
HBasechainDB – A Scalable Blockchain
Framework on Hadoop Ecosystem

Manuj Subhankar Sahoo(B) and Pallav Kumar Baruah

Sri Sathya Sai Institute of Higher Learning, Anantapur 515134,
Andhra Pradesh, India

subhankar.3eblue@gmail.com, pkbaruah@sssihl.edu.in

Abstract. After the introduction of Bitcoin, blockchain has made its
way through numerous applications and been adopted by various com-
munities. A number of implementations exist today providing a platform
to carry on business with ease. However, it is observed the scalability
of blockchain still remains an issue. Also, none of the framework can
claim the ability to handle Big Data and support to perform analyt-
ics, which is an important and integral facet of current world of busi-
ness. We propose HBasechainDB, a scalable blockchain-based tamper-
proofed Big Data store for distributed computing. HBasechainDB adds
the blockchain characteristics of immutability and decentralization to
the HBase database in the Hadoop ecosystem. Linear scaling is achieved
by pushing computation to the data nodes. HBasechainDB comes with
inherent property of efficient big data processing as it is built on Hadoop
ecosystem. HBasechainDB also makes adaptation of blockchain very
easy for those organizations whose business logic are already existing
on Hadoop ecosystem. HBasechainDB can be used as a tamper-proof,
decentralized, distributed Big Data store.

Keywords: Blockchain · HBase · Big Data · Tamperproof
Immutability

1 Introduction

A Blockchain is a distributed ledger of blocks which records all the transactions
that have taken place. It was first popularized by a person or a group under
the pseudonym Satoshi Nakamoto, in 2008 by introducing Bitcoin [11]: A Peer-
to-Peer Electronic Cash System. This technology revolutionized the decentral-
ized paradigm by introducing and using a Consensus mechanism: Proof-of-Work
(PoW). Proof-of-Work defines the requirement of an expensive calculation also
called mining, to be performed so as to create a new trustless set of transactions,
also called blocks on the blockchain. The major breakthrough for Bitcoin was
the hash based blockchain which made the blocks of transactions tamper-proof,
transparent and aversive to DoS attack.

Blockchains can support a variety of applications like decentralized financial
services, Internet-of-Things [12], smart properties, etc. Several works have cen-
tered around the evaluation of potential use cases for the blockchain [3,9,13].
c© The Author(s) 2018
R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 18–29, 2018.
https://doi.org/10.1007/978-3-319-69953-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_2&domain=pdf


HBasechainDB – A Scalable Blockchain Framework on Hadoop Ecosystem 19

Blockchains can also be seen as a tamper-proof, decentralized data store of a vari-
ety of data including government deeds, land ownership records, stock market
transactions, etc. However, the PoW consensus protocol enforces major perfor-
mance bottlenecks on the blockchain. Transaction latencies are as high as an
hour and the theoretical peak transactions throughput is just 7 transactions
per second. Further, the full nodes in the Bitcoin network which are capable
of validating blocks and transactions are expected to maintain copies of the
entire Bitcoin blockchain. This places heavy storage demands on the participat-
ing nodes. The Bitcoin blockchain is about 136 GB at the time of writing [1].
The communication model also places heavy demands on network bandwidth.
The Bitcoin blockchain is also not scalable in that an increase in the number of
nodes in the Bitcoin network does not help in increasing the network through-
put, latency or capacity. As pointed out by Croman et al. [7], with the increasing
adoption of blockchains, we need to address concerns about their scalability.

Apart from digital currency, blockchain technology has taken its own way
through many types of industries which includes Finance and Accounting, Sup-
ply Chain and Logistics, Insurance etc. For example, financial institutions can
settle securities in minutes instead of days. Manufacturers can reduce prod-
uct recalls by sharing production logs with original equipment manufacturers
(OEMs) and regulators. Businesses of all types can more closely manage the
flow of goods and related payments with greater speed and less risk. For this
reason various industries are trying to adopt blockchain for running their busi-
ness process smoother and faster. Hyperledger Fabric and BigchainDB are the
most widely used framework for blockchainifying business processes.

