index
of the normalized sample matrix.

5© Calculation of principal component scores:

Fc = ac1X1 + ac2X2 + · · ·+ acpXp(c = 1, 2, · · · , m) (15)

where Fc is the cth principal component score, and Xp is the pth evaluation indicator of the
normalized sample matrix.

6© Calculate the composite principal component score:

F =
m

∑
c=1

λc
m
∑

d=1
λd

× Fc(c = 1, 2, · · · , m) (16)

F is the comprehensive principal component score of traditional principal component
analysis.

The Improvement of Principal Component Analysis using Entropy Weight Method

The entropy weight method is an objective weighting method to describe the irre-
versible phenomenon of molecules. The greater the difference between the parameters of
a system, the more information it contains and the smaller the entropy value; in contrast,
the greater the entropy value, to evaluate the contribution of a weight index to the system.
The entropy weight method has the advantages of highlighting the local information of
the system and being less affected by subjective factors and has been widely used in many
engineering fields [45]. When the first principal component of the traditional principal
component analysis method does not meet the requirement that the cumulative variance
contribution rate is greater than 85%, multiple principal components need to be fused,
and the weight distribution among the principal components is the main factor affecting
the lithology stratification effect. The traditional principal component analysis method is
to calculate the variance contribution rate of each principal component by weighting the
principal components, but the principal components are independent of each other, and
the information content of the calculation results may not rise but fall. In this paper, the
entropy weight method is used to improve the traditional principal component analysis
method. According to the variation degree of each principal component of the traditional
principal component analysis method, the entropy weight method is used to recalculate
the weight of each principal component. Finally, the comprehensive value of the entropy
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weight principal component is used as the index parameter of the haze risk division. The
steps are as follows:

1© Normalization calculation of each principal component:

F∗ic =
Fic − Fc(min)

Fc(max) − Fc(min)
(i = 1, 2, · · · , n ; c = 1, 2, · · · , m) (17)

In the formula, F∗ic is the normalized score of the c principal component of the first
sample, Fic is the score of the c principal component of the i sample, Fc(max) is the maximum
score of the c principal component, and Fc(min) is the minimum score of the c principal
component.

2© Calculate the proportion of each principal component sample:

Ec = −
1

ln n

n

∑
i=1

pic × lnpic(i = 1, 2, · · · , n ; c = 1, 2, · · · , m) (18)

Ec is the entropy of the c principal component.
3© Calculate the weight of each principal component:

ωc = (1− Ec)/
m

∑
f=1

(1− E f ) (c, f = 1, 2, · · · , m) (19)

where ωc is the weight of the c th principal component.
4© Calculate the entropy principal component composite score:

F
′
=

m

∑
c=1

ωc × pic (i = 1, 2, · · · , n ; c = 1, 2, · · · , m) (20)

2.3. Calculate the Weight of Each Evaluation Index

As shown in Table 2, the KMO sampling fitness number for this principal component
analysis is 0.684, which is greater than its threshold value of 0.5, indicating that there
is correlation between the variables, which meets the requirements. The Sig value is
0.000, which is less than 0.05, which indicates that this data can be subjected to principal
component analysis and is scientific and informative. The eigenvalues and contribution
rates of each principal component are shown in Table 3. According to the principle that
the eigenvalue is greater than 1, the first three items are selected as the main components,
and the variance contribution of these three items are 39.76, 22.74 and 15.39%, respectively,
and the cumulative contribution of the three items is 77.9%, which can basically reflect
the information of the original indexes. The first 3 items are used as principal component
factors and denoted by F1, F2 and F3, so that the original 13 indicators are replaced by the
first 3 principal components, and the loading status of each factor on the original indicators
can be calculated at the same time.

Table 2. Principal component eigenvalues and contribution rates.

Bartlett’s Sphericity Test

KMO 0.684
Approximate cardinality 720.527
Df 66.000
P 0.000 ***

Note: ***, ** and * represent 1, 5 and 10% significance levels, respectively.
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Table 3. Principal component loading matrix.

