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The proliferation of social media has promoted the spread of misinformation that raises many concerns in
our society. This paper focuses on a critical problem of explainable COVID-19 misinformation detection
that aims to accurately identify and explain misleading COVID-19 claims on social media. Motivated by the
lack of COVID-19 relevant knowledge in existing solutions, we construct a novel crowdsource knowledge
graph based approach to incorporate the COVID-19 knowledge facts by leveraging the collaborative efforts of
expert and non-expert crowd workers. Two important challenges exist in developing our solution: i) how to
effectively coordinate the crowd efforts from both expert and non-expert workers to generate the relevant
knowledge facts for detecting COVID-19 misinformation; ii) How to leverage the knowledge facts from the
constructed knowledge graph to accurately explain the detected COVID-19 misinformation. To address the
above challenges, we develop HC-COVID, a hierarchical crowdsource knowledge graph based framework
that explicitly models the COVID-19 knowledge facts contributed by crowd workers with different levels of
expertise and accurately identifies the related knowledge facts to explain the detection results. We evaluate
HC-COVID using two public real-world datasets on social media. Evaluation results demonstrate that HC-
COVID significantly outperforms state-of-the-art baselines in terms of the detection accuracy of misleading
COVID-19 claims and the quality of the explanations.
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1 INTRODUCTION
Online social media has been a popular channel for news consumption in recent years, where billions
of online posts are generated on a daily basis1. The proliferation of social media posts also leads to the
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propagation of misleading information on a variety of topics, such as politics [13], entertainment [7],
food safety [48], and human health [17]. Among them, health-related misinformation detection is
particularly challenging because it is not a trivial task for non-health researchers who often do
not have sufficient medical knowledge to accurately identify false claims about health issues on
social media [47]. The rapid spread of health-related misinformation can result in severe negative
impacts on social media users and human society [5]. For example, more than 50 cell towers in the
UK were attacked by people who believe the misinformation on social media that the COVID-19
virus can spread via 5G networks2. In this paper, we focus on a critical problem of the explainable
COVID-19 misinformation detection where the goal is to accurately identify and explain misleading
COVID-19 claims on social media.

Fig. 1. COVID-19 Misinformation Detection Problem

A significant amount of efforts have been made to combat the spread of online misinformation
on social media [23, 33, 42, 43, 60, 64]. Existing online misinformation detection solutions have been
focusing on content-based features (e.g., textual content [33], visual information [23]), context-based
factors (e.g., user comments [64], social interaction [43]), and propagation-based characteristics
(e.g., news cascade patterns [42]). Recently, a few initial efforts have been made to address the
problem of detecting misleading health-related claims by leveraging the medical knowledge graphs
[11, 27, 45]. Medical knowledge graphs contain medical or health-related knowledge facts (e.g.,
relations between two medical concepts) that are usually extracted from medical research articles.
These medical knowledge facts are leveraged to detect and explain misleading health-related
claims. However, current medical knowledge graph based solutions are not applicable to solve our
COVID-19 misinformation detection problem due to some of their inherent limitations [15, 58].
We illustrate two key limitations of current solutions in Figure 1. For both examples (a) and (b) in
Figure 1, the social media posts (i.e., tweets) shown on the left contain misleading claims related to
COVID-19. The images on the right show two medical knowledge graphs that contain COVID-19
related knowledge facts. For each knowledge graph, the black text denotes existing knowledge

2https://www.jmir.org/2020/5/e19458/
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facts (e.g., “COVID-19”
cause−−−−→ “pneumonia” in Figure1(a)) in current knowledge graphs. The red

text represents the knowledge facts that are necessary to identify misleading claims in the posts
but does not exist in current knowledge graphs (e.g., “disinfectants”

not cure−−−−−−→ “COVID-19”).
The first limitation of currentmedical knowledge graphs is the lack of COVID-19 specific knowledge

facts that are critical to detect COVID-19 related misinformation on social media. COVID-19 specific
knowledge facts are the knowledge facts that are closely related to COVID-19 and often include
both medical and non-medical concepts. For example, the social media post in Figure 1(a) claims
the wrong usage of disinfectants to protect humans from COVID-19. However, current knowledge
graphs for COVID-19 are usually constructed from professional medical documents that often
do not cover the knowledge facts related to non-medical concepts in a timely manner [15]. The
second limitation of current medical knowledge graphs lies in the lack of COVID-19 generalized
knowledge facts. Current medical knowledge graphs about COVID-19 heavily rely on the extraction
of COVID-19 related knowledge facts from existing medical research documents and fail to abstract
them into generalized knowledge facts for detecting unseen misleading posts. For example, the
social media post in Figure 1(b) contains a false statement about the new BNT162b2 COVID-19
vaccine that is not promptly covered in the knowledge graph due to the delay of publications [9].
With the above two limitations, the current medical COVID-19 knowledge graphs do not contain
enough COVID-19 background knowledge to cover the related misleading content in COVID-19
social media posts. Therefore, if an application aims to detect COVID-19 misinformation based on
the limited knowledge graphs, the application is likely to retrieve little useful information from the
knowledge graphs as explanations or even makes the wrong prediction results. However, it is well-
known that humans are good at summarizing and abstracting key knowledge from different types
of text (e.g., news articles, research documents) [53, 54]. For example, most people can conclude
that no COVID-19 vaccine gets people infected after reading one or two articles discussing specific
vaccines. Therefore, such abstract human knowledge is well complemented with the existing
knowledge graphs to collaboratively identify different types of COVID-19 misinformation.

Motivated by the above limitations, we develop a human-AI collaborative approach to accurately
identify and explain misleading COVID-19 information on social media. In particular, we construct
a novel hierarchical crowdsource knowledge graph by utilizing human intelligence from a group
of expert workers (i.e., crowd workers with working experience in healthcare) and non-expert
workers (i.e., crowd workers without such a qualification) from a crowdsourcing platform (e.g.,
Amazon Mechanical Turks). We leverage the complementary strengths of both types of workers
(e.g., reliability vs. availability) to capture both the specific and generalized knowledge facts from
credible COVID-19 articles (i.e., professional medical news and credible fact-checking articles).
The captured knowledge facts are then used to construct a hierarchical knowledge graph that can
identify misleading COVID-19 claims and explain why the identified claims are false. However,
two important challenges remain to be addressed in developing our solution.
Coordination Between Expert and Non-expert Crowd Efforts. The first challenge lies in how to

effectively coordinate the diverse crowd efforts from expert and non-expert workers to generate the
specific and generalized knowledge facts that are essential elements to construct the hierarchical
knowledge graph for COVID-19 misinformation detection. A possible solution is to ask non-expert
workers to annotate specific knowledge facts from credible COVID-19 articles and ask expert
workers to summarize the generalized knowledge facts based on their existing knowledge about
COVID-19. However, the specific knowledge fact annotations from non-expert crowd workers are
observed to be noisy due to the unvetted nature of these crowd workers and their lack of COVID-19
related medical knowledge [19, 52]. Moreover, the generalized knowledge facts provided by the
expert workers are often either too brief (e.g., COVID-19 is a kind of virus) or too medical-specific
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(e.g., COVID-19 is detected by using RT-qPCR). Therefore, it remains a challenging problem on
how to effectively coordinate and integrate the efforts from both expert and non-expert workers to
extract useful knowledge facts for the hierarchical crowdsource knowledge graph construction.

Explainability with Hierarchical Knowledge Graph. The second challenge lies in how to leverage
the knowledge facts from the constructed hierarchical knowledge graph to accurately explain the
detected COVID-19 misinformation. Unlike traditional medical knowledge graphs that only contain
homogeneous knowledge facts [11, 45], the hierarchical knowledge graph consists of both specific
and generalized knowledge facts about COVID-19 that can provide comprehensive explanations
for the detected COVID-19 misinformation. For example, a reasonable explanation for the post in
Figure 1(a) could be “bleach”

not cure−−−−−−→ “COVID-19” from COVID-19 specific knowledge facts and
“chlorine”

hazard to−−−−−−→ “human body” from the generalized knowledge facts. However, the hierarchical
knowledge graph also contains knowledge facts that are not useful to explain the misleading
COVID-19 claim in Figure1(a) (e.g., “COVID-19”

component
−−−−−−−−→ “non-structural proteins”). Therefore, it

remains a challenging task to identify the exact knowledge facts of the hierarchical knowledge
graph that can effectively contribute to the explanation of the detected COVID-19 misinformation.

