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Abstract. With several proposed MeV gamma-ray telescopes on the horizon, it is of paramount
importance to perform accurate calculations of gamma-ray spectra expected from sub-GeV
dark matter annihilation and decay. We present hazma, a python package for reliably com-
puting these spectra, determining the resulting constraints from existing gamma-ray data,
and prospects for upcoming telescopes. For high-level analyses, hazma comes with several
built-in dark matter models where the interactions between dark matter and hadrons have
been determined in detail using chiral perturbation theory. Additionally, hazma provides tools
for computing spectra from individual final states with arbitrary numbers of light leptons and
mesons, and for analyzing custom dark matter models. hazma can also produce electron and
positron spectra from dark matter annihilation, enabling precise derivation of constraints
from the cosmic microwave background. � $
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1 Introduction

The search for particle debris from dark matter (DM) annihilation or decay has thus far largely
centered on the GeV-TeV scale, for a variety of reasons. First, if the DM shares electroweak
interactions with the Standard Model, as in the weakly-interacting massive particle (WIMP)
scenario, then its mass is expected to be in excess of a few GeV, a fact known as the Lee-
Weinberg limit [1]1. Second, the general expectation for the scale of new physics based on
the “small hierarchy problem” is that new physics, and thus new massive particles possibly
including the particle making up the cosmological DM, should appear around the electroweak
scale. Finally, the GeV scale is testable with an array of currently-operating gamma-ray and
cosmic-ray observatories, including, but not limited to, the Fermi Large Area Telescope (LAT)
[3], Cherenkov Telescope Arrays such as MAGIC [4] and HESS [5], and the Alpha-Magnetic
Spectrometer (AMS-02) [6].

On the theory front, the calculation of the detailed expected particle spectrum of the
debris resulting from DM annihilation or decay has thus focused on the GeV-TeV regime.
State-of-the-art codes utilize simulations describing the results of high-energy collisions of
elementary particles yielding jets and leptons, which in turn decay and produce stable final-
state particles. Many such codes, such as DarkSUSY [7], micrOMEGAs [8] and PPPC4DM [9]
utilize tabulated results from PYTHIA [10], one of the most widely-used programs for per-
forming these simulations. Such results are reliable at center-of-mass energy scales at or above
roughly 5 GeV [10], but not at lower energies, where, for instance, strongly-interacting parti-
cles form hadronic bound states and are no longer described by parton showers, fragmentation
and decay. It is well known that the resulting spectra of gamma rays, electrons and positrons
and antiprotons, are dramatically different in that case.

For a variety of reasons it is now quite timely to offer the community a reliable com-
putational package that provides the spectra of particles resulting from lighter, sub-GeV
DM annihilation or decay. First and foremost, MeV astronomy will soon be revolution-
ized with a new generation of telescopes such e-ASTROGAM [11, 12] and others, including
concept telescopes such as the Advanced Energetic Pair Telescope (AdEPT) [13], the PAir-
productioN Gamma-ray Unit (PANGU) [14], and the Gamma-Ray Imaging, Polarimetry and
Spectroscopy (“GRIPS”) [15]. Second, the persistent absence of any conclusive astrophysical
signal from DM in the GeV-TeV range has furthered theoretical and phenomenological in-
terest in the mass range below the GeV, providing additional motivation to investigate the
details of DM decay or annihilation processes. Lastly, at present no code exists that allows
users to readily study gamma-ray and cosmic-ray production from DM particles annihilating
dominantly into hadronic bound states.

With these motivations, we here introduce a Python toolkit, hazma2, that computes
spectra of gamma rays and cosmic-ray electrons and positrons from the decay of muons
and pions, calculates constraints from gamma-ray observations and the cosmic microwave
background, and allows users to compute composite spectra for selected built-in models of
DM-parton interactions.

1Note that exceptions exist to the Lee-Weinberg limit, see e.g. [2]
2Hazma is a small rounded Pokemon, with light green spikes running down its back and tail, making it

appear somewhat dinosaurian. Its body resembles a yellow hazardous materials suit, with a face resembling a
respirator or gas mask, and a zipper-like marking running down its stomach. It has two stubby legs, the feet
of which are green. Hazma is one of the few stable Nuclear types, the others being Nucleon and Urayne. Its
leaded skin makes it immune to nuclear radiation. In the aftermath of a nuclear accident, groups of Hazma
will appear and feed on the radioactive gas, eventually cleaning the air of the area over time. [16]
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From a field theoretic standpoint, the description of the interactions of fundamental
fields with hadrons is performed in the context of chiral perturbation theory (ChPT, see e.g.
Ref. [17] for a review). A full account of mapping a fundamental, parton-level Lagrangian
onto its ChPT counterpart will be given elsewhere [18]; here, however, we do provide selected
examples of how models where the DM interacts with a mediator of specified spin and parity
produces ChPT vertices.

As for any effective theory, ChPT possesses a certain range of validity which depends
upon the size of some dimensionless parameter, here the ratio of the meson momentum to a
scale ΛChPT ≡ 4πfπ ∼ 1 GeV. Below we will describe the range of dark matter and mediator
masses for which our EFT framework can be reliably used to compute annihilation cross
sections and mediator decay rates. The mass ranges dictate which combination of mesons we
include in the computational package we hereby present.

In the light DM mass limit, we also found that the standard approach for studying
radiative emission from leptonic final states is problematic. In short, utilizing the Altarelli-
Parisi splitting function to calculate the final state radiation spectrum assumes that radiating
particle’s center-of-mass frame energy is much larger than its mass. For O(100 MeV) dark
matter annihilating into muons, this is not the case. As a result we compute the exact

spectrum for a few model cases. We also provide spectra for the final state radiation off of
charged pions, and account for radiative decays of all relevant particles (e.g. π+ → µ+νγ,
π+ → e+νγ etc).

A general issue with light, sub-GeV DM models is that constraints from perturbations to
the cosmic microwave background (CMB) are generically very strong large if the DM freezes
out as a thermal relic. Of course there exist a broad variety of workarounds and caveats (see
e.g. [19]), but any light DM model is prone to CMB constraints. hazma implements such
constraints by including functionality for computing electron and positron spectra from dark
matter annihilation.

The remainder of this paper is structured as follows. Sec. (2) offers a high-level overview
of the hazma code and introduces the Theory class, the main user-facing component of hazma.
Section (3) describes the effective field theory framework used to study sub-GeV dark matter,
provides details of the scalar mediator (sec. (3.1) and vector mediator (sec. (3.2)) models,
and describes the particle physics outputs of hazma, including cross section, decay widths,
and branching fractions. Section (4) explains how to calculate gamma-ray spectra from in-
dividual annihilation final states, while Sec. (5) combines the latter with the scalar- and
vector-mediator models to obtain the overall gamma-ray spectra from DM annihilation. Sec-
tion (6) describes the calculation of the positron spectra, and, finally, Sec. (7) and Sec. (8)
describe, respectively, gamma-ray and CMB limits. Section (9) concludes. Examples of how
to use hazma are woven throughout the text. Appendix (A) describes the installation process
for hazma, App. (B) review the basics of using hazma, and App. (C) gives examples of more
advanced applications of the code, such as incorporating new models.

Our code is available on GitHub at https://github.com/LoganAMorrison/Hazma, and
the manual is located at https://hazma.readthedocs.io/. The icons � and 6 provide the
exact versions of the jupyter notebook and python script used to make each figure, which are
paired with jupytext. The code snippets appearing throughout this work are collected in a
jupyter notebook: �. Finally, an archived version of hazma is available on Zenodo $.

Conventions: throughout this paper, unless otherwise noted, the units used are MeV for
energies, masses and decay widths and cm3/s for the thermally-averaged DM self-annihilation

– 3 –

https://github.com/LoganAMorrison/Hazma
https://hazma.readthedocs.io/
https://github.com/mwouts/jupytext
https://github.com/LoganAMorrison/Hazma/blob/b525ac3482ce355f4109c9ad6622470c14d0931f/notebooks/hazma_paper/snippets.ipynb
https://doi.org/10.5281/zenodo.3351972


cross section 〈σv〉. The numpy package [20] is referred to in some of the code snippets as np.
Lines in code blocks beginning with >>> indicate the python command prompt. We have
sometimes rounded or formatted the output from hazma to make the code snippets more
readable.

2 Structure of hazma

Analysis start ing points

Specify parameters 

for a built -in model

Subclass a 

built -in model

Implement  a 

custom model
Theor y class

decay module

posi t r on_spect r a 

module

hazma resources

Instant iate the 

model (a Theor y)

?-ray limits from 

exist ing data

Projected reach for 

future ?-ray detectors
CMB constraints

Spectra, cross 

sect ions, etc.

New telescope 

parameters

Analysis outputs

Figure 1. Overview of the hazma workflow, showing different starting points for analyzing
sub-GeV dark matter models and possible outputs. The light green boxes indicate how the
user can customize the analysis. The blue boxes to the right show the components of hazma relevant
to constructing custom models. After a model has been instantiated (purple box), various functions
can be called to compute the outputs in the dark green boxes. The user can provide a custom set of
gamma-ray detector parameters to assess its discovery potential for the model being studied (small
green box).

In this section, we describe the structure of the hazma codebase and the intended work-
flow. The general workflow for a user of hazma is shown in Fig. (1), with light green boxes
indicating possible user inputs, blue boxes showing some useful hazma resources, and dark
green boxes showing possible analysis outputs.

The user has several options for tapping into the resources provided by hazma. The
easiest is to use one of the built-in models, where a user only needs to specify the parameters
of the model (see below and Sec. (3.1) and Sec. (3.2) for details on the built-in models and
their corresponding parameters). Alternatively, if the user is working with a model which is a
specific version one of the included models (e.g., where the mediator’s couplings to Standard
Model particles are interrelated), they can define their own subclass of that model. By using
inheritence, one retains all of the functionality of the built-in model (such as functions for
computing final state radiation spectra, cross sections, mediator decay widths, etc.) while
supplying the user with a simpler, more specialized interface to the underlying models. For a
detailed explanations of how to set model parameters and make subclasses of built-in models,
see App. (B).
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Another option is for the user to define their own model. To do this, they need to
define a class which contains functions for the gamma-ray and positron spectra, as well as
the annihilation cross sections and branching fractions. In App. (C) we provide a detailed
example of how to do this for a toy model.

After choosing a model, the user instantiates it and gains access to methods for com-
puting indirect detection constraints and particle physics quantities.

Finally, hazma also contains lower-level functions to compute gamma-ray spectra for
decays and final-state radiation from particular final states containing arbitrary numbers of
particles given a user-provided matrix element.

theory.py

Gamma-ray 

Limits
CMB Limits

Parameter 

Constrainer

positron_spectra.py decay.py rambo.py

N-Body 

Phase-space 

Integration

Energy 

Distributions

Annihilation 

Cross Sections
Decay Widths

gamma_ray.py

Decay Spectra from 

N-FSPs

Gamma-Ray Spectra 

From Matrix Elements

Simplified Models:                                                                                                       

scalar_mediator.py + vector_mediator.py

Mediator 

Partial 

Widths

Decay 

Spectra

FSR 

Spectra

Positron 

Spectra

Annihilation 

Cross 

Sections

Figure 2. Structure of hazma. At the core of hazma are modules for computing gamma-ray and
positron spectra: decay, positron_spectra and gamma_ray, as well modules for computing limits
and constraining models using MeV gamma-ray telescopes: theory and a module for computing
N -body phase-space integrals: rambo. hazma comes with pre-defined models which are located in
scalar_mediator and vector_mediator, with all of the decay, FSR, and positron spectra, branching
fractions, cross sections and mediator decay widths pre-computed.

Fig. (2) displays the modules contained in hazma as well as the general structure of the
code, which are explained in detail below.

theory The primary goal of hazma is to provide users with a simple interface for setting
indirect detection constraints on sub-GeV dark matter. This is done using the Theory

abstract base class, which every dark matter model in hazma should inherit from. At a
high level, it contains three methods for determining these constraints: one that uses ex-
isting gamma-ray data (Theory.binned_limit), one for computing the discovery reach for
planned gamma-ray detectors (Theory.unbinned_limit), and one for deriving CMB con-
straints (Theory.cmb_limit). The class also provides methods for computing particle physics
quantities such as annihilation cross sections (with annihilation_cross_sections), media-
tor decay widths (partial_widths), the continuum and monochromatic gamma-ray spectra
from DM annihilation (total_spectrum, gamma_ray_lines), and the same for positron spec-
tra (total_positron_spectrum, positron_lines), and more.
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Custom models must implement functions for computing gamma-ray spectra, positron
spectra and branching fractions to gain use of the methods in Theory. Appendix (C) shows
how to implement a simple custom model.

decay This contains high-performance functions for computing the decay spectra from

π±, π0 and µ±. Details of how these are computed are found in Sec. (4.3). The functions
in this module allow the user to compute the decay spectra for particles decaying with ar-
bitrary lab-frame energies. This requires computing the decay spectra in the rest frame of
the parent-particle and performing a Lorentz boost, amounting to performing a change-of-
variables along with a convolution integral. To achieve high computational performance, we
perform all integrations in c using cython and build extension modules to interface with
python.

positron_spectra This module computes the electron/positron spectra from decays of π±

and µ±, which are critical inputs for constraining dark matter models using CMB observa-
tions. See Sec. (6) for details on how these spectra are computed. As in the decay module,
the positron_spectra module allows users to compute the electron/positron spectra for ar-
bitrary energies of the parent-particle. The procedure for computing the spectra for arbitrary
parent-particle energies is identical to the procedure used for decay.

rambo While matrix elements for a given particle physics process are often easy to compute
(by hand or using tools such as FeynArts [21] or FeynCalc [22, 23]), the calculations of
differential or total cross sections become quite difficult as the number of final state particles
increases due to the complicated phase-space integrations. The rambo module implements a
multi-body phase-space integrator based on the RAMBO algorithm [24]. rambo contains low-
level functions for generating phase-space points as well as high-level functions for computing
energy spectra, cross-sections and decay widths, all implemented in cython for computational
efficiency. For details see App. (D).

gamma_ray The functions gamma_ray_decay and
gamma_ray_fsr make use of the multi-particle phase-space integrator rambo to compute
gamma-ray spectra for two different situations.

The gamma_ray_decay function computes the gamma-ray spectra from the decays of any
number of final state particles with arbitrary center-of-mass energies. The functions accepts
a list of the final state particles, the center-of-mass energy and optionally the matrix element
of the process (if the user doesn’t supply the matrix element, it is assumed to be one.) For
example, it can compute the decay spectra from X → π±π0µ±µ±, where X is some initial
state. It is important to note gamma_ray_decay does not include final state radiation.