Today’s business processes doesn’t generate just data, they generates huge
amount of data of wide variety with thrilling velocity. After putting these kinds
of data on blockchain it is very important to process and analyze these data in
an efficient way. Hadoop is a classic ecosystem which provides numerous func-
tionalities with high efficiency for processing and analyzing these kind of data. A
lot of business logic already exists in Hadoop ecosystem to process and analyze
these data. Therefore it will be much more easier for the industries to adopt
blockchain technology if there exists a scalable blockchain framework in Hadoop
ecosystem. Towards this end, HBasechainDB is a first step towards providing
a scalable blockchain framework in the Hadoop ecosystem. HBasechainDB is
started by High performance Computing and Data (HPCD) Group, Depart-
ment of Mathematics and Computer Science (DMACS), Sri Sathya Sai Institute
of Higher Learning. This is achieved by imparting the blockchain characteristics
of immutability and decentralization to the HBase database.

2 Background and Related Work

A lot of work has been underway for addressing the scalability of blockchains.
Vukolic [14] has contrasted PoW-based blockchains to those based on BFT state
machine replication for scalability. Eyal et al. [8] introduces Bitcoin-NG as a scal-
able blockchain protocol based on BFT consensus protocols. These approaches



20 M. S. Sahoo and P. K. Baruah

are focused upon improving the consensus protocol. McConaghy et al. [10]
adopted a different approach to scalability. They started with a distributed
database, MongoDB, and added the blockchain features of decentralized con-
trol, immutability while supporting the creation and movement of digital assets
to provide a scalable, decentralized database BigchainDB. The major contri-
bution of BigchainDB that enables this scalability is the concept of blockchain
pipelining. In blockchain pipelining, blocks are added to the blockchain with-
out waiting for the current block to be agreed upon by the other nodes. The
consensus is taken care of by the underlying database. The validation of blocks
is not done during block addition but eventually by a process of voting among
nodes. This has huge performance gains and BigchainDB has points to trans-
action throughputs of over a million transactions per second and sub-second
latencies.

In creating HBasechainDB, we have adopted an approach similar to that of
BigchainDB. Instead of using MongoDB as the underlying database, we use the
Hadoop database, Apache HBase. Apache HBase is a distributed, scalable Big
Data store. It supports random, real-time read/write access to Big Data. Apache
HBase is an open-source, distributed, versioned, non-relational, column-family
oriented database modeled after Google’s Bigtable [6]. HBase provides both lin-
ear and modular scaling, along with strongly consistent reads/writes. HBase
tables are distributed on the cluster via regions. HBase supports automatic
sharding by splitting and re-distributing regions automatically as data grows.
HBasechainDB is a scalable, decentralized data store akin to BigchainDB.

3 Terminology

– Blockchain: A chain of blocks where every block has a hash link to the
previous block i.e. every block stores the hash of the previous block. An
advantage is, just by storing the hash of the last block we can easily detect if
any change has been made to any of the block.

– Double spending: It is an attack where the asset is spent in more than
one transaction. To prevent double spending, blockchain framework needs to
check whether a particular asset is spent in any of the previous transactions.
For instance: user U2 wants to spend/transfer an asset A1, in transaction T2,
to another user U3. Say, the asset A1 was transferred to U2 by user U1 in
some previous transaction T1. U2 specifies T1’s Id in T2, which shows that
T1 was the transaction which contained asset A1, and U2 got it from U1.
Now, U2 wants to spend/transfer it to U3. So before validating transaction
T2 with asset A1, a Blockchain framework checks all the transaction with
asset A1 that has occurred/lies in between T1 and T2, in order. If A1 does
not occur in any of the transactions then A1 is not double spent else it’s
double spent.

– Blockchain Pipeline: In Blockchain pipelining, blocks are written to the
underlying database without waiting for a vote which confirms the block’s
validity. Voting for a block and forming a chain happens as a separate layer.



HBasechainDB – A Scalable Blockchain Framework on Hadoop Ecosystem 21

– Changefeed: It is a mechanism by which any update on the Blockchain is
notified to the nodes. This automatic change notifications on the Blockchain
brings another benefit: they improve tamper-detection (beyond what a
blockchain offers). If a hacker somehow manages to delete or update a record
in the data store, the hashes change (like any blockchain). In addition, a data-
store with automatic change notifications would notify all the nodes, which
can then immediately revert the changes and restore the hash integrity.