To address the above challenges, we propose HC-COVID, a hierarchical crowdsource knowledge
graph based framework to address the explainable COVID-19 misinformation detection problem.
In particular, to address the first challenge, we explicitly construct a topic-guided hierarchical
crowdsource knowledge graph to effectively model both the specific and generalized knowledge
facts from credible COVID-19 articles. To address the second challenge, we propose a novel duo
hierarchy attention based graph neural network to explore both COVID-19 specific and generalized
knowledge facts in the constructed knowledge graph to identify the reasonable explanations for
the detection results. To our best knowledge, HC-COVID is the first crowdsourcing framework that
constructs a hierarchical knowledge graph to address the explainable COVID-19 misinformation
detection problem. We evaluate the HC-COVID framework by utilizing two real-world datasets (i.e.,
CoAID [10] and CONSTRAINT [32]) from Twitter and Facebook. The results show that HC-COVID
not only outperforms all compared baselines by finding the COVID-19 misinformation on social
media more accurately but also provides reasonable and well-justified explanations to the detection
results. In summary, our contributions are:
• We design a novel crowdsourcing approach for HC-COVID that leverages the collaboration of
expert and non-expert crowd workers on COVID-19 to construct a hierarchical topic-guided
COVID-19 knowledge graph.
• We propose a novel duo hierarchy attention based graph neural network for HC-COVID
to detect and explain COVID-19 misinformation by exploring the specific and generalized
knowledge facts from the constructed knowledge graph.
• We construct both quantitative and user studies to evaluate HC-COVID by comparing it with
various state-of-the-art schemes. The experiment results demonstrate the effectiveness of
HC-COVID on both COVID-19 misinformation detection and misinformation explanation.

2 RELATEDWORK
2.1 Health Misinformation on Social Media
Health misinformation has emerged as a critical issue on online social media, and has drawn much
attention in recent years [5, 25, 47]. A significant amount of efforts have been made to combat the
spread of health misinformation online [11, 49]. For example, Ghenai et al. proposed a user-centric
model that identifies users who are prone to spread misleading health-related information by
extracting features based on users’ attitudes, writing styles, and sentiments from their posts on
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social media [17]. Zhao et al. designed a machine learning based detection framework to detect
misleading posts in online health communities by integrating a set of linguistic, topic, sentiment and
behavioral features extracted from the post content (e.g., XGBoost) [65]. Safarnejad et al. analyzed
the propagation patterns of health misinformation on social media by reconstructing the dissemi-
nation networks of social media posts to identify misleading health-related posts[36]. However,
existing health misinformation detection solutions primarily rely on user behaviors/activities (e.g.,
post content, user comments, and attitudes) to detect misleading health information on social media.
These solutions cannot fully address the problem of detecting health misinformation related to
outbreaking diseases (e.g., COVID-19) since common social media users often lack disease-specific
knowledge and can easily be misled by such health misinformation. In this paper, we develop
a hierarchical crowdsource knowledge graph approach that effectively coordinates the efforts
from both expert and non-expert crowd workers to identify critical knowledge facts for detecting
COVID-19 misinformation.

2.2 Knowledge Graph
Our work is also related to knowledge graph (KG) that can effectively represent complex and
unstructured documents as a structural graph consisting of a collection of relational knowledge
facts [21, 56, 62]. Knowledge graph has been widely applied in many application domains, including
natural language understanding [46], question answering [14], and recommender systems [18].
For example, Liu et al. proposed a knowledge-enabled language representation model K-BERT by
incorporating domain knowledge facts from a commonsense knowledge graph with pre-trained
languagemodel (e.g., BERT) to effectively learn language representations (e.g., text embeddings) [29].
Huang et al. developed a knowledge embedding based question answering framework to answer
natural language questions by recovering the embeddings of relevant knowledge facts in a large-
scale knowledge graph [20]. Wang et al. designed a knowledge graph aware recommender system
to learn user interests by propagating the information of user preferences through a knowledge
graph [55]. More recently, knowledge graphs have been utilized to model professional medical
knowledge for health-related study [28, 39]. Cui et al. leveraged knowledge facts extracted from a
biomedical knowledge base to support the detection of misleading healthcare information related
to well-studied diseases (e.g., diabetes and cancer) [11]. Current knowledge graph based health
misinformation detection solutions mainly focus on the specific knowledge facts directly extracted
from medical articles. However, they are insufficient to generalize the specific knowledge facts for
detecting unseen health-related misinformation, especially for emerging diseases (e.g., COVID-19)
about which our prior knowledge is very limited. In our work, we design a topic-guided hierarchical
crowdsource knowledge graph that can effectively extract the generalized knowledge facts for
identifying unseen misleading information related to COVID-19.

2.3 Explainable Artificial Intelligence
Recent progress in explainable artificial intelligence (XAI) has been made to address the black-box
challenge in AI and improve the interpretability of AI-based models [37, 61]. A few solutions have
been developed to explain the detection results for misinformation detection. For example, Shu et al.
developed an explainable fake news detection system to interpret the prediction results by utilizing
the co-attention mechanism in deep neural networks for capturing the explainable content in the
news articles and user comments [41]. Lu et al. proposed a graph-aware co-attention neural network
scheme to generate explanations for fake news detection by investigating user comments and
retweet patterns on social media [30]. Kou et al. designed a graph neural network approach to detect
and explain multimodal fauxtography posts on social media [26]. However, existing explainable
misinformation detection solutions cannot be applied to solve the COVID-19 misinformation
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detection problem because none of them explicitly considers the COVID-19 specific knowledge
facts. Recently, Ayoub et al. proposed an explainable COVID-19 misinformation detection method
to detect and explain COVID-19 misinformation by learning semantic representations of COVID-19
posts based on deep natural language processing models [2]. However, the explanations in [2] are
only the words extracted from the posts and are not sufficient enough to provide reasons behind
the misleading post due to the limited content of the social media posts. Shiao et al. developed
a COVID-19 misinformation detection framework that detects COVID-19 misinformation based
on COVID-19 medical documents and provides most related documents as explanations [40].
However, the explanations from the documents cannot deal with unseen COVID-19 misinformation
cases because the content of documents is not abstracted to generalized COVID-19 knowledge
facts. In contrast, HC-COVID designs a duo hierarchy attention based approach that aims to
effectively explain COVID-19 misinformation using the specific and generalized knowledge facts
in a hierarchical crowdsource knowledge graph.

3 PROBLEM STATEMENT
In this section, we formally define our explainable COVID-19 misinformation detection problem.
We first define a few key terms that will be used in the problem statement.

Definition 1. COVID-19 Claim: A COVID-19 claim is a piece of short text (e.g., social
media post) that describes a news fact or statement related to COVID-19 (e.g., the social media
posts in Figure 1). In particular, we define a set of 𝑁 COVID-19 claims as C = {𝑐1, 𝑐2, · · · , 𝑐𝑁 }.
𝑐𝑛 = {𝑤𝑛,1,𝑤𝑛,2, · · · ,𝑤𝑛,𝐿} is the 𝑛𝑡ℎ post in C where𝑤𝑙 is the 𝑙𝑡ℎ word of 𝑐𝑛 .

Definition 2. COVID-19 Misinformation: A COVID-19 claim is considered misleading if it
contains partial or entire false or unverified information that can mislead its audience. Otherwise,
the COVID-19 claim is considered non-misleading. The reason of the definition is to explicitly
separate non-misleading claims from the other claims in order to preserve the true COVID-19
information. In particular, for a given post 𝑐𝑛 , we define 𝑦𝑛 ∈ {1, 0} as the label to indicate if the
claim is misleading or not (i.e., 1 for misleading and 0 otherwise).

Definition 3. COVID-19 Article: A COVID-19 article is an article related to COVID-19, such
as a news article from reliable healthcare news publishers (e.g., Center for Disease Control and
Prevention (CDC)) or a debunking article from credible fact-checking websites (e.g., FactCheck.org3).
In particular, we define a set of𝑀 COVID-19 articles as A = {𝑎1, 𝑎2, · · · , 𝑎𝑀 }.

Definition 4. COVID-19 Specific Knowledge Fact: The COVID-19 specific knowledge fact
refers to the COVID-19 knowledge facts that are extracted from COVID-19 articles and specific
to the content of the articles. For example, the knowledge fact “Moderna”

not cause−−−−−−−→ “COVID-19”
in Figure 1(b) is extracted from a COVID-19 article that claims no possibility for a person to get
infected after receiving Moderna vaccines.