The gamma_ray_fsr function allows the user to compute the final state radiation spec-
trum for a given radiative process with a single final state photon. The user supplies a list of
initial state and final state particle masses, the center-of-mass energy of the annihilation event,
the matrix element for the radiative process and the non-radiative matrix element, which is
used to normalize the spectrum. gamma_ray_fsr produces a set of gamma-ray energies and
the corresponding spectra. For more details on gamma_ray, see App. (E).

hazma also ships with various particle physics models of sub-GeV DM. These models
are located in the modules scalar_mediator and vector_mediator, and contain all the
relevant annihilation cross sections, branching fractions, decay spectra, FSR spectra and
positron spectra. They can be used by instantiating the appropriate class (for example, the
HiggsPortal class from scalar_mediator for the Higgs-portal model.) The user only needs
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to specify the parameters of the model. The particle physics frameworks used to construct
these models, the specialized subclasses of these models included with hazma, and accessing
functions to compute their annihilation cross sections and other particle physics quantities is
the topic of the following section.

3 Particle physics framework

Each of the models distributed with hazma contain two BSM particles: a dark matter particle
χ and a mediator M that interacts with the DM as well as Standard Model particles. The
Lagrangian can be expressed as

L = LSM + LDM + LM + LInt(M), (3.1)

which consists of the SM Lagrangian, the free Lagrangians for the Dark Matter (DM) and
mediator (M), and the mediator’s interactions with the DM and SM fields, collectively in-
cluded in the term LInt(M). For the models currently available in hazma the DM is taken to
be a Dirac fermion, so that

LDM = χ̄(i/∂ −mχ)χ. (3.2)

Both the dark matter and the mediator are taken to be uncharged under the Standard Model
gauge group. The Lagrangian is defined in terms of the microscopic degrees of freedom of
the Standard Model (quarks, leptons and gauge bosons). However, at the energy scale of
interest for self-annihilations of non-relativistic MeV dark matter, quarks and gluons are not
the correct strongly-interacting degrees of freedom. Instead, the microscopic Lagrangian must
be matched onto the effective Lagrangian for pions and other mesons using the techniques of
chiral perturbation theory (ChPT) [17, 25–28]. The models currently implemented in hazma

utilize leading-order ChPT.
Before describing these models, we review the range of validity of ChPT, which is limited

since it is an effective theory. ChPT is organized as an expansion in a small parameter,
the meson momentum squared p2 divided by the squared mass scale associated with loop
diagrams, ΛChPT ∼ 4πfπ ≈ 1.2 GeV, where fπ = 92.2 MeV is the pion decay constant.
Derivatives of the meson fields and factors of the meson masses are counted as O(p). The
expansion parameter p2 is used in two ways. First, the chiral Lagrangian is organized as a
sum of terms of decreasing importance

LChPT = L(2) + L(4) + L(6) + . . . , (3.3)

where the subscript indicates the number of derivatives or powers of meson masses. Second,
the expansion parameter can be used to assess the relative size of an individual Feynman
diagram’s contribution in the calculation of a given observable. This is quantified using
the chiral dimension, which is lower for more important diagrams. Generally the tree-level
diagrams from L(2) have the lowest chiral dimension and provide the largest contributions
to observables, followed by tree-level diagrams from L(4) and one-loop diagrams from L(2),
and so on. As p2 → Λ2

ChPT, this scheme for organizing calculations in terms of the chiral
dimension breaks down and ChPT becomes unreliable.

Assessing the precise range of validity of leading-order ChPT is complicated. A simple
estimate suggests that for processes with meson energies of e.g. 500 MeV the leading-order ob-
servables receive ∼ 500 MeV/ΛChPT)

2 ∼ 20% corrections from next-to-leading-order (NLO)
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contributions [29]. In reality, the magnitude of NLO corrections is larger for annihilation final
states with the same quantum numbers as resonances such as the ρ [30] and f0(500) [31], since
the final state particles can rescatter. While resonances can be accounted for with unitariza-
tion techniques [31, 32] or as explicit resonance fields [33, 34], we instead use leading-order
ChPT, restricting to DM masses below 250 MeV in the case of annihilation into Standard-
Model particles and mediator masses below 500 MeV for analysis of their decays to avoid
resonances. An important consequence is that annihilation into kaons and heavier mesons is
not considered herein since that would require DM masses far above this range. User-defined
models (see App. (C.2)) need not use leading-order ChPT, and this is an interesting topic for
future work.

While the preceding discussion is quite general, we now specialize to the two models
that come with hazma: scalar_mediator, which contains a real scalar mediator S, and
vector_mediator, where the mediator is a vector V . These are subclasses of the abstract
class Theory, and thus implement a variety of functions for computing physical quantities.
In the following two subsections, we present LInt(S) and LInt(V ) at the level of quarks and
gluons as well as the Lagrangians obtained by performing the ChPT matching.3 Snippets are
provided to demonstrate how to construct each model and change its parameters. The third
subsection shows how to access various particle physics quantities in hazma.

3.1 Scalar Mediator

The free Lagrangian for a real scalar is

LS =
1

2
(∂µS)(∂

µS)− 1

2
m2

SS
2, (3.4)

where mS is the scalar’s mass. The interactions with the light fundamental SM degrees of
freedom read

LInt(S) = −S



gSχ + gSf
∑

f

yf√
2
f̄f



 (3.5)

+
S

Λ

(

gSG
αEM

4π
FµνF

µν + gSF
αs

4π
Ga

µνG
aµν
)

.

The sum runs over fermions with mass below the GeV scale (f = e, µ, u, d, s). Note that the
coupling gSf is outside the sum. The Yukawa couplings are defined to be yf =

√
2mf/vh,

with the Higgs vacuum expectation value (vev) defined as vh = 246 GeV. The parameter Λ
is the mass scale at which S acquires (non-renormalizable) interactions with the photon and
gluon.

After performing the matching onto the chiral Lagrangian and expanding to leading

3The interaction Lagrangians, matching procedure and a review of the chiral Lagrangian are explained in
detail in a forthcoming companion paper [18].
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order in the pion fields, the resulting interaction Lagrangian is

LInt(S) =
2gSG
9Λ

S
[

(∂µπ
0)(∂µπ0) + 2(∂µπ

+)(∂µπ−)
]

(3.6)

+
4iegSG
9Λ

SAµ
[

π−(∂µπ
+)− π+(∂µπ

−)
]

− B(mu +md)

6

(

3gSf
vh

+
2gSG
3Λ

)

S
[

(π0)2 + 2π+π−
]

+
B(mu +md)gSG

81Λ

(

2gSG
Λ

− 9gSf
vh

)

S2
[

(π0)2 + 2π+π−
]

+
4e2gSF
9Λ

Sπ+π−AµA
µ

− gSχSχ̄χ− gSfS
∑

ℓ=e,µ

yℓ√
2
ℓ̄ℓ.

where B = m2
π±/(mu +md) ≈ 2800 MeV [28].

The parameters for the scalar model are attributes of the scalar_mediator class. Their
names in hazma are

(mχ,mS , gSχ, gSf , gSG, gSF ,Λ) ↔ (mx, ms, gsxx, gsff, gsGG, gsFF, lam).

The following snippet shows how to instantiate scalar_mediator, change the value of a
parameter, and print its new value:

>>> from hazma.scalar_mediator import ScalarMediator

>>> sm = ScalarMediator(mx=150., ms=1e3, gsxx=1., gsff=0.1,

... gsGG=0.1, gsFF=0.1, lam=2e5)

>>> sm.gsff

0.1

>>> sm.gsff = 0.5

>>> sm.gsff

0.5

In addition to the general scalar_mediator model, hazma also comes with two subclasses of
scalar_mediator: a Higgs-portal (HiggsPortal) model and heavy quark model (HeavyQuark.)
The Higgs-portal model assumes the scalar mediator interacts with the Higgs through gauge-
invariant interactions resulting in the scalar mediator mixing with the Higgs. After diago-
nalizing the scalar-mediator/Higgs mass matrix, the scalar mediator and Higgs are replaced
with:

h→ h cos θ − S sin θ, S → h sin θ + S cos θ (3.7)

where θ is the scalar-mediator/Higgs mixing angle. This replacement results in the following
cutoff scale and couplings of the scalar mediator with the Standard Model fermions, gluons
and photon, the later of which require integrating out the τ , c, b, t, W and Z [35]:

gSf = sin θ, gSG = 3 sin θ, gSF = −5

6
sin θ, Λ = vh. (3.8)
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where vh = 246 GeV is the Higgs vacuum expectation value. The parameters for the
HiggsPortal class are:

(mχ,mS , gSχ, sin θ) ↔ (mx, ms, gsxx, stheta). (3.9)

The heavy-quark model assumes the existence a new heavy, colored and charged fermion
which enters the Lagrangian as:

L ⊃ iQ̄ /DQ−mQQ̄Q− mQ

vh
hQ̄Q− gSQSQ̄Q (3.10)

with Dµ = ∂µ− ieQQAµ− igsGa
µλ

a/2 where QQ is the charge of the heavy-quark. Integrating
out the heavy quark induces a cutoff scale and effective couplings of the scalar mediator with
gluons and photons:

gSG = gSQ, gSF = 2Q2
QgSQ, Λ = mQ. (3.11)

Note that integrating out the heavy-quark also induced effective couplings to the SM fermions,
but at two-loop order. We do not include these interactions. The parameters for the
HeavyQuark class are:

(mχ,mS , gSχ, gSQ,mQ, QQ) ↔ (mx, ms, gsxx, gsQ, mQ, QQ). (3.12)

Both of these models can be imported and used in a similar fashion to the generic ScalarMediator
class. The following snippet displays how to initialize these subclasses:

>>> from hazma.scalar_mediator import HiggsPortal, HeavyQuark

>>> hp = HiggsPortal(mx=150., ms=1e3, gsxx=1., stheta=1e-3)

>>> hq = HeavyQuark(mx=150., ms=1e3, gsxx=1., gsQ=1.0, mQ=1e6, QQ=1.)

3.2 Vector Mediator

For the vector mediator the free part of the Lagrangian is

LV = −1

4
VµνV

µν +
1

2
m2

V VµV
µ, (3.13)

where mV is the mass of the vector. The interactions considered are

LInt(V ) = Vµ



gV χχ̄γ
µχ+

∑

f

gV f f̄γ
µf



− ǫ

2
V µνFµν . (3.14)

The sum again runs over the light fermions (f = e, µ, u, d, s), and V may have different
couplings to each of these. The last term is a kinetic mixing between the photon and V ,
which we eliminated by transforming the photon Aµ → Aµ− ǫVµ. Upon this field redefinition
V acquires an ǫ-suppressed interaction with the SM fermions, which is captured by changing
the fermion couplings

gV f → gV f − ǫeQf , (3.15)

where Qf is the electric charge of the fermion f and e > 0 is the electron’s charge.
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Matching onto the chiral Lagrangian and isolating the terms contributing at leading
order to the quantities computed in hazma gives

LInt(V ) = −i(gV u − gV d)V
µ
(

π+∂µπ
− − π−∂µπ

+
)

(3.16)

+ (gV u − gV d)
2VµV

µπ+π−

+ 2e(Qu −Qd)(gV u − gV d)AµV
µπ+π−

+ Vµ (gV eēγ
µe+ gV µµ̄γ

µµ)

+
1

8π2fπ
ǫµνρσ(∂µπ

0)

× {e(2gV u + gV d) [(∂νAρ)Vσ + (∂νVρ)Aσ]

+3(g2V u − g2V d)(∂νVρ)Vσ
}

.

The contributions in the last three lines come from matching onto the anomalous terms in the
chiral Lagrangian [17, 26, 36, 37], which is explained in detail in our companion paper [18].
While these terms come from the NLO chiral Lagrangian, the resulting final states contribute
significantly to the gamma-ray spectra, so we include them here. In particular, in the case
where V couples only to quarks, the only final state accessible below the two-pion threshold
is π0γ. In contrast, other terms from the NLO chiral Lagrangian only lead to corrections for
scattering rates into final states accessible at tree-level, and are thus not included.

The correspondence between the microscopic parameters for the vector model and at-
tributes of the base vector_mediator class is4

(mχ,mV , gV χ, gV u, gV d, gV s, gV e, gV µ)

↔ (mx, mv, gvxx, gvuu, gvdd, gvss, gvee, gvmumu).

The following snippet shows how to instantiate vector_mediator:

>>> from hazma.vector_mediator import VectorMediator

>>> vm = VectorMediator(mx=150., mv=1e3, gvxx=1., gvuu=0.1,

... gvdd=0.2, gvss=0.3, gvee=0.4,

... gvmumu=0.5)

For convenience, a subclass called KineticMixing is also provided to handle the impor-
tant case where V couples to the SM purely through the kinetic mixing term (ǫ 6= 0 and
gV f = 0 for all f before redefining the couplings). The parameters for this subclass are

(mχ,mV , gV χ, ǫ) ↔ (mx, mv, gvxx, eps).

While the underlying parameters gvuu, . . . , gvmumu can be accessed by instances of
KineticMixing, they cannot be set directly since they are fully determined by eps:

>>> from hazma.vector_mediator import KineticMixing

>>> km = KineticMixing(mx=150., mv=1e3, gvxx=1., eps=0.1)

>>> km.gvuu

-0.020187846690459792 # = -0.1 * 2/3 * sqrt(4 pi / 137)

>>> km.gvuu = 0.1

AttributeError: Cannot set gvuu

4Note that gvss is not currently used since vector_mediator is based on leading-order ChPT.
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3.3 Computing Particle physics quantities
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Figure 3. Annihilation branching fractions for the scalar mediator model. The coupling
gSχχ between the DM and mediator is set to one. The rows correspond to the Higgs portal and heavy
quark UV completions and the columns are for a light (left) and heavy (right) mediator. � 6

Every model in hazma is required to implement functions listing the available annihilation
final states and providing corresponding functions for computing annihilation cross sections.
For example, for the models described above we have:

>>> ScalarMediator.list_annihilation_final_states()

['mu mu', 'e e', 'g g', 'pi0 pi0', 'pi pi', 's s']

>>> VectorMediator.list_annihilation_final_states()

['mu mu', 'e e', 'pi pi', 'pi0 g', 'pi0 v', 'v v']

These lists exclude final states where the annihilation is extremely suppressed by couplings or
phase-space factors (e.g., π+π−γγ, Sπ0π0, Sπ+π− for the scalar model). They also exclude
final states arising from radiative processes (such as e+e−γ). Depending on the couplings’
values and the center of mass energy of the DM, some of these final state may be inaccessible.

The corresponding annihilation cross sections and branching fractions can be accessed
using the annihilation_cross_sections function:

>>> from hazma.scalar_mediator import ScalarMediator

>>> sm = ScalarMediator(mx=180., ms=190., gsxx=1., gsff=0.1,

... gsGG=0.1, gsFF=0.1, lam=2e5)

>>> e_cm = 400.

