
Journal of Artificial Intelligence Research 50 (2014) 369-407 Submitted 10/13; published 6/14

HC-Search: A Learning Framework for Search-based
Structured Prediction

Janardhan Rao Doppa doppa@eecs.oregonstate.edu

School of EECS, Oregon State University
Corvallis, OR 97331-5501, USA

Alan Fern afern@eecs.oregonstate.edu

School of EECS, Oregon State University
Corvallis, OR 97331-5501, USA

Prasad Tadepalli tadepall@eecs.oregonstate.edu

School of EECS, Oregon State University

Corvallis, OR 97331-5501, USA

Abstract

Structured prediction is the problem of learning a function that maps structured inputs
to structured outputs. Prototypical examples of structured prediction include part-of-
speech tagging and semantic segmentation of images. Inspired by the recent successes of
search-based structured prediction, we introduce a new framework for structured prediction
called HC-Search. Given a structured input, the framework uses a search procedure guided
by a learned heuristic H to uncover high quality candidate outputs and then employs a
separate learned cost function C to select a final prediction among those outputs. The
overall loss of this prediction architecture decomposes into the loss due to H not leading
to high quality outputs, and the loss due to C not selecting the best among the generated
outputs. Guided by this decomposition, we minimize the overall loss in a greedy stage-wise
manner by first training H to quickly uncover high quality outputs via imitation learning,
and then training C to correctly rank the outputs generated via H according to their true
losses. Importantly, this training procedure is sensitive to the particular loss function of
interest and the time-bound allowed for predictions. Experiments on several benchmark
domains show that our approach significantly outperforms several state-of-the-art methods.

1. Introduction

We consider the problem of structured prediction, where the predictor must produce a
structured output given a structured input. For example, in Part-Of-Speech (POS) tag-
ging, the structured input is a sequence of words and structured output corresponds to the
POS tags for those words. Image scene labeling is another example, where the structured
input is an image and the structured output is a semantic labeling of the image regions.
Structured prediction tasks such as above arise in several domains ranging from natural
language processing (e.g., named entity recognition, coreference resolution, and semantic
parsing) and computer vision (e.g., multi-object tracking and activity recognition in videos)
to speech (e.g., text-to-speech mapping and speech recognition) and compuational biology
(e.g., protein secondary structure prediction and gene prediction).

Viewed as a traditional classification problem, the set of possible classes in structured
prediction is exponential in the size of the input. Thus, the problem of producing an

c©2014 AI Access Foundation. All rights reserved.

Doppa, Fern, & Tadepalli

output is combinatorial in nature, which introduces the non-trivial choice of selecting a
computational framework for producing outputs. Importantly, this framework needs to
balance two conflicting criteria: 1) It must be flexible enough to allow for complex and
accurate structured predictors to be learned, and 2) It must support inference of outputs
within the computational time constraints of an application. One of the core research
challenges in structured prediction has been to achieve a balance between these criteria.

A standard approach to structured prediction is to learn a cost function C(x,y) for
scoring a potential structured output y given a structured input x. Given such a cost
function and a new input x, the output computation involves solving the so-called “Argmin”
problem, which is to find the minimum cost output for a given input.

ŷ = argminy∈Y(x) C(x, y) (1)

For example, approaches such as Conditional Random Fields (CRFs) (Lafferty, McCallum,
& Pereira, 2001), Max-Margin Markov Networks (Taskar, Guestrin, & Koller, 2003) and
Structured SVMs (Tsochantaridis, Hofmann, Joachims, & Altun, 2004) represent the cost
function as a linear model over template features of both x and y. Unfortunately, exactly
solving the Argmin problem is often intractable. Efficient solutions exist only in limited
cases such as when the dependency structure among features forms a tree. In such cases, one
is forced to simplify the features to allow for tractable inference, which can be detrimental
to prediction accuracy. Alternatively, a heuristic optimization method can be used such
as loopy belief propagation or variational inference. While such methods have shown some
success in practice, it can be difficult to characterize their solutions and to predict when
they are likely to work well for a new problem.

We are inspired by the recent successes of output-space search approaches (Doppa, Fern,
& Tadepalli, 2012; Wick, Rohanimanesh, Bellare, Culotta, & McCallum, 2011), which place
few restrictions on the form of the cost function. These methods learn and use a cost
function to conduct a search through the space of complete outputs via a search procedure
(e.g., greedy search), and return the least cost output that is uncovered during the search as
the prediction. The search procedure only needs to be able to efficiently evaluate the cost
function at specific input-output pairs, which is generally straightforward even when the
corresponding Argmin problem is intractable. Thus, these methods are free to increase the
complexity of the cost function without considering its impact on the inference complexity.

While these approaches have achieved state-of-the-art performance on a number of
benchmark problems, a primary contribution of this paper is to highlight a fundamental
deficiency that they share. In particular, prior work uses a single cost function to serve the
dual roles of both: 1) guiding the search toward good outputs, and 2) scoring the generated
outputs in order to select the best one. Serving these dual roles often means that the cost
function needs to make unclear tradeoffs, increasing the difficulty of learning. Indeed, in
the traditional AI search literature, these roles are typically served by different functions,
mainly a heuristic function for guiding search, and a cost/evaluation function (often part
of the problem definition) for selecting the final output.

In this paper, we study a new framework for structured prediction called HC-Search that
closely follows the traditional search literature. The key idea is to learn distinct functions
for each of the above roles: 1) a heuristic function H to guide the search and generate a set
of high-quality candidate outputs, and 2) a cost function C to score the outputs generated

370

HC-Search: A Learning Framework for Search-based Structured Prediction

by the heuristic H. Given a structured input, predictions are made by using H to guide a
search strategy (e.g., greedy search or beam search) until a time bound to generate a set of
candidate outputs and then returning the generated output of least cost according to C.

While the move to HC-Search might appear to be relatively small, there are significant
implications in terms of both theory and practice. First, the regret of the HC-Search
approach can be decomposed into the loss due to H not leading to high quality outputs, and
the loss due to C not selecting the best among the generated outputs. This decomposition
helps us target our training to minimize each of these losses individually in a greedy stage-
wise manner. Second, as we will show, the performance of the approaches with a single
function can be arbitrarily bad when compared to that of HC-Search in the worst case.
Finally, we show that in practice HC-Search performs significantly better than the single
cost function search and other state-of-the-art approaches to structured prediction.

The effectiveness of the HC-Search approach for a particular problem depends critically
on: 1) the quality of the search space over complete outputs being used, where quality is
defined as the expected depth at which target outputs (zero loss outputs) can be located, 2)
our ability to learn a heuristic function for effectively guiding the search to generate high-
quality candidate outputs, and 3) the accuracy of the learned cost function in selecting the
best output among the candidate outputs generated by the heuristic function. In this work,
we assume the availability of an efficient search space over complete outputs and provide an
effective training regime for learning both heuristic function and cost function within the
HC-Search framework.

1.1 Summary of Contributions

The main contributions of our work are as follows: 1) We introduce the HC-Search frame-
work, where two different functions are learned to serve the purposes of search heuristic
and cost function as in the search literature; 2) We analyze the representational power and
computational complexity of learning within the HC-Search framework; 3) We identify a
novel decomposition of the overall regret of the HC-Search approach in terms of generation
loss, the loss due to heuristic not generating high-quality candidate outputs, and selection
loss, the loss due to cost function not selecting the best among the generated outputs; 4)
Guided by the decomposition, we propose a stage-wise approach to learning the heuristic
and cost functions based on imitation learning; 5) We empirically evaluate the HC-Search
approach on a number of benchmarks, comparing it to state-of-the-art methods and ana-
lyzing different dimensions of the framework.

The remainder of the paper proceeds as follows. In Section 2, we introduce our problem
setup, give a high-level overview of our framework, and analyze the complexity ofHC-Search
learning problem. We describe our approaches to heuristic and cost function learning in
Section 3. Section 4 presents our experimental results followed by an engineering method-
ology for applying our framework to new problems in Section 5. Finally, Sections 6 and 7
discuss related work and future directions.