Ingredients
Characteristic Root

Characteristic Value Percentage of Variance Accumulation

1 5.169 39.76% 39.76%
2 2.957 22.74% 62.50%
3 2.001 15.39% 77.90%
4 0.886 6.82% 84.71%
5 0.638 4.91% 89.62%
6 0.431 3.31% 92.94%
7 0.326 2.51% 95.44%
8 0.242 1.86% 97.30%
9 0.167 1.28% 98.59%

10 0.111 0.85% 99.44%
11 0.044 0.34% 99.78%
12 0.023 0.18% 99.96%
13 0.006 0.04% 100.00%

As seen in Table 3, the F1 eigenvalue is 5.169, with a contribution rate of 39.76%. As
seen in Table 4, tops the three principal components and is the primary driver of haze
risk formation in Fenwei Plain cities. Analysis of the principal component F1 loadings
reveals that the 1st principal component F1 has large values above 0.66 for indicators X1
(economic density), X4 (share of coal consumption), X11 (population density) and X12
(number of health institutions), which indicates that economic development density, coal
consumption, population density and health institutions are the first constituents of haze
risk. The top 3 loadings of principal component F2 are X3 (number of motor vehicles), X5
(housing construction areas), X6 (annual average concentration of VOCs) and X8 (annual
average concentration of SO2), which shows that the haze hazard in Fenwei Plain cities
is mainly dominated by the toxic gases VOCs and SO2. The indicator with the highest
principal component F3 loading value is X7 (annual average PM10 concentration), followed
by PM2.5 and the share of secondary industry, reflecting that PM2.5, PM10 and secondary
industry are also important environmental factors in the formation of haze risk.

Table 4. Principal component loading matrix.

Indicators F1 F2 F3

X1 Economic density 0.872 0.227 −0.339
X2 Percentage of secondarysector of economy −0.327 −0.445 0.482
X3 Number of motor vehicles −0.476 0.755 −0.23
X4 Share of coal consumption 0.662 −0.552 0.216
X5 Area of housing construction −0.541 0.674 −0.04
X6 Annual average VOCs concentration 0.625 0.681 −0.065
X7 Annual average PM10 concentration 0.473 0.25 0.759
X8 Annual average SO2 concentration −0.414 0.63 0.425
X9 Annual average NO2 concentration 0.644 0.119 0.365

X10 Annual average PM2.5 concentration 0.246 0.511 0.666
X11 Population density 0.929 0.21 −0.153
X12 Number of health establishments 0.773 −0.218 0.141
X13 Area of greenery coverage 0.788 0.297 −0.416

2.4. Haze Hazard Risk Principal Component Composite Score and Ranking

The loadings in the principal component loadings matrix reflect the extent to which
the indicators play a role in the formation of haze risk, so the indicator weights can be
expressed in terms of the indicator loadings. Using the weighted model, the scores of the
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evaluation units on the 3 principal components and the haze risk indices on the different
principal components can be calculated as:

Fiy = ∑ WjXi
j (21)

where Fiy is the haze risk index of the ith evaluation unit on different principal components,
e.g., in the 1st principal component, it is the haze risk index of evaluation unit i on F1. Wj is
the loading value of the jth indicator on the corresponding principal component, and Xi

j is
the standardized value of the jth indicator of the ith evaluation unit.

According to the principle of principal component analysis, the proportion of each
principal component to the cumulative contribution reflects the importance of each prin-
cipal component. The weight can be determined by analyzing the contribution of the
principal components, and the weighting model can be used to calculate the compre-
hensive score of the evaluation unit, which is the comprehensive haze risk index F. It is
calculated as:

F =
(F1P1 + F2P2 + F3P3)

P1 + P2 + P3
(22)

where F1, F2 and F3 represent the scores of the first, second and third principal components,
respectively, whereas P1, P2 and P3 represent their corresponding contribution rates.