>>> sm.annihilation_cross_sections(e_cm) # MeV^-2
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Figure 4. Annihilation branching fractions for the vector mediator model. The coupling
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mediator. � 6

{'mu mu': 1.0186780542223538e-16,

'e e': 3.892649866478948e-21,

'g g': 4.8762938612605775e-21,

'pi0 pi0': 1.5950084474945102e-16,

'pi pi': 3.0338694778562897e-16,

's s': 3.578493120517737e-07,

'total': 3.5784931261653806e-07}

Note that in this example mχ < mS , but the center of mass energy is large enough to allow the
process χ̄χ → SS. The function Theory.annihilation_branching_fractions() is invoked
the same way and returns a dict of branching fractions for annihilation into each final state
X:

BF(χ̄χ→ X) =
σχ̄χ→X

∑

Y σχ̄χ→Y
(3.17)

Fig. (3) shows the annihilation branching fractions for the scalar model. The different
rows exhibit results for the Higgs portal and heavy quark UV completions discussed above,
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which will be referred to throughout this work. In the first case, the branching fraction is
largest into whichever final state is closest to threshold since S couples to Standard Model
states roughly proportionally to their Yukawas. The branching fraction into γγ is small for
non-relativistic DM annihilations due to the derivative coupling between S and the photon
field. For the heavy quark coupling pattern only hadronic final states are accessible since the
mediator couplings exclusively to photons and gluons.

Fig. (4) collects the branching fractions for the vector model, assuming it kinetically
mixes with the photon (top row) or couples only to quarks (middle and bottom rows). The
coupling-dependence of the vector’s cross sections can be understood without performing
detailed calculations. Since the vector model can be recast as a U(1) gauge theory (by
using the Stuckelberg mechanism to generate the mass term and decoupling the Stuckelberg
field), the vector’s couplings to pions are the sums of its couplings to their constituents:
gV π±π± = gV uu − gV dd, gV π0π0 = 0. The cross section σχ̄χ→π+π− is thus proportional to
(gV uu− gV dd)

2, explaining why that final state has a branching fraction of zero in the bottom
row of the figure. The vector’s coupling to π0γ and π0V come from the anomalous part
of the chiral Lagrangian. Since the anomaly is exact at one loop, the relevant diagrams in
the former case can be evaluated with a proton running in the loop, making it clear that
σχ̄χ→π0γ ∝ (2gV uu + gV dd)

2. This cross section is suppressed due to the loop factors, but
provides an important contribution to the gamma-ray spectrum. For the coupling choices
used for the plots in this work, the spectrum contribution from the π0V final state is either
negligible or identically zero.

Finally, the mediator decay partial widths are easily obtained with the partial_widths

function:

>>> from hazma.scalar_mediator import ScalarMediator

>>> sm = ScalarMediator(mx=120., ms=280., gsxx=1., gsff=0.1,

... gsGG=0.1, gsFF=0.1, lam=2e5)

>>> sigmas = sm.partial_widths()

>>> sigmas # MeV

{'g g': 7.363085017295395e-14,

'pi0 pi0': 6.523373994152967e-09,

'pi pi': 1.8664869506864194e-09,

'x x': 0.380609030857039,

'e e': 1.1995401279596814e-13,

'mu mu': 1.4482244706501055e-09,

'total': 0.38060904069531803}

4 Building Blocks of MeV Gamma-Ray Spectra

The total gamma-ray spectrum for dark matter annihilation consists of three parts:

dN

dEγ

∣

∣

∣

∣

χ̄χ

=
dN

dEγ

∣

∣

∣

∣

χ̄χ,line

+
dN

dEγ

∣

∣

∣

∣

χ̄χ,FSR

+
dN

dEγ

∣

∣

∣

∣

χ̄χ,dec.

. (4.1)

The first term accounts for photons from final states containing one or more monochromatic
gamma rays, which result in spectral lines. Photons can also be produced through final state
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radiation (FSR) from annihilation into electromagnetically charged final states, giving rise
to the second term. FSR generically produces spectra that scale as dN/dEγ ∝ E−1

γ at low
energies, in accordance with Low’s theorem [38, 39], which could be distinguished from the
softer dN/dEγ ∝ E−Γ

γ , with Γ ∼ 2 for typical astrophysical background. The third term is the
spectrum of photons produced through the radiative decays of final state particles. Decays
can produce dramatic spectral features such as the neutral pion “box” as well as E−1

γ spectra.

The calculations required to account for these contributions are described in detail in
this section, beginning with the trivial case of spectral lines and the associated hazma func-
tions. The model-dependent FSR spectra are explained in detail since we compute them
exactly for leptonic and hadronic final states. With regard to radiative decays, we present
a comprehensive overview of the contributions to the π± decay spectrum, which is currently
absent from the literature and thus has not been considered in prior work on sub-GeV DM.
Code snippets for computing different decay spectra are included throughout.

The section concludes by showing how to compute FSR and radiative decay spectra
in hazma for the built-in models. A key feature of hazma is that the spectrum functions
can be employed to analyze user-defined models, as demonstrated in a detailed example in
App. (C.2).

4.1 Monochromatic Gamma Rays

The only final states containing monochromatic photons that are relevant for this work are
π0γ and γγ:

dN

dEγ

∣

∣

∣

∣

χ̄χ,line

(Eγ) = Br(χ̄χ→ π0γ) δ(Eπ0γ − Eγ) + 2Br(χ̄χ→ γγ) δ(ECM/2− Eγ), (4.2)

where the energy of the line from the π0γ final state is Eπ0γ ≡ (E2
CM

−m2
π0)/(2ECM) and

ECM is the center of mass energy. This contribution to the DM annihilation spectrum is thus
obtained by computing the branching fractions appearing in this expression.

The Theory.gamma_ray_lines() method returns a dict with information about monochro-
matic gamma-ray lines produced in dark matter annihilations. For example, the scalar medi-
ator model has a 2γ line and the vector model has a line from the π0γ final state. Assuming
heavy quark-type couplings for the former and quark-only couplings for the later, the line
energies and branching fractions are found to be

>>> from hazma.scalar_mediator import HeavyQuark

>>> sm = HeavyQuark(mx=140., ms=1e3, gsxx=1., gsQ=0.1, mQ=1e3, QQ=0.1)

>>> sm.gamma_ray_lines(e_cm=300.)

{'g g': {'energy': 150.0, 'bf': 1.285653242415087e-08}}

>>> from hazma.vector_mediator import QuarksOnly

>>> vm = QuarksOnly(mx=140., mv=1e3, gvxx=1., gvuu=0.1, gvdd=0.1, gvss=0.)

>>> vm.gamma_ray_lines(e_cm=300.)

{'pi0 g': {'energy': 119.63552908740002, 'bf': 1.0}}
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4.2 Final State Radiation

Dark matter annihilating into charged SM particles generically produces photons via final
state radiation (FSR), which is accounted for by computing

dN

dEγ

∣

∣

∣

∣

χ̄χ,FSR

=
1

σχ̄χ

∑

A

dσχ̄χ→Aγ

dEγ
(Eγ) (4.3)

≈
∑

A

[

σχ̄χ→A

σχ̄χ

] [

1

σχ̄χ→A

dσχ̄χ→Aγ

dEγ
(Eγ)

]

(4.4)

≡
∑

A

Br(χ̄χ→ A)
dN

dEγ

∣

∣

∣

∣

χ̄χ→A

(Eγ), (4.5)

where in the second line we assumed σχ̄χ→Aγ ≪ σχ̄χ→A and the sum is over final states
containing electromagnetically-charged particles. The required branching fractions were com-
puted in Sec. (3.3).

The bulk of previous work on indirect detection of sub-GeV DM applies the Altarelli-
Parisi (AP) splitting function to compute the FSR spectrum for the e+e− and µ+µ− final
states [40–44]: 5

dN

dEγ

∣

∣

∣

∣

χ̄χ→ℓ̄ℓ

=
2α

πQ
· 1
x

[

1 + (1− x)2
]

·
[

−1 + log

(

(1− x)

µ2ℓ

)]

, (4.6)

where µℓ = mℓ/Q, x = 2Eγ/Q and Q is the center of mass energy. However, the AP
approximation insufficient for our analysis. First, it was derived under the assumption that
mℓ ≪ Q. This does not hold for DM in the Milky Way halo annihilating non-relativistically
into µ+µ−, since in this case Q ∼ mµ ∼ O(100 MeV). As a result of this assumption, the AP
spectrum cuts off for photon energies larger than (Q2 − em2

ℓ )/(2Q
2), which is different from

the true kinematic threshold (Q2 −m2
ℓ )/(2Q

2). The other key shortcoming is that the AP
approximation only applies when radiating particles are fermions, and is thus inapplicable to
FSR from pions.

In this section we instead exactly compute the model-dependent FSR spectra for the
e+e− and µ+µ− final states, as well as the π+π− final state, which has not been done before.
The resulting spectra for FSR from leptons are (See chapter 20 of [46] for details of how these

5Note that the widely-used DarkSUSY [45] package and the PPPC4DMID [9] also use the AP approxima-
tion, making them inapplicable at the energies we consider.
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calculations can be performed)

dN

dEγ

∣

∣

∣

∣

χ̄χ→S∗→ℓ̄ℓ

=
2α

Eγπ(1− 4µℓ)3/2



−(1− 4µ2ℓ )(1− x)

√

1− 4µ2ℓ
1− x

(4.7)

+
[

2− x(2− x)− 4µ2ℓ (3− 2x− 4µ2ℓ )
]

tanh−1





√

1− 4µ2ℓ
1− x









dN

dEγ

∣

∣

∣

∣

χ̄χ→V ∗→ℓ̄ℓ

=
2α

Eγπ(1− 4µ2ℓ )
1/2(1 + 2µ2ℓ )





[

2− x(2− x) + 4µ2ℓ (1− x)
]

√

1− 4µ2ℓ
1− x

(4.8)

−2
[

2− x(2− x)− 4µ2ℓ (x+ 2µ2ℓ )
]

tanh−1





√

1− 4µ2ℓ
1− x







 .

In the limit mf ≪ Q ↔ µℓ ≪ 1, these expressions reduce to the AP approximation
(Eqn. (4.6)), with an additional term linear in x for the scalar. Additionally the spectra
obey Low’s theorem at low energies, providing another test of our results.

The FSR spectrum for the π+π− final state can be computed using the interaction
Lagrangians derived in our companion paper [18] and reproduced in Eqn. (3.6) and (3.16).
The final expressions for the spectra are

dN

dEγ

∣

∣

∣

∣

χ̄χ→S∗→π+π−

=
2α

Eγπ(1− 4µ2
π+)1/2



(1− x)

√

1−
4µ2

π+

1− x
(4.9)

−2(1− 2µ2π+ − x) tanh−1





√

1−
4µ2

π+

1− x









dN

dEγ

∣

∣

∣

∣

χ̄χ→V ∗→π+π−

=
2α

Eγπ(1− 4µ2
π+)3/2



−[1− 4µ2π+(1− x)− x(1 + x)]

√

1−
4µ2

π+

1− x

(4.10)

+2(1− 4µ2π+)[1 + x− 2µ2π+ ] tanh
−1





√

1−
4µ2

π+

1− x







 .

These spectra obey with Low’s theorem at low photon energies.
In Fig. (5) we plot the spectra for FSR in the scalar and vector models as well as the AP

spectrum (blue, red and yellow curves respectively). As can be seen from the above equations,
the specific values of the couplings, mediator masses and DM mass do not impact the shape of
the spectrum since they cancel when dividing by σχ̄χ→ℓ̄ℓ. As expected, the AP approximation
performs poorly near the di-muon threshold (upper left panel). The photon energy at which
the spectrum cuts off is an order of magnitude too large, and while the normalization is within
a factor of two for the scalar model’s spectrum, it is an order of magnitude larger than the
vector model’s one. The situation improves at larger center of mass energies, and just above
the ππ threshold the spectra all agree to within a factor of two. The pion FSR spectra are
shown in Fig. (6).

We demonstrate how to compute these spectra in hazma at the end of this section.

– 17 –



10−4

10−3

E
γ

d
N

d
E

γ

| χ̄
χ
→

µ
+
µ
−

ECM/2 = 110 MeV ECM/2 = 125 MeV

100 101 102

Eγ (MeV)

10−3

10−2

E
γ

d
N

d
E

γ

| χ̄
χ
→

µ
+
µ
−

ECM/2 = 150 MeV

100 101 102

Eγ (MeV)

ECM/2 = 250 MeV

S

V

AP
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4.3 Radiative Decay Spectra

Photons are produced when dark matter annihilates into a state A that subsequently under-
goes radiative decay A→ Bγ:

dN

dEγ

∣

∣

∣

∣

χ̄χ,dec.

(Eγ) =
∑

A

Br(χ̄χ→ A)
dN

dEγ

∣

∣

∣

∣

A

(Eγ). (4.11)
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In addition to collecting well-known expressions for the neutral pion and muon radiative
decay spectra, we carefully account for the three dominant contributions to the charge pion’s
radiative decay spectrum. Functions for computing radiative decay spectra are contained in
the hazma.decay module, and described below. These can be utilized to compute the decay
contribution to the annihilation spectrum for arbitrary final states.

4.3.1 Decay Spectra in Different Frames

Before computing the radiative decay spectra for the µ±, π0 and π±, we review how to boost
a spectrum dN/dER from the parent particle’s rest frame to obtain the “lab frame” spectrum
dN/dEL, where the particle has boost γ = E/m along the z-axis. Let the photon phase space
coordinates be (ER, cos θR) in the rest frame and (EL, cos θL) in the lab frame, where θR and
θL are the angles with respect to the z axis and we have assumed azimuthal symmetry. Since
the number of photons in a small patch of phase space does not depend on which coordinates
we choose, we have

dN = f(ER, cos θR) dER d cos θR (4.12)

=

∣

∣

∣

∣

∣

dER

dEL

dER

d cos θL
d cos θR
dEL

d cos θR
d cos θL

∣

∣

∣

∣

∣

f(ER(EL, cos θL), cos θR(EL, cos θL))dEL d cos θL, (4.13)

where we recognize the partial phase space density as f(E, cos θ) ≡ dN/(dE d cos θ) and
the term with the two vertical lines is the Jacobian factor for the change of variables. If
f(ER, cos θR) is independent of cθR (which is the case for all the spectra we will consider),
we can write:

f(ER, cθR) =
1

2

dN

dER
. (4.14)

The variables E1, E2, cθ1 and cθ2 are related via a Lorentz boost. The relationships are

ER = γEL(1− βcθL), cos θR =
β − cos θL
1− β cos θL

, (4.15)

where β =
√

1− 1/γ2 is the particle’s velocity in natural units. The spectrum in the lab
frame is then obtained by integrating Eqn. (4.12) over cos θL:

dN

dEL
=

∫

cos θL
1

2γ(β cos θL − 1)

dN

dER
. (4.16)

4.3.2 Neutral Pions

The dominant decay mode for neutral pions is π0 → γγ with a branching fraction of about
99%. Due to this decay modes’ large branching fraction and the fact that it has two photons in
the final state, we ignore the π0’s other decay modes. In the pion’s rest frame, the gamma-ray
spectrum is trivial:

dN

dEγ

∣

∣

∣

∣

π0

(Eπ0 = mπ0) = 2× δ
(

ER − mπ

2

)

(4.17)

where the factor of 2 comes from the fact that there are two photons in the final state.
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Applying Eqn. (4.16) gives that the gamma ray spectrum in the laboratory frame is

dN

dEγ

∣

∣

∣

∣

π0

(Eπ0) =

∫

cos θL
1

2γ(β cos θL − 1)
2× δ

(

ER − mπ0

2

)

(4.18)

=
2

γβmπ0

[θ(Eγ − E−)− θ(Eγ − E+)] (4.19)

with E± = mπ0/2γ(1∓ β), which is the characteristic box spectrum centered at mπ0/2.

