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Abstract. We propose the HBS (Hash Block Stealing) mode of op-
eration. This is the first single-key mode that provably achieves the
goal of providing deterministic authenticated encryption. The authenti-
cation part of HBS utilizes a newly-developed, vector-input polynomial
hash function. The encryption part uses a blockcipher-based, counter-like
mode. These two parts are combined in such a way as the numbers of
finite-field multiplications and blockcipher calls are minimized. Specif-
ically, for a header of h blocks and a message of m blocks, the HBS
algorithm requires just h + m + 2 multiplications in the finite field and
m + 2 calls to the blockcipher. Although the HBS algorithm is fairly
simple, its security proof is rather complicated.
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1 Introduction

The goals for blockcipher modes of operation are twofold. One is to establish
authenticity, or data integrity. The other is to preserve privacy, or data confi-
dentiality. These two goals are realized by the mechanism of authenticated en-
cryption, or AE for short. An AE mode establishes authenticity and preserves
privacy concurrently by producing a ciphertext into which both the tag and the
encrypted message are embedded.

A crucial aspect of an AE mode is that its security is based on the use of
either a randomized salt or a state-dependent value, which has been formalized
as nonce-based AE [13–15]. In fact, many of the modern AE modes, including
CCM [19], GCM [9] and OCB [13], are all nonce-based.

The nonce, however, needs to be handled with great care, because the misuse
of nonce (i.e., repeating the same value) would generally lead to the complete
collapse of systems based on these AE modes. This is due to the fact that the
security designs have no concern in what happens when the nonce assumption
becomes no longer true.

The problem of nonce misuse has been settled by the introduction of deter-
ministic authenticated encryption [16], or DAE for short. A DAE mode provides
a deterministic, stateless algorithm that produces a ciphertext from the pair



of a header and a message. A DAE mode can be used also as a conventional
nonce-based AE mode by embedding a nonce value into the header. The virtue
of a DAE mode is that it still ensures a certain level of security (i.e., all that
an adversary can do is to detect a repetition of the same header-message pair)
even when the DAE mode is not combined with a nonce element. Hence DAE is
more robust than nonce-based AE.

The work [16] also proposes a concrete DAE mode of operation called SIV.
The SIV mode is a blockcipher-based scheme, utilizing a vector-input version of
the CMAC algorithm [5, 11] for its authentication part and the CTR (counter)
mode for its encryption part. The SIV mode requires two independent keys for
the underlying blockcipher, one being for the CMAC algorithm and another for
the CTR mode.

The purpose of the current paper is to improve usability and performance
over SIV. For this, we present a new DAE mode of operation called HBS (which
stands for Hash Block Stealing), which has the following features.

1. The HBS mode requires just one key. It uses the same key for authentication
and for encryption.

2. For authentication, the HBS mode adopts a vector-input polynomial-based
universal hash function (rather than the blockcipher-based CMAC).

3. For encryption, the HBS mode uses a CTR-like scheme using a blockcipher,
which operates differently from an ordinary CTR mode.

4. The numbers of finite-field multiplications (in hashing) and blockcipher calls
are minimized.

5. We provide the HBS mode with concrete proofs of security.

In general, reducing keying material without compromising security reduces
the cost of sharing, saving, and updating the secret key. Also, changing from
a blockcipher-based MAC to polynomial-based universal hashing increases effi-
ciency on many platforms [3, 17], as in changing from CCM [19], which uses a
CBC-MAC, to GCM [9], which employs polynomial-based hashing.

It turns out that meeting the above objectives is demanding. We introduce
the notion of a vector-input ϵ-almost XOR universal hash function and develop
a new polynomial-based hashing that meets our requirements. We also devise
a somewhat odd way of incrementation in a CTR mode, which is necessary for
the security of the scheme and is non-trivially binded with the new polynomial
hash function. As a result, the security proofs become rather involved.

2 Preliminaries

Notation. If x is a finite string, then |x| denotes its length in bits. If x and y
are two equal-length strings, then x ⊕ y denotes the XOR of x and y. If x and
y are finite strings, then x∥y denotes their concatenation. Given finite strings
x0, x1, . . . , xm−1, we use the notation x0∥x1∥ · · · ∥xm−1 and the vector notation
(x0, x1, . . . , xm−1) interchangeably. For a positive integer n, {0, 1}n is the set
of all n-bit strings, and ({0, 1}n)+ is the set of all strings whose lengths are



positive multiples of n bits. Whenever we write X = (X[0], X[1], . . . , X[m−1]) ∈
({0, 1}n)+, we implicitly assume that m ≥ 1 is an integer and |X[i]| = n for 0 ≤
i ≤ m−1. {0, 1}∗ is the set of all finite strings (including the empty string), and
for a positive integer ℓ, ({0, 1}∗)ℓ is the set of all vectors (x0, x1, . . . , xℓ−1), where
xi ∈ {0, 1}∗ for 0 ≤ i ≤ ℓ− 1. For positive integers n and j such that n ≤ 2j − 1,
⟨j⟩n is the big-endian n-bit binary representation of j. For a finite string x and
a positive integer n such that |x| ≥ n, msb(n, x) is the most significant n bits of
x. For a positive integer n, 0n is the n-times repetition of 0’s.

We write N for the set of non-negative integers. Given a real number x, the
symbol ⌈x⌉ denotes the smallest integer greater than or equal to x. If X is a
finite set, then #X is the cardinality of X, and we let x

R← X denote the process
of selecting an element from X uniformly at random and assigning it to x.

The Finite Field of 2n Elements. We regard the set {0, 1}n as the finite
field of 2n elements (relative to some irreducible polynomial). For x, y ∈ {0, 1}n,
the symbol x ·y denotes the product of x and y. We write x2 = x ·x, x3 = x ·x ·x,
and so on. The ⊕ operation corresponds with the addition in the field.

Blockciphers and SPRP Adversaries. A blockcipher is a function E : K ×
{0, 1}n → {0, 1}n such that for any K ∈ K, E(K, ·) = EK(·) is a permutation on
{0, 1}n (i.e., a permutation family). The positive integer n is the block length,
and an n-bit string is called a block. If K = {0, 1}k, then k is the key length.

The SPRP notion for blockciphers was introduced in [6] and later made
concrete in [1]. Let Perm(n) denote the set of all permutations on {0, 1}n. This
set can be regarded as a blockcipher by assigning a unique string (a key) to
each permutation. We say that P is a random permutation if P

R← Perm(n). An
adversary is a probabilistic algorithm (a program) with access to one or more
oracles. An SPRP-adversary A has access to two oracles and returns a bit. The
two oracles are either the encryption oracle EK(·) and the decryption oracle
E−1

K (·), or a random permutation oracle P (·) and its inverse oracle P−1(·). We
define the advantage Advsprp

E (A) as∣∣∣Pr(K R← K : AEK(·),E−1
K (·) = 1)− Pr(P R← Perm(n) : AP (·),P−1(·) = 1)

∣∣∣ .

For an adversary A, A’s running time is denoted by time(A). The running
time is its actual running time (relative to some fixed RAM model of computa-
tion) and its description size (relative to some standard encoding of algorithms).
The details of the big-O notation in a running-time reference depend on the
RAM model and the choice of encoding.

3 Specification of HBS

3.1 A Vector-Input Universal Hash Function F

In this section, we define a new vector-input universal hash function F . Let n be
a fixed block length, e.g., n = 128. Before defining F , we first define a polynomial



universal hash function f : {0, 1}n × ({0, 1}n)+ → {0, 1}n. Let L ∈ {0, 1}n be a
key for f and X = (X[0], X[1], . . . , X[m− 1]) ∈ ({0, 1}n)+ be an input. Define

fL(X) = Lm ⊕ Lm−1 ·X[0]⊕ Lm−2 ·X[1]⊕ · · · ⊕X[m− 1].