2.5. LightGBM

The light gradient lifter is a decision tree algorithm proposed based on gradient one-
sided sampling and unique feature bundling with optimization in the negative gradient
direction of the loss function [46]. The LightGBM algorithm is more efficient in processing
high-dimensional big data due to the unique feature bundling (EFB) algorithm and gradient-
based one-sided sampling (GOSS) algorithm in LightGBM. Suppose a training set Q,
Q = {(xi, yi)}N

i=1, consisting of N samples, where xi ∈ X = {x1, x2, . . . , xk} represents the
data, X denotes the k-dimensional vector space, yi ∈ Y = {0, 1} represents the category
labels, and yi = 1 denotes the faulty samples. The objective of the LightGBM algorithm
is to find a mapping relation G(x) to approximate the function G(x), such that the loss
function φ(y, G(x)) is minimized. The objective function can be expressed as:

Lt =
m

∑
i=1

L(yi, ft−1(xi) + ht(xi)) + γJ+∑
k

Ω( fk) (23)

where L(yi, ft−1(xi)+ ht(xi)) is the loss function, and Ω( fk) denotes the regular term unlike
the fast descent method of GBDT.

LightGBM uses Newton method to quickly approximate the objective function. Equa-
tion can be derived as:

Lt ∼=
m

∑
i=1

(gi ft(xi) +
hi f 2

t (xi)

2
)+∑

k
Ω( fk) (24)

gi represents the first-order loss function, and hi represents the second-order loss function.
The equation is as follows:

gi = σFt−1(xi)
L(yi, ft−1(xi)) (25)

gi = σFt−1(xi)
L(yi, ft−1(xi)) (26)

The information gains in LightGBM are as follows:

H =
1
2

 ( ∑
i∈IL

gi)
2

∑
i∈IL

hi + λ
+

( ∑
i∈IR

gi)
2

∑
i∈IR

hi + λ
+

(∑
i∈I

gi)
2

∑
i∈I

hi + λ

 (27)
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2.6. Improved PSO Algorithm

As a swarm intelligence algorithm, particle swarm optimization (PSO) has been widely
used in various industries to solve practical problems in recent years. The traditional PSO
algorithm is easily falls into local optimum and has poor convergence speed and accuracy
in the iterative process. It is difficult to ensure the efficiency of the algorithm in practical
engineering tasks. After using the topology, the optimization process of particle swarm is
carried out as follows:

1© All particles in the particle swarm are arranged from large to small according to the
fitness value of the particles at the initial time. The first N particles are selected as the main
particles, N is a positive integer, and all particles in the particle swarm except the main
particles are used as the slave particles.

2© The K-means clustering method is used to classify the subordinate particles by
using each main particle as the clustering center.

3© Each master particle from the particle group and its corresponding cluster center is
used as an improved particle group to obtain N improved particle groups.

4© Using Formulas (28) and (29) to update the velocity of the main particle and the
slave particle in the improved particle group and multiple slave particle groups, each slave
particle group has the same number of slave particles.

vmi(t+1) = k
[
vmi(t) + ϕ1γ1(mpbest

i(t) − xmi(t)) + ϕ2γ2(mgbest
(t) − xmi(t))

]
(28)

vsij(t+1) = k
[
vsij(t) + ϕ1γ1(spbest

ij(t) − xsij(t)) + ϕ2γ2(sgbest
i(t) − xsij(t))

]
(29)

In the formula, xmi(t) represents the position record of the main particle in the i th
improved particle group at the current time t. xsij(t) denotes the position record of the j th
slave particle in the i th improved particle group at the current time t. vmi(t) denotes the
velocity of the main particle in the i th improved particle group at the current time t. vsij(t)
represents the velocity value of the j th slave particle in the i th improved particle group
at the current time t. k is the convergence factor and a constant. ϕ1 and ϕ2 are learning
factors. mpbest

i(t) represents the historical optimal position record of the main particle in the
ith improved particle group at time t (taking the optimal position value of the main particle
in the i th improved particle group). spbest

ij(t) represents the historical optimal position record
of the j th slave particle in the i th improved particle group at time t. γ1 and γ2 are constants
greater than 0 and less than 1. mgbest

(t) represents the optimal historical position record of the

primary particles in all improved particle groups at the current time t. sgbest
i(t) denotes the

optimal record of the historical position of the particle in the i th improved particle group
at the current time t.