Definition 5. COVID-19 Generalized Knowledge Fact: The COVID-19 generalized knowl-
edge fact usually covers a set of COVID-19 articles that belong to similar topics. For example, the
knowledge fact “Vaccine”

not cause−−−−−−−→ “COVID-19” in Figure 1(b) is a COVID-19 generalized knowledge
fact indicating that no COVID-19 vaccine results in COVID-19 infection.

Definition 6. Crowd Query (𝑄): A crowd query 𝑄 is a crowdsourcing task we assign to the
crowd workers on the crowdsourcing platform. In HC-COVID, we develop a hierarchical COVID-
19 knowledge extraction query that asks crowd workers to extract both COVID-19 specific and
3https://www.factcheck.org/fake-news/
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generalized knowledge facts from a set of credible COVID-19-articles. We will elaborate on the
details of the crowdsourcing tasks in the next section.

Definition 7. Expert Workers (W+): The expert workers are a set of crowd workers who
are verified by the crowdsourcing platform (e.g., Amazon MTurk) to have professional healthcare
knowledge/experience. Furthermore, we develop a set of COVID-19 related screening questions in
the crowd queries to ensure the selected expert workers know COVID-19 related knowledge (e.g.,
COVID-19 spread, cure, and prevention) in order to provide reliable responses.

Definition 8. Non-Expert Workers (W−): The non-expert workers are a set of crowd
workers on the crowdsourcing platform who are not proved to have professional healthcare
knowledge/experience and may not be able to understand professional medical terms in COVID-19
news articles. For example, a non-expert worker may not know the meaning of acetaminophen (an
active ingredient of Tylenol) and think it as a toxic drug incorrectly.

Given the above definitions, the goal of our explainable COVID-19 misinformation detection
problem is to i) classify COVID-19 claims into two categories (i.e., misleading and non-misleading);
ii) explain why the COVID-19 claim is misleading or not based on the correlation between the
COVID-19 claim and the corresponding knowledge facts in the constructed hierarchical COVID-19
knowledge graph. In particular, if a COVID-19 claim is misleading, we will retrieve the explanation
that debunks the claim. Otherwise, we will provide the explanation that supports the claim. Formally,
our problem is defined as:

argmax
�̂�𝑛 ∈P,T̂ ∈G

𝑃𝑟 (𝑦𝑛 = 𝑦𝑛 |𝑐𝑛,G,W),∀ 1 ≤ 𝑛 ≤ 𝑁 (1)

whereW = W+ ∪W− denotes the joint set of expert and non-expert workers. 𝑦𝑛 and 𝑦𝑛 are
the estimated and ground truth label of the COVID-19 claim 𝑐𝑛 , respectively. G is the constructed
hierarchical COVID-19 knowledge graph and T̂ represents a set of retrieved triples from G as
explanations for 𝑦𝑛 .

4 SOLUTION
In this section, we present the HC-COVID scheme to address the problem of explainable COVID-
19 misinformation detection discussed in the previous section. The overview of the HC-COVID
scheme is shown in Figure 2. HC-COVID consists of four modules: 1) a Crowdsource Knowledge
Graph Constructor (CKGC), 2) a Claim-guided Specific Knowledge Propagator (CSKP), 3) a Topic-
based Generalized Knowledge Integrator (TGKI), and 4) a Joint Claim-Graph-based Misinformation
Detector (CGMD). First, CKGC constructs the crowdsource hierarchical knowledge graph (CHKG)
by leveraging a group of expert and non-expert crowd workers to identify COVID-19 specific
knowledge facts and COVID-19 generalized knowledge facts collaboratively from COVID-19
articles. Second, the CSKP module develops a multi-relational graph neural network to encode
input COVID-19 claims and integrate the claim information with COVID-19 specific knowledge
facts in CHKG. Third, the TGKI module explores the COVID-19 generalized knowledge facts in
CHKG that are strongly correlated with input claims by designing a duo hierarchy attention based
neural network. The attention outputs are used to retrieve informative graph triples from CHKG as
explanations for the COVID-19 misinformation detection results. Finally, the CGMD determines
whether the input claim is misleading by jointly exploring the encoded claims and CHKG. We
discuss the above modules in detail below.
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Fig. 2. Overview of HC-COVID Structure

4.1 Crowdsource Knowledge Graph Constructor (CKGC)
CKGC aims to construct CHKG that contains both COVID-19 specific knowledge facts and general-
ized knowledge facts from COVID-19 articles. In our approach, we design two novel crowdsourcing
tasks for a group of expert workers and non-expert workers to analyze a set of COVID-19 articles.
Unlike traditional crowdsourcing tasks that only assign workers simple annotation tasks (e.g.,
image annotation [8, 63], text classification [16, 51]), the CKGC designs a novel crowdsourcing task
that expects crowd workers to understand and summarize the content of COVID-19 articles by
leveraging their background knowledge. In particular, we design two crowdsourcing task interfaces
(i.e., the article-level interface and the topic-level interface) for the crowd workers. The examples
of the two interfaces are shown in Figure 3. The article-level interface helps workers to explore
COVID-19 specific knowledge facts in COVID-19 articles. The topic-level interface lets crowd
workers focus on the summarized COVID-19 topics from the article-level interface and propose
generalized knowledge facts that can help identify misleading claims with similar topics. We define
the responses from crowd workers as article-level responses and topic-level responses, respectively.
Article-Level Response: The article-level interface requires the non-expert crowd workers

to provide COVID-19 specific knowledge facts based on a single COVID-19 article. In order to
integrate the crowd responses into CHKG to detect COVID-19 misinformation, we specify the
following requirements for the crowd worker’s responses.

• A worker needs to provide a 3-tuple statement as shown in Figure 3(a) (e.g., “Entity 1”
relation−−−−−→

“Entity 2”).
• The input entities should match existing terms in the COVID-19 article. The reason is that
non-expert workers usually do not have enough COVID-19 related background knowledge
to propose novel concepts. However, they are able to extract key terms from the COVID-19
article to summarize the specific knowledge facts [35].
• The input relation should be selected from the predefined relation pool that includes a set of
frequently used relations (e.g., is, close relation to, no effect on) identified by crowd workers
in our pilot study. The details of the relation pool is discussed in Section 5.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. GROUP, Article 36. Publication date: January 2022.
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Fig. 3. Crowdsourcing Interface and Example Result

For example, an article-level response from a non-expert worker could be “Pfizer”
no effect on−−−−−−−−→

“human DNA”, which is a COVID-19 specific knowledge fact for the Pfizer vaccine. However, such
the COVID-19 knowledge fact summarized from a single COVID-19 article is insufficient to cover
the information from other COVID-19 vaccine related articles (e.g., articles discussing Moderna
or J&J vaccine). To address this problem, we further ask the non-expert workers to submit the
potential COVID-19 topics of the COVID-19 article they read. We create a COVID-19 topic pool for
selection and will discuss the selection process in Section 5.

Topic-Level Response: While the article-level responses only focus on the COVID-19 specific
knowledge within a single COVID-19 article, the topic-level response serves as a complementary
measure to assign expert workers to propose COVID-19 generalized knowledge. There are two
key advantages of the topic-level interface: 1) it is both cost and time efficient for expert workers
to focus on abstract COVID-19 topics and propose generalized COVID-19 knowledge that can
cover the information of different COVID-19 articles; 2) it significantly improves the robustness of
the constructed hierarchical knowledge graph because the COVID-19 generalized knowledge can
cover unseen COVID-19 concepts that are embedded in COVID-19 articles with similar topics. For
example, the generalized COVID-19 knowledge for Figure 3(b) could be “Vaccine”

no effect on−−−−−−−−→ “DNA”
that covers not only the current main COVID-19 vaccines (e.g., Pfizer, Moderna) but also the unseen
and emerging ones (e.g., BNT162b2 in Figure 1(b)). In particular, the topic-level interface firstly
collects the COVID-19 topics from responses of the article-level interface. Then the topic-level
interface shows the topics to the expert workers and expect the workers to propose COVID-19
generalized knowledge facts related to the given topics. To ensure the quality of both article-
level and topic-level responses from crowd workers, we leverage a set of crowd quality control
mechanisms (e.g., HITs worker filtering, entity matching) [3, 50] to obtain high-quality responses.
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After collecting all responses from both interfaces, the next step is to construct CHKG. The
responses from both article-level and topic-level interfaces serve as triples in the knowledge graph.
In particular, the entities in the 3-tuple responses are used to construct graph entities and the
relations are used to construct the graph edges. We show an example constructed crowdsourcing
knowledge graph in Figure 3(c). Formally, we define CHKG and its two sub-graphs as below.