Note that we need (m− 1) multiplications to compute fL(X).
Now we define the vector-input hash function F . It internally uses a padding

function pad(·) : {0, 1}∗ → ({0, 1}n)+, which takes x ∈ {0, 1}∗ and outputs

pad(x) =
{

x if x ∈ ({0, 1}n)+,
x∥10i otherwise,

where i is the smallest non-negative integer such that the total length of x∥10i

in bits becomes a positive multiple of n. F also takes a vector dimension ℓ as a
parameter, and we write F (ℓ) for F with a parameter ℓ. F (ℓ) takes L ∈ {0, 1}n
as a key and X = (x0, x1, . . . , xℓ−1) ∈ ({0, 1}∗)ℓ as its input. For 0 ≤ i ≤ ℓ− 1,
let Xi = pad(xi) and zi = fL(Xi). Define F (ℓ) : {0, 1}n× ({0, 1}∗)ℓ → {0, 1}n as

F
(ℓ)
L (X ) = F

(ℓ)
L (x0, x1, . . . , xℓ−1)

= L · zℓ
0 · ⟨c0⟩n ⊕ L2 · zℓ

1 · ⟨c1⟩n ⊕ · · · ⊕ Lℓ · zℓ
ℓ−1 · ⟨cℓ−1⟩n, (1)

where, for 0 ≤ i ≤ ℓ− 1, we set zi = fL(pad(xi)) and

ci =
{

1 if xi ̸∈ ({0, 1}n)+,
2 otherwise.

The degree of F
(ℓ)
L (X ) as a polynomial in L is µ(X ), which is defined as

follows. For X = (x0, . . . , xℓ−1) ∈ ({0, 1}∗)ℓ, define µ : ({0, 1}∗)ℓ →N as

µ(X ) = max
0≤i≤ℓ−1

{i + 1 + ℓmi},

where mi = ⌈|xi|/n⌉ for 0 ≤ i ≤ ℓ−1. The value mi is the length of xi in blocks,
where a partial block counts for one block. Note that each zi is a polynomial in
L of degree mi.

We remark that the multiplication by the constant ⟨2⟩n can be implemented
efficiently. For example, for n = 128 we can choose x128 + x7 + x2 + x+ 1, which
is one of the irreducible polynomials having the minimum number of non-zero
coefficients. Then, for x ∈ {0, 1}128, we can compute the product x · ⟨2⟩128 as
x · ⟨2⟩128 = x · 012610 = x ≪ 1 if msb(1, x) = 0, or as x · ⟨2⟩128 = x · 012610 =
(x≪ 1)⊕ 012010000111 otherwise, where x≪ 1 is the left shift of x by one bit
(The first bit of x disappears and a zero comes into the last bit). See [13] for
details.

3.2 Vector-Input ϵ-Almost XOR Universal Hash Function

We next define the notion of a vector-input ϵ-almost XOR universal (VI-ϵ-AXU
for short) hash function. This plays an important role in our security analysis.



Algorithm HBS.EncK(H, M) Algorithm CTR.EncK(S, M)
100 L← EK(0n) 300 for i← 0 to ⌈|M |/n⌉ − 1 do

101 S ← F
(2)
L (H, M) 301 Ri ← EK(S ⊕ ⟨i + 1⟩n)

102 C ← CTR.EncK(S, M) 302 R← (R0, R1, . . . , R⌈|M|/n⌉−1)
103 T ← EK(S) 303 C ←M ⊕msb(|M |, R)
104 return (T, C) 304 return C

Algorithm HBS.DecK(H, (T, C)) Algorithm CTR.DecK(S, C)
200 L← EK(0n) 400 for i← 0 to ⌈|C|/n⌉ − 1 do
201 S ← E−1

K (T ) 401 Ri ← EK(S ⊕ ⟨i + 1⟩n)
202 M ← CTR.DecK(S, C) 402 R← (R0, R1, . . . , R⌈|C|/n⌉−1)

203 S′ ← F
(2)
L (H, M) 403 M ← C ⊕msb(|C|, R)

204 if S ̸= S′ then return ⊥ 404 return M
205 else return M

Fig. 1. Definition of the encryption algorithm HBS.Enc (left top) and the decryp-
tion algorithm HBS.Dec (left bottom). CTR.Enc (right top) is used in HBS.Enc, and
CTR.Dec (right bottom) is used in HBS.Dec.

Definition 1 (VI-ϵ-AXU hash function). Let ℓ be an integer and F (ℓ) :
{0, 1}n × ({0, 1}∗)ℓ → {0, 1}n be a vector-input function keyed by L ∈ {0, 1}n.
F (ℓ) is said to be VI-ϵ-AXU if, for any two distinct inputs X , X̂ ∈ ({0, 1}∗)ℓ and
for any Y ∈ {0, 1}n,

Pr(L R← {0, 1}n : F
(ℓ)
L (X )⊕ F

(ℓ)
L (X̂ ) = Y ) ≤ ϵ.

We show that the polynomial hash function F (ℓ) defined in Sect. 3.1 is VI-ϵ-
AXU for a small ϵ. A proof is given in Appendix A.

Theorem 1. Let ℓ be an integer and F (ℓ) : {0, 1}n × ({0, 1}∗)ℓ → {0, 1}n be
the polynomial hash function defined in Sect. 3.1, keyed by L ∈ {0, 1}n. Let
X = (x0, . . . , xℓ−1), X̂ = (x̂0, . . . , x̂ℓ−1) ∈ ({0, 1}∗)ℓ be any two distinct inputs to
F (ℓ). Then for any Y ∈ {0, 1}n,

Pr(L R← {0, 1}n : F
(ℓ)
L (X )⊕ F

(ℓ)
L (X̂ ) = Y ) ≤ max{µ(X ), µ(X̂ )}

2n
.

3.3 HBS: Hash Block Stealing

We present our HBS, Hash Block Stealing. It takes a blockcipher E as a param-
eter and uses F (ℓ) defined in Sect. 3.1 with ℓ = 2.

Fix a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n. HBS consists of two al-
gorithms, the encryption algorithm (HBS.Enc) and the decryption algorithm
(HBS.Dec). These algorithms are defined in Fig. 1. See Fig. 2 for a picture illus-
trating HBS.Enc (See also Fig. 3 for F

(2)
L (H,M)).

The encryption algorithm HBS.Enc takes a key K ∈ {0, 1}k, a header H ∈
{0, 1}∗, and a plaintext M ∈ {0, 1}∗ to return a ciphertext (T,C) ∈ {0, 1}n ×
{0, 1}∗, where |C| = |M |. We write (T,C)← HBS.EncK(H, M). The decryption
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Fig. 2. Illustration of the encryption algorithm (T, C) ← HBS.EncK(H, M). In the
figure, M = (M [0], M [1], . . . , M [m − 1]), where |M [0]| = · · · = |M [m − 2]| = n and
|M [m−1]| ≤ n. L = EK(0n), and the output of “msb” is the most significant |M [m−1]|
bits of EK(S ⊕ ⟨m⟩n).

algorithm takes K, H, and (T, C) as its inputs to return the corresponding plain-
text M or a special symbol ⊥. The symbol ⊥ indicates that the given inputs are
invalid. We write M ← HBS.DecK(H, (T, C)). We have HBS.DecK(H, (T, C)) =
⊥ when the decryption process fails.

HBS.Enc and HBS.Dec call subroutines CTR.Enc and CTR.Dec, respec-
tively, which are the encryption and the decryption of the CTR mode using
S as its initial counter value. By specification we restrict the message length
to 2n/2 − 1 blocks, as the security of the HBS mode becomes vacuous beyond
this point. This restriction allows us to write ⟨i⟩n = 0n/2∥⟨i⟩n/2 for an integer
0 ≤ i ≤ 2n/2 − 1 (We assume that the block length n is an even integer), which
implies that the incrementation of the counter in CTR.Enc and CTR.Dec can
be done by adding 1 modulo 2n/2 rather than modulo 2n.

F
(2)
L (H, M) can be implemented using h+m multiplications and two squaring

operations, as in Fig. 3. See also Fig. 4 for pseudocode. In the figures, we let

H̄[0] H̄[1] H̄ [2] H̄ [h − 1]

M̄ [0] M̄ [1] M̄ [2] M̄ [m − 1]

c0 n

c1 n

SQ

LL L L L L

LL L L L L

SQ

S

Fig. 3. Illustration of F
(2)
L (H, M). In the figure, pad(H) = (H̄[0], . . . , H̄[h − 1]) and

pad(M) = (M̄ [0], . . . , M̄ [m − 1]). L = EK(0n), “SQ” outputs the square of its input,
“⊙” is the multiplication, and c0, c1 ∈ {1, 2} are constants.