371

Doppa, Fern, & Tadepalli

2. HC-Search Framework

In this section, we first state the formal problem setup and then describe the specifics of
the search spaces and search strategies that we will investigate in this work. Next, we give
a high-level overview of our HC-Search framework along with its learning objective.

2.1 Problem Setup

A structured prediction problem specifies a space of structured inputs X , a space of struc-
tured outputs Y, and a non-negative loss function L : X×Y×Y 7→ ℜ+ such that L(x, y′, y∗)
is the loss associated with labeling a particular input x by output y′ when the true out-
put is y∗. We are provided with a training set of input-output pairs {(x, y∗)} drawn from
an unknown target distribution D. The goal is to return a function/predictor from struc-
tured inputs to outputs whose predicted outputs have low expected loss with respect to
the distribution D. Since our algorithms will be learning heuristic and cost functions over
input-output pairs, as is standard in structured prediction, we assume the availability of a
feature function Φ : X × Y 7→ ℜn that computes an n dimensional feature vector for any
pair. Importantly, we can employ two different feature functions ΦH and ΦC for heuristic
and cost function noting that they are serving two different roles: the heuristic is making
local decisions to guide the search towards high-quality outputs and the cost function is
making global decisions by scoring the candidate outputs generated by the heuristic in this
framework.

2.2 Search Spaces and Search Strategies

We overview some basic search concepts in the context of our search-based framework below.

2.2.1 Search Spaces

Our approach is based on search in a space So of complete outputs, which we assume to
be given. Every state in a search space over complete outputs consists of an input-output
pair (x, y), representing the possibility of predicting y as the output for structured input
x. Such a search space is defined in terms of two functions: 1) An initial state function I
such that I(x) returns an initial state for input x, and 2) a successor function S such that
for any search state (x, y), S((x, y)) returns a set of next states {(x, y1), · · · , (x, yk)} that
share the same input x as the parent. For example, in a sequence labeling problem, such
as part-of-speech tagging, (x, y) is a sequence of words and corresponding part-of-speech
(POS) labels. The successors of (x, y) might correspond to all ways of changing one of the
output labels in y, the so-called “flipbit” space. Figure 1 provides an illustration of the
flipbit search space for the handwriting recognition task.

Search Space Quality. The effectiveness of our HC-Search framework depends on
the quality of the search space that is used. The quality of a search space can in turn be
understood in terms of the expected amount of search needed to uncover the correct output
y∗. For most search procedures, the time required to find a target output y∗ will grow as
a function of the depth of the target. Thus, one way to quantify the expected amount of
search, independently of the specific search strategy, is by considering the expected depth
of target outputs y∗. In particular, for a given input-output pair (x, y∗), the target depth d

372

HC-Search: A Learning Framework for Search-based Structured Prediction

Figure 1: An example Flipbit search space for the handwriting recognition problem. Each
search state consists of a complete input-output pair and the complete output at
every state differs from that of its parent by exactly one label. The highlighted
state corresponds to the one with true output y∗ at the smallest depth, which is
equal to the number of errors in the initial state.

373

Doppa, Fern, & Tadepalli

is defined as the minimum depth at which we can find a state corresponding to the target
output y∗ (d = 5 in the example flipbit space shown in Figure 1). Clearly according to this
definition, the expected target depth of the flipbit space is equal to the expected number of
errors in the output corresponding to the initial state.

A variety of search spaces, such as the above flipbit space, Limited Discrepancy Search
(LDS) space (Doppa et al., 2012), and those defined based on hand-designed proposal
distributions (Wick et al., 2011) have been used in past research. While our work applies to
any such space, we will focus on the LDS space in our experiment, which has been shown to
effectively uncover high-quality outputs at relatively shallow search depths (Doppa et al.,
2012).

The LDS space is defined in terms of a recurrent classifier h which uses the next input
token, e.g. word, and output tokens in a small preceding window, e.g. POS labels, to
predict the next output token. The initial state of the LDS space consists of the input
x paired with the output of the recurrent classifier h on x. One problem with recurrent
classifiers is that when a recurrent classifier makes a mistake, its effects get propagated
to down-stream tokens. The LDS space is designed to prevent this error propagation by
immediately correcting the mistakes made before continuing with the recurrent classifier.
Since we do not know where the mistakes are made and how to correct them, all possible
corrections, called discrepancies, are considered. Hence the successors of any state (x, y) in
the LDS space consist of the results of running the recurrent classifier after changing exactly
one more label, i.e., introducing a single new discrepancy, somewhere in the current output
sequence y while preserving all previously introduced discrepancies. In previous work, the
LDS space has been shown to be effective in uncovering high-quality outputs at relatively
shallow search depths, as one would expect with a good recurrent classifier (Doppa et al.,
2012). The Appendix contains more details and examples of the LDS space we employ in
this work.

2.2.2 Search Strategies

Recall that in our HC-Search framework, the role of the search procedure is to uncover high-
quality outputs. We can consider both uninformed and informed search strategies. However,
uninformed search procedures like depth bounded breadth-first search will only be practical
when high-quality outputs exist at small depths and even when they are feasible, they are
not a good choice because they don’t use the search time bound in an intelligent way to
make predictions. For most structured prediction problems, informed search strategies that
take heuristic functions into account, such as greedy search or best-first search are a better
choice, noting that their effectiveness depends the quality of the search heuristic H. Prior
work (Doppa et al., 2012; Wick et al., 2011) has shown that greedy search (hill climbing
based on the heuristic value) works quite well for a number of structured prediction tasks
when used with an effective search space. Thus, in this work, we focus our empirical work
on the HC-Search framework using greedy search, though the approach applies more widely.

2.3 HC-Search Approach

Our approach is parameterized by a search space over complete outputs S≀ (e.g., LDS
space), a heuristic search strategy A (e.g., greedy search), a learned heuristic function

374

HC-Search: A Learning Framework for Search-based Structured Prediction

Figure 2: A high level overview of our HC-Search framework. Given a structured input x
and a search space definition So, we first instantiate a search space over complete
outputs. Each search node in this space consists of a complete input-output pair.
Next, we run a search procedure A (e.g., greedy search) guided by the heuristic
function H for a time bound τ . The highlighted nodes correspond to the search
trajectory traversed by the search procedure, in this case greedy search. The
scores on the nodes correspond to cost values, which are different from heuris-
tic scores (not shown in the figure). We return the least cost output ŷ that is
uncovered during the search as the prediction for input x.

H : X × Y 7→ ℜ, and a learned cost function C : X × Y 7→ ℜ. Given an input x and a
prediction time bound τ , HC-Search makes predictions as follows. It traverses the search
space starting at I(x) using the search procedure A guided by the heuristic function H until
the time bound is exceeded. Then the cost function C is applied to find return the least-cost
output ŷ that is generated during the search as the prediction for input x. Figure 2 gives a
high-level overview of our HC-Search framework.

More formally, let YH(x) be the set of candidate outputs generated using heuristic H
for a given input x. The output returned by HC-Search is ŷ the least cost output in this
set according to C, i.e.,

ŷ = argminy∈YH(x) C(x, y)

375

Doppa, Fern, & Tadepalli

Figure 3: An example that illustrates that C-Search can suffer arbitrarily large loss com-
pared to HC-Search.

The expected loss of the HC-Search approach E(H, C) for a given heuristic H and C can be
defined as

E (H, C) = E(x,y∗)∼D L (x, ŷ, y∗) (2)

Our goal is to learn a heuristic functionH∗ and corresponding cost function C∗ that minimize
the expected loss from their respective spaces H and C, i.e.,

(H∗, C∗) = argmin(H,C)∈H×C E (H, C) (3)

In contrast to our framework, existing approaches for output space search (Doppa et al.,
2012; Wick et al., 2011) use a single function (say C) to serve the dual purpose of heuristic
and cost function. This raises the question of whether HC-Search, which uses two differ-
ent functions, is strictly more powerful in terms of its achievable losses. The following
proposition shows that the expected loss of HC-Search can be arbitrarily smaller than when
restricting to using a single function C.