– HBase region-server: These are the basic elements of availability and dis-
tribution for tables, and are comprised of a store per Column Family.

– HBase Master: Responsible for coordinating Regions in the cluster and
execute administrative operations.

4 Architecture

4.1 Data Model of Transaction

The Transaction Model of all Blockchain Platforms has three important fields:
Transaction Id, List of Inputs, List of Outputs. Apart from these, there are fields
which are platform dependent. HBasechainDB’s transaction model consists of;
Transaction Id, Asset, List of Inputs, List of Outputs and Metadata.

1. ID: The transaction Id uniquely identifies the transaction. It is a SHA3-256
hash of the asset, list of inputs, list of outputs and metadata.

2. Asset: A JSON format document associated with a transaction.
3. List of Inputs: Each input in the list of a transaction is spend-

able/transferable if it has a link to the output of some previous transaction
(in case of transfer transaction. Creation transaction doesn’t have link to out
of any previous transaction). This input is then spent/transferred by satis-
fying/fulfilling the crypto-conditions on that previous transaction output. A
CREATE transaction should have exactly one input. A TRANSFER trans-
action should have at least one input (i.e. ≥1).

4. List of outputs: Each output in the list of a transactions indicates
the crypto-conditions which must be satisfied by anyone who wishes to
spend/transfer that output to some other transaction. It also indicates the
number of shares of the asset tied to that output.

5. Metadata: User-provided transaction metadata. It can be any valid JSON
document or NULL.

4.2 Design Details

HBasechainDB is a super peer-to-peer network operating using a federation
of nodes. All the nodes in the federation have equal privileges which gives
HBasechainDB its decentralization. Such a super peer-to-peer network was
inspired by the Internet Domain Name System. Any client can submit or
retrieve transactions or blocks, but only the federation nodes can modify the
blockchain. The federation can grow or shrink during the course of operation of



22 M. S. Sahoo and P. K. Baruah

HBasechainDB. Let us say there are n federation nodes N1, N2, ..., Nn. When
a client submits a transaction t, it is assigned to one of the federation nodes,
say Nk. The node Nk is now responsible for entering this transaction into the
blockchain. Nk first checks for the validity of the transaction. Validity of a trans-
action includes having a correct transaction hash, correct signatures, existence
of the inputs to the transaction, if any, and the inputs not having been already
spent. Once Nk has validated a set of transactions, it bundles them together in
a block, and adds it to the blockchain. Any block can only contain a specified
maximum number of transactions. Let us say t was added in the block B.

When the block B is added to the blockchain its validity is undecided.
Since the federation is allowed to grow or shrink during the operation of
HBasechainDB, blocks also include a list of voters based on the current fed-
eration. All the nodes in the voter list for a block vote upon B for its validity.
For voting upon a block, a node validates all the transactions in the block. A
block is voted valid only if all the transactions are found to be valid, else it is
voted invalid. If a block gathers a majority of valid or invalid votes, its validity
changes from undecided to valid or invalid respectively. Only the transactions in
a valid block are considered to have been recorded in the blockchain. The ones in
the invalid blocks are ignored altogether. However, the chain retains both valid
and invalid blocks. A block being invalid does not imply that all the transac-
tions in the block are invalid. Therefore, the transactions from an invalid block
are re-assigned to federation nodes to give the transactions further chance of
inclusion in the blockchain. The reassignment is done randomly. This way, if a
particular rogue node was trying to add an invalid transaction to the blockchain,
this transaction will likely be assigned to a different node the second time and
dropped from consideration. Thus, if block B acquires a majority of valid votes,
then transaction t would have been irreversibly added to the blockchain. On the
other hand, if B were invalid, then t would be reassigned to another node and
so on until it is included in the chain or removed from the system.

As discussed in the previous section, the chain is not formed when blocks are
created. When a block is entered into hbasechain table, the blocks are stored
in HBase in the lexicographical order of their ids. The chain is actually formed
during vote time. When a node votes on a block, it also specifies the previous
block that it had voted upon. Thus, instead of waiting for all the federation nodes
to validate the current block before proceeding to the creation of a new block,
blocks are created independent of validation. This is the technique of blockchain
pipelining described earlier. Over time, the blockchain accumulates a mix of
valid and invalid blocks. The invalid blocks are not deleted from the chain to
keep the chain immutable. What we also note here is that while it would seem
that different nodes could have a different view of the chain depending upon
the order in which they view the incoming blocks, it is not seen in practice in
HBasechainDB due to the strong consistency of HBase and the fact that the
blocks to be voted upon are ordered based on their timestamp. Thus, each node
sees the same order of blocks, and we have the same chain view for different
nodes.