Function F
(2)
L (H, M)

100 zH ← L⊕ H̄[0]
101 for i = 1 to h− 1 do
102 zH ← L · zH ⊕ H̄[i]
103 zM ← L⊕ M̄ [0]
104 for i = 1 to m− 1 do
105 zM ← L · zM ⊕ M̄ [i]
106 return L · z2

H · ⟨c0⟩n ⊕ (L · zM )2 · ⟨c1⟩n

Fig. 4. Implementation example of F
(2)
L (H, M), where pad(H) = (H̄[0], . . . , H̄[h− 1])

and pad(M) = (M̄ [0], . . . , M̄ [m−1]). zH and zM are n-bit variables, and c0, c1 ∈ {1, 2}.

⌈|H|/n⌉ = h and ⌈|M |/n⌉ = m, so that pad(H) = (H̄[0], . . . , H̄[h − 1]) and
pad(M) = (M̄ [0], . . . , M̄ [m − 1]). Also, let c0 = 1 if H ̸∈ ({0, 1}n)+ and c0 = 2
otherwise, and c1 = 1 if M ̸∈ ({0, 1}n)+ and c1 = 2 otherwise. Then F

(2)
L (H, M)

can be written as

L ·
(
fL(H̄[0], . . . , H̄[h− 1])

)2 · ⟨c0⟩n ⊕ L2 ·
(
fL(M̄ [0], . . . , M̄ [m− 1])

)2 · ⟨c1⟩n
= L ·

(
Lh ⊕ Lh−1 · H̄[0]⊕ Lh−2 · H̄[1]⊕ · · · ⊕ H̄[h− 1]

)2 · ⟨c0⟩n
⊕

(
Lm+1 ⊕ Lm · M̄ [0]⊕ Lm−1 · M̄ [1]⊕ · · · ⊕ L · M̄ [m− 1]

)2 · ⟨c1⟩n.

Recall that the multiplication by ⟨2⟩n can be implemented using a left shift and
a conditional XOR, which is a small overhead compared to the multiplication
by L.

Lastly, we make a remark about handling a message with no header. For such
a message, simply ignore the computation of zH and define the value (L · zM )2 ·
⟨c1⟩n as the output of the hash function F

(2)
L (·,M). Note that this should be

differentiated from the case H = ε (the null string), where pad(H) = 10n−1.

4 Security Analysis of HBS

HBS is a mode of operation for deterministic authenticated encryption. Before
presenting our security results, we define the security of the mode. Our security
definition follows the one given by Rogaway and Shrimpton in [16].

4.1 Security Definition

Let E : {0, 1}k×{0, 1}n → {0, 1}n be a blockcipher. For notational simplicity, we
write EK(·, ·) for HBS.EncK(·, ·), and DK(·, ·) for HBS.DecK(·, ·). Let HBS[E] =
(HBS.EncK , HBS.DecK) = (EK ,DK) be defined as in Sect. 3.3.

An adversary A is given access to either a pair of EK(·, ·) and DK(·, ·) oracles
or a pair of R(·, ·) and ⊥(·, ·) oracles. On query (H, M) ∈ ({0, 1}∗)2, EK(·, ·)
returns (C, T )← EK(H,M), and the random-bits oracleR(·, ·) returns a random
string of n+|M | bits. On query (H, (T, C)) ∈ {0, 1}∗×({0, 1}n×{0, 1}∗), DK(·, ·)



returns⊥ or M ← DK(H, (T,C)), and the⊥(·, ·) oracle returns⊥ on every input.
Queries can be made adaptively, and A’s goal is to distinguish between these
pairs.

Definition 2. The DAE-advantage Advdae
HBS[E](A) of an adversary A in break-

ing HBS[E] = (EK ,DK) is defined as

Advdae
HBS[E](A) =

∣∣∣Pr(AEK(·,·),DK(·,·) = 1)− Pr(AR(·,·),⊥(·,·) = 1)
∣∣∣ .

In what follows, the first oracle refers to EK(·, ·) or R(·, ·), and the second
oracle refers to DK(·, ·) or ⊥(·, ·). We make the following assumptions about A.

– A does not make a query (H, M) to its first oracle if the second oracle has
returned M in response to some previous query (H, (T, C)).

– A does not make a query (H, (T, C)) to its second oracle if the first oracle
has returned (T, C) in response to some previous query (H, M).

– A does not repeat a query.

The last assumption is without loss of generality, and the first two assumptions
are to prevent trivial wins.

We also consider the security of HBS in terms of privacy. An adversary B is
given access to either EK(·, ·) or R(·, ·), and B’s goal is to distinguish between
these oracles.

Definition 3. The PRIV-advantage Advpriv
HBS[E](B) of an adversary B in break-

ing the privacy of HBS[E] = (EK ,DK) is defined as

Advpriv
HBS[E](B) =

∣∣∣Pr(BEK(·,·) = 1)− Pr(BR(·,·) = 1)
∣∣∣ .

We deal with HBS[Perm(n)] = (EP ,DP ), where a random permutation P
R←

Perm(n) is used as the underlying blockcipher. That is, HBS[Perm(n)] is defined
by replacing EK and E−1

K in Fig. 1 by P and P−1, respectively.

4.2 Security Theorem

Consider the DAE-advantage of an adversary A attacking HBS[Perm(n)]. We
assume A makes a total of at most q queries. For 0 ≤ i ≤ q−1, A makes a query
of the form (Hi,Mi) to the first oracle, or (Hi, (Ti, Ci)) to the second oracle.
We assume that ⌈|Hi|/n⌉ ≤ hmax, ⌈|Mi|/n⌉ ≤ mmax, and ⌈|Ci|/n⌉ ≤ mmax for
some hmax,mmax ≥ 1. That is, hmax is the maximum length of Hi, and mmax is
the maximum length of Mi and Ci in blocks. The following theorem is our main
result on the security of our HBS mode. It shows that HBS provides standard
birthday-bound security.

Theorem 2. Let A be an adversary described as above. Then

Advdae
HBS[Perm(n)](A) ≤ 19q2(1 + hmax + 2mmax)2

2n
.



Given Theorem 2, it is standard to pass to its complexity-theoretic bound,
by replacing P

R← Perm(n) with EK (and hence P−1 with E−1
K ).

Lemma 1. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher, and A be an
adversary attacking HBS[E]. Then there exists A′ attacking E such that

Advdae
HBS[E](A) ≤ Advsprp

E (A′) +
19q2(1 + hmax + 2mmax)2

2n
,

where A′ makes at most 1 + q(1 + mmax) queries, and time(A′) = time(A) +
O(nq(hmax + mmax)).

The proof of Lemma 1 is standard and omitted (For example, see [1]). Now
we turn to Theorem 2. The proof is based on the following lemma.

Lemma 2. Let A be an adversary as in Theorem 2. Then there exists an ad-
versary B such that

Advdae
HBS[Perm(n)](A) ≤ 2Advpriv

HBS[Perm(n)](B) +
11q2(1 + hmax + 2mmax)2

2n
+

q

2n
,

where B makes at most q queries, and it is subject to the same restriction as A
on the length of its queries.

We give a proof sketch of Lemma 2, leaving a complete proof in Appendix B.
We see that Advdae

HBS[Perm(n)](A) is at most p0 + p1, where we define p0 and p1

as {
p0 =

∣∣Pr
(
AEP (·,·),⊥(·,·) = 1

)
− Pr

(
AR(·,·),⊥(·,·) = 1

)∣∣ ,

p1 =
∣∣Pr

(
AEP (·,·),DP (·,·) = 1

)
− Pr

(
AEP (·,·),⊥(·,·) = 1

)∣∣ .

We can view A in p0 as attacking the privacy of HBS[Perm(n)], as the second
oracle always returns ⊥. So there exists B such that p0 ≤ Advpriv

HBS[Perm(n)](B).
To derive the upper bound on p1, we observe that the oracles are identical

unless the DP (·, ·) oracle returns something other than ⊥. We thus have

p1 ≤ Pr(AEP (·,·),DP (·,·) forges),

where AEP (·,·),DP (·,·) forges if A makes a query ((H, M), T ) to its second oracle
such that DP ((H, M), T )) ̸= ⊥. To derive the upper bound on the forgery prob-
ability, we introduce an oracle VP (·, ·) that takes ((H,M), T ) as its input and
returns T if P (F (2)

L (H,M)) = T or returns ⊥ otherwise. We can show that

Pr(AEP (·,·),DP (·,·) forges) ≤ Pr(AEP (·,·),VP (·,·) forges)+
11q2(1 + hmax + 2mmax)2

2n

and Pr(AEP (·,·),VP (·,·) forges) ≤ Advpriv
HBS[Perm(n)](B) + q/2n. The proof for the

first claim is rather complicated but the second one follows from the standard
argument that distinguishing is easier than forging, and Lemma 2 follows.