Proposition 1. Let H and C be functions from the same function space. Then for all
learning problems, minC E(C, C) ≥ min(H,C) E(H, C). Moreover there exist learning problems
for which minC E(C, C) is arbitrarily larger (i.e. worse) than min(H,C) E(H, C).

Proof. The first part of the proposition follows from the fact that the first minimization is
over a subset of the choices considered by the second.

To see the second part, consider a problem with a single training instance with search
space shown in Figure 3. The search procedure will be greedy search that is either guided
by H for HC-Search, or by C when only one function is used. L(n) and Φ(n) represents the
true loss and the feature vector of node n respectively. The cost and heuristic functions are
linear functions of Φ(n). Node 7 corresponds to the lowest-loss output and greedy search
must follow the trajectory of highlighted nodes in order to reach that output. First consider
HC-Search. For the highlighted path to be followed the heuristic H needs to satisfy the
following constraints: H(3)<H(2), H(7)<H(6), and the weights wH = [−1, 1, 1] result in a

376

HC-Search: A Learning Framework for Search-based Structured Prediction

heuristic that satisfies the constraints. Given this heuristic function, in order to return node
7 as the final output, the cost function must satisfy the following constraints: C(7)<C(1),
C(7)<C(2), C(7)<C(3), C(7)<C(6), and the weights wC = [−1,−1, 0] solve the problem.
Thus we see that HC-Search can achieve zero loss on this problem.

Now consider the case where a single function C is used for the heuristic and cost
function. Here in order to generate a loss of zero, the function C must satisfy the combined
set of constraints from above that were placed on the heuristic and cost function. However,
it can be verified that there is no set of weights that satisfies both C(3)<C(2) and C(7)<C(1),
and hence, there is no single function C in our space that can achieve a loss of zero. By
scaling the losses by constant factors we can make the loss suffered arbitrarily high.

Thus, we see that there can be potential representational advantages to following theHC-
Search framework. In what follows, we consider the implications of this added expressiveness
in terms of the worst-case time complexity of learning.

2.4 Learning Complexity

We now consider the feasibility of efficient, optimal learning in the simplest setting of greedy
search using linear heuristic and cost functions represented by their weight vectors wH and
wC respectively. In particular, we consider the HC-Search Consistency Problem, where the
input is a training set of structured examples, and we must decide whether or not there
exists wH and wC such that HC-Search using greedy search will achieve zero loss on the
training set. We first note, that this problem can be shown to be NP-Hard by appealing
to results on learning for beam search (Xu, Fern, & Yoon, 2009a). In particular, results
there imply that in all but trivial cases, simply determining whether or not there is a linear
heuristic wH that uncovers a zero loss search node is NP-Hard. Since HC-Search can only
return zero loss outputs when the heuristic is able to uncover them, we see that our problem
is also hard.

Here we prove a stronger result that provides more insight into the HC-Search frame-
work. In particular, we show that even when it is “easy” to learn a heuristic that uncovers
all zero loss outputs, the consistency problem is still hard. This shows, that in the worst case
the hardness of our learning problem is not simply a result of the hardness of discovering
good outputs. Rather our problem is additionally complicated by the potential interaction
between H and C. Intuitively, when learning H in the worst case there can be ambiguity
about which of many small loss outputs to generate, and for only some of those will we
be able to find an effective C to return the best one. This is formalized by the following
theorem, whose proof is in the Appendix.

Theorem 1. The HC-Search Consistency Problem for greedy search and linear heuristic
and cost functions is NP-Hard even when we restrict to problems for which all possible
heuristic functions uncover a zero loss output.

3. Learning Approach

The above complexity result suggests that, in general, learning the optimal (H∗, C∗) pair
is impractical due to their potential interdependence. In this section, we develop a greedy

377

Doppa, Fern, & Tadepalli

stage-wise learning approach that first learns H and then a corresponding C. The approach
is motivated by observing a decomposition of the expected loss into components due to H
and C. Below, we first describe the decomposition and the staged learning approach that it
motivates. Next we describe our approaches for learning the heuristic and cost functions.

3.1 Loss Decomposition and Staged Learning

For any heuristic H and cost function C, the expected loss E (H, C) can be decomposed into
two parts: 1) the generation loss ǫH, due to H not generating high-quality outputs, and
2) the selection loss ǫC|H, the additional loss (conditional on H) due to C not selecting the
best loss output generated by the heuristic. Formally, let y∗H be the best loss output in the
set YH(x), i.e.,

y∗H = argminy∈YH(x) L(x, y, y∗)

We can express the decomposition as follows:

E (H, C) = E(x,y∗)∼D L (x, y∗H, y
∗)

︸ ︷︷ ︸

ǫH

+ E(x,y∗)∼D L (x, ŷ, y∗)− L (x, y∗H, y
∗)

︸ ︷︷ ︸

ǫC|H

(4)

Note that given labeled data, it is straightforward to estimate both the generation and
selection loss, which is useful for diagnosing the HC-Search framework. For example, if one
observes that a system has high generation loss, then there will be little payoff in working
to improve the cost function. In our empirical evaluation we will further illustrate how the
decomposition is useful for understanding the results of learning.

In addition to being useful for diagnosis, the decomposition motivates a learning ap-
proach that targets minimizing each of the errors separately. In particular, we optimize the
overall error of the HC-Search approach in a greedy stage-wise manner. We first train a
heuristic Ĥ in order to optimize the generation loss component ǫH and then train a cost
function Ĉ to optimize the selection loss ǫC|Ĥ conditioned on Ĥ.

Ĥ ≈ argminH∈H ǫH

Ĉ ≈ argminC∈C ǫC|Ĥ

Note that this approach is greedy in the sense that Ĥ is learned without considering the
implications for learning Ĉ. While the proof of Theorem 1 hinges on this coupling, we have
found that in practice, learning Ĥ independently of Ĉ is a very effective strategy.

In what follows, we first describe a generic approach for heuristic function learning that
is applicable for a wide range of search spaces and search strategies, and then explain our
cost function learning algorithm.

3.2 Heuristic Function Learning

Most generally, learning a heuristic can be viewed as a Reinforcement Learning (RL) prob-
lem where the heuristic is viewed as a policy for guiding “search actions” and rewards

378

HC-Search: A Learning Framework for Search-based Structured Prediction

are received for uncovering high quality outputs (Zhang & Dietterich, 1995). In fact, this
approach has been explored for structured prediction in the case of greedy search (Wick,
Rohanimanesh, Singh, & McCallum, 2009) and was shown to be effective given a carefully
designed reward function and action space. While this is a viable approach, general purpose
RL can be quite sensitive to the algorithm parameters and specific definition of the reward
function and actions, which can make designing an effective learner quite challenging. In-
deed, recent work (Jiang, Teichert, Daumé III, & Eisner, 2012), has shown that generic RL
algorithms can struggle for some structured prediction problems, even with significant effort
put forth by the designer. Hence, in this work, we follow an approach based on imitation
learning, that makes stronger assumptions, but has nevertheless been very effective and
easy to apply across a variety of problems.