HBasechainDB – A Scalable Blockchain Framework on Hadoop Ecosystem 23

To tamper with any block in the blockchain, an adversary will have to modify
the block, leading to a change in its hash. This changed hash would not match
the vote information for the block in the votes table, and also in subsequent
votes that refer to this block as the previous block. Thus an adversary would
have to modify the vote information all the way up to the present. However,
we require that all the votes being appended by nodes are signed. Thus, unless
an adversary can forge a node’s signature, which is cryptographically hard, he
cannot modify the node’s votes. In fact, he has to forge multiple signatures to
affect any change in the blockchain preventing any chances of tampering. This
way HBasechainDB provides a tamper-proof blockchain over HBase.

4.3 Exploiting HBase

In this section we describe the distinction between MongoDB and
HBase. We also justify the means to achieve greater performance with
the proposed system design.

MongoDB is a document store database. A document is a big JSON block
with no particular schema or format. This gives an edge to dynamic use cases and
ever-changing applications. MongoDB does not provide triggers. Although Mon-
goDB has its own advantages, the document store characteristic of MongoDB
degrades its performance for following operations:

1. Working with individual columns.
2. Performing join operations.

HBase is a wide column store database. It is a distributed, scalable, reliable,
and versioned storage system capable of providing random read/write access in
real-time. It provides a fault-tolerant way of storing large quantities of sparse
data. HBase features compression, in-memory operation and Bloom filters on a
per-column basis.

We use the following characteristics of HBase extensively to derive
performance:

1. HBase is partitioned to tables, and tables are further split into column fam-
ilies. Column families must be declared in the schema, and we can group
certain set of columns together. One of the major operations in blockchain
transaction is checking for Double-Spending. In order to make the check for
double spending more efficient, we can keep the input column of all these
transactions in a separate column family. This will allow us to perform the
check for double spending faster because the region server will need to load
only one column family which contains the input of the transaction. In case
of database such as MongoDB the database server needs to load the whole
document before filtering out the input column and performing Double Spent
check.

2. HBase is optimized for reads, supported by single-write master, which results
in a strict consistency model. And use of Ordered Partitioning supports row-
scans. In Blockchain we need one write and many read operation because



24 M. S. Sahoo and P. K. Baruah

the transactions are written only once but read many times for various pur-
poses like checking double spending and performing checks on whether any
tampering took place.

3. HBase provides us with various ways in which we can run our custom code on
the region-server. HBase co-processor and custom filters are two such ways.
HBase co-processor can act as database triggers. In our implementation we
use these features in following ways:
(a) The check for double spending is generally done by loading the transac-

tions to the federation nodes(i.e. the client system). Loading this many
transactions from region-server to the federations node system is a major
bottleneck for the system throughput. In our approach, instead of pulling
the data required for double spending check on to the client-system, we
push the computation check to the region-server using HBase custom
filter. This approach improves the performance in two ways:
i. Data does not move towards the computation node rather computa-

tion moves towards the Data node. Since the code size is exponentially
lesser than data size, we improve the system by decreasing the com-
munication time.

ii. Computation for double spending is done in parallel on multiple
region-server compared to the traditional approach of checking on
a single Client node.

(b) Changefeed brings a great benefit to the Blockchain framework. We use
HBase co-processor to implement changefeed which will notify imme-
diately whenever a hacker tries to change or delete the content of the
database.

5 Implementation Details

The Federation Nodes in HBasechainDB are initialized with a key-pair; Ed25519
[2,4] signing system. SHA3-256 [5] hashing scheme is used for hashing the trans-
actions and blocks. The current implementation of HBasechainDB uses six HBase
tables. A critical issue in the current design of HBase tables is that of designing
the row key, since the region splits and the scans on HBase tables are done in
the lexicographical order of the row key. The row key pattern depends upon the
access pattern for the data in the Hbase table.