Now to prove Theorem 2, it suffices to bound Advpriv
HBS[Perm(n)](B). Recall

that B is an adversary attacking the privacy of HBS[Perm(n)], where B makes
a query of the form (Hi,Mi) for 0 ≤ i ≤ q − 1. We assume that Hi is at most
hmax blocks, and Mi is at most mmax blocks. We have the following result.



Lemma 3. Let B be an adversary as described above. Then

Advpriv
HBS[Perm(n)](B) ≤ 3q2(1 + hmax + 2mmax)2

2n
+

(1 + q + qmmax)2

2n+1
.

Let us explain the intuitive reasoning behind the bound, leaving a complete
proof in Appendix C. Suppose B makes q queries (H0,M0), . . . , (Hq−1,Mq−1),
where Mi is mi blocks. Let Si = F

(2)
L (Hi,Mi), which corresponds to the initial

counter value, and we consider the set Si = {Si, Si ⊕ ⟨1⟩n, Si ⊕ ⟨2⟩n, . . . , Si ⊕
⟨mi⟩n}. Each element in Si is the input value to P at the i-th query. Notice that
we never have a collision within Si, but we may have 0n ∈ Si, or Si ∩ Sj ̸= ∅.
Both events may be useful for B to mount an distinguishing attack. Now for
the first event, we know that F

(2)
L (Hi,Mi) is a non-zero polynomial in L, and

hence, for 0 ≤ s ≤ mi, the probability that F
(2)
L (Hi,Mi) = ⟨s⟩n is small. For the

second event to occur, we need

F
(2)
L (Hi,Mi)⊕ ⟨s⟩n = F

(2)
L (Hj ,Mj)⊕ ⟨t⟩n,

where 0 ≤ s ≤ mi and 0 ≤ t ≤ mj . Theorem 1 ensures that the equality
holds with only a small probability. It turns out that during the attack, with
a high probability, we have 0n ̸∈ Si for 0 ≤ i ≤ q − 1, and Si ∩ Sj = ∅ for
0 ≤ i < j ≤ q − 1. Under this assumption, what B learns is the output values
of P for distinct input values, and hence B cannot distinguish it from a truly
random string.

Given Lemma 2 and Lemma 3, we find the proof of Theorem 2 straightfor-
ward, as we have

Advdae
HBS[Perm(n)](A) ≤ 2Advpriv

HBS[Perm(n)](B) +
11q2(1 + hmax + 2mmax)2

2n
+

q

2n

≤ 6q2(1 + hmax + 2mmax)2

2n
+

(1 + q + qmmax)2

2n

+
11q2(1 + hmax + 2mmax)2

2n
+

q

2n

≤ 19q2(1 + hmax + 2mmax)2

2n
,

where the first inequality follows from Lemma 2, the next one from Lemma 3,
and the last one from easy simplification.

5 Rationale of fL and F
(ℓ)
L and Comparison with SIV

Rationale of fL and F
(ℓ)
L . We adopt fL(X[0], . . . , X[m− 1]) = Lm ⊕ Lm−1 ·

X[0]⊕Lm−2 ·X[1]⊕· · ·⊕X[m− 1] as the polynomial hash in HBS, rather than
the usual gL(X[0], . . . , X[m − 1]) = Lm−1 · X[0] ⊕ Lm−2 · X[1] ⊕ · · · ⊕ X[m −
1] as in [18, 9]. The choice of fL enables us to handle variable-length inputs
without increasing the number of multiplications. We note that the degree of



our polynomial fL is higher than that of gL. However, the difference is only one,
and the decrease in the security bound due to the increase in the degree should
be negligible in practice.

F
(ℓ)
L is designed to handle an ℓ-dimensional vector efficiently. For an input

(x0, . . . , xℓ−1) ∈ ({0, 1}∗)ℓ, we need just ⌈|x0|/n⌉ + · · · + ⌈|x0|/n⌉ + ℓ multipli-
cations. We may need additional ℓ shifts and XOR’s depending on the length of
each component, but the cost for these operations is fairly low. Moreover, F

(2)
L

allows us to reuse zH or zM in Fig. 4 if H or M stays fixed, and the same is true
for F

(ℓ)
L with ℓ ≥ 3.

In contrast, the polynomial hash in GCM was designed to accept only two-
dimensional vectors (H, M), and the lengths of H and M were encoded into a
block as ⟨|H|⟩n/2∥⟨|M |⟩n/2. One could handle, say, three-dimensional vectors by
encoding the lengths into a block, but such an approach would severely limit the
maximum length of each component, which is solved in our hash function F

(ℓ)
L .

A drawback of F
(ℓ)
L , as compared to the vectorized CMAC [16], is that the

(maximum) dimension ℓ needs to be fixed in advance. In order to lift this re-
striction, we can start with the hash function F

(2)
L for two-dimensional vectors

and then “increase” the dimension by utilizing the values
√

L, 4
√

L, 8
√

L, . . .,
upon receiving 3-, 4-, 5-, . . ., dimensional vectors. Although we can efficiently
compute the square root

√
L of an element L ∈ GF (2n), we admit that this

solution results in rather complicated algorithms.
As with the polynomial hash in GCM [9], L = 0n is a weak key for F

(ℓ)
L [4].

We may let L← msb(n−1, EK(0n))∥1 to avoid the problem at the cost of slight
decrease in the security bound. But since L = 0n only occurs with a probability
1/2n, we do not adopt this approach. The birthday attack on GCM described
in [4] can be made also on our HBS mode. Therefore, as with GCM, one needs
to update the secret key well before processing 2n/2 blocks.

Comparison with SIV. HBS basically follows the design of SIV [16], but
there are important differences. HBS works with a single key, and SIV [16] uses
two separate keys, one for encryption and the other for MAC. SIV works as
follows. First, let IV ← CMAC∗

K1
(H, M) and C ← CTR.EncK2(IV ,M). Then

the output is (IV , C), where CMAC∗ is constructed from CMAC [5, 11] to handle
a vector input (H,M).

In Table 1, we make a brief comparison between SIV and HBS. HBS re-
duces the keying material and replaces ⌈|M |/n⌉ + ⌈|H|/n⌉ blockcipher calls by
⌈|M |/n⌉+⌈|H|/n⌉+2 multiplications at the cost of a stronger assumption about
the blockcipher. The SPRP assumption is needed as we “steal” the result of hash
computation (hash block) and use it as the initial counter value. However, we
argue that this does not seem to make a substantial difference in practice, be-
cause many of the modern blockciphers, such as AES, seem to satisfy the strong
property of SPRP. Rather, we admit that it may be disadvantageous of HBS to
require the inverse cipher. This is especially true for blockciphers of asymmetric
encryption/decryption design, such as AES.



Table 1. Comparison between SIV and HBS.

SIV HBS

Keying material two blockcipher keys single blockcipher key

Number of blockcipher calls 2⌈|M |/n⌉+ ⌈|H|/n⌉+ 2 ⌈|M |/n⌉+ 2

Number of multiplications 0 ⌈|M |/n⌉+ ⌈|H|/n⌉+ 2

Assumption about blockcipher PRP SPRP

Security bound O(σ2/2n) O(q2(hmax + mmax)
2/2n)

We note that, out of 2⌈|M |/n⌉+⌈|H|/n⌉+2 blockcipher calls in SIV, two calls
can be done during idle time (without H or M). Similarly, out of ⌈|M |/n⌉ + 2
blockcipher calls in HBS, one blockcipher call (for L = EK(0n)) does not need H
or M . We also note that there is a subtle difference in the security bounds. In SIV,
the bound is O(σ2/2n), while in HBS, the bound is O(q2(hmax + mmax)2/2n),
where σ is the total block length of H and M . It remains open if our analysis of
HBS can be improved to give an O(σ2/2n) security bound.

6 Further Discussion: Beyond the Birthday Bound

HBS delivers fine performance and provides security up to the birthday bound. It
might be beneficial to come up with a DAE construction whose security is beyond
the birthday bound. Such a construction would most likely be less efficient than
HBS but might be desirable for some cases, as explained below.