The boosted spectrum can be computed in hazma as follows:

>>> from hazma.decay import neutral_pion as dnde_pi0

>>> e_gams = np.array([100., 125., 150]) # photon energies

>>> e_pi0 = 180. # pion energy

>>> dnde_pi0(e_gams, e_pi0)

array([0.0165965, 0.0165965, 0. ])

4.3.3 Muons

In the muon’s rest frame, the radiative decay spectrum is given by [47]

dN

dEγ

∣

∣

∣

∣

µ±

(Eµ = mµ) =
α(1− x)

(

12
(

3− 2x(1− x)2
)

log
(

1−x
r

)

+ x(1− x)(46− 55x) + 102
)

36πEγ
,

(4.20)

where r ≡ (me/mµ)
2, x ≡ 2Eγ/mµ and the kinematic bounds on Eγ translate into 0 ≤ x ≤

(1 + r)mµ/2. To obtain the spectrum in the lab frame we substitute the above expression
into Eqn. (4.16) and evaluate the integral numerically.

The lab-frame decay spectrum can be compute for arbitrary muon energies using:

>>> from hazma.decay import muon as dnde_mu

>>> e_gams = np.array([1., 10., 100.]) # photon energies

>>> e_mu = 130. # muon energy

>>> dnde_mu(e_gams, e_mu)

array([1.76076858e-02, 1.34063877e-03, 4.64775301e-08])

4.3.4 Charged Pions

The dominant pion decay is π+ → ℓ+νℓ, where ℓ = e, µ and ℓ is produced approximately
on shell, thanks to the narrow width approximation when ℓ = µ. Contributions to the
pion’s radiative decay spectrum come from initial state radiation from the photon or FSR
from the lepton, as well as emission from virtual hadronic states (the “structure-dependent”
component). An expression for d2Γπ+→ℓ+νγ/dxdy is given in Eqn. (4) of [48], where x ≡
2Eγ/mπ+ and y ≡ 2Eℓ/mπ+ . After changing to the Mandelstam variables

s ≡ (pπ − pγ)
2 = m2

π+(1− x),

t ≡ (pπ − pℓ)
2 = m2

π+

(

1− y +
m2

ℓ

m2
π+

)

,
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integrating over 0 ≤ t ≤ (m2
π+ − s)(s−m2

ℓ )/s, and dividing by the total π+ decay width, we
obtain an analytic expression for this channel’s contribution to the π+ decay spectrum:

Br(π+ → ℓ+νℓ) ·
dN

dEγ

∣

∣

∣

∣

π+→ℓ+νℓ

(Eπ+ = mπ+) =
2

mπ+Γπ+

· α(f(x) + g(x))

24πf2π(r − 1)2(x− 1)2rx
, (4.21)

where r ≡ m2
ℓ/m

2
π+ and

f(x) = (r + x− 1)
[

m2
π+x

4
(

A2 + V 2
) (

r2 − rx+ r − 2(x− 1)2
)

−12fπmπ+r(x− 1)x2(A(r − 2x+ 1) + V x)

−12f2πr(x− 1)
(

4r(x− 1) + (x− 2)2
)]

, (4.22)

g(x) = 12fπr(x− 1)2 log

(

r

1− x

)

[

mπ+x2(A(x− 2r)− V x)+

fπ
(

2r2 − 2rx− x2 + 2x− 2
)]

. (4.23)

When ℓ = µ, the muon’s subsequent radiative decay also contributes significantly to
the pion’s decay spectrum. Since we can take the muon to be on shell by the narrow width
approximation, this decay path’s contribution is simply the product of the branching fraction
for π+ → µ+νµ and the muon decay spectrum Eqn. (4.20) evaluated at the muon’s energy.
Our final expression for the charged pion decay spectrum is thus

dN

dEγ

∣

∣

∣

∣

π+

(Eπ+ = mπ+) =
∑

ℓ=e,µ

Br(π+ → ℓ+νℓ) ·
dN

dEγ

∣

∣

∣

∣

π+→ℓ+νℓ

(Eπ+ = mπ+) (4.24)

+ Br(π+ → µ+νµ) ·
dN

dEγ

∣

∣

∣

∣

µ±

(

Eµ =
m2

π+ −m2
µ

2mπ+

)

.

This rest frame spectrum can be substituted into Eqn. (4.16) and numerically integrated to
obtain the total charged pion radiative decay spectrum.

Fig. (7) shows the contributions of each term and the total spectrum in the pion’s
rest frame. The muon’s radiative decay is the most important component due to its large
branching fraction. There is also more phase space available for the photon in comparison
with π+ → µ+νµγ since the other final state particles are massless: the former spectrum cuts
off at ∼ 69 MeV and the latter at (m2

π+ −m2
µ)/(2mπ+) ≈ 27 MeV. The contribution from

π+ → e+νγ is smaller than the others due to helicity suppression.
The charged pion decay spectrum is included in hazma.decay:

>>> from hazma.decay import charged_pion as dnde_pi

>>> e_gams = np.array([1., 10., 100.]) # photon energies

>>> e_pi = 150. # pion energy

>>> dnde_pi(e_gams, e_pi)

array([2.54329145e-02, 1.70431824e-03, 2.71309637e-08])

The individual contributions can also be computed by setting the mode argument. The orange,
blue and green curves are obtained using mode="munu", "munug" and "enug" respectively.
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Figure 7. Contributions to the charged pion radiative decay spectrum in the pion’s rest
frame. The decay π+ → µ+νµ followed by radiative muon decay is plotted in orange. The other
curves show the spectra for π+ → ℓ+νℓ, where the photon is produced via initial/final state radiation
from the lepton or emission from virtual hadronic states. � 6

4.4 Continuum Gamma-Ray Spectra in hazma

Models in hazma provide a few methods for computing gamma-ray spectra at different levels
of detail. The total_spectrum method gives the total continuum gamma-ray spectrum at
specified photon energies and fixed center-of-mass energy:

>>> from hazma.scalar_mediator import HiggsPortal

>>> e_cm = 305. # DM center of mass energy

>>> e_gams = np.array([1., 10., 100.]) # photon energies

>>> hp = HiggsPortal(mx=150., ms=1e3, gsxx=0.7, stheta=0.1)

>>> hp.total_spectrum(e_gams, e_cm)

array([0.03292422, 0.00223235, 0.01948197])

Underlying this are methods for computing the gamma-ray spectra for individual final states.
These are accessible through the spectra method, which also accepts a list of photon energies
and a center of mass energies. It returns the total continuum spectrum and the contribution
from each final state (ie, dN/dEγ multiplied by the final state’s branching fraction):

>>> hp.spectra(e_gams, e_cm)

{'mu mu': array([2.60063906e-03, 2.04199179e-04, 6.55397055e-07]),

'e e': array([2.23372139e-07, 2.09526852e-08, 1.18533468e-09]),

'pi0 pi0': array([0. , 0. , 0.0194812]),

'pi pi': array([3.03233536e-02, 2.02813250e-03, 1.18432883e-07]),

's s': array([0., 0., 0.]),

'total': array([0.03292422, 0.00223235, 0.01948197])}

The spectra and total_spectrum methods are provided by the Theory class, and are driven
by the method spectrum_funcs which classes inheriting from Theory are required to imple-
ment. This returns a dict whose keys are strings corresponding to annihilation final states
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and whose values are methods returning the continuum gamma-ray spectrum for annihilations
into that final state (ie, omitting the branching fraction factor).

The models built into hazma provide more fine-grained methods for studying different
channels’ spectra. Each of these has a name corresponding to the final state and takes
an additional string argument specifying the spectrum type ("decay", "fsr" or "all", the
default). The return value depends on the spectrum type argument. In the first case, the
returned spectrum only accounts for the final state particles’ radiative decays, which are
model-independent. In the second case, the method returns the radiative decay spectrum,
which is model-dependent. In the third, default case, the method returns the total continuum
spectrum.

For example, in the scalar mediator model, the annihilation final states e+e−, µ+µ−,
π0π0, π+π− and SS contribute to the continuum annihilation spectrum. The following snip-
pet shows how to call the spectrum methods for the instance of HiggsPortal created above.
The methods all follow the same naming conventions and return dN/dEγ in MeV−1:

>>> from hazma.scalar_mediator import HiggsPortal

>>> e_cm = 305. # DM center of mass energy

>>> e_gams = np.array([1., 10., 100.]) # photon energies

>>> hp = HiggsPortal(mx=150., ms=1e3, gsxx=0.7, stheta=0.1)

>>> hp.dnde_ee(e_gams, e_cm, spectrum_type="fsr")

>>> array([0.05435176, 0.00509829, 0.00028842])

>>> hp.dnde_ee(e_gams, e_cm, spectrum_type="decay")

>>> array([0., 0., 0.]) # electrons don't decay

>>> hp.dnde_pipi(e_gams, e_cm, spectrum_type="fsr")

>>> array([1.01492577e-03, 5.00245201e-05, 0.00000000e+00])

>>> hp.dnde_pipi(e_gams, e_cm, spectrum_type="decay")

>>> array([5.08808459e-02, 3.42094713e-03, 2.02687537e-07])

>>> hp.dnde_pipi(e_gams, e_cm)

>>> array([5.18957717e-02, 3.47097165e-03, 2.02687537e-07])

There are several other useful methods. For example, the spectra() method, which
all subclasses of Theory must implement, computes the total continuum spectra for all final
states as well as their sum:

>>> hp.spectra(e_gams, e_cm)

{'total': array([0.03292422 , 0.00223235 , 0.01948197]),

'mu mu': array([2.60063906e-03, 2.04199179e-04, 6.55397055e-07]),

'e e': array([2.23372139e-07, 2.09526852e-08, 1.18533468e-09]),

'pi0 pi0': array([0. , 0. , 0.0194812]),

'pi pi': array([3.03233536e-02, 2.02813250e-03, 1.18432883e-07]),

's s': array([0. , 0. , 0.])} # since ms > mx

5 Gamma Ray Spectra from DM annihilation

Using the ingredients described in the previous section, we now compute the photon spectra
from DM annihilation for the scalar and vector models with the same couplings as in Fig. (3)
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Figure 8. Spectra from DM annihilation into Standard Model particles for scalar-
mediator models. The two-mediator final state is kinematically forbidden. The black curve is
the total spectrum as seen by an instrument with 5% energy resolution. The labeled colored curves
are the spectra for individual final states, and the vertical dashed line marks the photons’ energies in
the γγ final state. The rows correspond to Higgs portal and heavy fermion coupling patterns. The
DM mass is fixed to the indicated value in each column. � 6

and Fig. (4). In what follows, the center of mass energy is set to the non-relativistic approx-
imation ECM = 2mχ

(

1 + 1
2v

2
MW

)

, where vMW = 10−3c is the fiducial velocity dispersion for
the Milky Way.

Fig. (8) displays the spectrum for the scalar model when annihilation into the mediator
is kinematically prohibited (mS & mχ). The dark matter mass is fixed for each column and
the model parameters in each row. Individual final states’ spectra are indicated by the colored
curves. To visualize the di-photon final state’s contribution, the black curve shows the total
spectrum convolved with a 5% energy resolution function (the case for COMPTEL [49]), with
a vertical dashed line highlighting the photons’ energies (ECM/2).

For low DM masses, the electron and di-photon line are responsible for the spectrum.
Above the muon threshold the Yukawa-suppressed electron contribution is negligible. Since
the branching fractions into different pion species are identical (up to isospin-breaking cor-
rections proportional to mπ± −mπ0), the charged pion spectrum is always sub-dominant to
the neutral pion box for ECM > 2mπ. Depending on the ratio of the microscopic coupling to
photons (gSF ) with the couplings to gluons and fermions (gSG and gSf ), the neutral pion box
or di-photon line are generally the most distinctive spectral features for large DM masses,
which can also be seen in the figure. Note that if gSff and gSGG are considered as indepen-
dent parameters, they can take values such that the cross section for annihilation into pions
is zero, though this scenario is very fine-tuned.

Spectra for annihilation into mediators are shown in Fig. (9). The panels are labeled
with the DM mass and the different colored curves are the spectra computed with the scalar’s
mass set to the indicated values. For mS < 2me the mediator can only decay to two photons,
so the annihilation spectrum is a box centered at mS/2, just like for the neutral pion. For
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Figure 9. Spectra from DM annihilation into mediators for scalar-mediator models.
Curves are only shown when ECM ≥ 2mS , and are labeled with the corresponding mediator mass.
The spectra have not been convolved with an energy resolution function since the SS final state does
not produce gamma-ray lines. � 6

2me < mS < 2mµ the spectrum is a superposition of the box and the electron FSR spectra,
and when the scalar can decay into two muons this dominates the spectrum. For mS > 2mπ

the spectrum consists of a peak from boosting the π0 decay spectrum and a softer component
from FSR and decays from the other final states into which S decays. The peak is more
rounded if the scalar is highly boosted (mS ≪ ECM/2) and boxy for mS ∼ ECM/2. The
difference in the case of heavy fermion microscopic couplings is that the muon and electron
final states are not present.

The components of the spectrum for DM annihilation into SM final states in the vector
model are illustrated in Fig. (10). In the kinetic mixing case the spectrum consists purely of
a continuum, since the branching fraction for annihilation into π0γ is highly suppressed. In
contrast, if the vector couples only to quarks the spectrum is composed of a monochromatic
gamma ray line and box from the π0 decay at low energies. If not forbidden by the vector’s
couplings (as is the case for the bottom row), as the center-of-mass energy grows above the
two-pion threshold the continuum of photons from the π+π− final state overwhelm those from
π0γ.