5© The positions of master and slave particles are updated using Formulas (27) and
(28) according to the updated velocity value:

xmi(t+1) = xmi(t) + vmi(t+1) (30)

xsij(t+1) = xsij(t) + vsij(t+1) (31)

6© According to the updated position parameters of the master-slave particles, the
fitness value is recalculated, and iterative optimization is performed. Through the above
process, it can be concluded that when the proposed improved particle swarm relationship
topology is adopted, other main particle swarms can also jump out of the local extremum as
much as possible to search for the global optimum and improve the accuracy of parameter
optimization when the slave particle group in a certain region falls into the local optimum.
On the other hand, in the traditional particle swarm optimization algorithm, ϕ1 and ϕ2 are
fixed values, generally taking a constant between 0 and 2, which limits the global and local
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search ability of particles to a certain extent. Therefore, linear increasing and decreasing
functions are introduced to improve this part. The improved formula is as follows:

ϕ1(t) = ϕ01 ×
(

1− t
G

)
(32)

ϕ2(t) = ϕ02 ×
t
G

(33)

In the formula, ϕ01 and ϕ02 are the initial values of the learning factor. t and G are
the current and maximum number of iterations, respectively. The improved master–slave
particle velocity update formula is as follows:

vmi(t+1) = k
[
vmi(t) + ϕ1(t)γ1(mpbest

i(t) − xmi(t)) + ϕ2(t)γ2(mgbest
(t) − xmi(t))

]
(34)

vsij(t+1) = k
[
vsij(t) + ϕ1(t)γ1(spbest

ij(t) − xsij(t)) + ϕ2(t)γ2(sgbest
i(t) − xsij(t))

]
(35)

In summary, the IPSO-LightGBM model construction process is shown in Figure 2.

Figure 2. IPSO-LightGBM model construction process.
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2.7. Model Establishment and Performance Evaluation Index

Based on the ISPO-LightGBM algorithm, this paper establishes five risk assessment
models, including population, transportation, crop and economic disaster risks and integrated
risk. All models take the three types of indicators of disaster-causing factors, disaster-pregnant
environments and disaster-affected bodies as input vectors, and different loss risk levels as
output vectors. The specific model establishment process is shown in Figure 3.

Figure 3. Haze disaster risk assessment model building process.

The LightGBM model optimized using IPSO has higher fitness values during the
iterative process and converges faster than the PSO algorithm. In the iterative search
process, the search stability of IPSO algorithm is high, and the optimal hyperparameter
combination of LightGBM model has been searched for around 300 iterations. In contrast,
the PSO algorithm is more volatile in the iterative search process, and the convergence does
not appear at 600 iterations, and the gap between the adaptation degree and IPSO algorithm
is further widened, and the final convergence adaptation degree of the experiment is lower
than that of the IPSO algorithm. Under the given termination iteration condition, the
model parameters obtained using IPSO optimization are Learing_rate = 0.25, gamma = 0.13,
max_depth = 7, min_child_weight = 3, and lambda = 1.
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Among them, the model tuning parameters were optimized using 10-fold cross-test,
and the grid search was performed for the main three parameters of the XGBoost model,
which are the number of weak classifiers, the maximum depth of the decision tree and the
learning rate. The five model optimal parameters and the accuracy of the training set are
shown in Table 5.

Table 5. Evaluation results for the different risk levels of the training set.

Evaluation Model Number of Weak Classifiers Maximum Depth Learning Rate Training Set Accuracy

Disaster population risk 900 4 0.1 0.977
Transportation disaster risk 800 2 0.2 0.95

Crop disaster risk 1000 3 0.1 0.987
Economic disaster risk 900 4 0.2 0.948

Integrated risk 900 4 0.1 0.937

To evaluate the model accuracy, four evaluation indicators were selected, including
accuracy (ACC), detection rate (P), recall (R) and F-value (F):

Accuracy =
TP + TN

TP + TN + FP + FN
(36)

Precision =
TP

TP + EP
(37)

Recall =
TP

TP + FN
(38)

FMeasure =
2Precision× Recall
Precision + Recall

(39)

where TP means true positive, which is itself a positive sample, and the prediction is also
a positive sample. TN means true negative, which is itself a negative sample, and the
prediction is also a negative sample. FP means false positive, which is itself is a positive
sample, and the prediction is a negative sample. FN denotes false negative, which is itself a
negative sample, and the prediction is a positive sample. In the above evaluation index,
the accuracy rate indicates the proportion of all correctly predicted samples to the total
sample. Accuracy indicates the proportion of samples with positive predictions that are
true positive samples. Recall indicates the proportion of positive cases in the actual sample
that are correctly predicted. The F-value is an indicator that balances the accuracy and
recall rates and is the summed average of the two.