Recall that DAE demands that the message space be of high entropy. An
important example is the key wrap [10], since a key space obviously has high
entropy. Although a key length is usually very short and a query complexity
exceeding the birthday bound is hard to imagine in such a scenario, the highest
security possible is desired for key-wrap applications. Therefore, highly secure
constructions stand as suitable candidates for such systems, even if their perfor-
mance is relatively modest.

We could give a beyond-the-birthday-bound construction as follows. First
construct a 2n-to-2n-bit blockcipher E′ : {0, 1}2n → {0, 1}2n, which has a cer-
tain key space, from a blockcipher EK : {0, 1}n → {0, 1}n with K ∈ {0, 1}k via
the sum construction [7] and the Feistel network of six rounds [12]. Then con-
struct the HBS mode with the block size of 2n bits, using E′ as its underlying
blockcipher. This construction ensures security beyond the 2n/2 bound but has
the following three problems.

1. It is inefficient and impractical. One call to E′ requires twelve calls to E.
2. It requires more than one key. The key space of E′ is large.
3. It produces a long ciphertext. The tag size is 2n-bit rather than n-bit.

The last point might be contrasted with the double-pipe hash [8], which has 2n-
bit intermediate values but outputs n-bit hash values. It remains open to provide
a beyond-the-birthday-bound construction which resolves these problems.
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A Proof of Theorem 1

We have 2n possible values of L ∈ {0, 1}n. We show that

#{L | F (ℓ)
L (X )⊕ F

(ℓ)
L (X̂ ) = Y } ≤ max{µ(X ), µ(X̂ )}.

It suffices to show that F
(ℓ)
L (X ) ⊕ F

(ℓ)
L (X̂ ) = Y is a non-trivial equation in

L of degree at most max{µ(X ), µ(X̂ )}. Let xi = (xi[0], . . . , xi[mi − 1]), Xi =
pad(xi) = (Xi[0], . . . , Xi[mi−1]), zi = fL(Xi). Also, let ci = 1 if xi ̸∈ ({0, 1}n)+,
and ci = 2 if xi ∈ ({0, 1}n)+. We use x̂i, X̂i, ẑi and ĉi in the same way.

Observe that, from (1), F
(ℓ)
L (X )⊕ F

(ℓ)
L (X̂ ) can be written as

F
(ℓ)
L (X )⊕ F

(ℓ)
L (X̂ ) =

⊕
0≤i≤ℓ−1

Li+1 · (zℓ
i · ⟨ci⟩n ⊕ ẑℓ

i · ⟨ĉi⟩n). (2)

We show (2) is a non-zero, non-constant polynomial in the following three cases.

Case 1: |Xi| ̸= |X̂i| for some 0 ≤ i ≤ ℓ− 1,
Case 2: |Xi| = |X̂i| for all 0 ≤ i ≤ ℓ−1, but Xi[j] ̸= X̂i[j] for some 0 ≤ i ≤ ℓ−1

and 0 ≤ j ≤ mi − 1, and
Case 3: |Xi| = |X̂i| for all 0 ≤ i ≤ ℓ− 1, and Xi[j] = X̂i[j] for all 0 ≤ i ≤ ℓ− 1

and 0 ≤ j ≤ mi − 1.

For the first case, if mi > m̂i, then (zℓ
i · ⟨ci⟩n ⊕ ẑℓ

i · ⟨ĉi⟩n) is a polynomial in
L of degree ℓmi. To see this, we note that the polynomial is equivalent to(

Lmi ⊕ Lmi−1 ·Xi[0]⊕ Lmi−2 ·Xi[1]⊕ · · · ⊕Xi[mi − 1]
)ℓ · ⟨ci⟩n

⊕
(
Lm̂i ⊕ Lm̂i−1 · X̂i[0]⊕ Lm̂i−2 · X̂i[1]⊕ · · · ⊕ X̂i[m̂i − 1]

)ℓ · ⟨ĉi⟩n
(3)

and therefore the coefficient of Lℓmi is ⟨ci⟩n ̸= 0n. This implies F
(ℓ)
L (X ) ⊕

F
(ℓ)
L (X̂ ) = Y is a non-trivial equation of degree at most max{µ(X ), µ(X̂ )}.

Similarly, if mi < m̂i, then (zℓ
i · ⟨ci⟩n ⊕ ẑℓ

i · ⟨ĉi⟩n) is a polynomial in L of degree
ℓm̂i, and therefore F

(ℓ)
L (X )⊕ F

(ℓ)
L (X̂ ) = Y is a non-trivial equation.

For the second case, consider i and j such that 0 ≤ i ≤ ℓ−1, 0 ≤ j ≤ mi−1,
and Xi[j] ̸= X̂i[j]. Now (zℓ

i · ⟨ci⟩n⊕ ẑℓ
i · ⟨ĉi⟩n) can be written as (3), and since we

have mi = m̂i, a simplification shows that the coefficient of Lℓmi is ⟨ci⟩n⊕⟨ĉi⟩n,
and the coefficient of Lℓ(mi−j−1) is (Xi[j])ℓ ·⟨ci⟩n⊕(X̂i[j])ℓ ·⟨ĉi⟩n. If ⟨ci⟩n ̸= ⟨ĉi⟩n,
then the coefficient of Lℓmi is non-zero. Otherwise the coefficient of Lℓ(mi−j−1)

is non-zero since

(Xi[j])ℓ · ⟨ci⟩n ⊕ (X̂i[j])ℓ · ⟨ĉi⟩n = (Xi[j]⊕ X̂i[j])ℓ · ⟨ci⟩n,

and the right hand side is zero if and only if Xi[j] = X̂i[j].
Finally, we consider the third case. In this case, we claim that we must have

xi ∈ ({0, 1}n)+ and x̂i ̸∈ ({0, 1}n)+ (or xi ̸∈ ({0, 1}n)+ and x̂i ̸∈ ({0, 1}n)+) for
some 0 ≤ i ≤ ℓ−1. Indeed, if xi, x̂i ∈ ({0, 1}n)+ holds for all 0 ≤ i ≤ ℓ−1, then we



have xi = x̂i for all 0 ≤ i ≤ ℓ−1, since Xi = pad(xi) = xi and X̂i = pad(x̂i) = x̂i.
This contradicts the condition X ̸= X̂ . Similarly, if xi, x̂i ̸∈ ({0, 1}n)+ holds for
all 0 ≤ i ≤ ℓ − 1, then again it contradicts the fact X ̸= X̂ . Now without
loss of generality, we may assume that xi ∈ ({0, 1}n)+ and x̂i ̸∈ ({0, 1}n)+ for
some 0 ≤ i ≤ ℓ − 1, which implies ⟨ci⟩n ̸= ⟨ĉi⟩n. Then (zℓ

i · ⟨ci⟩n ⊕ ẑℓ
i · ⟨ĉi⟩n)

can be written as (3), and since we have mi = m̂i, the coefficient of Lℓmi is
⟨ci⟩n ⊕ ⟨ĉi⟩n ̸= 0n. ⊓⊔

B Proof of Lemma 2

Let p0 and p1 be as defined in Sect. 4.2. We have already shown that p0 ≤
Advpriv

HBS[Perm(n)](B) and p1 ≤ Pr(AEP (·,·),DP (·,·) forges). In the rest of this section
we evaluate the last probability.

We introduce two oracles OP (·, ·) and VP (·, ·). The OP (·, ·) oracle takes
(T, s) ∈ {0, 1}n ×N (s < 2n) as its input and returns P (P−1(T ) ⊕ ⟨s⟩n). The
VP (·, ·) oracle takes ((H,M), T ) as its input and returns T if P

(
F

(2)
L (H,M)

)
= T

or returns ⊥ otherwise. We observe that the DP (·, ·) oracle can be perfectly sim-
ulated by using these two oracles OP (·, ·) and VP (·, ·). Therefore, there exists an
adversary A1 such that

Pr
(
AEP (·,·),DP (·,·) forges

)
≤ Pr

(
A

EP (·,·),OP (·,·),VP (·,·)
1 forges

)
.