Definition 9. Crowdsource Article-Level Knowledge Graph (G𝑆 ): the crowdsource article-
level knowledge graph G𝑆 = {V𝑆 , E𝑆 ,T 𝑆 } (e.g., the blue subgraph in Figure 3(c)) contains COVID-
19 specific knowledge constructed only by the triples from the article-level responses whereV𝑆 ,
E𝑆 and T 𝑆 represent the graph entities, graph edges and graph triples, respectively. We further
split E𝑆 as E𝑆 = {E𝑆,𝑟1 , · · · , E𝑆,𝑟𝑄 } where R = {𝑟1, · · · , 𝑟𝑄 } represents all relations in the relation
pool and E𝑆,𝑟𝑞 denotes the graph edges belonging to the relation of 𝑟𝑞 .

Definition 10. Crowdsource Topic-Level Knowledge Graph (G𝑂 ): the crowdsource topic-
level knowledge graph G𝑂 = {V𝑂 , E𝑂 ,T𝑂 } (e.g., the green subgraph in Figure 3(c)) contains
COVID-19 generalized knowledge constructed only by the triples from the topic-level responses.
Similarly, E𝑂 = {E𝑂,𝑟1 , · · · , E𝑂,𝑟𝑄 } and E𝑂,𝑟𝑞 represents the graph edges belonging to the relation
of 𝑟𝑞 .

Definition 11. Hierarchical Knowledge Graph (G): the hierarchical knowledge graph
G = {V, E,T ,P} is constructed by all the triples from both the article-level and topic-level
responses whereV = {V𝑆 ,V𝑂 }, E = {E𝑅, E𝑂 } and T = {T 𝑆 ,T𝑂 } represents the graph entities,
graph relations and graph triples, respectively. P denotes a binary bipartite adjacent matrix that
contains COVID-19 topics to connect triples in G𝑆 with the triples in G𝑂 . If an expert worker
proposes a COVID-19 generalized knowledge fact T𝑂

𝑖 ∈ T𝑂 that is related to the COVID-19 topic
“Vaccine”, then we set P𝑖 𝑗 = 1 for all T 𝑆

𝑗 from the COVID-19 articles that belong to the topic
“Vaccine” in article-level responses. For example, the binary bipartite adjacent matrix P ∈ R2×3 for
Figure 3(c) is P𝑖, 𝑗 = 1, 1 ≤ 𝑖 ≤ 2, 2 ≤ 𝑗 ≤ 3 and P𝑖, 𝑗 = 0, 1 ≤ 𝑖 ≤ 2, 𝑗 = 1.

In the following sections, we discuss how the constructed CHKG can be utilized to solve the
explainable COVID-19 misinformation detection problem.

4.2 Claim-guided Specific Knowledge Propagator (CSKP)
In this subsection, we present the CSKP in HC-COVID that propagates the encoded information of
input COVID-19 claim to G𝑆 for retrieving claim related COVID-19 specific knowledge. The CSKP
consists of two specific components: 1) a COVID-19 claim feature encoder, and 2) a multi-relational
specific knowledge propagator. We define the two network architectures below.

4.2.1 COVID-19 Claim Feature Encoder. The COVID-19 claim feature encoder aims to encode the
input COVID-19 claim and extract high-level semantic features from the claim to propagate the
feature of the claim into G𝑆 . We first design a word-level feature encoder that converts words in a
COVID-19 claim to high-dimensional vectors in order to integrate the semantic information from
different words. Given a COVID-19 claim 𝑐𝑛 = {𝑤𝑛,1, · · · ,𝑤𝑛,𝐿}, we convert all words in the claim
to one-hot vectors and apply an embedding matrix to transform the vectors to a high-dimensional
embedding. The embedding can be denoted as �̃�𝑛 = {𝑤𝑛,1, · · · ,𝑤𝑛,𝐿} where each word denotes as
𝑤𝑛,𝑙 ∈ R𝑑 .

Using the word embeddings from the word-level feature encoder, we design a bi-directional
gated recurrent unit (biGRU) to encode the entire content of the claim. The biGRU strengthens the
semantic connection between different words in a claim. In particular, given an embedded claim �̃�𝑛
with 𝐿 word embeddings, the biGRU processes the embeddings from both directions of the claim.
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The forward biGRU
−→
𝑓 𝑔𝑟𝑢 reads from the first word embedding to the last one while the backward

biGRU
←−
𝑓 𝑔𝑟𝑢 reads them reversely. The process can be formally denoted as:

−→
ℎ 𝑛,𝑙 =

−→
𝑓 𝑔𝑟𝑢 (𝑤𝑛,𝑙 ), 𝑙 ∈ {1, . . . , 𝐿}

←−
ℎ 𝑛,𝑙 =

←−
𝑓 𝑔𝑟𝑢 (𝑤𝑛,𝑙 ), 𝑙 ∈ {1, . . . , 𝐿}

(2)

where
−→
ℎ 𝑛,𝑙 ∈ R𝑑 and

←−
ℎ 𝑛,𝑙 ∈ R𝑑 are hidden states for the 𝑙𝑡ℎ word of 𝑐𝑛 . We then obtain the feature

of each word by concatenating its forward and backward hidden states, i.e.,ℎ𝑛,𝑙 = [
−→
ℎ 𝑛,𝑙 ,
←−
ℎ 𝑛,𝑙 ] ∈ R2𝑑 .

The aggregated feature of 𝑐𝑛 can be denoted as ℎ𝑛 ∈ R𝐿×2𝑑 . We perform the word-level average
pooling operation to integrate ℎ𝑛 into a single claim-level feature 𝐻𝑛 ∈ R1×2𝑑 that denotes the
overall semantic representation of 𝑐𝑛 .

4.2.2 Multi-Relational Specific Knowledge Propagator. Given the embedded claim-level feature
𝐻𝑛 from Section 4.2.1, the multi-relational specific knowledge propagator aims to propagate the
feature into G𝑆 for retrieving claim related knowledge facts from G𝑆 . In particular, we represent
G𝑆 as a multi-relational graph neural network (RGCN) for the aggregation of COVID-19 specific
knowledge. RGCN is a specific type of graph convolutional network that contains multiple types
of relations between different graph entities [38]. In our explainable COVID-19 misinformation
detection problem, we model G𝑆 as an RGCN because it can effectively represent different relations
in G𝑆 (e.g., close relation to, no relation with) and aggregate COVID-19 specific knowledge with
the information of the input claim. In particular, the entities E𝑆 in G𝑆 are represented as high-
dimension entity embeddings Ẽ𝑆 ∈ R𝐸𝑆×2𝑑 in RGCN where 𝐸𝑆 is the number of unique entities in
G𝑆 . Similarly, the relations R in G𝑆 are represented as relation embeddings R̃ ∈ R𝑄×2𝑑 . To learn the
latent representations of the entities in G𝑆 , we develop a multi-relation information aggregation
strategy defined as:

�̃�𝑖 = 𝜎 (
∑︁
𝑟 ∈R

∑︁
( 𝑗,𝑟 ,𝑖) ∈T∗

1
𝑧𝑖,𝑟

𝑊 𝑟
𝑖, 𝑗 �̃� 𝑗𝐴

𝑟
𝑖, 𝑗 ) (3)

where �̃�𝑖 ∈ Ẽ𝑆 and �̃� 𝑗 ∈ Ẽ𝑆 are 𝑖𝑡ℎ and 𝑗𝑡ℎ graph entity embeddings in G𝑆 . 𝜎 stands for the non-
linear activation ReLU function. R contains all available relations in G𝑆 and T ∗ ∈ T 𝑆 denotes the
set of graph triples consisting of �̃�𝑖 . 𝑧𝑖,𝑟 is a normalization factor for �̃�𝑖 and𝑊 𝑟

𝑖, 𝑗 is the learnable
parameter. 𝐴𝑟 is the adjacent matrix for the relation 𝑟 and 𝐴𝑟

𝑖, 𝑗 represents the scalar value for �̃�𝑖 and
�̃� 𝑗 .