Fig. (11) exhibits spectra from DM annihilating into V V followed by the vectors’ decays
for a kinetically mixed vector (top row) and couplings to quarks only. As in the case of
annihilations directly into SM particles, a power law spectrum is obtained in the kinetically
mixed case. For the spectrum for quark-only couplings (middle and bottom rows) is sourced
exclusively by the vector’s decay to π0γ. This resulting spectrum is comprised of a box (from
the boosting the monochromatic photon) and a rounded peak (from boosting the neutral
pion’s decay spectrum). The kinematic edge feature is only observable at a detector with
very good energy resolution.
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6

The colored curves in the Fig. (8)-(11) can be reproduced using the Theory.spectra()

function described in Sec. (4.4). The total spectrum convolved with an energy resolution
function can be obtained using Theory.total_conv_spectrum_fn(). The arguments specify
the range of photon energies over which to perform the convolved spectrum, the center of mass
energy of the DM annihilation, the energy resolution function, and the number of points to
use when computing the convolution:

>>> from hazma.scalar_mediator import HiggsPortal

>>> e_cm = 305. # DM center of mass energy

>>> e_min, e_max = 1., 100. # define energy range

>>> energy_res = lambda e: 0.05 # 5% energy resolution function

>>> hp = HiggsPortal(mx=150., ms=1e3, gsxx=0.7, stheta=0.1)

>>> dnde_conv = hp.total_conv_spectrum_fn(

... e_min, e_max, e_cm, energy_res, n_pts=1000)

Decreasing n_pts from its default value of 1000 increases speed at the cost of accuracy. The
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Figure 11. Spectra from DM annihilation into mediators for vector-mediator models.
The labels and colors indicate the value of mV for each curve. � 6

return value (dnde_conv above) is an interpolator of type InterpolatedUnivariateSpline

from the scipy.interpolate module. This can be used to compute the spectrum at a
particular photon energy:

>>> dnde_conv(25.)

array(0.00048767)

This spectrum is can easily and efficiently be integrated over a range of photon energies
between e_min and e_max:

>>> dnde_conv.integral(25., 85.)

0.8691133833417997

6 Electron and Positron Spectra from DM annihilation

Dark matter annihilation in the mass range under consideration produces relativistic electrons
and positrons. Such particles could be in principle directly detected as part of the cosmic
radiation, albeit at energies well below the GeV solar modulation strongly affects cosmic-ray
electron spectra. Additionally, relativistic electrons and positrons can be indirectly detected
through (1) effects on photons of the cosmic microwave background and (2) the secondary
emission of radiation via e.g. up-scattering of background photons (inverse Compton pro-
cesses), synchrotron radiation, and bremsstrahlung. The calculation of the electron-positron
spectra for MeV dark matter is therefore needed to reliably compute CMB limits and the
spectrum of secondary radiation.
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In this section we compute the positron spectrum for MeV dark matter, which follows
along the lines of the gamma-ray ones.6 The spectrum consists of a line-like spectrum from
χ̄χ→ e+e− and a continuum piece from the decays of unstable particles:

dN

dEe+

∣

∣

∣

∣

χ̄χ

(Ee+) = Br(χ̄χ→ e+e−) δ(ECM/2− Ee+) +
dN

dEe+

∣

∣

∣

∣

χ̄χ,dec

(Ee+) (6.1)

For the scalar and vector model, the decay piece receives contributions from the µ+µ− and
π+π− final states.

The muon decays nearly 100% of the time through µ+ → e+νeν̄µ. In the muon’s rest
frame, the positron’s energy spectrum is [50]

dN

dEe+
= −4

√
x2 − 4r2

(

r2(4− 3x) + x(2x− 3)
)

mµ
(6.2)

where r = me/mµ and x = 2Ee+/mµ. The spectrum can be boosted to other frames using
Eqn. (4.16). It is accessible in hazma using:

>>> from hazma.positron_spectra import muon as dnde_p_mu

>>> e_mu = 150. # muon energy

>>> e_p = np.array([1., 10., 100.]) # positron energies

>>> dnde_p_mu(e_p, e_mu)

array([4.86031362e-05, 4.56232320e-03, 4.45753994e-03])

The charged pion primarily decays through π+ → µ+νµ, which yields a positron when the
muon decays. The energy spectrum is thus obtained by boosting the muon spectrum from
Eqn. (6.2). An additional contribution comes from the monochromatic positron produced
through π+ → e+νe, which has a helicity suppressed branching fraction Br(π+ → e+νe) =
1.23× 10−4. The total spectrum can be computed in hazma with

>>> from hazma.positron_spectra import charged_pion as dnde_p_pi

>>> e_pi = 150. # charged pion energy

>>> e_p = np.array([1., 10., 100.]) # positron energies

>>> dnde_p_pi(e_p, e_pi)

array([3.84163631e-05, 3.85242442e-03, 2.55578895e-05])

Fig. (12) exhibits representative positron annihilation spectra from the scalar and vector
mediator models, for Higgs portal and kinetic mixing couplings (first and second rows) and
several DM masses (different columns). Changing the couplings to prohibit annihilation into
leptons has a straightforward impact on the total spectrum. Here annihilation into mediators
is kinematically forbidden. Positron spectra for annihilation into mediators are shown for
these models in Fig. (13). When the mediator is light the spectrum is box-shaped since the
mediator can only produce electrons by decaying into them directly. At higher energies the
spectrum is a superposition of the rounded spectra from mediator decays into muons and
pions and the box spectrum.

6The electron spectrum looks identical to the positron one since our dark matter particles do not carry
lepton number.
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for the scalar model with Higgs portal couplings are shown in the top row and for the vector model
with a kinetically-mixed mediator in the bottom. The grey vertical dashed line indicates the location
of the monochromatic χ̄χ → e+e− final state. The total spectrum (black curve) is convolved with a
5% energy resolution function. � 6

The interface for computing positron spectra mirrors the gamma-ray spectrum inter-
face. The total_positron_spectrum and positron_spectra methods in Theory give the
total positron spectrum and individual channels’ contributions (scaled by branching fraction).
The positron_lines method gives information about final states producing monochromatic
positrons:

>>> from hazma.scalar_mediator import HiggsPortal

>>> e_cm = 305. # DM center of mass energy

>>> e_ps = np.array([1., 10., 100.]) # positron energies

>>> hp = HiggsPortal(mx=150., ms=1e3, gsxx=0.7, stheta=0.1)

>>> hp.total_positron_spectrum(e_ps, e_cm)

array([2.60677406e-05, 2.58192085e-03, 4.09383294e-04])

>>> hp.positron_spectra(e_ps, e_cm)

{'mu mu': array([3.25408271e-06, 3.03854662e-04, 3.08297785e-04]),

'pi pi': array([2.28136579e-05, 2.27806619e-03, 1.01085509e-04]),

's s': array([0., 0., 0.]),

'total': array([2.60677406e-05, 2.58192085e-03, 4.09383294e-04])}

>>> hp.positron_lines(e_cm)

{'e e': {'energy': 152.5, 'bf': 4.109750194098895e-06}}

For the built-in models, functions computing the positron spectra for annihilations into par-
ticular final states follow a similar naming scheme to the gamma-ray ones, and can be called
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Figure 13. Positron spectra for DM annihilating into two mediators. The rows correspond
to the Higgs portal scalar model and kinetically mixed vector model. � 6

directly.
A method (more precisely, an InterpolatedUnivariateSpline) to compute the total

positron spectrum convolved with an energy resolution function is obtained using:

>>> e_cm = 305. # DM center of mass energy

>>> e_p_min, e_p_max = 1., 100. # define energy range

>>> energy_res = lambda e: 0.05

>>> dnde_p_conv = hp.total_conv_positron_spectrum_fn(

... e_p_min, e_p_max, e_cm, energy_res)

>>> dnde_p_conv(20.)

0.008336136582135356

>>> dnde_p_conv.integral(10, 100) # integrate spectrum

0.6369485109837103

7 Gamma Ray Limits

In hazma we include two routines to set constraints on the DM self-annihilation cross section
〈σv〉χ̄χ using current gamma-ray flux measurements and to make projections for planned
detectors.

As is well-known, the primary gamma-ray flux from DM annihilating in a region of the
sky subtending a solid angle ∆Ω is

dΦ

dEγ

∣

∣

∣

∣

χ̄χ

(E) =
∆Ω

4π
· 〈σv〉χ̄χ
2fχm2

χ

· J · dN
dEγ

∣

∣

∣

∣

χ̄χ

(E). (7.1)
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The factor fχ is 1 if the DM is self-conjugate and 2 otherwise (2 for the models currently
included with hazma). The J factor counts the number of pairs of DM particles in the
observing region:

J ≡ 1

∆Ω

∫

∆Ω
dΩ

∫

LOS
dl ρ(r(l, ψ))2, (7.2)

where ρ(r) is the DM density profile. The annihilation spectrum dN/dEγ |χ̄χ was computed in
detail in the previous section. A detector with finite energy resolution observes the smoothed
flux

dΦǫ

dEγ

∣

∣

∣

∣

χ̄χ

(E) ≡
∫

dE′Rǫ(E|E′)
dΦ

dEγ

∣

∣

∣

∣

χ̄χ

(E′), (7.3)

where the spectral resolution function is the probability that a gamma ray with true energy
E′ is reconstructed with energy E, and can be approximated as a Gaussian [51]:

Rǫ(E|E′) ≡ 1√
2π ǫ(E′)E′

exp

[

− (E − E′)2

2(ǫ(E′)E′)2

]

. (7.4)

In the limit-setting procedure for existing experiments, the integral of the smoothed
spectrum in each energy bin is required not to exceed the observed value plus twice the

upper error bar: Φ
(i)
ǫ |χ̄χ < Φ(i)|obs + 2σ(i). While better limits can be obtained by assuming

a background model, this introduces significant systematic uncertainties since the model is
derived from precisely the observations under consideration and would thus only marginally
improve the limits on 〈σv〉χ̄χ [52].

For assessing the discovery reach by upcoming experiments, hazma uses an unbinned
procedure. A detector can be characterized by an effective area Aeff(E) and an (energy-
independent) observing time Tobs. Over the energy range [Emin, Emax], the number of photons
observed is then

Nγ |χ̄χ =

∫ Emax

Emin

dE TobsAeff(E)
dΦǫ

dEγ

∣

∣

∣

∣

χ̄χ

(E). (7.5)

Assuming Poisson statistics, the minimum-detectable 〈σv〉χ̄χ is obtained by requiring the
signal-to-noise ratio to be significant at the nσ = 5 level: Nγ |χ̄χ/

√

Nγ |bg = nσ. Holding the
DM mass fixed, the lowest-possible value of 〈σv〉χ̄χ is found by optimizing over Emin and
Emax to maximize Nγ |χ̄χ/

√

Nγ |bg. This energy range does not completely align with spectra
features. For example, in the case of the π0 spectrum, setting Emin equal to the left boundary
of the “box” would include too much of the dΦ/dEγ |bg ∝ E−2

γ spectrum.
The unbinned analysis requires a background model, two of which are included with

hazma. The simplest was obtained by fitting a power law to COMPTEL and EGRET data
from high galactic latitudes over the energy range 0.8 MeV−10 GeV [53]. This is suitable for
projecting limits on 〈σv〉χ̄χ from dwarf galaxy observations. A model derived using GALPROP

to fit existing MeV gamma-ray data in the region |b| < 10◦, |l| < 30◦ is also included to assess
the sensitivity to emission from the Galactic Center.

These two limit-setting procedures can currently be applied in hazma to data from three
existing experiments (COMPTEL, EGRET and Fermi-LAT) and one proposed detector (e-
ASTROGAM). The energy ranges, approximate effective areas and energy resolutions for
these are supplied in Tab. (1). Each gamma-ray data set is paired with a target region, defined
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Detector Energy range Aeff (cm2) ǫ

COMPTEL [49] 0.7− 27 MeV 50 5%
EGRET [54] 27 MeV − 8.6 GeV 10− 103 18%

Fermi-LAT [55] 150 MeV − 95 GeV 103 − 104 7.5%

e-ASTROGAM [56] 0.3 MeV − 3 GeV 102 − 103 .2%, Eγ<10 MeV
20−30%, Eγ≥10 MeV

Table 1. Figures of merit for the detectors used in hazma. Note that the effective area is only
used in hazma for projecting limits for e-ASTROGAM.

Detector Region ∆Ω (sr) J (MeV2 cm−5 sr−1)

COMPTEL [49] |b| < 20◦, |l| < 60◦ 1.433 3.725× 1028

EGRET [57] 20◦ < |b| < 60◦, |l| < 180◦ 6.585 3.79× 1027

Fermi-LAT [58] 8◦ < |b| < 90◦, |l| < 180◦ 10.817 4.698× 1027

e-ASTROGAM [56] |b| < 10◦, |l| < 10◦ 0.121 1.795× 1029

Table 2. Target regions and data references (first column) for detectors included in
hazma. The J-factors for COMPTEL, EGRET and Fermi-LAT are taken from [59] and the value for
e-ASTROGAM is from ref. [9]. All assume an NFW profile for the galactic DM distribution [9].

by the galactic coordinate ranges, solid angles and J-factors (assuming an NFW distribution
for the galactic DM halo) in Tab. (2). These are packaged into FluxMeasurements objects in
hazma.

The limit-setting procedures are methods in the Theory class. For example, the following
snippet imports a FluxMeasurement object containing information about EGRET observa-
tions and computes the 〈σv〉χ̄χ limits for the Higgs portal model at three DM masses in cm3/s:

>>> from hazma.scalar_mediator import ScalarMediator

>>> from hazma.gamma_ray_parameters import egret_diffuse, TargetParams

>>> egret_diffuse.target # target region information

TargetParams(J=3.79e+27, dOmega=6.584844306798711)

>>> sm = ScalarMediator(mx=150., ms=1e4, gsxx=1., gsff=0.1, gsGG=0.5,

... gsFF=0, lam=1e5)

>>> sm.binned_limit(egret_diffuse)

7.841784676562726e-27 # cm^3 / s

It is important to note that hazma only uses the model parameters (mS , gSχχ, gSff , gSGG,
gSFF and Λ) to compute the shape of the spectrum and treats 〈σv〉χ̄χ as an independent pa-
rameter (c.f. 7.1). To relate the model parameters to 〈σv〉χ̄χ, the user can employ the method
Theory.annihilation_cross_sections(). The FluxMeasurement objects for COMPTEL
and Fermi-LAT observations are named comptel_diffuse and fermi_diffuse and can be
imported similarly. App. (C.1) describes how to create new flux measurement objects.