3. Results and Discussion
3.1. Analysis of Evaluation Results

As seen from Table 6, F1, F2 and F3 represent the scores of the three principal compo-
nent analyses, respectively, which are calculated by Equation (21). F is the composite haze
risk index, which is calculated by Equation (22). The haze risk index is high in the Fenwei
Plain urban agglomeration, especially in Xi’an, which is as high as 9.773. The analysis of
the three principal component scores of the Fenwei Plain urban agglomeration reveals
that the scores in F1 are much larger than those in F2 and F3, indicating that the main
drivers are economic density, the number of motor vehicles, housing construction areas
and the number of health institutions. Xi’an has been the center of economic development
in Northwest China and is rich in industrial and mineral-rich resources, and urbanization
is also rapid, resulting in increased environmental pressures, serious air pollution, the
proximity of cities and the influence of the spatial spillover effects of pollutants, making it
an extremely high-risk area for haze. To effectively control the risk of haze, the Fenwei Plain
urban agglomeration should actively transform its economic development, improve traffic
laws and regulations and regulate motor vehicles, thus reducing motor vehicle exhaust
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pollution and relieving the pressure on traffic. City governments should strengthen joint
control and prevention mechanisms to control the construction area of an area within a
certain period of time through macro regulation so that it does not gather too much, make
good isolation measures to reduce respirable particulates brought about by construction
work, control the source of haze components and accelerate the improvement of urban
greening. Urban greening can, to a certain extent, absorb harmful gases and dust gener-
ated by the city, reduce air pollution, purify the air and help reduce the vulnerability of
disaster-bearing bodies. Xi’an, Sanmenxia, Lvliang and Luoyang belong to the high-risk
area of haze. Analyzing the scores of their three principal components revealed that Xi’an,
Sanmenxia and Luoyang are in the first principal component, indicating that the haze
risk drivers in these two cities have the first principal component of economic density, the
number of motor vehicles and housing construction areas. First, to carry out haze risk
prevention and control, we must adjust the energy structure and promote clean energy.
We must replace coal with other clean energy sources to reduce coal consumption, thus
reducing the material components of haze formation and the risk of haze. Second, in the
case of irreplaceable coal, we must improve the desulfurization of coal, denitrification
and dust removal technology to reduce the emissions of sulfide and other emissions due
to burning coal and achieve the purpose of reducing the risk of haze. Third, relevant
enterprises should increase investment in research and development and actively develop
new technologies to improve energy utilization, reduce energy consumption and achieve
energy conservation, emission reduction and green development. The middle-risk areas
are Lvliang, Luoyang, Linfen, Yuncheng and Baoji. Both Tongchuan and Jinzhong have
high scores with the second principal component, while the SO2 concentration, PM10 con-
centration and coal consumption share of the second principal component also play an
important role in the formation of haze risk. Weinan, Xianyang, Tongchuan and Jinzhong
are four cities with relatively high scores for the third principal component; with rich forest
vegetation, the strong self-cleaning ability of the atmosphere and a high rate of good air,
their haze pollution is small and low risk. Therefore, small enterprises with low capacity
and high emissions should be eliminated by strengthening the regulation of pollutant
emissions from factories. The approval system of enterprise project engineering should be
established, improved and strictly enforced, raising the threshold of enterprise access and
controlling the emission of haze material components from the source.

Table 6. Results of haze disaster risk evaluation in Fenwei Plain cities.