Algorithm 1 Heuristic Function Learning via Exact Imitation

Input: D = Training examples, (I, S) = Search space definition, L = Loss function, A =
Rank-based search procedure, τmax = search time bound
Output: H, the heuristic function

1: Initialize the set of ranking examples R = ∅
2: for each training example (x, y∗) ∈ D do
3: s0 = I(x) // initial state of the search tree
4: M0 = {s0} // set of open nodes in the internal memory of the search procedure
5: for each search step t = 1 to τmax do
6: Select the state(s) to expand: Nt =Select(A, L,Mt−1)
7: Expand every state s ∈ Nt using the successor function S: Ct =Expand(Nt, S)
8: Prune states and update the internal memory state of the search procedure:

Mt =Prune(A, L,Mt−1 ∪ Ct \Nt)
9: Generate ranking examples Rt to imitate this search step

10: Add ranking examples Rt to R: R = R∪Rt // aggregation of training data
11: end for
12: end for
13: H =Rank-Learner(R) // learn heuristic function from all the ranking examples
14: return learned heuristic function H

Our heuristic learning approach is based on the observation that for many structured
prediction problems, we can quickly generate very high-quality outputs by guiding the
search procedure using the true loss function L as a heuristic. Obviously this can only be
done for the training data for which we know y∗. This suggests formulating the heuristic
learning problem in the framework of imitation learning by attempting to learn a heuristic
that mimics the search decisions made by the true loss function on training examples. The
learned heuristic need not approximate the true loss function uniformly over the output
space, but need only make the distinctions that were important for guiding the search. The
main assumptions made by this approach are: 1) the true loss function can provide effective
heuristic guidance to the search procedure, so that it is worth imitating, and 2) we can
learn to imitate those search decisions sufficiently well.

This imitation learning approach is similar to prior work on learning single cost functions
for output-space search (Doppa et al., 2012). However, a key distinction here is that learning

379

Doppa, Fern, & Tadepalli

is focused on only making distinctions necessary for uncovering good outputs (the purpose
of the heuristic) and hence requires a different formulation. As in prior work, in order to
avoid the need to approximate the loss function arbitrarily closely, we restrict ourselves to
“rank-based” search strategies. A search strategy is called rank-based if it makes all its
search decisions by comparing the relative values of the search nodes (their ranks) assigned
by the heuristic, rather than being sensitive to absolute values of heuristic. Most common
search procedures such as greedy search, beam search, and best-first search fall under this
category.

3.2.1 Imitating Search Behavior

Given a search space over complete outputs S, a rank-based search procedure A, and a
search time bound τ , our learning procedure generates imitation training data for each
training example (x, y∗) as follows. We run the search procedure A for a time bound of τ
for input x using a heuristic equal to the true loss function, i.e. H(x, y) = L(x, y, y∗). During
the search process we observe all of the pairwise ranking decisions made by A using this
oracle heuristic and record those that are sufficient (see below) for replicating the search.
If the state (x, y1) has smaller loss than (x, y2), then a ranking example is generated in the
form of the constraint H(x, y1)<H(x, y2). Ties are broken using a fixed arbitrator1. The
aggregate set of ranking examples collected over all the training examples is then given to
a learning algorithm to learn the weights of the heuristic function.

If we can learn a function H from hypothesis space H that is consistent with these
ranking examples, then the learned heuristic is guaranteed to replicate the oracle-guided
search on the training data. Further, given assumptions on the base learning algorithm
(e.g. PAC), generic imitation learning results can be used to give generalization guarantees
on the performance of search on new examples (Khardon, 1999; Fern, Yoon, & Givan, 2006;
Syed & Schapire, 2010; Ross & Bagnell, 2010). Our experiments show, that the simple
approach described above, performs extremely well on our problems.

Algorithm 1 describes our approach for heuristic function learning via exact imitation of
search guided by the loss function. It is applicable to a wide-range of search spaces, search
procedures and loss functions. The learning algorithm takes as input: 1) D = {(x, y∗)}, a
set of training examples for a structured prediction problem (e.g., handwriting recognition);
2) So = (I, S), a search space over complete outputs (e.g., LDS space), where I is the initial
state function and S is the successor function; 3) L, a task loss function defined over
complete outputs (e.g., hamming loss); 4) A, a rank-based search procedure (e.g., greedy
search); 5) τmax, the search time bound (e.g., number of search steps).

The algorithmic description of Algorithm 1 assumes that the search procedure A can
be described in terms of three steps that are executed repeatedly on an open list of search
nodes: 1) selection, 2) expansion and 3) pruning. In each execution, the search procedure
selects one or more open nodes from its internal memory for expansion (step 6) based on
heuristic value, and expands all the selected nodes to generate the candidate set (step 7).
It retains only a subset of all the open nodes after expansion in its internal memory and
prunes away all the remaining ones (step 8) again based on heuristic value. For example,

1. For the LDS Space that we employed in this work, we implemented an arbitrator which breaks the ties
based on the position of the discrepancy (prefers earlier discrepancies).

380

HC-Search: A Learning Framework for Search-based Structured Prediction

greedy search maintains only the best node, best-first beam search retains only the best b
nodes for a fixed beam-width b, and pure best first search does not do any pruning.

Algorithm 1 loops through each training example and collects a set of ranking con-
straints. Specifically, for example (x, y∗), the search procedure is run for a time bound of
τmax using the true loss function L as the heuristic (steps 2-12). During each search step a
set of pairwise ranking examples is generated that are sufficient for allowing the search step
to be imitated (step 9) as described in more detail below. After all such constraints are
aggregated across all search steps of all training examples, they are given to a rank-learning
algorithm (e.g., Perceptron or SVM-Rank) to learn the weights of the heuristic function
(step 13).

The most important step in our heuristic function learning algorithm is the generation
of ranking examples to imitate each step of the search procedure (step 9). In what follows,
we will give a generic description of “sufficient” pairwise decisions to imitate the search,
and illustrate them for greedy search through a simple example.

3.2.2 Sufficient Pairwise Decisions

Above we noted that we only need to collect and learn to imitate the “sufficient” pairwise
decisions encountered during search. We say that a set of constraints is sufficient for a
structured training example (x, y∗), if any heuristic function that is consistent with the
constraints causes the search to follow the same trajectory of open lists encountered during
search. The precise specification of these constraints depends on the actual search procedure
that is being used. For rank-based search procedures, the sufficient constraints can be
categorized into two types:

1. Selection constraints, which ensure that the search node(s) from the internal memory
state that will be expanded in the next search step is (are) ranked better than all
other nodes.

2. Pruning constraints, which ensure that the internal memory state (set of search nodes)
of the search procedure is preserved at every search step. More specifically, these
constraints involve ranking every search node in the internal memory state better
(lower H-value) than those that are pruned.

Below, we will illustrate these constraints concretely for greedy search noting that similar
formulations for other rank-based search procedures are straightforward (See (Doppa, Fern,
& Tadepalli, 2014a) for beam search formulation).

3.2.3 Constraints for Greedy Search

This is the most basic rank-based search procedure. For a given input x, it traverses the
search space by selecting the next state as the successor of the current state that looks best
according to the heuristic function H. In particular, if si is the search state at step i, greedy
search selects si+1 = argmins∈S(si)H(s), where s0 = I(x). In greedy search, the internal
memory state of the search procedure at step i consists of only the best open (unexpanded)
node si.

381

Doppa, Fern, & Tadepalli

Figure 4: An example search tree that illustrates greedy search with loss function. Each
node represents a complete input-output pair and can be evaluated using the loss
function. The highlighted nodes correspond to the trajectory of greedy search
guided by the loss function.

Let (x, yi) correspond to the input-output pair associated with state si. Since greedy
search maintains only a single open node si in its internal memory at every search step i,
there are no selection constraints. Let Ci+1 be the candidate set after expanding state si,
i.e., Ci+1 = S(si). Let si+1 be the best node in the candidate set Ci+1 as evaluated by the
loss function, i.e., si+1 = argmins∈Ci+1

L(s). As greedy search prunes all the nodes in the
candidate set other than si+1, pruning constraints need to ensure that si+1 is ranked better
than all the other nodes in Ci+1. Therefore, we include one ranking constraint for every
node (x, y) ∈ Ci+1 \ (x, yi+1) such that H(x, yi+1) < H(x, y).