Computing unbinned limits requires specifying several quantities:

• An effective area function returning Aeff(E) in cm2;

• An energy resolution function returning ǫ(E′) in %;
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• An observing time in seconds;

• An object of type TargetParams containing the J-factor and ∆Ω for the target region;

• A BackgroundModel object, which has a method dPhi_dEdOmega() returning the differ-
ential gamma-ray flux flux per solid angle for the background model, and an attribute
e_range specifying the range of Eγ values for which the model is valid.

Using the same instance of scalar_mediator and DM masses as above, we can compute the
projected limits for e-ASTROGAM using the 10◦ × 10◦ window around the Galactic Center
from Tab. (2) as the target:

>>> from hazma.gamma_ray_parameters import A_eff_e_astrogam

>>> from hazma.gamma_ray_parameters import energy_res_e_astrogam

>>> from hazma.gamma_ray_parameters import T_obs_e_astrogam

>>> from hazma.gamma_ray_parameters import gc_target, gc_bg_model

>>> gc_target.J # target J-factor

1.795e+29

>>> gc_target.dOmega # target extent

0.12122929761504078

>>> sm.unbinned_limit(A_eff_e_astrogam, # effective area

... energy_res_e_astrogam, # energy resolution

... T_obs_e_astrogam, # observing time

... gc_target, # target region

... gc_bg_model) # background model

5.63534935653953e-30 # cm^3 / s

Modifying these ingredients to study other planned gamma-ray detectors is described in
App. (C.1.

We do not currently use secondary radiation to set limits on our models. Such limits
are highly dependent on (for example) the choice of observational target, the magnetic field
intensity and spatial structure [60, 61]; Ref. ([40]) calculates the secondary emission for select
MeV dark matter annihilation final states. Since hazma can already compute the relevant
input spectra for determining secondary spectra, we plan to incorporate this into future
versions of the code.

8 Cosmic Microwave Background limits

Dark matter annihilations at recombination inject ionizing particles into the photon-baryon
plasma. The resulting changes in the residual ionization fraction and baryon temperature
modify the CMB temperature and polarization power spectra, particularly at small scales,
which puts a constraint on 〈σv〉χ̄χ,CMB, the DM self-annihilation cross section at recombina-
tion [62–67]. The size of the effect of the changes depend on the energy per unit volume per
unit time, which is related to the effective parameter

pann ≡ fχeff
〈σv〉χ̄χ,CMB

mχ
. (8.1)

The current 95% upper limit on pann from Planck is 3.5×10−31 cm3 s−1 MeV−1 [67]. fχeff is the
fraction of energy per DM annihilation imparted to the plasma. This depends on how many
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electrons/positrons and photons are produced per DM annihilation (ie, the spectra computed
earlier in this work) and how efficiently these particles re-ionize the CMB (quantified by the
factors fγeff and f e

+e−

eff ) [66]:

fχeff =
1

ECM

∫ ECM/2

0
dE

(

2f e
+e−

eff E
dN

dEe+

∣

∣

∣

∣

χ̄χ

+ fγeffE
dN

dEγ

∣

∣

∣

∣

χ̄χ

)

. (8.2)

If the DM self-annihilation cross section is velocity dependent (as is the case for the
scalar mediator model, where the annihilation is p-wave), the DM velocity vχ,CMB at re-
combination is required to relate 〈σv〉χ̄χ,CMB to the present-day value of 〈σv〉χ̄χ in indirect
detection targets. This velocity is also required for computing the center of mass energy in
DM self-annihilation events at recombination. The velocity depends on the kinetic decoupling
temperature, TKD. Before kinetic decoupling DM initially is coupled to the plasma so that
vχ,CMB =

√

3Tγ/mχ, but afterwards it cools more quickly (Tχ ∝ z2). The DM velocity is
thus [52]

vχ,CMB =

√

3Tχ
mχ

≈ 2× 10−4

(

Tγ
1 eV

)(

1 MeV

mχ

)(

10−4

xkd

)1/2

, (8.3)

where xkd ≡ TKD/mχ generally lies in the range 10−6 − 10−4. Since this velocity is much
smaller than the characteristic velocity in the Milky Way, the CMB constraints on 〈σv〉χ̄χ
for models with p-wave suppression are in general much weaker than the gamma-ray ones.
The CMB constraints in the s-wave case are generally much stronger, but can be evaded in
models where the DM is partially produced through the decay of a heavier dark-sector degree
of freedom after recombination [19].

The quantity fχeff as well as the separate e± and γ terms in Eqn. (8.2) can be computed
for a given kinetic decoupling temperature:

>>> from hazma.scalar_mediator import ScalarMediator

>>> sm = ScalarMediator(mx=150., ms=1e4, gsxx=1., gsff=0.1, gsGG=0.5,

... gsFF=0, lam=1e5)

>>> x_kd = 1e-4

>>> sm.f_eff(x_kd), sm.f_eff_ep(x_kd), sm.f_eff_g(x_kd)

(0.4373205896743133, 0.1657568724934657, 0.2715637171808476)

Fig. (14) shows this factor as a function of DM and mediator mass for the scalar and vector
models with the couplings we have been using as benchmarks. There are sharp variations in
fχeff arising from SM or two-mediator final states becoming accessible as the DM mass changes.
Deriving the kinetic decoupling temperature for particular models rather than leaving it as a
free parameter is left for future work (or the user).

The Theory.cmb_limit() function computes the constraint on 〈σv〉χ̄χ,CMB given a value
of xkd and upper limit on pann:

>>> from hazma.cmb import p_ann_planck_temp_pol as p_ann

>>> p_ann

3.5e-31 # cm^3 / MeV / s

>>> x_kd = 1e-4

>>> sm = HiggsPortal(mx=150., ms=1e4, gsxx=1., stheta=0.01)
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Figure 14. Efficiency of energy injection into the CMB by dark matter annihilation.
The top panels are for the vector model with kinetic mixing and two possible values for mediator
couplings to quarks only. The bottom row shows fχ

eff
for the scalar mediator with Higgs portal and

heavy quark-type couplings. The DM-mediator coupling is fixed to one in all panels. Note that the
curves for different mediator masses have some overlap. � 6

>>> sm.cmb_limit(x_kd, p_ann)

1.2209926980668773e-28 # cm^3 / s

As with the gamma-ray limits described in the previous section, the parameters of the
theory (here mS , gSχχ and sθ) determine the shapes of the photon and e± spectra, and
Theory.cmb_limit() treats 〈σv〉χ̄χ,CMB as a free parameter. The user can find which model
parameters reproduce this cross section using Theory.annihilation_cross_sections().

9 Conclusion

We have introduced hazma, a code for the calculation of gamma-ray and electron-positron
spectra as well as constraints and projected reach for future telescopes for sub-GeV dark
matter annihilation or decay. hazma is timely both because of forthcoming new observational
capabilities at sub-GeV gamma-ray energies, and because of renewed interest in dark matter
models beyond the WIMP paradigm and at lower-than-usually-considered masses.

hazma allows users to compute both spectra of gamma rays, electrons and positrons
for individual annihilation or decay final states containing arbitrarily many particles, as well
as for user-implemented or a set of built-in dark matter models. In the latter case, the
code computes the relevant branching fractions and the ensuing decay chains leading to
photons, electrons and positrons, and calculates model-dependent emission processes such as
e.g. internal bremsstrahlung. The interactions between the mediator particles in these models
and the final state mesons is implemented using chiral perturbation theory techniques.
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hazma contains several updates and refinements over how gamma-ray spectra have been
calculated in the recent literature. These include several radiative decay spectra, such as from
charged pion decay or from muon decay, final state radiation calculations going beyond the
Altarelli-Parisi splitting function approximation for the built-in models, and the ability to
include arbitrarily many mesons and leptons in the final states.

We presented numerous snippets of code, and all code used to produce the figures shown
herein manuscript is available through clickable links. We also showed a few advanced usage
features, such as adding new gamma-ray experiments for deriving constraints from exist-
ing data or assessing projected reach for planned detectors, and implementing user-defined
models.
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A Installation

hazma was developed with python3.6, and it is recommended to use python3. While hazma

should work correctly with python2.7, this version of python will soon lose support. Before
installing hazma, the user needs to install several well-established python packages: cython,
scipy, numpy, and scikit-image. Theses are easily installed by using PyPI. If the user has
PyPI installed on their system, then these packages can be installed using

pip install cython, scipy, numpy, scikit-image, matplotlib

hazma can be installed in the same way, using:

pip install hazma

This will download a tarball from the PyPI repository, compile all the c-code and install
hazma on the system. Alternatively, the user can install hazma by downloading the package
from https://github.com/LoganAMorrison/Hazma.git. Once downloaded, navigate to the
package directory using the command line and run either

pip install .

or

python setup.py install
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Note that since hazma makes extensive usage of the package cython, the user will need
to have a c and c++ compiler installed on their system (for example gcc and g++ on unix-like
systems or Microsoft Visual Studios 2015 or later on Windows). For more information, see the
cython installation guide: https://cython.readthedocs.io/en/latest/src/quickstart/

install.html

B Basic Usage

B.1 Using the Built-In Models

Throughout the text, we gave usage examples of how to use the models built into hazma.
Here we give a compact review of how to use these models in hazma. All the models built
into hazma have identical interfaces. The only difference in the interfaces is the parameters
which need to be specified for the particular model being used. Thus, we will only show the
usage of one of the models. The others can be used in an identical fashion. The example we
will use is the KineticMixing model. To create a KineticMixing model, we use:

# Import the model

>>> from hazma.vector_mediator import KineticMixing

# Specify the parameters

>>> params = {'mx': 250.0, 'mv': 1e6, 'gvxx': 1.0, 'eps': 1e-3}

# Create KineticMixing object

>>> km = KineticMixing(**params)

Here we have created a model with a dark matter fermion of mass 250 MeV, a vector mediator
which mixes with the standard model with a mass of 1 TeV. We set the coupling of the vector
mediator to the dark matter, gV χ = 1 and set the kinetic mixing parameter ǫ = 10−3. To list
all of the available final states for which the dark matter can annihilate into, we use:

>>> km.list_annihilation_final_states()

['mu mu', 'e e', 'pi pi', 'pi0 g', 'pi0 v', 'v v']

This tells us that we can potentially annihilate through: χχ̄→ µ+µ−, e+e−, π+π−, π0γ, π0V
or V µV µ. However, which of these final states is actually available depends on the center of
mass energy. We can see this fact by looking at the annihilation cross sections or branching
fractions, which can be computed using:

>>> cme = 2.0 * km.mx * (1.0 + 0.5 * 1e-6)

>>> km.annihilation_cross_sections(cme)

{'mu mu': 8.94839775021393e-25,

'e e': 9.064036692829845e-25,

'pi pi': 1.2940469635262499e-25,

'pi0 g': 5.206158864833925e-29,

'pi0 v': 0.0,

'v v': 0.0,

'total': 1.9307002022456507e-24}

>>> km.annihilation_branching_fractions(cme)

{'mu mu': 0.46347940191883763,

'e e': 0.4694688839980031,
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'pi pi': 0.06702474894968717,

'pi0 g': 2.6965133472190545e-05,

'pi0 v': 0.0,

'v v': 0.0}

Here we have chosen a realistic center of mass energy for dark matter in our galaxy, which
as a velocity dispersion of δv ∼ 10−3. We can that the V µV µ final state is unavailable, as it
should be since the vector mediator mass is too heavy. In this theory, the vector mediator
can decay. If we would like to know the decay width and the partial widths, we can use:

>>> km.partial_widths()

{'pi pi': 0.0018242846671063036,

'pi0 g': 2.1037425397685694,

'x x': 79577.47154594581,

'e e': 0.0072971395213076475,

'mu mu': 0.007297139521307641,

'total': 79579.5917070493}

If we would like to know the gamma-ray spectrum from dark matter annihilations, we can
use

# Specify photon energies to compute spectrum at

>>> photon_energies = np.array([cme/4])

>>> km.spectra(photon_energies, cme)

{'mu mu': array([2.94759389e-05]),

'e e': array([0.00013171]),

'pi pi': array([2.20142244e-06]),

'pi0 g': array([2.29931655e-07]),

'pi0 v': array([0.]),

'v v': array([0.]),

'total': array([0.00016362])}

Note that we only used a single photon energy because of display purposes, but in general
the user can specify any number of photon energies. If the user would like access to the
underlying spectrum functions, they can use:

>>> spec_funs = km.spectrum_functions()

>>> spec_funs['mu mu'](photon_energies, cme)

[6.35970849e-05]

>>> mumu_bf = km.annihilation_branching_fractions(cme)['mu mu']

>>> mumu_bf * spec_funs['mu mu'](photon_energies, cme)

[2.94759389e-05]

Notice that the direct call to the spectrum function for χχ̄ → µ+µ− doesn’t given the same
result as km.spectra(photon_energies, cme)['mu mu']. This is because the branching
fractions are not applied for the spec_funs = km.spectrum_functions(). If the user doesn’t
care about the underlying components of the gamma-ray spectra, the can simply call
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>>> km.total_spectrum(photon_energies, cme)

array([0.00016362])

to get the total gamma-ray spectrum. The reader may have caught the fact that there is a
gamma-ray line in the spectrum for χχ̄→ π0γ. To get the location of this line, the user can
use:

>>> km.gamma_ray_lines(cme)

{'pi0 g': {'energy': 231.78145156177675, 'bf': 2.6965133472190545e-05}}

This tells us the process which produces the line, the location of the line and the branching
fraction for the process. We do not include the line in the total spectrum since the line
produces a Dirac-delta function. In order to get a realistic spectrum including the line, we
need to convolve the gamma-ray spectrum with an energy resolution. This can be achieved
using:

>>> min_photon_energy = 1e-3

>>> max_photon_energy = cme

>>> energy_resolution = lambda photon_energy : 1.0

>>> number_points = 1000

>>> spec = km.total_conv_spectrum_fn(min_photon_energy, max_photon_energy,

... cme, energy_resolution, number_points)

>>> spec(cme / 4) # compute the spectrum at a photon energy of `cme/4`

array(0.001718)

The km.total_conv_spectrum_fn computes and returns an interpolating function of the
convolved function. An important thing to note here is that the km.total_conv_spectrum_fn
takes in a function for the energy resolution. This allows the user to define the energy
resolution to depend on the specific photon energy, which is often the case for gamma-ray
telescopes.