F1 F2 F3 F Rank

Xi’an 9.49 1.161 0.284 9.773159 1
Sanmenxia 8.94 1.585 0.272 9.371132 2

Lvliang 8.585 1.927 0.38 9.199759 3
Luoyang 8.946 1.087 0.593 9.189809 4

Linfen 8.384 1.65 0.716 8.874841 5
Yuncheng 8.354 1.637 0.668 8.839851 6

Baoji 8.152 1.596 0.786 8.631265 7
Weinan 7.716 2.012 0.972 8.44993 8

Xianyang 6.998 2.296 1.442 8.389519 9
Tongchuan 6.658 2.751 1.143 8.359984 10
Jinzhong 6.059 3.044 0.781 7.914102 11

3.2. Case Verification

In this paper, we use the large-scale haze pollution in Fenwei Plain from 1 November
2021 to 31 December 2021 as a case study to validate the application of the major haze
hazard assessment model based on the ISPO-LightGBM algorithm. This haze process
caused a massive haze disaster in 11 prefecture-level cities in the Fenwei Plain, affecting
a total of 52 million people. The established models were used to evaluate the affected
population, transportation, crop and economic disaster risks and integrated risk, and were
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then compared with the actual disaster loss levels at the county level, and the results are
shown in Table 7. The five types of disaster risks in the Fenwei Plain are shown in Figure 4.

Table 7. Evaluation results for the different risk levels of the test set.

Evaluation Model Accuracy Precision Recall F

Disaster population risk 0.85 0.88 0.82 0.85
Transportation disaster risk 0.95 0.94 0.93 0.92

Crop disaster risk 0.84 0.89 0.85 0.87
Economic disaster risk 0.65 0.64 0.65 0.63

Integrated risk 0.86 0.91 0.93 0.92

Figure 4. Five disaster risks in Fenwei Plain.

3.3. Importance of Indicators

To understand the various factors that influence the assessment results, it is necessary
to calculate the specific contribution of each assessment indicator. The LightGBM algorithm
calculates the importance of an indicator based on the principle that the more times an
input indicator is selected as a branching feature when the decision tree branches, the more
important the feature is. In this paper, the importance of indicators was calculated for each
of the five types of risk assessment objectives, and the results are shown in Figure 5.

Among them, the most important indicators affecting the risk assessment of the af-
fected population are NO2, economic density and coal consumption, indicating that the
risk of disastrous factors, environmental sensitivity of disaster and disaster-bearing body
all contribute to the assessment results. The transportation disaster risk has a greater rela-
tionship with NO2 and VOCs in green areas in built-up areas, indicating that transportation
risk has a greater correlation and impact with pregnant environments. The crop disaster
risk has a great relationship with SO2, the proportion of secondary industry, housing
construction areas and population density; in particular, the impact of SO2 is prominent,
indicating that the disaster of crops is closely related to the disaster environment. The main
influencing factors of economic disaster risk are VOCs, population density and the number
of motor vehicles. The economic disaster risk is closely related to disaster-causing factors
and disaster-pregnant environments. The main influencing factors of integrated risk are
population and GDP densities. The possible reason is that GDP itself is a comprehensive
index. GDP cannot only reflect the comprehensive exposure of the disaster-bearing body in
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the region but also the vulnerability of the disaster-bearing body in the region to a certain
extent. In other words, it can be considered that the comprehensive disaster prevention and
mitigation capacity of a region with high GDP is stronger than that of the region with low
GDP. Overall, the contribution of different indicators to different risk assessment results
is not the same, and none of the indicators can contribute to a negligible extent, with the
contribution of each indicator ranging from 5 to 12%.

Figure 5. Importance of indicators for different risk assessment types.

3.4. Impact of Indicator Size on Assessment Results

As shown in Table 8, RD denotes the risk of disastrous factors, ESD denotes the
environmental sensitivity of disaster, and DBB denotes the disaster-bearing body. To
examine the influence of the number of indicators on the accuracy of the assessment
model, this paper combined the input indicators of different dimensions and compared the
accuracy in the haze risk assessment results using only the causative factor, the combination
of the risk of disastrous factors, the environmental sensitivity of disaster, the disaster-
bearing body and the use of all indicators. By comparison, it was found that the change
in the number of indicators had less impact on the assessment results of the two models
of population and transportation disaster risks. However, the number of indicators has a
large impact on the accuracy of the assessment of the three models of crop and economic
disaster risks and integrated risk, and the accuracy is the lowest if the model input is
only the causative factor, which is 4–16% lower than the full indicator. In addition to the
disaster-causing factors, the addition of both the environmental sensitivity of disaster and
disaster-bearing body indicators will improve the accuracy, and the disaster-bearing body
indicators will improve more than the environmental sensitivity of the disaster indicators
because the disaster-bearing body indicators have more subcomponents. The highest
accuracy rate was achieved by using all indicators together as input, indicating that the
amount of indicators has a significant impact on the assessment results.
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Table 8. Accuracy of risk assessment for different indicator quantities.