Unlike traditional graph neural networks approaches that simply merge different features to-
gether to indicate the relation between the features (e.g., concatenating 𝐻𝑖 with entity embeddings
in G𝑆 ), the CSKP encodes 𝐻𝑛 as an additional adjacent matrix for G𝑆 in our RGCN to perform the
claim guided graph convolution. The intuition is that the instance specific knowledge propagation
in the RGCN should match the semantic content in the input COVID-19 claim to detect misleading
information. For example, a claim that discusses the relation between the Pfizer vaccine and the
human DNA can guide the RGCN to retrieve more Pfizer related knowledge facts from G𝑆 to check
the truthfulness of the claim. Formally, given an embedded claim feature 𝐻𝑛 ∈ R1×2𝑑 , the process
for generating the adjacent matrix with relation 𝑟 in RGCN can be denoted as:

𝐴𝑟 = Ẽ𝑆 · (𝐻𝑛)𝑇 + 𝐻𝑛 · (Ẽ𝑆 )𝑇 (4)

where 𝐴𝑟 ∈ R𝐸𝑆×𝐸𝑆 is the result adjacent matrix corresponding to the relation 𝑟 ∈ R. The final
output of the multi-relation information aggregation is the updated entity embeddings �̃�𝑖 ∈ R2𝑑
given the input graph entity 𝑒𝑖 ∈ G𝑆 .
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4.3 Topic-based Generalized Knowledge Integrator (TGKI)
The previous knowledge graph based methods for misinformation detection mainly extract the
knowledge from general health-related documents that are not specific to COVID-19. More im-
portantly, the direct knowledge extraction from the documents cannot identify unseen COVID-19
misinformation because the knowledge is limited to the content of the documents and not fully
generalized. To address the above limitations, the TGKI designs a novel hierarchical co-attention
mechanism to retrieve both COVID-19 specific knowledge facts and generalized knowledge facts
from CHKG as explanations for the misinformation detection results. We observe that retrieving
accurate explanations from CHKG is determined by two correlation factors: 1) the correlation
between the input COVID-19 claim and the COVID-19 specific knowledge from G𝑆 and 2) the
correlation between the COVID-19 specific knowledge from G𝑆 and the generalized knowledge
from G𝑂 . The first correlation determines whether the content of the input claim can be matched
to any COVID-19 specific knowledge fact extracted from the COVID-19 articles. For example, a
misleading COVID-19 claim that makes up a unrealistic side effect (e.g., COVID-19 infection) caused
by Pfizer vaccine can be detected by Pfizer specific knowledge (e.g., “Pfizer”

not cause−−−−−−−→ “COVID-19”)
fromG𝑆 . The second correlation determines whether there exists COVID-19 generalized knowledge
facts from G𝑂 that can provide explanations for the input claim based on its topic connections with
COVID-19 specific knowledge facts from G𝑆 . For example, if there is no matched Pfizer specific
knowledge fact from G𝑆 for the input claim, TGKI detects the related COVID-19 specific knowledge
facts (e.g., Moderna vaccine) and then retrieves their topic-wise connected generalized knowledge
facts as explanations (“Vaccine”

not cause−−−−−−−→ “COVID-19”).
To retrieve accurate and complementary explanations that explicitly consider the above correla-

tion factors, we propose a novel duo hierarchy attention based neural network for TGKI. The duo
hierarchy attention based neural network estimates the possibility of each COVID-19 knowledge
fact from both G𝑆 and G𝑂 as the explanation for the misinformation detection results. We first
define the triple-level embedding below for the graph triples from both G𝑆 and G𝑂 .

Definition 12. Triple-Level Embedding: Triple-level embedding represents the semantic
features of triples as the joint representations of graph entities and graph edges. Given an embedded
triple T̃𝑘 = {�̃�𝑖 , �̃�𝑞, �̃� 𝑗 } from CHKG, the triple-level embedding is denoted as𝜓𝑘 = �̃�𝑖 ⊙ �̃�𝑞 ⊙ �̃� 𝑗 ∈ R2𝑑 .
For the embedded triples in G𝑆 that are intergrated with the input claims in the CSKP module, the
triple-level embeddings are denoted as𝜓𝑆 ∈ R𝑁𝑆×2𝑑 where 𝑁 𝑆 is the number of triples. Similarly,
for the embedded triples in G𝑂 , the triple-level embeddings are denoted as 𝜓𝑂 ∈ R𝑁𝑂×2𝑑 where
𝑁𝑂 is the number of triples.

Given the triple-level embeddings𝜓𝑆 , our goal is to estimate the possibility of each triple in𝜓𝑆

of being the explanation for the input claim. In particular, the duo hierarchy attention based neural
network generates the attention scores for 𝜓𝑆 as 𝑈 𝑆 = Softmax(𝜓𝑆𝑊 𝑆 ) where 𝑈 𝑆 ∈ R𝑁𝑆×1 are
generated attention scores for all 𝑁 𝑆 triples from G𝑆 . The higher the score is, the more likely the
corresponding triple is correlated with the input claim. In order to explore the complex correlation
between 𝜓𝑆 and 𝜓𝑂 , the duo hierarchy attention based neural network designs a co-attention
mechanism to generate attentions scores as:

𝑀 = Softmax𝑂 (tanh(𝜓𝑆𝑊𝑀 (𝜓𝑂 )𝑇 ) ⊙ P) (5)

where 𝑀 ∈ R𝑁𝑆×𝑁𝑂 is the generated attention matrix and 𝑀𝑖, 𝑗 is the correlation score for 𝑖𝑡ℎ

triple from G𝑆 with 𝑗𝑡ℎ triple from G𝑂 . Softmax𝑂 is the Softmax operation in the 𝑁𝑂 dimension.
To estimate the possibility for each triple from 𝜓𝑂 of being the explanation for the input claim,
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the duo hierarchy attention based network integrate 𝑈 𝑆 into 𝑀 , which can be denoted as 𝑈𝑂 =

Softmax(𝑀𝑇𝑈 𝑆 ) ∈ R𝑁𝑂×1. We concatenate 𝑈 𝑆 and 𝑈𝑂 as 𝑈 = [𝑈 𝑆 ,𝑈𝑂 ] as the comprehensive
explanations for the input claim. The higher the score is, the more likely the corresponding graph
triple can reasonably explain the detection results of HC-COVID.

4.4 Joint Claim-Graph-based Misinformation Detector (CGMD)
Given the feature of the input claim from CSKP and triple-level embeddings from TGKI, the CGMD
module aims to determine if the input COVID-19 claim is misleading or not by designing a binary
neural network classifier. In particular, given a COVID-19 claim 𝑐𝑛 , we output the final prediction
as:

𝑦𝑛 = [𝐻𝑛,

𝑁𝑆∑︁
𝑖=1

𝜓𝑆
𝑖 ×𝑈 𝑆

𝑖 ,

𝑁𝑂∑︁
𝑗=1

𝜓𝑂
𝑗 ×𝑈𝑂

𝑗 ]𝑊 𝑏 (6)

where [·, ·, ·] denotes the concatenation operation to merge the features of the input COVID-19
claim with all triple-level embeddings from CHKG.𝑊 𝑏 ∈ R5𝑑×2 is the learnable parameter and
𝑦𝑛 ∈ R2 is the final prediction. Our loss function is the binary cross-entropy function that minimizes
the loss between 𝑦𝑛 and the ground-truth label 𝑦𝑛 for each input COVID-19 claim 𝑐𝑛 . The process
is denoted as:

L =

𝑁∑︁
𝑛=1
−𝑦𝑛log(𝑦𝑛,2) − (1 − 𝑦𝑛)log(1 − 𝑦𝑛,1) (7)

where 𝑦𝑛,1 and 𝑦𝑛,2 are 1𝑡ℎ and 2𝑡ℎ scalar value in 𝑦𝑛 . The loss function measures the difference be-
tween two probability distributions (i.e.,𝑦𝑛 and𝑦𝑛) that is minimized by HC-COVID. We summarize
the HC-COVID scheme in Algorithm 1.