Next we present the positron spectra. These have an identical interface to the gamma-ray
spectra, so we only show how to call the functions and we suppress the output

>>> from hazma.parameters import electron_mass as me

>>> positron_energies = np.logspace(np.log10(me), np.log10(cme), num=100)

>>> km.positron_spectra(positron_energies, cme)

>>> km.positron_lines(cme)

>>> km.total_positron_spectrum(positron_energies, cme)

>>> dnde_pos = km.total_conv_positron_spectrum_fn(min(positron_energies),

... max(positron_energies),

... cme,

... energy_resolution,

... number_points)

The last thing that we would like to demonstrate is how to compute limits. In order to
compute the limits on the annihilation cross section of a model from a gamma-ray telescope,
say EGRET, we can use:
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>>> from hazma.gamma_ray_parameters import egret_diffuse

# Choose DM masses from half the electron mass to 250 MeV

>>> mxs = np.linspace(me/2., 250., num=100)

# Compute limits from e-ASTROGAM

>>> limits = np.zeros(len(mxs), dtype=float)

>>> for i, mx in enumerate(mxs):

... km.mx = mx

... limits[i] = km.binned_limit(egret_diffuse)

Similarly, if we would like to set constraints using e-ASTROGAM, one can use:

>>> # Import target and background model for the e-ASTROGAM telescope

>>> from hazma.gamma_ray_parameters import gc_target, gc_bg_model

>>> # Import telescope parameters

>>> from hazma.gamma_ray_parameters import A_eff_e_astrogam

>>> from hazma.gamma_ray_parameters import energy_res_e_astrogam

>>> from hazma.gamma_ray_parameters import T_obs_e_astrogam

>>> # Choose DM masses from half the electron mass to 250 MeV

>>> mxs = np.linspace(me/2., 250., num=100)

>>> # Compute limits

>>> limits = np.zeros(len(mxs), dtype=float)

>>> for i, mx in enumerate(mxs):

... km.mx = mx

... limits[i] = km.unbinned_limit(A_eff_e_astrogam,

... energy_res_e_astrogam,

... T_obs_e_astrogam,

... gc_target,

... gc_bg_model)

B.2 Subclassing the Built-In Models

As mentioned in Sec. (2), the user may not be interested in the generic models built into
hazma, but instead a more specialized model. In this case, it makes sense for the user to
subclass one of the models (i.e. create a class which inherits from one of the models.) As
and example, we illustrate how to do this with the Higgs-portal model (of course this model
is already built into hazma, but it works nicely as an example.) Recall that the full set of
parameters for the scalar mediator model are:

1. mχ: dark matter mass,

2. mS : scalar mediator mass,

3. gSχ: coupling of scalar mediator to dark matter,

4. gSf : coupling of scalar mediator to standard model fermions,

5. gSG: effective coupling of scalar mediator to gluons,

6. gSF : effective coupling of scalar mediator to photons and
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7. Λ: cut-off scale for the effective interactions.

In the case of the Higgs-portal model, the scalar mediator talks to the standard model only
through the Higgs boson, i.e. it mixes with the Higgs. Therefore, the scalar mediator inherits
its interactions with the standard model fermions, gluons and photon through the Higgs.
In Sec. (3.1), we gave the relationships between the couplings gSf , gSG, gSF ,Λ and sin θ, vh,
where sin θ is the mixing angle for the scalar and Higgs and vh is the Higgs vacuum expectation
value. These relationships are:

gSf = sin θ, gSG = 3 sin θ, gSF = −5

6
sin θ, Λ = vh. (B.1)

Therefore, the Higgs-portal model doesn’t need to know about all of the couplings of the
generic scalar mediator model. It only needs to know about mχ,mS , gSχ and sin θ. Below,
we construct a class which subclasses the scalar mediator class to implement the Higgs-portal
model.

from hazma.scalar_mediator import ScalarMediator

from hazma.parameters import vh

class HiggsPortal(ScalarMediator):

def __init__(self, mx, ms, gsxx, stheta):

self._lam = vh

self._stheta = stheta

super(HiggsPortal, self).__init__(mx, ms, gsxx, stheta, 3.*stheta,

-5.*stheta/6., vh)

@property

def stheta(self):

return self._stheta

@stheta.setter

def stheta(self, stheta):

self._stheta = stheta

self.gsff = stheta

self.gsGG = 3. * stheta

self.gsFF = - 5. * stheta / 6.

# Hide underlying properties' setters

@ScalarMediator.gsff.setter

def gsff(self, gsff):

raise AttributeError("Cannot set gsff")

@ScalarMediator.gsGG.setter

def gsGG(self, gsGG):

raise AttributeError("Cannot set gsGG")

@ScalarMediator.gsFF.setter
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def gsFF(self, gsFF):

raise AttributeError("Cannot set gsFF")

There are a couple things to note about our above implementation. First, our model only
takes inmχ,mS , gSχ and sin θ, as desired. But the underlying model, i.e. the ScalarMediator
model only knows about mχ,mS , gSχ, gSf , gSG, gSF and Λ. So if we update sin θ, we addi-
tionally need to update the underlying parameters, gSf , gSG, gSF and Λ. The easiest way to
do this is using getters and setters by defining sin θ to be a property through the @property

decorator. Then every time we update sin θ, we can also update the underlying parameters.
The second thing to note is that we want to make sure we don’t accidentally change the
underlying parameters directly, since in this model, they are only defined through sin θ. We
an ensure that we cannot change the underlying parameters directly by overriding the getters
and setters for gsff, gsGG and gsGG and raising an error if we try to change them. This isn’t
strictly necessary (as long as the user is careful), but can help avoid confusing behavior.

C Advanced Usage

C.1 Adding New Gamma-Ray Experiments

Currently hazma only includes information for producing projected unbinned limits with e-
ASTROGAM, using the dwarf Draco or inner 10◦ × 10◦ region of the Milky Way as a target.
Adding new detectors and target regions is straightforward. As described in Sec. (7), a detec-
tor is characterized by the effective area Aeff(E), the energy resolution ǫ(E) and observation
time Tobs. In hazma, the first two can be any callables (functions) and the third must be a
float. The region of interest is defined by a TargetParams object, which can be instantiated
with:

>>> from hazma.gamma_ray_parameters import TargetParams

>>> tp = TargetParams(J=1e29, dOmega=0.1)

The background model should be packaged in an object of type BackgroundModel. This light-
weight class has a function dPhi_dEdOmega() for computing the differential photon flux per
solid angle (in MeV−1 sr) and an attribute e_range specifying the energy range over which
the model is valid (in MeV). New background models are defined by passing these two the
initializer:

>>> from hazma.background_model import BackgroundModel

>>> bg = BackgroundModel(e_range=[0.5, 1e4],

... dPhi_dEdOmega=lambda e: 2.7e-3 / e**2)

As explained in Sec. (7), gamma-ray observation information from Fermi-LAT, EGRET
and COMPTEL is included with hazma, and other observations can be added using the
container class FluxMeasurement. The initializer requires:

• The name of a CSV file containing gamma-ray observations. The file’s columns must
contain:

1. Lower bin edge (MeV)

2. Upper bin edge (MeV)
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3. End2Φ/dE dΩ (in MeVn−1 cm−2 s−1 sr−1)

4. Upper error bar (in MeVn−1 cm−2 s−1 sr−1)

5. Lower error bar (in MeVn−1 cm−2 s−1 sr−1)

Note that the error bar values are their y-coordinates, not their relative distances from
the central flux.

• The detector’s energy resolution function.

• A TargetParams object for the target region.

For example, a CSV file obs.csv containing observations

150.0,275.0,0.0040,0.0043,0.0038

650.0,900.0,0.0035,0.0043,0.003

with n = 2 for an instrument with energy resolution ǫ(E) = 0.05 observing the target region
tp defined above can be loaded using7

>>> from hazma.flux_measurement import FluxMeasurement

>>> obs = FluxMeasurement("obs.dat", lambda e: 0.05, tp)

The attributes of the FluxMeasurement store all of the provide information, with the En

prefactor removed from the flux and error bars, and the errors converted from the positions
of the error bars to their sizes. These are used internally by the Theory.binned_limit()

method, and can be accessed as follows:

>>> obs.e_lows, obs.e_highs

(array([150., 650.]), array([275., 900.]))

>>> obs.target

<hazma.gamma_ray_parameters.TargetParams at 0x1c1bbbafd0>

>>> obs.fluxes

array([8.85813149e-08, 5.82726327e-09])

>>> obs.upper_errors

array([6.64359862e-09, 1.33194589e-09])

>>> obs.lower_errors

array([4.42906574e-09, 8.32466181e-10])

>>> obs.energy_res(10.)

0.05

C.2 User-Defined Models

In this subsection, we demonstrate how to implement new models in Hazma. A notebook
containing all the code in this appendix can be downloaded from GitHub �. The model
we will consider is an effective field theory with a Dirac fermion DM particle which talks to

7If the CSV containing the observations uses a different power of E than n = 2, this can be specified using
the power keyword argument to the initializer for FluxMeasurement.
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neutral and charged pions through gauge-invariant dimension-5 operators. The Lagrangian
for this model is:

L ⊃ c1
Λ
χχπ+π− +

c2
Λ
χχπ0π0 (C.1)

where c1, c2 are dimensionless Wilson coefficients and Λ is the cut-off scale of the theory. In
order to implement this model in Hazma, we need to compute the annihilation cross sections
and the FSR spectra. The annihilation channels for this model are simply χ̄χ → π0π0 and
χ̄χ→ π+π−. The computations for the cross sections are straight forward and yield:

σ(χ̄χ→ π+π−) =
c21
√

1− 4µ2π

√

1− 4µ2χ

32πΛ2
(C.2)

σ(χ̄χ→ π0π0) =
c22

√

1− 4µ2
π0

√

1− 4µ2χ

8πΛ2
(C.3)

where Q is the center of mass energy, µχ = mχ/Q, µπ = mπ±/Q and µπ0 = mπ0/Q. In
addition to the cross sections, we need the FSR spectrum for χχ→ π+π−γ. This is:

dN(χ̄χ→ π+π−γ)

dEγ
=
α
(

2f(x)− 2
(

1− x− 2µ2π
)

log
(

1−x−f(x)
1−x+f(x)

))

π
√

1− 4µ2πx
(C.4)

where

f(x) =
√
1− x

√

1− x− 4µ2π (C.5)

We are now ready to set up the Hazma model. For hazma to work properly, we will need to
define the following functions in our model:

• annihilation_cross_section_funcs(): A function returning a dictionary of the an-
nihilation cross sections functions, each of which take a center of mass energy.

• spectrum_funcs(): A function returning a dictionary of functions which take photon
energies and a center of mass energy and return the gamma-ray spectrum contribution
from each final state.

• gamma_ray_lines(e_cm): A function returning a dictionary of the gamma-ray lines for
a given center of mass energy.

• positron_spectrum_funcs(): Like spectrum_funcs(), but for positron spectra.

• positron_lines(e_cm): A function returning a dictionary of the electron/positron lines
for a center of mass energy.

In the interests of compartmentalization, we find it easiest place each of these components in
its own class (a mixin in python terminology) which are then combined into a master class
representing our model. Before we begin writing the classes, we need to import a few helper
functions and constants from hazma:
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import numpy as np # NumPy is heavily used

import matplotlib.pyplot as plt # Plotting utilities

# neutral and charged pion masses

from hazma.parameters import neutral_pion_mass as mpi0

from hazma.parameters import charged_pion_mass as mpi

from hazma.parameters import qe # Electric charge

# Positron spectra for neutral and charged pions

from hazma.positron_spectra import charged_pion as pspec_charged_pion

# Deay spectra for neutral and charged pions

from hazma.decay import neutral_pion, charged_pion

# The `Theory` class which we will ultimately inherit from

from hazma.theory import Theory

Now, we implement a cross section class:

class HazmaExampleCrossSection:

def sigma_xx_to_pipi(self, Q):

mupi = mpi / Q

mux = self.mx / Q

if Q > 2 * self.mx and Q > 2 * mpi:

sigma = (self.c1**2 * np.sqrt(1 - 4 * mupi**2) *

np.sqrt(1 - 4 * mux**2)**2 /

(32.0 * self.lam**2 * np.pi))

else:

sigma = 0.0

return sigma

def sigma_xx_to_pi0pi0(self, Q):

mupi0 = mpi0 / Q

mux = self.mx / Q

if Q > 2 * self.mx and Q > 2 * mpi0:

sigma = (self.c2**2 * np.sqrt(1 - 4 * mux**2) *

np.sqrt(1 - 4 * mupi0**2) /

(8.0 * self.lam**2 * np.pi))

else:

sigma = 0.0

return sigma

def annihilation_cross_section_funcs(self):

return {'pi0 pi0': self.sigma_xx_to_pi0pi0,

'pi pi': self.sigma_xx_to_pipi}

The key function is annihilation_cross_section_funcs, which is required to be imple-
mented. Next, we implement the spectrum functions which will produce the FSR and decay
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spectra:

class HazmaExampleSpectra:

def dnde_pi0pi0(self, e_gams, e_cm):

# Decay spectra for the neutral pions

return 2.0 * neutral_pion(e_gams, e_cm / 2.0)

def __dnde_xx_to_pipig(self, e_gam, Q):

# Unvectorized function for computing FSR spectrum

mupi = mpi / Q

mux = self.mx / Q

x = 2.0 * e_gam / Q

if 0.0 < x and x < 1. - 4. * mupi**2:

dnde = (

qe ** 2

* (

2 * np.sqrt(1 - x) * np.sqrt(1 - 4 * mupi ** 2 - x)

+ (-1 + 2 * mupi ** 2 + x)

* np.log(

(-1 + np.sqrt(1 - x) *

np.sqrt(1 - 4 * mupi ** 2 - x) + x) ** 2

/ (1 + np.sqrt(1 - x) *

np.sqrt(1 - 4 * mupi ** 2 - x) - x) ** 2

)

)

) / (Q * 2.0 * np.sqrt(1 - 4 * mupi ** 2) * np.pi ** 2 * x)

else:

dnde = 0

return dnde

def dnde_pipi(self, e_gams, e_cm):

# Sum the FSR and decay spectra for the charged pions

return (np.vectorize(self.__dnde_xx_to_pipig)(e_gams, e_cm) +

2. * charged_pion(e_gams, e_cm / 2.0))

def spectrum_funcs(self):

return {'pi0 pi0': self.dnde_pi0pi0,

'pi pi': self.dnde_pipi}

def gamma_ray_lines(self, e_cm):

return {}

The required functions here are spetrum_funcs and gamma_ray_lines. Note the the second
__dnde_xx_to_pipig is an unvectorized helper function, which is not to be used directly.
Next we implement the positron spectra:
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class HazmaExamplePositronSpectra:

def dnde_pos_pipi(self, e_ps, e_cm):

return pspec_charged_pion(e_ps, e_cm / 2.)