Index RD RD + ESS RD + DBB RD + EES + DBB

Disaster population risk assessment accuracy/% 79 81 81 85
Transportation disaster risk assessment accuracy/% 91 92 94 95

Crop disaster risk assessment accuracy/% 73 78 80 84
Economic disaster risk assessment accuracy/% 48 52 57 65

Integrated risk assessment accuracy/% 72 75 80 86

3.5. Impact of Environmental Factor Variables on Assessment Results

We added the meteorological conditions as well as the terrain as a factor for compari-
son. Pearson analysis was performed for topographic and meteorological factors, as shown
in Table 9. Altitude, temperature and wind speed were found to be moderately positively
correlated with haze risk. Other factors such as woodland, grassland, relative humidity
and precipitation showed weak negative correlations.

Table 9. Analysis and description of environmental factor variables.

Environmental Factors Variable Name Unit Variable Description Pearson Correlation

Topographical factors
(TF)

Altitude M Monitoring station altitude −0.559
for_X % Forest −0.379
gra_X % Grass −0.299

Meteorological factors
(MF)

SSD H Sunshine hours 0.018
WD - Wind direction 0.202
TEM ◦C Temperatures 0.523
RHU % Relative humidity −0.215
PRE mm Precipitation −0.346
WIN m·s−1 Wind speed 0.415

As shown in Table 10, we added topographic and meteorological factors to each of the
five integrated models, and we found that the topographic factor enhances the model less,
and the meteorological factor enhances the model significantly relative to the topographic
factor. The combined input of topographic and meteorological factors improves the models
more significantly. Compared with the model before input, the accuracy of the five risk
models was improved by 6.12% on average.

Table 10. Accuracy of risk assessment for different environmental indicator quantities.

Index Topographical
Factors

Meteorological
Factors

Comprehensive Factors
(TF + MF)

Disaster population risk assessment accuracy/% 86 88 90
Transportation disaster risk assessment accuracy/% 95.7 95 96

Crop disaster risk assessment accuracy/% 84.6 86 88
Economic disaster risk assessment accuracy/% 67 69 72

Integrated risk assessment accuracy/% 88 89 93

3.6. Comparison with other Studies

A comparison of the risk assessment model proposed in this study with models
proposed in other similar studies can better elucidate the differences between this study
and other studies, as shown in Table 11. Currently, there are few detailed studies on
haze risk assessment. Second, in terms of feature selection methods, this paper uses
the new gradient enhancement algorithm LightGBM to filter the features. To the best of
our knowledge, there are few studies using the LightGBM algorithm to filter features.
Compared with other mainstream integration algorithms in the boosting family, optimizing
the LightGBM model using ISPO requires less parameter tuning, shows faster adaptation to
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the model and is more scalable. In conclusion, compared with the models proposed in other
studies, the model proposed in this paper can effectively solve the haze risk assessment
problem and has good prediction performance, especially with a precision of 0.91.

Table 11. Comparison with other studies.

Algorithm City Accuracy Precision Recall F

PSO-SVM [47] Beijing 0.82 0.91 0.75 0.82
Efficient weighted naive bayes classifiers [48] Delhi 0.836 0.87 0.82 0.873

MCS-RF [49] Beijing 0.828 0.875 0.872 0.871

APNet [50] Beijing-Tianjin-
Hebei 0.848 0.846 0.789 0.817

CNN [51] Taipei - 0.87 0.84 -
PCA-MEE-ISPO-LightGBM Fenwei Plain 0.86 0.91 0.93 0.92

4. Conclusions

In this paper, based on nearly 300,000 indicators of haze cases in 11 cities in Fenwei
Plain in China, a haze disaster assessment model is established using the PCA-MEE-ISPO-
LightGBM algorithm, and the model is validated with data from the haze pollution process
in Fenwei Plain region in mid-November 2021. The results show that the model can be used
for the assessment of the affected population, transportation, crop and economic disaster
risks and integrated risk before major haze disaster events, which is important for disaster
risk management operations.