We use the following system of notation. Consider all queries to the EP (·, ·)
oracle. Also consider those queries to the VP (·, ·) oracle which make the oracle
return T (i.e., forgery). Enumerate these queries, in the order of being made, as
(H1,M1), (H2,M2), . . . and set Si = F

(2)
L (Hi,Mi). Define sets Si = {Si, Si ⊕

⟨1⟩n, Si⊕⟨2⟩n, . . . , Si⊕⟨mi⟩n}. Define vectors Yi as follows. In the case of EP (·, ·)-
query, define Yi =

(
P (Si), P (Si ⊕ ⟨1⟩n), . . . , P (Si ⊕ ⟨mi⟩n)

)
so that Yi[j] =

P (Si⊕⟨j⟩n). In the case of VP (·, ·)-query, define Yi =
(
P (Si)

)
(A 1-dimensional

vector). With abuse of notation we identify Yi with the set {Yi[0], . . . , Yi[mi]}.
Consider all queries to the OP (·, ·) oracle. Let (T1, s1), (T2, s2), . . . be these

queries and Y1, Y2, . . . the values returned by the oracle so that we have Yi =
OP (Ti, si). We classify the queries to the OP (·, ·) oracle into three categories:
root queries, chain queries, and extension queries.

Root. We say that (Ti, si) is a root query if Ti ̸= Tj , Ti ̸= Yj for all j < i and
Ti ̸∈ Yk for each previous k-th query to the EP (·, ·) / VP (·, ·) oracle.

Chain. We say that (Ti, si) is a chain query if there exists a j < i such that
the j-th query (Tj , sj) was a root query and either Ti = Tj or Ti = Yj .
Recursively, we call (Ti, si) a chain query also if there exists a j < i such
that the j-th query (Tj , sj) was a chain query and Ti = Yj .

Extension. We say that (Ti, si) is an extension query if there exists some previ-
ous k-th query to the EP (·, ·) / VP (·, ·) oracle such that Ti ∈ Yk. Recursively,
we call (Ti, si) an extension query also if there exists a j < i such that the
j-the query (Tj , sj) was an extension query and Ti = Yj .



Note that some of the chain/extension queries to the OP (·, ·) oracle, even
if the query itself is new, may be trivial in the sense that the adversary A1

already knows the to-be-returned value. For example, if P (T ⊕ ⟨s1⟩n) = Y1 and
P (T ⊕ ⟨s2⟩n) = Y2, then we know that Y2 = OP (Y1, ⟨s1⟩n ⊕ ⟨s2⟩n) (The second
argument is treated as an integer). Whenever possible, we implicitly exclude
these trivial queries from our consideration.

Now we are ready to introduce a modified oracle OP,P̃ (·, ·) for A1, where

P̃
R← Perm(n) is a random permutation independent of P . The oracle is defined

in the style of lazy sampling for P̃ . The oracle keeps a record of domain points
S̃1, S̃2, . . . and that of range points Ỹ1, Ỹ2, . . . in a linked way. For this, the oracle
needs to observe the vectors Yi output by the EP (·, ·) / VP (·, ·) oracle. Let (T, s)
be the current query made to the OP,P̃ (·, ·) oracle.

1. If (T, s) is a trivial query, then the oracle simply returns the expected value.
2. If (T, s) is a root query, the oracle adds the point T to the set of range points
{Ỹ1, Ỹ2, . . .}. Then the oracle picks S̃

R← {0, 1}n \
(
{0n} ∪

∪
i{S̃i}

)
, where

i runs over already-defined domain points. The oracle updates the record
{S̃1, S̃2, . . .} by adding the new domain point S̃ (The oracle establishes a
link P̃ (S̃) = T ). If s = 0, then the oracle returns T . If s ≥ 1, then the oracle
checks if S̃ ⊕ ⟨s⟩n ∈ {Ỹ1, Ỹ2, . . .}. If so, then the oracle returns P̃ (S̃ ⊕ ⟨s⟩n).
If not, then the oracle adds the point S̃ ⊕ ⟨s⟩n to the set of domain points,
picks Ỹ

R← {0, 1}n \
(∪

i Yi ∪
∪

j{Ỹj}
)
, adds Ỹ to the set of range points and

returns Ỹ .
3. If (T, s) is a chain query, then it means that S̃ = P̃−1(T ) is in the set
{S̃1, S̃2, . . .} but S̃ ⊕ ⟨s⟩n is not. So the oracle adds the point to the set
{S̃1, S̃2, . . .}, picks Ỹ

R← {0, 1}n \
(∪

i Yi ∪
∪

j{Ỹj}
)

and adds Ỹ to the set of
range points. This establishes a link P̃ (S̃ ⊕ ⟨s⟩n) = Ỹ , and the value Ỹ is
returned.

4. Finally, if (T, s) is an extension query, then it means that the oracle has
located a vector Yi and an integer t such that T = OP,P̃ (Yi[0], t). The task
is to return a value corresponding to OP,P̃ (Yi[0], ⟨t⟩n ⊕ ⟨s⟩n). For this, the

oracle picks Ỹ
R← {0, 1}n \

(∪
i Yi ∪

∪
j{Ỹj}

)
, adds Ỹ to the set of range

points and returns Ỹ . Note that no domain point is selected; no domain
point is linked to the range point Ỹ . However, the range point Ỹ is linked
to the vector Yi through the “distance” ⟨t⟩n ⊕ ⟨s⟩n.

We want to evaluate the quantity

p2 =
∣∣∣Pr

(
A

EP (·,·),OP (·,·),VP (·,·)
1 forges

)
− Pr

(
A

EP (·,·),OP,P̃ (·,·),VP (·,·)
1 forges

)∣∣∣. (4)

It turns out that the evaluation of p2 requires a fair amount of work. So we defer
the treatment of p2 until we finish evaluating the second forgery probability
in (4). Observe that there exists an adversary A2 such that

Pr
(
A

EP (·,·),OP,P̃ (·,·),VP (·,·)
1 forges

)
≤ Pr

(
A

EP (·,·),VP (·,·)
2 forges

)
,



because the adversary A2 can perfectly simulate the OP,P̃ (·, ·) oracle by observ-
ing the vectors Yi and performing lazy sampling for P̃ .

We apply the standard argument that distinguishing is easier than forging.
Namely, there exists an adversary B such that

Pr(AEP (·,·),VP (·,·)
2 forges) ≤ Advpriv

HBS[Perm(n)](B) +
q

2n
.

The adversary B simulates the two oracles for A2 by using its own oracle and
outputs 1 as soon as A2 forges. If B’s oracle is EP (·, ·), the simulation is perfect
and hence Pr

(
BEP (·,·) = 1

)
= Pr

(
A

EP (·,·),VP (·,·)
2 forges

)
. If B’s oracle is R(·, ·),

then each time A2 makes a query to the second oracle, the probability of forgery
is 1/2n (prior to the execution of the game) and so Pr

(
BR(·,·) = 1

)
≤ q/2n.

Now we come back to the evaluation of p2. Consider those queries to the
VP (·, ·) oracle for which the oracle returns ⊥. Enumerate these queries, in the
order of being made, as ((H1,M1), T1), ((H2, M2), T2), . . .. Set Ui = F

(2)
L (Hi,Mi)

and Zi = P (Ui).
For S ∈ {0, 1}n, define N (S) =

∪
s1,...,sq

{S ⊕ ⟨s1⟩n ⊕ · · · ⊕ ⟨sq⟩n}, where
each si runs over 0 ≤ si ≤ mmax. This set is not so large, as we have N (S) ⊂
{S, S⊕⟨1⟩n, . . . , S⊕⟨2mmax⟩n}. Put S∗

i = N (Si), S̃∗
i = N (S̃i) and U∗

i = N (Ui).
We consider the following bad events in the latter game in (4). (i) S∗

i ∋ 0n

or U∗
i ∋ 0n for some i. (ii) S∗

i ∩ S∗
j ̸= ∅, U∗

i ∩ U∗
j ̸= ∅ or S∗

i ∩ U∗
j ̸= ∅ for some i

and j such that (Hi,Mi) ̸= (Hj ,Mj). (iii) S∗
i ∩ S̃∗

j ̸= ∅ or U∗
i ∩ S̃∗

j ̸= ∅ for some
i and j. (iv) S̃∗

i ∋ 0n for some i. (v) Yi ∋ Ỹj for some i and j. (vi) Zi = Ỹj for
some i and j. (vii) L = Ỹi for some i.

We argue that the two games in (4) (referred to as the first and the second
games) proceed exactly the same as long as none of (i)–(vii) bad events occurs.
This means that we have

p2 ≤ Pr
(
A

EP (·,·),OP,P̃ (·,·),VP (·,·)
1 causes one of (i)–(vii)

)
.