Algorithm 1 HC-COVID Scheme Workflow
Objective: Detect and explain the input COVID-19 claim
Input: COVID-19 claim 𝑐𝑛 , misinformation label 𝑦𝑛 , COVID-19 article set A, MTurk crowd worker group
W = {𝑊 +,𝑊 −}

Output: COVID-19 misinformation prediction 𝑦𝑛 , explanation list𝑈 after𝑀 iterations
1: G𝑆 ,G𝑂 ,G = CKGC(A,W)
2: while 𝑖 ≤ 𝑀 do
3: 𝐻𝑛 = CSKP→ biGRU(𝑐𝑛)
4: G𝑆 ,G𝑂 = CSKP→ RGCN(G𝑆 ), CSKP→ RGCN(G𝑂 )
5: G𝑆 = CSKP→ RGCN.conv(G𝑆 , 𝐻𝑛)
6: 𝜓𝑆 ,𝜓𝑂 = TGKI→ Triple-Level-Embed(G𝑆 ), TGKI→ Triple-Level-Embed(G𝑂 )
7: 𝑈 𝑆 = TGKI.attention(𝜓𝑆 )
8: 𝑈𝑂 = TGKI.co-attention(𝜓𝑆 ,𝜓𝑂 ,𝑈 𝑆 )
9: 𝑦𝑛 = CGMD(𝐻𝑛,𝜓

𝑆 ,𝜓𝑂 ,𝑈
𝑆 ,𝑈𝑂 )

10: AdamOptimization(L(𝑦𝑛, 𝑦𝑛))
11: end while
12: 𝑈 = [𝑈 𝑆 ,𝑈𝑂 ] .sort()
13: return 𝑦𝑛 ,𝑈

5 EVALUATION
In this section, we conduct extensive experiments on two real-world COVID-19 misinformation
datasets on social media to answer the following questions:
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• Q1: Can HC-COVID achieve better misinformation detection performance than the state-of-
the-art baselines?
• Q2: Given a post, can HC-COVID provide reasonable explanations based on the hierarchical
crowdsource knowledge graph?
• Q3: How does each component of HC-COVID contribute to its overall performance?

5.1 Dataset and Experiment Setup
Dataset. We use two public COVID-19 misinformation datasets for our experiments. The first
dataset is CoAID [10], a COVID-19 health misinformation dataset that consists of COVID-19 articles
and COVID-19 claims. The COVID-19 articles contain reliable COVID-19 medical news and fact-
checking articles including both medical and non-medical concepts. The COVID-19 claims contain
1, 000 true COVID-19 related tweets and 1, 000 misleading COVID-19 related tweets as the dataset
for evaluating the HC-COVID and state-of-the-art baselines. The second dataset CONSTRAINT [32]
is a large-scale COVID-19 fake news dataset that consists of 10, 700 COVID-19 related tweets. In
particular, the CONSTRAINT dataset is utilized for evaluating the misleading information detection
performance of HC-COVID where its hierarchical crowdsource knowledge graph is constructed
from the COVID-19 articles in CoAID. For both datasets, we split the COVID-19 claims with 50% as
training set, 20% as validation set, and 30% as testing set4. The summary of the two datasets are
shown in Table 1.

Table 1. Dataset Summary

Dataset Type Data

COVID-19 articles 600

CoAID [10] True tweets 1,632

Misleading tweets 544

True tweets 5,600

CONSTRAINT [32] Misleading tweets 5,100

Crowdsourcing Platform. For each COVID-19 article in article-level interface discussed in
Section 4.1, we invite five independent Amazon MTurk workers to participate in the construction
of our article-level knowledge graph. For topic-level interface, we select crowd workers who are
verified by Amazon MTurk as “healthcare worker” and then develop a set of COVID-19 screening
questions to select COVID-19 expert workers5. There are two types of potential biases in conducting
both crowdsourcing tasks: 1) the demographic bias of various crowd workers and 2) the opinion
bias of crowdsourcing responses. To mitigate the demographic bias of crowd workers, we follow
the recruiting policy of Amazon MTurk and provide an equal opportunity for each crowd worker.
In particular, we design the crowdsourcing interfaces and upload the interfaces to the Amazon
MTurk website. The Amazon MTurk displays the interfaces publicly and accepts the interested
crowd workers regardless of their demographic attributes (e.g., race, gender, age). To mitigate the
opinion bias, we adopt the majority voting mechanism to collect crowdsourcing responses from
both article-level and topic-level interfaces. In particular, we accept a submitted article-level or
topic-level response only if a submitted 3-tuple statement is same in two or more responses. To

4We will make all our codes and datasets publicly available upon the acceptance of the paper.
5https://blog.mturk.com/introducing-premium-qualifications-1e473456e7b0
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ensure the quality of responses from workers, the workers are selected only if they have a 98% or
higher Human Intelligence Task (HIT) rate.

We perform a COVID-19 relation selection pilot study to identify 11 relations as the relation pool.
In particular, we randomly select 150 COVID-19 articles from the CoAID dataset [10] and assign
4 non-expert crowd workers and 1 expert worker for each article to summarize the knowledge
triples. We allow crowd workers to use free texts to indicate the relations between entities when
they accomplish the two crowdsourcing tasks developed in Section 4.1. We then identify the 11
most frequent relations that are used by 15 or more crowd responses. The relation-count summary
is as follows: {is: 96, cause: 81, close relation with: 65, no relation with: 62, have: 49, is good for : 39, no
effect on: 31, is not: 27, is bad for : 20, not have: 17, prevent: 15}. Similarly, we carried out a COVID-19
topic selection pilot study to identify 8 unique COVID-19 topics in the article-level interface for
non-expert workers to select. In particular, we randomly select 100 COVID-19 articles from the
CoAID dataset and asks three COVID-19 expert workers to propose possible COVID-19 topics for
each article. We randomly select expert workers from Amazon MTurk to reduce potential opinion
bias from the workers. For each COVID-19 article, the selected expert worker needs to create three
different COVID-19 topics that can cover the entire or most content of the article. After the study,
we collect all proposed COVID-19 topics and select the 8 most frequent topics that are proposed
more than 20 times by COVID-19 expert workers. The topic-count summary is: {Prevention: 71,
Virus Itself : 52, Cure: 45, Vaccine: 44, Spread: 37, Politics: 32, Influence: 25, Origin: 21}.
We set the payment to all crowd workers well above the minimum requirement from MTurk6.

We also closely follow the IRB protocol approved by our institution. The averaged time to complete
an article-level and a topic-level task by a crowd worker is 76 and 194 seconds, respectively. Finally,
we collect 640 valid triples for the article-level knowledge graph (i.e., nearly 1 knowledge triple for
each COVID-19 article) and 80 valid triples for the topic-level graph (nearly 10 knowledge triples
for each COVID-19 topic).
Experiment Setup. In our experiments, we pre-select the COVID-19 claims as the independent
testing set and perform 10-fold cross validation on the train-validation set to estimate a more general
performance of all schemes. For the implementation details of HC-COVID, the CIKP module holds
2 graph convolutional layers with each layer followed by the ReLU activation. We set the hidden
state dimensions of the biGRU networks from CIKP as 128. We set the vocabulary size for the
COVID-19 claims in the CoAID and CONSTRAINT datasets as 4, 500 and 6, 000, respectively. We
set the total number of epochs as 40 and train HC-COVID with an initial learning rate of 0.001
and decay of 0.95 in each epoch. The optimizer is Adam with 5 × 10−4 weight decay. We run our
experiments on Ubuntu 16.04 with two NVIDIA 1080Ti.

5.2 Baselines
We conduct experiments with state-of-the-art fake news detection models to evaluate the perfor-
mance of HC-COVID.
• HAN [59]: a hierarchical attention network approach that applies both word-level and
sentence-level mechanisms for document classification. In this paper, we use COVID-19
claims in CoAID or CONSTRAINT as the input documents and train the model to classify
misleading claims from truthful claims.
• PLAN [24]: a multi-head attention network approach to detect rumors in social media by
constructing a conversation tree that models the various interactions between the original
rumor and the corresponding user replies. In particular, we replace the false and true rumors
in PLAN as true and false claims for the classification task, respectively.