Following is the description of the HBase tables:

1. backLog: When a transaction is submitted to the Federation nodes, the trans-
action is randomly assigned to one of the nodes. All such assigned transactions
are stored in the backlog table with each transaction stored in a single row.
A node scanning the backlog table should only have to read the transactions
assigned to itself. Thus, the first segment of the row key for backlog table is
the public key of the node to whom the transaction was assigned, to ensure
that a node can scan the backlog table with the row prefix being its own pub-
lic key. The last segment of the row key contains the transaction reference id.
So the row key looks like: <publicKey> <transactionId>



HBasechainDB – A Scalable Blockchain Framework on Hadoop Ecosystem 25

2. block: This is the table that contains all the blocks in the blockchain. Each
block is a logical block which contains only the id’s of the transaction
which are present in the block. The actual transaction details are stored
in "hbasechaindb" table. Since the access pattern for this table is looking
up blocks based on block id, the row key for this table is just the block id:
<blockId>

3. hbasechaindb: This is the table where all the transaction details are stored
after a transaction is put on the blockchain. In this table each row cor-
responds to a single transaction. Since the access pattern for this table
is looking up transaction based on transaction link id, the row key of
this table is <transaction link id>. The transaction link id consists of
<block id> <transaction id>. This transaction link id which is of previous out-
put is used in inputs of current transaction while spending an asset

4. toVote: Every new block created has to be voted upon by the Federation
nodes. For this, we need to inform the Federation nodes of their need to vote
upon a newly created block. To this end, every block created is added to
this table to signal the node for voting. It is removed from the table once
the node has finished voting on it. The row key of this table is : <federation
node’s signing key> <block id>

5. vote: This is the table in which all the votes are recorded. There has to be an
entry for every federation node which votes for their respective blocks. The
row key of the table is: <block id> <decision> <Fed. Node public key>

6. reference: This is the table which stores the map between transaction link
id and transaction id. This table acts as an index when the details of a
transaction is queried. Since the access pattern of the table is transaction
reference id, the row key of this table is just the transaction reference id:
<transacation link Id>

When a transaction is submitted to HBasechainDB, it is first put in the back-
Log table. Federation nodes picks the transactions from backLog table in certain
time interval, checks the validity of the transactions, bundles them into blocks
and adds those blocks to the Blockchain. As show in Fig. 1, when a federation
node forms a block, it updates 3 HBase tables. In block table, the transac-
tion Id of all the transactions are made as separate blocks and stored. In the
hbasechaindb table, all the transaction details are stored. In the toVote table
the information about newly created block is stored. The federation nodes refers
this toVote table to vote for the block. All the Federation nodes, in certain time
interval checks the toVote table and cast their vote after checking the validity of
the block. All the votes are stored in the vote table. After the validity of a block,
entries corresponding to all the transactions are made in the reference table.

The complete implementation of HBasechainDB is done using Java since the
performance of HBase API for Java is best among the HBase API’s present for
different languages. HBase API for Java also gives advantage of writing custom
filters and coprocessors.



26 M. S. Sahoo and P. K. Baruah

Fig. 1. Transaction flow of HBasechainDB

6 Performance

6.1 Experimental Setup

We have used three nodes for the initial performance testing of HBasechainDB
with the following configurations:

– 3 nodes with Intel Core i5-4670 CPU @ 3.40 GHz*4 processor and 16 GB of
memory, with Ubuntu 16.04 OS.

– Each of the 3 nodes runs HBase region-server. There is a HBase master run-
ning in one of the system.

– There is a Replication factor of 3 for the underlying HDFS.
– The HBase is backed by 3 quorum zookeeper.
– We consider only creation of transactions for our case.

6.2 Results

We have tested HBasechainDB for scalability over three nodes. There are two
parameters that we describe the performance of HBasechainDB with:

– Transaction Latency: This is defined as the time elapsed since the sub-
mission of a transaction to HBasechainDB until the block in which it has
been recorded is validated. The transaction latency is found for streaming
transactions.

– Throughput: This is the number of transactions that are recorded in the
blockchain per second. To find the peak throughput the blockchain is capable
of, we store the transactions in the backlog beforehand and then run the
nodes. The throughput observed then is the peak throughput.