To see this, it is helpful to consider the permutation P as lazily sampled. We
check this one by one.

1. Consider a query (say the i-th query) either to the EP (·, ·) oracle or to the
VP (·, ·) oracle (returning 1). Thanks to (i), (ii) and (iii), it is guaranteed that
the set Si consists of entirely fresh domain points for P (unless a query with
(Hi, Mi) has been made to the VP (·, ·) oracle returning ⊥). This results in
lazy sampling of points for Yi. In the first game, these points are sampled
from {0, 1}n \

(
{L}∪

∪
j Yj ∪

∪
j{Ỹj}∪

∪
j{Zj}

)
, where j runs over already-

defined points. In the second game, the points are sampled from {0, 1}n \(
{L} ∪

∪
j Yj ∪

∪
j{Zj}

)
. The two distributions remain the same due to (v).

2. Consider a root query (T, s) to the OP (·, ·) or OP,P̃ (·, ·) oracle. Note that
(vii) eliminates the possibility T = L. In the first game, a domain point S is
sampled for P−1(T ) from {0, 1}n \

(
{0n} ∪

∪
i Si ∪

∪
i{S̃i} ∪

∪
i{Ui}

)
. In the

second game, a domain point S is sampled (for P̃−1(T )) from {0, 1}n\
(
{0n}∪



∪
i{S̃i}

)
. These are the same distribution due to (iii). In both the games,

the shifted domain point S ⊕ ⟨s⟩n is not fresh under the same condition
that there exists some i such that S ⊕ ⟨s⟩n = S̃i. This is due to (iii) and
(iv). If it is fresh, then in the first game a range point Ỹ is sampled from
{0, 1}n \

(
{L} ∪

∪
i Yi ∪

∪
i{Ỹi} ∪

∪
i{Zi}

)
, whereas in the second game a

range point Ỹ is sampled from {0, 1}n\
(∪

i Yi∪
∪

i{Ỹi}
)
. These are the same

owing to (vi) and (vii).
3. Consider a chain query to the OP (·, ·) or OP,P̃ (·, ·) oracle. Thanks to (i), (ii)

and (iii), the query results in a fresh domain point P−1(T )⊕⟨s⟩n in the first
game and P̃−1(T )⊕⟨s⟩n in the second. In the first game, the corresponding
range point is sampled from {0, 1}n \

(
{L} ∪

∪
i Yi ∪

∪
i{Ỹi} ∪

∪
i{Zi}

)
. In

the second game, the range point is sampled from {0, 1}n \
(∪

i Yi∪
∪

i{Ỹi}
)
.

These two yield the same distribution because of (vi) and (vii).
4. Consider an extension query (T, s) to the OP (·, ·) or OP,P̃ (·, ·) oracle. Thanks

to (i), (ii) and (iii), the query results in a fresh domain point P−1(T )⊕⟨s⟩n.
In the first game, the corresponding range point is sampled from {0, 1}n \(
{L} ∪

∪
i Yi ∪

∪
i{Ỹi} ∪

∪
i{Zi}

)
. In the second game, the range point is

sampled from {0, 1}n \
(∪

i Yi∪
∪

i{Ỹi}
)
. These two sampling processes yield

the same distribution due to (vi) and (vii).
5. Consider a query (say the i-th query) to the VP (·, ·) oracle returning ⊥. If a

query with (Hi,Mi) has been made to one of the oracles, then no sampling
is performed. Otherwise, owing to (i), (ii) and (iii), the point Ui is a fresh
domain point. This results in lazy sampling of Zi. In the first game, Zi is
sampled from {0, 1}n\

(
{L}∪

∪
j Yj∪

∪
j{Ỹj}∪

∪
j{Zj}

)
. In the second game,

it is sampled from {0, 1}n \
(
{L}∪

∪
j Yj ∪

∪
j{Zj}

)
. These two distributions

remain the same because of (vi).

Now we replace P with a random function R
R← Func(n) (The set of all func-

tions on {0, 1}n). This is possible because the inverse cipher P−1 never appears
in the definitions of the three oracles. By the PRP/PRF switching lemma [2],
we get∣∣∣Pr

(
A

EP (·,·),OP,P̃ (·,·),VP (·,·)
1 causes one of (i)–(vii)

)
− Pr

(
A

ER(·,·),OR,P̃ (·,·),VR(·,·)
1 causes one of (i)–(vii)

)∣∣∣ ≤ (1 + q + qmmax)2

2n+1
.

We introduce a modified oracle E•R(·, ·). This oracle behaves just like the
ER(·, ·) oracle, computing the values for Si using L = R(0n), except that at
the end of query process, even if a bad event has occurred, the oracle returns
a random string, which defines the value of Yi (unless a query with (Hi,Mi)
has been made to one of the oracles, in which case those already-defined values
are used). The V•

R(·, ·) oracle is defined similarly. That is, unless a query with
(Hi,Mi) has been already made, the oracle computes the value Si / Ui using
L = R(0n) and, regardless of a bad event, picks a random point in {0, 1}n. If
this point happens to be the same as T , then the oracle returns T . Otherwise,



the random point is set to Zi, and the oracle returns ⊥. The modified oracles
are identical to the original ones until a bad event occurs, so we have

Pr
(
A

ER(·,·),OR,P̃ (·,·),VR(·,·)
1 causes one of (i)–(vii)

)
= Pr

(
A

E•
R(·,·),OR,P̃ (·,·),V•

R(·,·)
1 causes one of (i)–(vii)

)
.

Now observe that the values returned by the three oracles are independent
of the value L = R(0n). So we are ready to evaluate the probabilities of (i)–(vii).
Without loss of generality we assume that the bad events are disjoint. This can
be done by defining a bad event to occur prior to any other bad event. So, for
example, when we say “the event (i) occurs,” we implicitly mean that no other
bad event has occurred.

An event of type (i) occurs upon a query (Hi,Mi), made to the E•R(·, ·)
oracle or to V•

R(·, ·), which satisfies an equation F
(2)
L (Hi,Mi) = ⟨s⟩n for some

0 ≤ s ≤ 2mmax. Here, we have 1 ≤ i ≤ q, and the degree of the equation is at
most 2(1 + hmax + mmax). Therefore, we have

Pr
(
A

E•
R(·,·),OR,P̃ (·,·),V•

R(·,·)
1 causes (i)

)
≤ 2q(1 + 2mmax)(1 + hmax + mmax)

2n
.

Event (ii) corresponds to queries (Hi,Mi) and (Hj ,Mj) (1 ≤ i < j ≤ q),
made to the E•R(·, ·) oracle or to V•

R(·, ·), which satisfy an equation F
(2)
L (Hi,Mi)⊕

F
(2)
L (Hj , Mj) = ⟨s⟩n with 0 ≤ s ≤ 2mmax. We have

Pr
(
A

E•
R(·,·),OR,P̃ (·,·),V•

R(·,·)
1 causes (ii)

)
≤ q2(1 + 2mmax)(1 + hmax + mmax)

2n
.

Event (iii) corresponds to a query (Hi,Mi) and a root query (Tj , sj) (either
one may be made before the other) such that F

(2)
L (Hi, Mi) = S̃j ⊕ ⟨s⟩n with

0 ≤ s ≤ 2mmax. Note that A1 makes at most q-many root queries (rather than
q(1 + mmax)-many). So we have

Pr
(
A

E•
R(·,·),OR,P̃ (·,·),V•

R(·,·)
1 causes (iii)

)
≤ 2q2(1 + 2mmax)(1 + hmax + mmax)

2n
.

An event of type (iv) occurs upon a root query (Ti, si) satisfying S̃j = ⟨s⟩n for
some 0 ≤ s ≤ 2mmax. The sampling is performed from the space {0, 1}n \ {0n}
for at most q-many distinct points, so we have

Pr
(
A

E•
R(·,·),OR,P̃ (·,·),V•

R(·,·)
1 causes (iv)

)
≤ 1 + 2mmax − 1 + 1

2n
=

1 + 2mmax

2n
.

An event of type (v) occurs upon a new query (Hi, Mi) to the E•R(·, ·) oracle
or to the V•

R(·, ·) oracle returning T . Such an query causes random sampling
of the vector Yi. The values Ỹ1, Ỹ2, . . . consist of root points selected by A1

plus additional “semi-random” points. The number of random sampling for the



vectors Yi is at most q(1 + mmax), and the size of {Ỹ1, Ỹ2, . . .} is at most q(1 +
mmax). So we obtain

Pr
(
A

E•
P (·,·),OP,P̃ (·,·),V•

P (·,·)
1 causes (v)

)
≤ q2(1 + mmax)2

2n
.