def positron_spectrum_funcs(self):

return {"pi pi": self.dnde_pos_pipi}

def positron_lines(self, e_cm):

return {}

Lastly, we group all of these classes into a master class and we’re done:

class HazmaExample(HazmaExampleCrossSection,

HazmaExamplePositronSpectra,

HazmaExampleSpectra,

Theory):

# Model parameters are DM mass: mx,

# Wilson coefficients: c1, c2 and

# cutoff scale: lam

def __init__(self, mx, c1, c2, lam):

self.mx = mx

self.c1 = c1

self.c2 = c2

self.lam = lam

@staticmethod

def list_annihilation_final_states():

return ['pi pi', 'pi0 pi0']

Now we can easily compute gamma-ray spectra, positron spectra and limit on our new model
from gamma-ray telescopes. To implement our new model with mχ = 200 MeV, c1 = c2 = 1
and Λ = 100 GeV, we can use:

>>> model = HazmaExample(200.0, 1.0, 1.0, 100e3)

To compute a gamma-ray spectrum:

# Photon energies from 1 keV to 1 GeV

>>> e_gams = np.logspace(-3.0, 3.0, num=150)

# Assume the DM is moving with a velocity of 10^-3

>>> vdm = 1e-3

# Compute CM energy assuming the above velocity

>>> Q = 2.0 * model.mx * (1 + 0.5 * vdm**2)

# Compute spectra

>>> spectra = model.spectra(e_gams, Q)

Then we can plot the spectra using:
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>>> plt.figure(dpi=100)

>>> for key, val in spectra.items():

... plt.plot(e_gams, val, label=key)

>>> plt.xlabel(r'$E_{\gamma} (\mathrm{MeV})$', fontsize=16)

>>> plt.ylabel(r'$\frac{dN}{dE_{\gamma}} (\mathrm{MeV}^{-1})$', fontsize=16)

>>> plt.xscale('log')

>>> plt.yscale('log')

>>> plt.legend()

Additionally, we can compute limits on the thermally-averaged annihilation cross section of
our model for various DM masses using

# Import target and background model for the E-Astrogam telescope

>>> from hazma.gamma_ray_parameters import gc_target, gc_bg_model

# Choose DM masses from half the pion mass to 250 MeV

>>> mxs = np.linspace(mpi/2., 250., num=100)

# Compute limits from E-Astrogam

>>> limits = np.zeros(len(mxs), dtype=float)

>>> for i, mx in enumerate(mxs):

... model.mx = mx

... limits[i] = model.unbinned_limit(target_params=gc_target,

... bg_model=gc_bg_model)

D Multi-particle phase space integration: rambo

The rambo module implements the RAMBO algorithm, developed by Kleiss, Stirling and
Ellis [24], for generating phase-space points using a Monte Carlo procedure. We advise the
interested reader to consult the original paper for details on how this algorithm works. We
will only described how the algorithm works at a high-level. The RAMBO algorithm works
by first democratically generations random, independent, isotropic, massless four-momenta,
qµi , with i running from 1 to N , N being the number of final state particles. The momenta qµi
are generated with energies distributed according to q0i exp(−q0i )dq0i . These four momenta are
then transformed into four-momenta pµi by performing a particular Lorentz boost such that
∑

i p
µ
i = Pµ where Pµ is the total four-momenta of the given process in the center-of-mass

frame (i.e. P 0 = ECM and ~P = ~0.) At this stage, a corresponding weight W0(pi) is computed
to give the probability of the event with the particular four-momenta pµi . Lastly, the four-
momenta pµi are transformed into four-momenta kµi such that the kµi have the correct masses
(i.e. kµi ki,µ = m2

i ) and a new weight W (ki) is computed. This completes the algorithm.
Below we give pseudo-code for the algorithm:

1. Generate the qµi ’s with energies distributed according to q0i exp(−q0i )dq0i using:

q0i = − log(ρ
(3)
i ρ

(4)
i ), qxi = q0i

√

1− c2i cosφi, qyi = q0i

√

1− c2i sinφi, qzi = q0i ci.

(D.1)

where ci = 2ρ
(1)
i − 1, φi = 2πρ

(2)
i and ρ

(1,2,3,4)
i are uniform random numbers on (0, 1).

See [24] for a proof that these are indeed distributed according to q0i exp(−q0i )dq0i .
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2. Transform the qµi ’s into pµi ’s such that the
∑

i p
µ
i = Pµ with P 0 = ECM and ~P = ~0.

This is done using:

p0i = x(γq0i +
~b · ~qi), ~pi = x(~qi +~bq

0
i + a(~b · ~qi)~b). (D.2)

where

~b = − ~Q/M, x = ECM/M, γ = Q0/M, a = 1/
√

1 + γ,

Qµ =
∑

i

qµi , M =
√

QµQµ (D.3)

Assign the following weight to the event:

W0 =
(π

2

)N−1
E2N−4

CM

(2π)4−3N

Γ(N)Γ(N − 1)
(D.4)

3. Next we transform the pµi ’s to kµi ’s such that kµi ki,µ = mi. This is done via:

~ki = ξ~pi, k0i =
√

mi + (ξp0i )
2 (D.5)

where ξ is the solution to

ECM =

N
∑

i=1

√

m2
i + (ξp0i )

2 (D.6)

This equation can be solved efficiently using Newton’s method with the initial guess

ξ0 =

√

1−
(

∑N
i=1mi/ECM

)2
. Lastly, we re-weight the probability of the event using:

W =W0ECM

(

N
∑

i=1

|~ki|
ECM

)2N−3( N
∑

i=1

|~ki|2
k0i

)−1( N
∏

i=1

|~ki|
k0i

)

(D.7)

We note that this fixes a typo from the original paper, where the overall factor of ECM

was missing. Additionally, we note that the weights clearly don’t take into account the
matrix element of the particle physics process. The matrix elements are included by
simply multiplying the weights by the corresponding matrix element.

This completes the pseudo-code for the RAMBO algorithm.
In hazma, the rambo module can be used to perform various tasks. At the highest level,

the function compute_annihilation_cross_section (compute_decay_width) is provided for
computing cross-sections (decay widths) for 2 → N (1 → N) processes. For example, consider
computing the partial decay width of µ− → e−νeνµ. One first declares a function that takes
a list of the final state particles’ four-momenta and muon’s four-momentum, and returns the
matrix element squared for the reaction:

# Import the fermi constant

>>> from hazma.parameters import GF

# Import a helper function for scalar products of four-vectors

>>> from hazma.field_theory_helper_functions.common_functions import \
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... minkowski_dot as MDot

# Declare the matrix element

>>> def msqrd_mu_to_enunu(momenta):

... pe = momenta[0] # electron four-momentum

... pve = momenta[1] # electron-neutrino four-momentum

... pvmu = momenta[2] # muon-neutrino four-momentum

... pmu = sum(momenta) # muon four-momentum

# squared matrix element

... return 64. * GF**2 * MDot(pe, pvmu) * MDot(pmu, pve)

Then, the partial decay width can be computed using:

# Import function to compute decay width

>>> from hazma.rambo import compute_decay_width

# import masses of muon and electron

>>> from hazma.parameters import muon_mass as mmu

>>> from hazma.parameters import electron_mass as me

# Specify the masses of the electron and neutrinos

>>> fsp_masses = np.array([me, 0., 0.])

# compute the partial width

>>> partial_width = compute_decay_width(fsp_masses, mmu, num_ps_pts=50000,

... mat_elem_sqrd=msqrd_mu_to_enunu)

Using 50000 phase-space points gives a result within 5% of the analytical value.

In addition, rambo includes a function for performing integrations over all variables ex-
cept the energy of one of the final-state particles called generate_energy_histogram. This is
useful for computing energy spectra for FSR from final states with large numbers of particles.
The following demonstrates how it can be used:

>>> from hazma.rambo import generate_energy_histogram

>>> import numpy as np

>>> num_ps_pts = 100000 #number of phase-space points to use

# masses of final-state particles

>>> masses = np.array([100., 100., 0.0, 0.0])

>>> cme = 1000. # center-of-mass energy

>>> num_bins = 100 # number of energy bins to use

# computing energy histograms

>>> eng_hist = generate_energy_histogram(num_ps_pts, masses, cme,

... num_bins=num_bins)

# plot the results

>>> import matplotlib as plt

>>> for i in range(len(masses)):

... # pts[i, 0] are the energies of particle i

... # pts[i, 1] are the probabilities

... plt.loglog(pts[i, 0], pts[i, 1])

At the lowest level, rambo includes a function for generating phase-space points called
generate_phase_space. We also include a function integrate_over_phase_space which
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will perform the integral

∫

(

N
∏

i=1

d3~pi
(2π)3

1

2Ei

)

(2π)4δ4

(

P −
N
∑

i=1

pi

)

|M|2 (D.8)

where Pµ is the total four-momentum, pµi are the individual four-momenta for each of the N
final-state particles and M is the matrix element.

E Gamma-ray Spectra from many final state particles: gamma_ray

Since computing gamma-ray spectra is a model-dependent process, we include in hazma tools
for computing gamma-ray spectra from both FSR and the decay of final state-particles. The
gamma_ray module contains two functions called gamma_ray_decay and gamma_ray_fsr. The
gamma_ray_decay function accepts a list of the final-state particles, the center-of-mass en-
ergy, the gamma-ray energies to compute the spectrum at and optionally the matrix element
squared. Currently, the final-state particles can be π0, π±, µ±, e±,K±,KL and KS where K
stands for kaon. We caution that when including many final-state mesons, one needs to take
care to supply a matrix element squared that is valid at the reaction’s center-of-mass energy
(see Sec. (1) for a discussion on the validity of ChPT for large energies).

The gamma_ray_decay function works by first computing the energies distributions of
all the final-state particles and convolving these with the decay spectra of the final-state
particles. It can be used as follows:

>>> from hazma.gamma_ray_decay import gamma_ray_decay

>>> import numpy as np

# specify the final-state particles

>>> particles = np.array(['muon', 'charged_kaon', 'long_kaon'])

# choose the center of mass energy

>>> e_cm = 5000.

# choose list of the gamma-ray energies to compute spectra at

>>> e_gams = np.logspace(0., np.log10(e_cm), num=200, dtype=np.float64)

# compute the gamma-ray spectra assuming a constant matrix element

>>> spec = gamma_ray_decay(particles, e_cm, e_gams)

The gamma_ray_fsr function computes the gamma-ray spectrum from X → Y γ, i.e.:

dN(X → Y γ)

dEγ
=

1

σ(X → Y )

dσ(X → Y γ)

dEγ
(E.1)

where X and Y are any particles excluding the photon. As input this function takes a list
of the initial state particle masses (either 1 or 2 particles), the final state particle masses,
the center-of-mass energy, a function for the tree-level matrix element squared (for X → Y )
and a function for the radiative matrix element squared (X → Y γ). The functions for the
squared matrix elements must take is a single argument which is a list of the four-momenta
for the final state particles. As an example, we consider the process of two dark-matter
particles annihilating into charged pions, χχ̄ → π+π−(γ) using the model from App. (C.2).
In App (C.2), we gave the analytic expressions for the gamma-ray spectra. The tree-level and
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radiative matrix elements squared for this process are:

|M(χχ̄→ π+π−)|2 =
c21
(

s− 4m2
χ

)

2Λ2
(E.2)

|M(χχ̄→ π+π−γ)|2 =
2c21
(

4µ2χ − 1
)

Q2e2

Λ2 (t− µ2πQ
2)2 (u− µ2πQ

2)2
(E.3)

×
(

(

µπQ(t+ u)− 2µ3πQ
3
)2

+ s
(

t− µ2πQ
2
) (

µ2πQ
2 − u

)

)

where Q is the center-of-mass energy, e is the electromagnetic coupling, µπ,χ = mπ,χ/Q and

s = (pπ,1 + pπ,2)
2, t = (pπ,1 + k)2, u = (pπ,2 + k)2 (E.4)

with pπ,1,2 are the four-momenta of the two final-state pions and k is the four-momenta of the
final-state photon. Below, we create a class to implement functions for the tree and radiative
squared matrix elements. Note that these functions take in an array of four-momenta.

from hazma.field_theory_helper_functions.common_functions import \

minkowski_dot as MDot

class Msqrd(object):

def __init__(self, mx, c1, lam):

self.mx = mx # DM mass

self.c1 = c1 # effective coupling of DM to charged pions

self.lam = lam # cut off scale for effective theory

def tree(self, momenta):

ppi1 = momenta[0] # first charged pion four-momentum

ppi2 = momenta[1] # second charged pion four-momentum

Q = ppi1[0] + ppi2[0] # center-of-mass energy

return -((self.c1**2 * (4 * self.mx**2-Q**2)) / (2 * self.lam**2))

def radiative(self, momenta):

ppi1 = momenta[0] # first charged pion four-momentum

ppi2 = momenta[1] # second charged pion four-momentum

k = momenta[2] # photon four-momentum

Q = ppi1[0] + ppi2[0] + k[0] # center-of-mass energy

mux = self.mx / Q

mupi = mpi / Q

s = MDot(ppi1 + ppi2, ppi1 + ppi2)

t = MDot(ppi1 + k, ppi1 + k)

u = MDot(ppi2 + k, ppi2 + k)

return ((2*self.c1**2*(-1 + 4*mux**2)*Q**2*qe**2 *

(s*(-(mupi**2*Q**2) + t)*(mupi**2*Q**2 - u) +

(-2*mupi**3*Q**3 + mupi*Q*(t + u))**2)) /
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(self.lam**2*(-(mupi**2*Q**2) + t)**2*

(-(mupi**2*Q**2) + u)**2))

Next, we can compute the gamma-ray spectrum for χχ̄→ π+π−γ using:

>>> from hazma.gamma_ray import gamma_ray_fsr

# specify the parameters of the model

>>> params = {'mx': 200.0, 'c1':1.0, 'lam':1e4}

# create instance of our Msqrd class

>>> msqrds = Msqrd(**params)

# specify the initial and final state masses

>>> isp_masses = np.array([msqrds.mx, msqrds.mx])

>>> fsp_masses = np.array([mpi, mpi, 0.0])

# choose the center-of-mass energy

>>> e_cm = 4.0 * msqrds.mx

# compute the gamma-ray spectrum

>>> spec = gamma_ray_fsr(isp_masses, fsp_masses, e_cm, msqrds.tree,

msqrds.radiative, num_ps_pts=500000, num_bins=50)

# plot the spectrum

>>> import matplotlib.pyplot as plt

>>> plt.figure(dpi=100)

>>> plt.plot(spec[0], spec[1])

>>> plt.yscale('log')

>>> plt.xscale('log')

>>> plt.ylabel(r'$dN/dE_{\gamma} \ (\mathrm{MeV}^{-1})$', fontsize=16)

>>> plt.xlabel(r'$E_{\gamma} \ (\mathrm{MeV})$', fontsize=16)
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