We will now illustrate these ranking constraints through an example. Figure 4 shows
an example search tree of depth two with associated losses for every search node. The
highlighted nodes correspond to the trajectory of greedy search with loss function that our
learner has to imitate. At the first search step, {H(3) < H(2),H(3) < H(4)} are the pruning
constraints. Similarly, {H(10) < H(8),H(10) < H(9)} form the pruning constraints at the
second search step. Therefore, the aggregate set of constraints needed to imitate the greedy
search behavior shown in Figure 4 are:
{H(3) < H(2),H(3) < H(4),H(10) < H(8),H(10) < H(9)}.

3.3 Cost Function Learning

Given a learned heuristic H, we now want to learn a cost function that correctly ranks the
potential outputs generated by the search procedure guided by H. More formally, let YH(x)
be the set of candidate outputs generated by the search procedure guided by heuristic H for
a given input x, and lbest be the loss of the best output among those outputs as evaluated by
the true loss function L, i.e., lbest = miny∈YH(x) L(x, y, y

∗). In an exact learning scenario,
the goal is to find the parameters of a cost function C such that for every training example

382

HC-Search: A Learning Framework for Search-based Structured Prediction

(x, y∗), the loss of the minimum cost output ŷ equals lbest, i.e., L(x, ŷ, y
∗) = lbest, where

ŷ = argminy∈YH(x) C(x, y). In practice, when exact learning isn’t possible, the goal is to
find a cost function such that the average loss over the training data of the predicted output
using the cost function is minimized.

Algorithm 2 Cost Function Learning via Cross Validation

Input: D = Training examples, So = Search space definition, L = Loss function, A =
Search procedure, τmax = search time bound
Output: C, the cost function

1: Divide the training set D into k folds D1,D2, · · · ,Dk

2: // Learn k different heuristics H1, · · · ,Hk

3: for i = 1 to k do
4: Ti = ∪j 6=i Dj // training data for heuristic Hi

5: Hi = Learn-Heuristic(Ti,So, L,A, τmax) // heuristic learning via Algorithm 1
6: end for
7: // Generate ranking examples for cost function training
8: Intialize the set of ranking examples R = ∅
9: for i = 1 to k do

10: for each training example (x, y∗) ∈ Di do
11: Generate outputs by running the search procedure A with heuristic Hi for time

bound τmax: YHi
(x) = Generate-Outputs(x,So,A,Hi, τmax)

12: Compute the set of best loss outputs: Ybest = {y ∈ YHi
(x)|L(x, y, y∗) = lbest},

where lbest = miny∈YHi
(x) L(x, y, y

∗)

13: for each pair of outputs (ybest, y) ∈ Ybest × YHi
(x) \ Ybest do

14: Add ranking example C(x, ybest) < C(x, y) to R
15: end for
16: end for
17: end for
18: // Train cost function on all the ranking examples
19: C = Rank-Learner(R)
20: return learned cost function C

We formulate the cost function training problem as an instance of rank learning problem
(Agarwal & Roth, 2005). More specifically, we want all the best loss outputs in YH(x) to
be ranked better than all the non-best loss outputs according to our cost function, which is
a bi-partite ranking problem. Let Ybest be the set of all best loss outputs from YH(x), i.e.,
Ybest = {y ∈ YH(x)|L(x, y, y∗) = lbest}. We generate one ranking example for every pair of
outputs (ybest, y) ∈ Ybest × YH(x) \ Ybest, requiring that C(x, ybest)<C(x, y). If the search
procedure was able to generate the target output y∗ (i.e., lbest = 0), this is similar to the
standard learning in CRFs and SVM-Struct, but results in a much simpler rank-learning
problem (cost function needs to rank the correct output above only the incorrect outputs
generated during search). When the set of best loss outputs Ybest is very large, bi-partite
ranking may result in a highly over-constrained problem. In such cases, one could relax the
problem by attempting to learn a cost function that ranks at least one output in Ybest higher
than all the non-best loss outputs. This can be easily implemented in an online-learning

383

Doppa, Fern, & Tadepalli

framework as follows. If there is an error (i.e., the best cost output according to the current
weights ŷ /∈ Ybest), the weights are updated to ensure that the best cost output ŷbest ∈ Ybest

according to the current weights is ranked better than all the outputs in YH(x) \ Ybest.

It is important to note that both in theory and practice, the distribution of outputs
generated by the learned heuristic H on the testing data may be slightly different from the
one on training data. Thus, if we train C on the training examples used to train H, then C
is not necessarily optimized for the test distribution. To mitigate this effect, we train our
cost function via cross validation (see Algorithm 2) by training the cost function on the
data, which was not used to train the heuristic. This training methodology is commonly
used in Re-ranking style algorithms (Collins, 2000) among others.

Algorithm 2 describes our approach for cost function training via cross validation. There
are four main steps in the algorithm. First, we divide the training data D into k folds.
Second, we learn k different heuristics, where each heuristic Hi is learned using the data
from all the folds excluding the ith fold (Steps 3-6). Third, we generate ranking examples
for cost function learning as described above using each heuristic Hi on the data it was not
trained on (Steps 9-17). Finally, we give the aggregate set of ranking examples R to a rank
learner (e.g., Perceptron, SVM-Rank) to learn the cost function C (Step 19).

3.4 Rank Learner

In this section, we describe the specifics of the rank learner that can be used to learn both
the heuristic and cost functions from the aggregate sets of ranking examples produced by the
above algorithms. We can use any off-the-shelf rank-learning algorithm (e.g., Perceptron,
SVM-Rank) as our base learner to train the heuristic function from the set of ranking
examples R. In our specific implementation we employed the online Passive-Aggressive
(PA) algorithm (Crammer, Dekel, Keshet, Shalev-Shwartz, & Singer, 2006) as our base
learner. Training was conducted for 50 iterations in all of our experiments.

PA is an online large-margin algorithm, which makes several passes over the training
examples R, and updates the weights whenever it encounters a ranking error. Recall that
each ranking example is of the form H(x, y1) < H(x, y2) for heuristic training and C(x, y1) <
C(x, y2) for cost function training, where x is a structured input with target output y∗,
y1 and y2 are potential outputs for x such that L(x, y1, y

∗) < L(x, y2, y
∗). Let ∆>0 be

the difference between the losses of the two outputs involved in a ranking example. We
experimented with PA variants that use margin scaling (margin scaled by ∆) and slack
scaling (errors weighted by ∆) (Tsochantaridis, Joachims, Hofmann, & Altun, 2005). Since
margin scaling performed slightly better than slack scaling, we report the results of the PA
variant that employs margin scaling. Below we give the full details of the margin scaling
update.

Let wt be the current weights of the linear ranking function. If there is a ranking error
when cycling through the training data, i.e., wt · Φ(x, y2) − wt · Φ(x, y1) <

√
∆, the new

weights wt+1 that corrects the error can be obtained using the following equation.

wt+1 = wt + τt(Φ(x, y2)− Φ(x, y1))

384

HC-Search: A Learning Framework for Search-based Structured Prediction

where the learning rate τt is given by

τt =
wt · Φ(x, y1)− wt · Φ(x, y2) +

√
∆

‖Φ(x, y2)− Φ(x, y1)‖2

This specific update has been previously used for cost-sensitive multiclass classification
(Crammer et al., 2006) (See Equation 51) and for structured output problems (Keshet,
Shalev-Shwartz, Singer, & Chazan, 2005) (See Equation 7).

4. Experiments and Results

In this section we empirically investigate our HC-Search approach and compare it against
the state-of-the-art in structured prediction.

4.1 Datasets

We evaluate our approach on the following four structured prediction problems including
three benchmark sequence labeling problems and a 2D image labeling problem.

• Handwriting Recognition (HW). The input is a sequence of binary-segmented
handwritten letters and the output is the corresponding character sequence [a− z]+.
This dataset contains roughly 6600 examples divided into 10 folds (Taskar et al.,
2003). We consider two different variants of this task as in the work of Hal Daumé
III, Langford, and Marcu (2009). In the HW-Small version, we use one fold for training
and the remaining 9 folds for testing, and vice-versa in HW-Large.