For event (vi), there are three cases. The first case is upon the sampling of
Zi. This case can be treated similarly to event (v), and the probability is at most
q ·q(1+mmax)/2n = q2(1+mmax)/2n. The second case is upon a root query (T, s)
such that T = Zi for some i. The values Z1, Z2, . . . are simply random points,
the number of which is at most q. There are at most q-many root queries, so
the probability is at most q2/2n. The third case is upon the sampling of a range
point Ỹj . Note that such a sampling is performed for at most q(1+mmax) times.
So the probability is at most q2(1+mmax)/2n. Overall, the probability for event
(vi) is at most

q2(1 + mmax)
2n

+
q2

2n
+

q2(1 + mmax)
2n

≤ 2q2(1 + 2mmax)
2n

.

For event (vii), observe that the number of points Ỹ1, Ỹ2, . . . is at most q(1+
mmax). So we simply have

Pr
(
A

E•
P (·,·),OP,P̃ (·,·),V•

P (·,·)
1 causes (vii)

)
≤ q(1 + mmax)

2n
.

Finally we sum up the terms. This yields

p2 ≤ (1 + 2 + 1 + 2 + 1 + 1 + 2 + 1)
q2(1 + hmax + 2mmax)2

2n

=
11q2(1 + hmax + 2mmax)2

2n
.

⊓⊔

C Proof of Lemma 3

We consider the encryption algorithm ER(·, ·) of “HBS[Func(n)],” where Func(n)
is the set of all functions over {0, 1}n, and a random function R

R← Func(n) is
used as the underlying blockcipher (Obviously the decryption algorithm cannot
be defined). We see that

Advpriv
HBS[Perm(n)](B) ≤ Advpriv

“HBS[Func(n)]”(B) +
(1 + q + qmmax)2

2n+1
(5)

from the PRP/PRF switching lemma [2]. We then use the following lemma to
prove Lemma 3.



Lemma 4. Let h0, . . . , hq−1, m0, . . . ,mq−1 be integers such that hi ≤ hmax

and mi ≤ mmax for 0 ≤ i ≤ q − 1. Also, let H0, . . . , Hq−1, M0, . . . ,Mq−1,
T0, . . . , Tq−1, and C0, . . . , Cq−1 be bit strings that satisfy the following condi-
tions for 0 ≤ i ≤ q − 1. Hi ∈ ({0, 1}n)hi , Mi ∈ ({0, 1}n)mi , Ti ∈ {0, 1}n,
and Ci ∈ ({0, 1}n)mi . Furthermore, assume (Hi, Mi) ̸= (Hj , Mj) holds for
0 ≤ i < j ≤ q − 1. Then we have

p3

p4
≥ 1− 3q2(1 + hmax + 2mmax)2

2n
, (6)

where we define p3 and p4 as p3
def= Pr(ER(Hi,Mi) = (Ti, Ci) for 0 ≤ i ≤ q − 1)

and p4
def= Pr(R(Hi,Mi) = (Ti, Ci) for 0 ≤ i ≤ q − 1).

Proof. The proof is based on a counting argument. We count the number of
functions R ∈ Func(n) that satisfy ER(Hi,Mi) = (Ti, Ci) for 0 ≤ i ≤ q − 1.
We first count the number of L = R(0n) and then count the rest. Let Si =
F

(2)
L (Hi, Mi). Si corresponds to the initial counter value. Consider the set Si =
{Si, Si ⊕ ⟨1⟩n, Si ⊕ ⟨2⟩n, . . . , Si ⊕ ⟨mi⟩n}. Now we claim that the number of
L ∈ {0, 1}n such that

{0n} ∩ Si = ∅ for 0 ≤ i ≤ q − 1 and Si ∩ Sj = ∅ for 0 ≤ i < j ≤ q − 1 (7)

is at least 2n−2q(1+mmax)(1+hmax+mmax)−q2(1+2mmax)(1+hmax+mmax).
Fix 0 ≤ i ≤ q−1 and 0 ≤ s ≤ mi. Consider the equation F

(2)
L (Hi, Mi) = ⟨s⟩n.

As we have seen in Sect. 3.1, F
(2)
L (Hi,Mi) is a non-zero polynomial in L of degree

µ(Hi,Mi) = max{1 + 2hi, 2 + 2mi}. We therefore have #{L | F (2)
L (Hi,Mi) =

⟨s⟩n} ≤ max{1 + 2hi, 2 + 2mi} ≤ 2(1 + hmax + mmax), which implies

#{L | {0n} ∩ Si ̸= ∅ for some 0 ≤ i ≤ q − 1} ≤ 2q(1 + mmax)(1 + hmax + mmax).

Next, fix 0 ≤ i < j ≤ q − 1 and consider the equation F
(2)
L (Hi,Mi)⊕ ⟨s⟩n =

F
(2)
L (Hj , Mj) ⊕ ⟨t⟩n, where 0 ≤ s ≤ mi and 0 ≤ t ≤ mj . Theorem 1 implies

that this equation has at most max{µ(Hi,Mi), µ(Hj ,Mj)} = max{1 + 2hi, 2 +
2mi, 1 + 2hj , 2 + 2mj} solutions. Observe that the equation is equivalent to
F

(2)
L (Hi, Mi) ⊕ F

(2)
L (Hj ,Mj) = ⟨s⟩n ⊕ ⟨t⟩n, and the right hand side takes at

most (1 + mi + mj) values (rather than (1 + mi)(1 + mj) values). We thus have

#{L | Si ∩ Sj ̸= ∅} ≤ (1 + mi + mj)max{1 + 2hi, 2 + 2mi, 1 + 2hj , 2 + 2mj}
≤ 2(1 + 2mmax)(1 + hmax + mmax),

which implies #{L | Si ∩ Sj ̸= ∅ for some 0 ≤ i < j ≤ q − 1} is at most

q2(1 + 2mmax)(1 + hmax + mmax).

Once we fix any L that satisfies (7), the inputs to R, {0n} ∪ S0 ∪ · · · ∪ Sq−1,
are all distinct. Therefore, the left hand side of (6) is at least

2n − 2q(1 + mmax)(1 + hmax + mmax)− q2(1 + 2mmax)(1 + hmax + mmax)
2n

,

which is at least 1− (3q2(1 + hmax + 2mmax)2)/2n. ⊓⊔



Proof (of Lemma 3). Without loss of generality, we assume that B makes exactly
q oracle queries. Also, since B is computationally unbounded, we assume that B
is deterministic. Now we can regard B as a function fB : ({0, 1}n)q(1+mmax) →
{0, 1}. To see this, let Y ∈ ({0, 1}n)q(1+mmax) be an arbitrary bit string of
q(1 + mmax) blocks. The first query, (H0,M0), is determined by B. If we re-
turn the first n + |M0| bits of Y , then the next query, (H1,M1), is deter-
mined. Similarly, if we return the next n + |M1| bits of Y , then the next
query, (H2,M2), is determined. By continuing the procedure, the output of
B, either 0 or 1, is determined. Therefore, the output of B and the value
of q queries, (H0,M0), . . . , (Hq−1,Mq−1), are all determined by fixing Y . Let

vone = {Y | fB(Y ) = 1}, and PR
def= Pr(BR(·,·) = 1). Then we have

PR =
∑

Y ∈vone

p4. (8)

On the other hand, let PHBS
def= Pr(AER(·,·) = 1) and observe

PHBS =
∑

Y ∈vone

p3 ≥
(

1− 3q2(1 + hmax + 2mmax)2

2n

) ∑
Y ∈vone

p4,

where the last inequality follows from Lemma 4. Then PHBS is at least(
1− 3q2(1 + hmax + 2mmax)2

2n

)
PR ≥ PR −

3q2(1 + hmax + 2mmax)2

2n

from (8). Now, we have PHBS ≥ PR − (3q2(1 + hmax + 2mmax)2)/2n, and by
applying the same argument to 1 − PHBS and 1 − PR, we have 1 − PHBS ≥
1−PR− (3q2(1+hmax +2mmax)2)/2n. Finally, from (5), we obtain the claimed
bound. ⊓⊔