6https://www.mturk.com/pricing
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• MVAE [23]: a variational autoencoder neural network approach for fake news detection by
learning a hidden representation from the content of social media posts.
• dEFEND [41]: a fake news detection model that applies a co-attention strategy to retrieve
important sentences from both the text content of fake news and the user comments by
analyzing the interaction between them.
• DETERRENT [11]: a knowledge-guided graph attention network solution to detect mis-
information in health-related articles by incorporating a medical knowledge graph and an
article-entity bipartite graph. Specifically, we replace health-related articles in DETERRENT
with COVID-19 claims and train the framework for the classification task.
• COVID19-KG [15]: a cause-and-effect knowledge model of COVID-19 pathophysiology. In
particular, we replace the crowd knowledge graph in HC-COVID with the knowledge graph
constructed by COVID19-KG to implement this baseline.
• KMGCN [57]: a knowledge-driven and graph-based model to detect fake news in social
media posts by exploring the background knowledge hidden in the text content of the posts.
In particular, we retrieve the specific graph triples from our hierarchical knowledge graph
as background knowledge if the graph triples contain the same word as the one used in the
input COVID-19 claim.

5.3 Evaluation Results
5.3.1 Detection Performance (Q1). To answer question Q1, we first evaluate the misinformation de-
tection performance of the HC-COVID and all the baselines on both the CoAID and CONSTRAINT
datasets. The evaluation results are shown in Table 2 and Table 3, respectively. We observe that
HC-COVID consistently outperforms all the baseline methods on all evaluation metrics on both the
CoAID and CONSTRAINT datasets. In particular, HC-COVID achieves performance gains of 2.2%
and 2.7% in terms of F1 score compared to the best-performing baseline (i.e., DETERRENT) on the
CoAID and CONSTRAINT datasets, respectively. Such a performance gain can be attributed to the
incorporation of the COVID-19 generalized knowledge facts in the hierarchical knowledge graph
that can effectively infer the truthfulness of an unseen COVID-19 claim. Moreover, we observe that
the medical knowledge graph based baselines (i.e., DETERRENT, COVID19-KG, KMGCN) perform
better than other baselines that do not utilize professional medical knowledge. Such an observation
further verifies the effectiveness of leveraging medical knowledge facts for the detection of mis-
leading COVID-19 misinformation. However, HC-COVID outperforms these medical knowledge
graph based baselines because it develops a crowdsourcing approach to abstract both specific and
generalized knowledge facts from COVID-19 articles.
We further visualize several testing cases in Figure 4 to evaluate the detection performance of

HC-COVID. The score in each case is the prediction probability that represents the confidence level
of HC-COVID. Figure 4(a) shows two testing cases that are correctly identified as misleading by
HC-COVID but mis-classified by other baselines. The explanations from our hierarchical knowledge
graph demonstrate that HC-COVID can accurately detect and explain the COVID-19misinformation

based on both specific (e.g., “Bill Gates”
is good for
−−−−−−−→ “COVID-19”) and generalized knowledge facts

(e.g., “Mask”
no effect on−−−−−−−−→ “illness”). Moreover, we show one testing case in Figure 4(b) that all methods

fail to detect the misinformation in it. The reason of the post being misleading is the actual IFR
of COVID-19 is more than 0.65% that cannot be classified as any common influenza. However,
the detection of manipulation on real numbers is difficult because it require the algorithms to
understand the definition of the numbers (e.g., the definition of IFR) and have the ability to infer the
truthfulness of the number associated with the specific concepts (e.g., the possible IFR of COVID-19).
We will further explore it in future works.
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Table 2. Overall Detection Performance on CoAID

Methods HAN PLAN MVAE dEFEND DETERRENT COVID19-KG KMGCN HC-COVID

F1 Score 0.653 0.731 0.688 0.745 0.798 0.761 0.797 0.820

Accuracy 0.807 0.846 0.823 0.855 0.885 0.871 0.887 0.899

Precision 0.664 0.722 0.685 0.742 0.792 0.802 0.814 0.826

Recall 0.642 0.740 0.691 0.748 0.805 0.724 0.780 0.813

Fig. 4. Case Study of COVID-19 Misinformation Detection

Table 3. Overall Detection Performance on CONSTRAINT

Methods HAN PLAN MVAE dEFEND DETERRENT COVID19-KG KMGCN HC-COVID

F1 Score 0.750 0.895 0.827 0.868 0.911 0.883 0.910 0.938

Accuracy 0.769 0.898 0.830 0.875 0.915 0.886 0.913 0.939

Precision 0.788 0.892 0.817 0.887 0.923 0.880 0.912 0.925

Recall 0.716 0.897 0.838 0.851 0.899 0.887 0.907 0.951

5.3.2 Explainability Performance (Q2). To answer question Q2, we study the explainability per-
formance of the proposed HC-COVID through multiple real-world user studies. In particular, we
compare the explainability performance of HC-COVID with the COVID19-KG and DETERRENT
baselines which are the only baselines that involve knowledge graphs that can output attention
weights to explain the detection results. In the user study, we carry out two sets of experiments
using Amazon MTurk. In particular, we randomly select 25 COVID-19 misleading claims and 25
COVID-19 non-misleading claims from the testing set to perform explainability evaluation.
In the first subset of experiments, we study the explainability performance by comparing the

quality of the explanations generated from HC-COVID with other schemes. In particular, we define
explainability ranked list as a list of graph triples retrieved from the knowledge graph based on
their attention scores in descending order. For each compared scheme and each COVID-19 claim,
we create Top-1, Top-3, and Top-5 explainability ranked list to fully evaluate the explainability
performance of each scheme. For each type of explainability ranked list (e.g., Top-1, Top-3, Top-
5), we recruit 5 MTurk workers and ask them to select one scheme from all the three compared
schemes that can best explain the detection results of each input COVID-19 claim. The explainability
performance is evaluated using the following two metrics that are commonly used for quantifying
the quality of explanation [41].
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• Percentage of Posts (% of Posts): the percentage of posts whose explanation picked by the
majority workers as their preferred ones belonging to each scheme. For example, given an
input COVID-19 claims, if three or more crowdworkers believe that the claim is best explained
by the knowledge triples from the COVID19-KG scheme. Then we assign COVID19-KG as
the best explainable scheme to the claim. If there are totally 10 claims with COVID19-KG,
the % of Posts for COVID19-KG is 10

50 × 100% = 20%.
• Percentage ofWorkers (% ofWorkers): the percentage of workers who select their preferred
explanation from the explainability ranked list predicted by each scheme. For example, given
an input COVID-19 claim, if there are 3 crowd workers choosing HC-COVID as the best
explainable scheme for the claim and 2 crowd workers choosing DETERRENT, we record
the number of crowd workers for each scheme. If HC-COVID is finally chosen by 100 crowd
works from all 50 claims, the % of Workers for HC-COVID is 100

50×5 = 40%.
The above two metrics evaluate the explainability performance of compared schemes from

claim-level and worker-level, respectively. The results are summarized in Figure 6. We observe that
HC-COVID significantly outperforms the compared baseline schemes in terms of both metrics.
The performance gains demonstrate HC-COVID’s capability of generating relevant and accurate
explanations by the TGKI module.

Fig. 5. Explainability Evaluation on CoAID

In the second subset of experiments, we evaluate the explainability performance by investigating
the efficiency of the explanations generated by each compared scheme. In particular, we ask 5
MTurk workers to first read through Top-5 explainability ranked list from the first one with the
highest attention weights, and stop when a worker thinks the cumulative explanation triples are
sufficient to convince the worker on the detection result. The number of explanation triples a
worker has read for each post is recorded and is denoted as the minimum reading index (MRI). We
them measure the explanation efficiency using the following metrics with respect to MRI:
• Average MinimumReading Index (AvgMRI): The average value of MRI for each compared
scheme.
• Percentage of Posts (% of Posts): The percentage of posts on which each compared scheme
achieves the lowest MRI.

We present the results in Table 4. We observe that HC-COVID achieves the lowest average MRI
on both the CoAID and CONSTRAINT datasets compared to the COVID19-KG and DETERRENT
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Fig. 6. Explainability Evaluation on CONSTRAINT

schemes. In addition, HC-COVID also explains most of detection results (i.e., 58% on the CoAID
dataset and 52% on the DETERRENT dataset) with the lowest number of explanation triples.