• NETtalk Stress. This is a text-to-speech mapping problem, where the task is to
assign one of the 5 stress labels to each letter of a word. There are 1000 training
words and 1000 test words in the standard dataset. We use a sliding window of size
3 for observational features.

• NETtalk Phoneme. This is similar to NETtalk Stress except that the task is to
assign one of the 51 phoneme labels to each letter of the word.

• Scene labeling. This data set contains 700 images of outdoor scenes (Vogel &
Schiele, 2007). Each image is divided into patches by placing a regular grid of size
10×10 over the entire image, where each patch takes one of the 9 semantic labels (sky,
water, grass, trunks, foliage, field, rocks, flowers, sand). Simple appearance features
including color, texture and position are used to represent each patch. Training was
performed with 600 images, and the remaining 100 images were used for testing.

4.2 Experimental Setup

For our HC-Search experiments, we use the Limited Discrepancy Space (LDS) exactly as
described in the work of Doppa et al. (2012) as our search space over structured outputs.
Prior work with HC-Search has shown that greedy search works quite well for most struc-
tured prediction tasks, particularly when using the LDS space (Doppa et al., 2012). Hence,
we consider only greedy search in our experiments. We would like to point out that exper-
iments not shown using beam search and best first search produce similar results. During

385

Doppa, Fern, & Tadepalli

training and testing we set the search time bound τ to be 25 search steps for all domains
except for scene labeling, which has a much larger search space and uses τ = 150. We
found that using values of τ larger than these did not produce noticeable improvement. For
extremely small values of τ , performance tends to be worse, but it increases quickly as τ is
made larger. We will also show results for the full spectrum of time bounds later. For all
domains, we learn linear heuristic and cost functions over second order features unless oth-
erwise noted. In this case, the feature vector measures features over neighboring label pairs
and triples along with features of the structured input. We measure error with Hamming
loss unless otherwise noted.

4.3 Comparison to State-of-the-Art

We compare the results of our HC-Search approach with other structured prediction algo-
rithms including CRFs (Lafferty et al., 2001), SVM-Struct (Tsochantaridis et al., 2004),
Searn (Hal Daumé III et al., 2009), Cascades (Weiss & Taskar, 2010) and C-Search,
which is identical to HC-Search except that it uses a single-function for output space search
(Doppa et al., 2012). We also show the performance of Recurrent, which is a simple
recurrent classifier trained exactly as in the work of Doppa et al. (2012). The top section
of Table 1 shows the error rates of the different algorithms. For scene labeling it was not
possible to run CRFs, SVM-Struct, and Cascades due to the complicated grid structure
of the outputs (hence the ’-’ in the table). We report the best published results of CRFs,
SVM-Struct, and Searn. Cascades was trained using the implementation (Weiss, 2014) pro-
vided by the authors, which can be used for sequence labeling problems with Hamming loss.
We would like to point out that the results of cascades differ from those that appear in the
work of Doppa, Fern, and Tadepalli (2013) and are obtained using an updated2 version of
cascades training code. Across all benchmarks, we see that results of HC-Search are compa-
rable or significantly better than the state-of-the-art including C-Search, which uses a single
function as both heuristic function and cost function. The results in the scene labeling
domain are the most significant improving the error rate from 27.05 to 19.71. These results
show that HC-Search is a state-of-the-art approach across these problems and that learning
separate heuristic and cost functions can significantly improve output-space search.

4.4 Higher-Order Features

One of the advantages of our approach compared to many frameworks for structured predic-
tion is the ability to use more expressive feature spaces without paying a huge computational
price. The bottom part of Table 1 shows results using third-order features (compared to
second-order above) for HC-Search, C-Search and Cascades. Note that it is not practical to
run the other methods using third-order features due to the substantial increase in inference
time. The overall error of HC-Search with higher-order features slightly improved compared
to using second-order features across all benchmarks and is still better than the error-rates
of C-Search and Cascades with third-order features, with the exception of Cascades on
HW-Large. In fact, HC-Search using only second-order features is still outperforming the
third-order results of the other methods on three out of five domains.

2. Personal communication with the author

386

HC-Search: A Learning Framework for Search-based Structured Prediction

Algorithms Datasets

HW-Small HW-Large Stress Phoneme Scene labeling

a. Comparison to state-of-the-art

HC-Search 12.81 03.23 17.58 16.91 19.71

C-Search 17.03 07.16 21.07 20.81 27.05

CRF 19.97 13.11 21.48 21.09 -

SVM-Struct 19.64 12.49 22.01 21.70 -

Recurrent 34.33 25.13 27.18 26.42 43.36

Searn 17.88 09.42 23.85 22.74 37.69

Cascades 13.02 03.22 20.41 17.56 -

b. Results with Third-Order Features

HC-Search 10.04 02.21 16.32 14.29 18.25

C-Search 14.15 04.76 19.36 18.19 25.79

Cascades 10.82 02.16 19.51 17.41 -

Table 1: Error rates of different structured prediction algorithms.

4.5 Loss Decomposition Analysis

We now examine HC-Search and C-Search in terms of their loss decomposition (see Equa-
tion 4) into generation loss ǫH and selection loss ǫC|H. Both of these quantities can be
easily measured for both HC-Search and C-Search by keeping track of the best loss output
generated by the search (guided either by a heuristic or the cost function for C-Search)
across the testing examples. Table 2 shows these results, giving the overall error ǫHC and
its decomposition across our benchmarks for both HC-Search and C-Search.

We first see that generation loss ǫH is very similar for C-Search and HC-Search across the
benchmarks with the exception of scene labeling, where HC-Search generates slightly better
outputs. This shows that at least for the LDS search space the difference in performance
between C-Search and HC-Search cannot be explained by C-Search generating lower quality
outputs. Rather, the difference between the two methods is most reflected by the difference
in selection loss ǫC|H, meaning that C-Search is not as effective at ranking the outputs
generated during search compared to HC-Search. This result clearly shows the advantage
of separating the roles of C and H and is understandable in light of the training mechanism
for C-Search. In that approach, the cost function is trained to satisfy constraints related to
both the generation loss and selection loss. It turns out that there are many more generation
loss constraints, which we hypothesize biases C-Search toward low generation loss at the
expense of selection loss.

These results also show that for both methods the selection loss ǫC|H contributes sig-
nificantly more to the overall error compared to ǫH. This shows that both approaches are
able to uncover very high-quality outputs, but are unable to correctly rank the generated
outputs according to their losses. This suggests that a first avenue for improving the results
of HC-Search would be to improve the cost function learning component, e.g. by using
non-linear cost functions.

387

Doppa, Fern, & Tadepalli

4.6 Ablation Study

To futher demonstrate that having two separate functions (heuristic and cost function) as
in HC-Search will lead to more accurate predictions compared to using a single function
as in C-Search, we perform some ablation experiments. In this study, we take the learned
heuristic function H and cost function C in the HC-Search framwork, and use only one of
them to make predictions. For example, HH-Search corresponds to the configuration when
we use the function H as both heuristic and cost function. Similarly, CC-Search corresponds
to the configuration when we use the function C as both heuristic and cost function.

Table 2b shows the results for these ablation experiments. We can make several inter-
esting observations from these results. First, the overall error of HC-Search is significantly
better than that of HH-Search and CC-Search. Second, the selection loss for HH-Search
increases compared to that of HC-Search. This is understandable because H is not trained
to score the candidate outputs that are generated during search. Third, the generation
loss for CC-Search increases compared to that of HC-Search and this behavior is significant
(increases to 11.24 compared to 5.82) for the scene labeling task. All these results provide
further evidence for the importance of separating the training of the heuristic and cost
functions.