(1) Through the matter-element analysis, we construct the classical domain, determine
the matter-element to be evaluated and calculate the correlation degree of the evaluation
index and the haze disaster assessment level. Introducing the asymmetric closeness degree
criterion, the index weight is improved using the entropy weight method to the principal
component analysis method, and the haze disaster evaluation method based on the matter-
element extension model of the improved principal component analysis is proposed. The
IPSO optimization algorithm which divides the topological relationship between master
and slave particles and dynamically adjusts the iterative learning factor is proposed to solve
the problem that the particle swarm easily falls into the local optimal region in the iterative
process. The IPSO is integrated into the parameter optimization process of the LightGBM
model, and the hyperparameters of the LightGBM prediction model are optimized. The
disaster risk assessment models based on the PCA-MEE-ISPO-LightGBM algorithm show
good applicability. The performance indexes of the five models in the risk assessment,
such as accuracy, detection rates, recall rates and F-values, are above 80%, indicating that
the models show good generalization performance and can be used in actual disaster risk
assessment work.

(2) The average annual concentration of VOCs, economic density, number of motor
vehicles, housing construction areas, average annual concentration of SO2 and PM2.5, and
the share of secondary industry and coal consumption have a strong influence on the risk
of urban haze disaster. The higher the level of economic development in a city, the more
motor vehicles, the higher the dependence of economic development on the secondary
industry, the higher the coal consumption and the higher the risk of urban haze. Xi’an has
the highest risk of haze disaster, and Jinzhong has the lowest risk of haze. The haze hazard
risk degree of Fenwei Plain has obvious geographical differences, and the haze risk of Xi’an
urban agglomeration is extremely high and centers on it, gradually decreasing roughly in
the west, south and north directions.

(3) The model can calculate the contribution of importance evaluation indicators to
the risk assessment results. In addition to the influence of VOC indicators on most of
the assessment targets, different risk assessment targets have different influencing factors.
Economic disaster risk is influenced by the factors of the disaster-bearing body. The affected
population, crop and economic disaster risks are mainly influenced by the environmental
sensitivity of disaster, whereas the main influencing factors of integrated disaster risk are
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population and GDP densities. The importance of indicators increases the interpretability
of the risk assessment models, improves the understanding of the relationship between
indicators and assessment results, and helps improve the understanding of the “black box”
model of machine-learning algorithms.

(4) The amount of indicators and sample size play an important role for data-driven
assessment models. Integrated learning algorithms in disaster risk assessment down-
play hazard mechanisms such as hazards and vulnerabilities and purely use disaster
system-related data for learning and simpler modeling, which also requires the sufficient
accumulation of assessment indicators and sample size. On the one hand, hazard-causing
factor indicators, hazard-inducing environment indicators and hazard-bearing body indica-
tors all have an important impact on the results of hazard risk assessment, and the use of
the full indicator volume can improve the accuracy of assessment by 10–15% compared
with only the hazard-causing factor indicators. On the other hand, increasing the sample
size by one to two orders of magnitude can improve the assessment accuracy by 5–13%.
This indicates that disaster big data can be of great help to improve the performance of
disaster risk assessment models.

A disaster risk assessment model for the haze process in the Fenwei Plain is established
using disaster big data. With rapid socio-economic development, the regional disaster-
bearing body and environmental sensitivity of disaster will undergo many changes. In
future research, it is necessary to continuously introduce the latest data, update and
accumulate big data, and improve the reliability of the model. To summarize the next step,
the focus is on two directions. The first is to continue to improve the indicator system and
sample distribution, update the indicators using the first national comprehensive natural
disaster risk census data and further improve the model. The second is to collect cases of
major haze disaster processes Y.R.: editing, revision. in other regions and verify whether
the model is generalizable in the Beijing-Tianjin-Hebei and Yangtze River Delta regions.
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