Table 4. Evaluation for Minimum Reading Index

Dataset Metric COVID19-KG DETERRENT HC-COVID

CoAID AvgMRI 3.32 2.93 2.25

% of Posts 10.0 32.0 58.0

CONSTRAINT AvgMRI 2.94 2.99 2.48

% of Posts 26.0 22.0 52.0

5.3.3 Ablation Study (Q3). To answer question Q3, we carry out an ablation study to further
investigate the importance of each component in the HC-COVID framework. In particular, we
consider three ablations of the HC-COVID framework: i) HC-COVID\C that excludes the encoding
of claim-level feature into our CHKG by replacing the claim guided adjacency matrix in Equation 4
with binary adjacency matrix; ii) HC-COVID\T that excludes the TGKI module from HC-COVID by
considering COVID-19 specific and COVID-19 generalized knowledge facts as a homogeneous set
of knowledge facts; iii) HC-COVID\G that excludes the COVID-19 generalized knowledge facts from
the hierarchical knowledge graph. We reported the results of the ablation study in Table 5. We note
that HC-COVID achieves the best performance when incorporating all components. In particular,
we observe that the COVID-19 generalized knowledge facts significantly contribute to the detection
performance of HC-COVID. The reason is that COVID-19 generalized knowledge facts not only
contain the summarized knowledge facts about COVID-19 from COVID-19 articles but also allow
HC-COVID to identify misleading content that has not appeared in existing COVID-19 articles.
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Table 5. Ablation Study for Variants of HC-COVID on CONSTRAINT

F1 Score Accuracy Precision Recall
HC-COVID 0.938 0.939 0.925 0.951

HC-COVID\C 0.920 0.921 0.903 0.938

HC-COVID\T 0.916 0.918 0.905 0.928

HC-COVID\G 0.896 0.895 0.862 0.933

6 DISCUSSION AND FUTUREWORK
We further discuss the possibility of leveraging the HC-COVID framework to solve more general
crowdsourcing and machine learning problems. In particular, we elaborate the generalizability of
HC-COVID as follows.
• The generalizability of the hierarchical COVID-19 knowledge graph on COVID-19 related ap-
plications: various COVID-19 related applications can leverage the knowledge facts in our
knowledge graph to improve their application-specific performance. In particular, the ma-
chine learning based COVID-19 diagnosis approaches [1, 12, 66] can utilize knowledge graph
to boost their diagnosis accuracy. For example, the COVID-19 diagnosis approaches usually
consider the COVID-19 symptoms (e.g., “ fever”, “cough”) as important features to determine
COVID-19 infection of participants. However, it is difficult for the approaches to estimate
the complex relations between various COVID-19 symptoms and the COVID-19 infection,
especially when the data samples are insufficient. HC-COVID can address the problem by
explicitly retrieving COVID-19 knowledge facts from our hierarchical knowledge graph that
are relevant to COVID-19 symptoms (e.g., “fever”

close relation to−−−−−−−−−−−→ “COVID-19”, “cough”
cause−−−−→

“COVID-19”). The COVID-19 symptoms and the corresponding COVID-19 knowledge facts
can be integrated into more informative features for more accurate COVID-19 diagnosis.
• The generalizability of the explainable hierarchical crowdsourcing framework on other knowledge-
driven classification problems: the overall framework of HC-COVID (i.e., explainable graph
neural network approach based on the hierarchical crowdsourcing knowledge graph) can be
generalized to address different classification problems that require professional knowledge
to perform classification and explanation tasks. For example, William et al. [6] designed a
human-machine system to classify human heart records by assigning expert crowd workers
and non-expert workers together to perform the classification task. However, assigning
expert workers the same classification task as the non-expert workers is not always effective
due to either the lack of available expert workers or the lack of professional medical knowl-
edge of non-expert workers. The framework of HC-COVID can address such a problem by
tasking the expert workers to propose generalized medical knowledge facts that are specific
to this application (e.g., the characteristics of abnormal heart records) and tasking non-expert
workers to identify the abnormal heart records that satisfy the proposed characteristics by
the expert workers. A human heart related knowledge graph constructed from the inputs
from expert workers can effectively guide the non-expert workers to identify abnormal heart
records and provide explicit explanations for the classification results.

Our paper is closely related to the research of crowdsourcing and human-machine systems in
CSCW and GROUP communities [4, 6, 17, 22, 31, 44]. For example, Berenberg et al. [4] designed
a crowdsourcing framework that assigns crowd workers to construct a large-scale topological

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. GROUP, Article 36. Publication date: January 2022.



HC-COVID 36:21

network. Jiang et al. [22] leveraged the uneven difficulty of crowdsourcing tasks and developed a
task difficulty identification method to effectively recruit crowd workers. In our paper, we focus on
the construction of a hierarchical COVID-19 knowledge graph by exploring the uneven ability and
reliability of crowd workers (i.e., expert workers vs. non-expert workers). Park et al. [31] proposed a
crowdsourcing approach to design AI-based healthcare technologies and outlined the key challenges
in future crowd-AI research areas. William et al. [6] proposed a hybrid human-machine algorithm
to classify human heart records by leveraging both expert and non-expert medical workers. In our
paper, we propose a crowdsourcing-based graph neural network approach to detect COVID-19
misinformation on social media, which protects people against misleading COVID-19 claims and
helps them make more informed decisions on the topic of COVID-19.

There exist at least two possible strategies for social media users to leverage HC-COVID to digest
COVID-19 related information in practice. The first strategy is active misinformation verification
where the social media users can actively choose the COVID-19 related posts of their interest and
activate HC-COVID to examine the truthfulness of the posts. The second strategy is automatic
misinformation monitoring where the social media users can choose to link HC-COVID with their
online accounts that allows HC-COVID to automatically check the correctness of all COVID-19
posts in the users’ view. For each post in both strategies, the HC-COVID will generate the binary
detection results (e.g., misleading or non-misleading) as well as the knowledge triples from the
COVID-19 crowdsourcing knowledge graph as explanations of the detection results.

Finally, we identify some limitations and future directions of HC-COVID as below.

• Misclassification on specific COVID-19 misinformation: As shown in Figure 4(b), HC-COVID
as well as other state-of-the-art schemes all fail to detect the misinformation in the post.
The reason is that the algorithms do not have sufficient background knowledge on spe-
cific numbers (e.g., 0.1%) related to COVID-19, especially when the definitions of numbers
are dynamically changing in different contexts (e.g., the numbers have different semantic
meanings if they are associated with different concepts, such as IFR and Infection Rate in
social media posts). Therefore, it is an important and challenging task on how to explore the
accurate definition of the numeric numbers of a post in our future work of HC-COVID. One
possible strategy is to design a crowdsourcing strategy that tasks crowd workers to rephrase
numeric content (e.g., 0.3% IFR) to semantic content (e.g., a relatively low IFR). The intuition
is that humans are often better than machines at understanding the semantic meanings of
numbers by leveraging their background knowledge and the context of the posts [34]. A
key challenge in this direction is how to reduce the opinion bias from crowd workers in
the numerical content rephrase process (e.g., different crowd workers may propose diverse
rephrased semantic contents based on their own background knowledge). Therefore, a novel
and effective de-bias method is needed for the crowdsourcing strategy to obtain the accurate
rephrased semantic contents.
• Partial COVID-19 misinformation: The current HC-COVID is only able to make binary predic-
tions (i.e., misleading or non-misleading) on the input COVID-19 claims. Therefore, it fails
to reveal the degree of truthfulness for a given COVID-19 claim. For example, a COVID-19
claim may contain true information in the first sentence but misinformation in the rest of the
post. However, we observe that the amount of truthful content in a partially true COVID-19
claim is correlated with the prediction score (e.g., the prediction scores in Figure 4) of our
HC-COVID framework. In particular, a higher prediction score is likely to indicate a higher
degree of truthfulness for the given COVID-19 claim. In future work, we will further explore
the possible quantitative measurements (e.g., correlation coefficients) to accurately estimate
the relation between the prediction score and the degree of truthfulness. Moreover, we plan to
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explore the possibility of identifying the misleading content from a partially true COVID-19
claim by comparing the degree of the truthfulness of word-level representations with the
overall prediction score of the post to identify low-credibility words in the post.

7 CONCLUSION
This paper presents the HC-COVID scheme to address the explainable COVID-19 misinformation
detection problem on social media. We design a novel crowdsource hierarchical knowledge graph
via the collaboration between expert and non-expert crowd workers to model the COVID-19 specific
knowledge and generalized knowledge facts. We also develop a duo hierarchy attention based
graph neural network to effectively integrate the COVID-19 knowledge facts contributed by crowd
workers to detect misleading COVID-19 claims and explain the detection results. Evaluation results
on two real-world datasets of COVID-19 misinformation demonstrate that HC-COVID significantly
outperforms the state-of-the-art baselines in terms of both COVID-19 misinformation detection
accuracy and explainability.
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