Datasets HW-Small HW-Large Stress Phoneme Scene

Error ǫHC ǫH ǫC|H ǫHC ǫH ǫC|H ǫHC ǫH ǫC|H ǫHC ǫH ǫC|H ǫHC ǫH ǫC|H

a. HC-Search vs. C-Search
HC-Search 12.8 04.7 08.0 03.2 00.7 02.7 17.5 02.7 14.7 16.9 03.4 13.4 19.7 05.8 13.8
C-Search 17.5 04.9 12.6 07.1 00.9 06.2 21.0 03.0 18.0 20.8 04.1 16.6 27.0 07.8 19.2

b. Results for Ablation study
HH-Search 18.4 04.7 13.7 07.9 00.7 7.2 22.5 02.7 19.7 22.1 03.4 18.7 32.1 07.8 24.3
CC-Search 16.2 05.3 10.9 06.6 01.7 04.9 19.1 03.2 15.8 21.6 04.3 17.3 25.3 11.2 14.0

c. Results with heuristic function training via DAgger

HC-Search 12.0 03.9 08.1 03.1 00.4 02.6 17.2 02.2 15.0 16.8 03.0 13.8 18.0 03.7 14.3

C-Search 15.1 04.6 09.9 05.1 00.8 03.6 20.3 02.8 17.1 19.0 03.9 14.7 24.2 05.9 18.3

d. Results with Oracle Heuristic
LC-Search
(Oracle H)

10.1 00.2 09.9 03.0 00.5 02.5 14.1 00.2 13.9 12.2 00.5 11.7 16.3 00.3 16.0

Table 2: HC-Search: Error decomposition of heuristic and cost function.

4.7 Results for Heuristic Training via DAgger

Our heuristic learning approach follows the simplest approach to imitation learning, exact
imitation, where the learner attempts to exactly imitate the observed expert trajectories
(here imitate search with the oracle heuristic). While our experiments show that exact
imitation performs quite well, it is known that exact imitation has certain deficiencies in
general. In particular, functions trained via exact imitation can be prone to error propaga-
tion (Kääriäinen, 2006; Ross & Bagnell, 2010), where errors made at test time change the
distribution of decisions encountered in the future compared to the training distribution.
To address this problem, more sophisticated imitation learning algorithms have been de-
veloped, with a state-of-the-art approach being DAgger (Ross, Gordon, & Bagnell, 2011).

388

HC-Search: A Learning Framework for Search-based Structured Prediction

Here we consider whether DAgger can improve our heuristic learning and in turn overall
accuarcy.

DAgger is an iterative algorithm, where each iteration adds imitation data to an ag-
gregated data set. The first iteration follows the exact imitation approach, where data are
collected by observing an expert trajectory (or a number of them). After each iteration an
imitation function (here a heuristic) is learned from the current data. Successive iterations
generate trajectories by following a mixture of expert suggestions (in our case ranking deci-
sions) and suggestions of the most recently learned imitation function. Each decision point
along the trajectory is added to the aggregate data set by labeling it by the expert decision.
In this way, later iterations allow DAgger to learn from states visited by its possibly erro-
neous learned functions and correct its mistakes using the expert input. Ross et al. (2011)
show that during the iterations of DAgger just using the learned policy without mixing
the expert policy performs very well across diverse domains. Therefore, we use the same
approach in our DAgger experiments. In our experiments we run 5 iterations of DAgger,
noting that no noticable improvement was observed after 5 iterations.

Table 2c shows the results of HC-Search and C-Search obtained by training with DAg-

ger. For HC-Search, the generation loss (ǫH) improved slightly on the sequence labeling
problems as there is little room for improvement, but DAgger leads to significant improve-
ment in the generation loss on the more challenging problem of scene labeling. We can also
see that the overall error of HC-Search for scene labeling reduces due to improvement in
generation loss showing that cost function is able to leverage the better outputs produced
by the heuristic. Similarly, the overall error of C-Search also improved with DAgger across
the board and we see most significant improvements for handwiriting and scene labeling
domains. It is interesting to note that unlike HC-Search, the improvement in C-Search is
mostly due the improvement in the selection loss (ǫC|H) except for scene labeling task, where
it is due to the improvement in both generation loss and selection loss.

These results show that improving the heuristic learning is able to improve overall
performance. What is not clear is whether further improvement, perhaps due to future
advances in imitation learning, would yet again lead to overall improvement. That is, while
it may be possible to further improve the generation loss, it is not clear that the cost function
will be able to exploit such improvments. To help evaluate this we ran an experiment where
we gave HC-Search the true loss function to use as a heuristic (an oracle heuristic), i.e.,
H(x, y) = L(x, y, y∗), during both training of the cost function and testing. This provides
an assessment of how much better we might be able to do if we could improve heuristic
learning. The results in Table 2, which we label as LC-Search (Oracle H) show that when
using the oracle heuristic, ǫH is negligible as we might expect and smaller than observed for
HC-Search. This shows that it may be possible to further improve our heuristic learning
via better imitation.

We also see from the oracle results that the overall error ǫHC is better than that of
HC-Search, but for HW-Small and Scene labeling tasks, the selection error ǫC|H got slightly
worse.. This indicates that our cost function learner is able to leverage, to varying de-
grees, the better outputs produced by the oracle heuristic. This suggests that improving
the heuristic learner in order to reduce the generation loss could be a viable way of further
reducing the overall loss of HC-Search, even without altering the current cost learner. How-
ever, as we saw above there is much less room to improve the heuristic learner for these

389

Doppa, Fern, & Tadepalli

data sets and hence the potential gains are less than for directly trying to improve the cost
learner.

4.8 Results for Training with Different Time bounds

We also trained HC-Search for different time bounds (i.e., number of greedy search steps) to
see how the overall loss, generation loss and selection loss vary as we increase the training
time bound. In general, as the time bound increases, the generation loss will monotonically
decrease, since strictly more outputs will be encountered. On the other hand the difficulty
of cost function learning can increase as the time bound grows since it must learn to dis-
tinguish between a larger set of candidate outputs. Thus, the degree to which the overall
error decreases (or grows) with the time bound depends on a combination of how much
the generation loss decreases and whether the cost function learner is able to accurately
distinguish improved outputs.

Figure 5 shows the performance of HC-Search for the full spectrum of time bounds.
Qualitatively, we see that the generation loss, due to the heuristic, decreases remarkably
fast and for most benchmarks improves very little after the initial decrease. We also see that
the cost function learner achieves a relatively stable selection loss in a short time, though it
does increase a bit with time in most cases. The combined effect is that we see the overall
error ǫHC improves quickly as we increase the time bound and the improvement tends to be
very small beyond certain time bound. Also, in some cases (e.g., phoneme prediction and
scene labeling) performance tends to get slightly worse for very large time bounds, which
happens when the increase in selection loss is not counteracted by a decreased generation
loss.

Test

Loss Function Hamming VC

T
ra
in Hamming 1757 4658

VC 1769 4620

Table 3: Results for training with non-hamming loss functions.

4.9 Results for Training with Non-Hamming Loss functions

One of the advantages of HC-Search compared to many other approaches for structured
prediction is that it is sensitive to the loss function used for training. So we trained HC-
Search with different loss functions on the handwriting domain to verify if this is true in
practice or not. We used hamming loss (uniform misclassification cost of 1 for all characters)
and Vowel-Consonant (VC) loss (different misclassification costs for vowels and consonants)
for this experiment. For VC loss, we used misclassification costs of 4 and 2 for vowels and
consonants respectively. Training was done on 5 folds and the remaining 5 folds were used
for testing. Table 4.8 shows the results for training and testing with the two loss functions.
We report cumulative loss over all the testing examples. As we can see, for any testing
loss function, training with the same loss function gives slightly better performance than
training using a different loss function. This shows that our HC-Search learning approach

390

HC-Search: A Learning Framework for Search-based Structured Prediction

Figure 5: HC-Search results for training with different time bounds. We have training time
bound (i.e., no. of greedy search steps) on x-axis and error on y-axis. There are
three curves in each graph corresponding to overall loss ǫHC , generation loss ǫH
and selection loss ǫC|H.

391

Doppa, Fern, & Tadepalli

is sensitive to the loss function. However, this result may not hold generally and very much
depends on the problem structure, loss function and the ability of our cost function to
capture that loss.