HBasechainDB – A Scalable Blockchain Framework on Hadoop Ecosystem 27

Fig. 2. Performance of BigchainDB and HBasechainDB

Fig. 3. Latency of HBasechainDB in sec.

Fig. 4. Scalability of HBasechainDB upto 8 nodes

Figure 2 compares the transaction throughput of HBasechainDB and
BigchainDB, using systems with 1, 2 and 3 nodes and Fig. 3 shows the latency of
HBasechainDB. Figure 4 shows the scalability of HBasechainDB till 8 nodes. The
result shows, as we add the nodes the transaction throughput of HBasechainDB
scales linearly.



28 M. S. Sahoo and P. K. Baruah

The main reason behind the linear scale of HBasechainDB is, almost all the
computation which includes computation for transaction’s validity and check for
double spending is pushed to server side. Therefore if we increase the HBase
nodes keeping the federation node constant, the system scales linearly.

7 Conclusion

Blockchain technologies can be very useful in the Big Data scenario by helping
us immutably record data and decentralizing data services. However, current
blockchain implementations with their extremely low transaction throughputs
and high transaction latencies do not lend themselves to Big Data. Discussions
on improving blockchain scalability have largely focused on using better con-
sensus protocols as against the PoW protocol used by Bitcoin. BigchainDB
provides an alternative idea where instead of scaling blockchains to provide
scalable data stores, they implement a blockchain over an existing scalable
distributed database. Such an implementation inherits the scalability of the
underlying database, while adding the immutability and decentralization offered
by blockchains. While BigchainDB was implemented upon the MongoDB and
RethinkDB database, with our work we provide an alternate implementation
over HBase. HBasechainDB is an hitherto unavailable blockchain implementa-
tion integrated with the Hadoop ecosystem. It supports very high transaction
throughputs with sub-second latencies and the creation and movement of digital
assets. HBasechainDB scales linearly and also is good platform for analyzing
data that are present on blockchain.

Acknowledgments. Our work is dedicated to Bhagawan Sri Sathya Sai Baba,
Founder Chancellor of Sri Sathya Sai Institute of Higher Learning. We acknowledge
Adarsh Saraf from IBM Research, Bengaluru, India, who has initiated this work. We
thank him for his inspiration and motivation. We also acknowledge Maestro Technol-
ogy, USA for their help and support.

References

1. https://blockchain.info/charts/blocks-size
2. https://github.com/str4d/ed25519-java/tree/master/src/net/i2p/crypto/eddsa
3. Aron, J.: Automatic world (2015)
4. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-

security signatures. J. Cryptographic Eng. 2(2), 1–13 (2012)
5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak specifications. Sub-

mission to NIST (Round 2) (2009)
6. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,

Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. ACM Trans. Comput. Syst. (TOCS) 26(2), 4 (2008)

7. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS,
vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53357-4 8

https://blockchain.info/charts/blocks-size
https://github.com/str4d/ed25519-java/tree/master/src/net/i2p/crypto/eddsa
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8


HBasechainDB – A Scalable Blockchain Framework on Hadoop Ecosystem 29

8. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: a scalable
blockchain protocol. In: NSDI, pp. 45–59 (2016)

9. Liebenau, J., Elaluf-Calderwood, S.M.:. Blockchain innovation beyond bitcoin and
banking (2016)

10. McConaghy, T., Marques, R., Müller, A., De Jonghe, D., McConaghy, T.,
McMullen, G., Henderson, R., Bellemare, S., Granzotto, A.: BigchainDB: a scalable
blockchain database. White paper, BigChainDB (2016)

11. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
12. Panikkar, S., Nair, S., Brody, P., Pureswaran, V.: Adept: an IoT practitioner per-

spective. IBM Institute for Business Value (2014)
13. Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly Media Inc.,

Sebastopol (2015)
14. Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT repli-

cation. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp.
112–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39028-4 9

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-39028-4_9
http://creativecommons.org/licenses/by/4.0/

	HBasechainDB – A Scalable Blockchain Framework on Hadoop Ecosystem
	1 Introduction
	2 Background and Related Work
	3 Terminology
	4 Architecture
	4.1 Data Model of Transaction
	4.2 Design Details
	4.3 Exploiting HBase

	5 Implementation Details
	6 Performance
	6.1 Experimental Setup
	6.2 Results

	7 Conclusion
	References