4.10 Discussion on Efficiency of the HC-Search Approach

In ourHC-Search framework, the basic computational elements include generating candidate
states for a given state; computing the heuristic function features via ΦH and cost function
features via ΦC for all the candidate states; and computing the heuristic and cost scores via
the learned heuristic and cost function pair (H, C). The computational time for generating
the candidate states depends on the employed search space So = (I, S), where I is the initial
state function and S is the successor function. For example, the generation of candidates
will be very efficient with Flipbit space compared to the LDS space (involves running the
recurrent classifier for every action specified by the successor function S). Therefore, the
efficiency of the overall approach depends on the size of the candidate set and can be
greatly improved by generating fewer candidate states (e.g., via pruning) or parallelizing the
computation. We have done some preliminary work in this direction by introducing sparse
versions of both LDS and Flipbit search spaces by pruning actions based on the recurrent
classifier scores (as specified by the prunining parameter k). This simple pruning strategy
resulted in 10-fold speedup with little or no loss in accuracy across several benchmark
problems (Doppa et al., 2014a). However, more work needs to be done on learning pruning
rules to improve the efficiency of the HC-Search approach.

5. Engineering Methodology for Applying HC-Search
In this section, we describe an engineering methodology for applying our HC-Search frame-
work to new problems. At a very high-level, the methodology involves selecting an effective
time-bounded search architecture (search space, search procedure, and search time-bound),
and leveraging the loss decomposition in terms of generation and selection loss for training
and debugging the heuristic and cost functions. Below we describe these steps in detail.

5.1 Selection of Time-bounded Search Architecture

A time-bounded search architecture can be instantiated by selecting a search space, search
strategy, and search time-bound. As we mentioned before, the effectiveness of HC-Search
depends critically on the quality of the search space (i.e., search depth at which target
outputs can be found) that is being employed. In fact, our prior work empirically demon-
strated that the performance gap of the search architectures with Flipbit space and LDS
space grows as the difference between their target depths increase (Doppa et al., 2014a).
Therefore, it is important to select/design a high-quality search space for the problem at
hand.

If there exists a greedy predictor for the structured prediction problem, one could lever-
age it to define an appropriate variant of the LDS space. Fortunately, there are greedy
predictors for several problems in natural language processing, computer vision, relational
networks, and planning with preferences. For example, transition-based parsers for depen-
dency parsing (Nivre, 2008; Goldberg & Elhadad, 2010); greedy classifiers for co-reference

392

HC-Search: A Learning Framework for Search-based Structured Prediction

resolution (Chang, Samdani, & Roth, 2013; Stoyanov & Eisner, 2012) and event extraction
(Li, Ji, & Huang, 2013); sequential labelers for boundary detection of objects in images
(Payet & Todorovic, 2013); iterative classifiers for collective inference in relational networks
(Sen, Namata, Bilgic, Getoor, Gallagher, & Eliassi-Rad, 2008; Doppa, Yu, Tadepalli, &
Getoor, 2009, 2010); classifier chains for multi-label prediction (Read, Pfahringer, Holmes,
& Frank, 2011); and greedy planners for planning with preferences (Xu, Fern, & Yoon,
2010). In general, designing high-quality search spaces is a key research topic and more
work needs to be done in this direction. Learning search operators (“macro actions”) or
transformation rules as in Transformation-based Learning (TBL) (Brill, 1995) to optimize
the search space is one of the many possibilities. Sometimes problem structure can also help
in designing effective search spaces. For example, in most multi-label prediction problems,
the outputs which are binary vectors have a small number of active labels (highly sparse).
So a simple flipbit space initialized with the null vector can be very effective (Doppa, Yu,
Ma, Fern, & Tadepalli, 2014b).

After picking the search space, we need to select an appropriate search procedure and
search time-bound. The effectiveness of a search architecture can be measured by performing
oracle search (true loss function used as both heuristic and cost function) on the training
data. So one could perform oracle search (LL-Search) with different search procedures (e.g.,
greedy and beam search) for different time-bounds and select the search procedure that is
more effective. We did not see benefit with beam search for the problems we considered, but
we expect that this can change for harder problems with non-Hamming loss functions (e.g.,
B-Cubed score for co-reference resolution). If the search space is not redundant, then we
can fix the search time-bound to a value where the performance of the search architecture
stagnates. Otherwise, one should allow some slack so that the search procedure can recover
from errors. In our experiments, we found that T (size of the structured output) is a
reasonable value for the time-bound (Figure 5 provides justification for this choice).

5.2 Training and Debugging

The training procedure involves learning the heuristic H and cost function C to optimize
the performance of the selected time-bounded search architecture on the training data.
Following our staged learning approach, one could start with learning a heuristic via exact
imitation of the oracle search. After that, the learned heuristic H should be evaluated by
measuring the generation loss (HL-Search configuration). If the performance of the HL-
Search configuration is acceptable with respect to the performance of LL-Search, we can
move to cost function learning part. Otherwise, we can try to improve the heuristic by either
employing more sophisticated imitation learning algorithms (e.g., DAgger), enriching the
feature function ΦH, or employing a more powerful rank learner. Similarly, after learning
the cost function C conditioned on the learned heuristic, we can measure the selection loss.
If the selection loss is very high, we can try to improve the cost function by either adding
expressive features to ΦC or employing a more powerful rank learner.

6. Comparison to Related Work

As described earlier, the majority of structured prediction work has focused on the use
of exact inference for computing outputs when it is tractable, and approximate inference

393

Doppa, Fern, & Tadepalli

techniques, such as loopy belief propagation and relaxation methods, when it is not. Learn-
ing then is focused on tuning the cost function parameters in order to optimize various
objective functions, which differ among learning algorithms (Lafferty et al., 2001; Taskar
et al., 2003; Tsochantaridis et al., 2004; McAllester, Hazan, & Keshet, 2010). There are also
approximate cost function learning approaches that do not employ any inference routine
during training. For example, piece-wise training (Sutton & McCallum, 2009), Decomposed
Learning (Samdani & Roth, 2012) and its special case pseudo-max training (Sontag, Meshi,
Jaakkola, & Globerson, 2010) fall under this category. These training approaches are very
efficient, but they still need an inference algorithm to make predictions during testing.
In these cases, one could employ the Constrained Conditional Models (CCM) framework
(Chang, Ratinov, & Roth, 2012) with some declarative (global) constraints to make pre-
dictions using the learned cost function. The CCM framework relies on the Integer Linear
Programming (ILP) inference method (Roth & tau Yih, 2005). More recent work has at-
tempted to integrate (approximate) inference and cost function learning in a principled
manner (Meshi, Sontag, Jaakkola, & Globerson, 2010; Stoyanov, Ropson, & Eisner, 2011;
Hazan & Urtasun, 2012; Domke, 2013). Researchers have also worked on using higher-order
features for CRFs in the context of sequence labeling under the pattern sparsity assumption
(Ye, Lee, Chieu, & Wu, 2009; Qian, Jiang, Zhang, Huang, & Wu, 2009). However, these
approaches are not applicable for the graphical models where the sparsity assumption does
not hold.

An alternative approach to addressing inference complexity is cascade training (Felzen-
szwalb & McAllester, 2007; Weiss & Taskar, 2010; Weiss, Sapp, & Taskar, 2010), where
efficient inference is achieved by performing multiple runs of inference from a coarse level
to a fine level of abstraction. While such approaches have shown good success, they place
some restrictions on the form of the cost functions to facilitate cascading. Another poten-
tial drawback of cascades and most other approaches is that they either ignore the loss
function of a problem (e.g. by assuming Hamming loss) or require that the loss function be
decomposable in a way that supports loss augmented inference. Our approach is sensitive
to the loss function and makes minimal assumptions about it, requiring only that we have
a blackbox that can evaluate it for any potential output.

Classifier-based structured prediction algorithms avoid directly solving the Argmin prob-
lem by assuming that structured outputs can be generated by making a series of discrete
decisions. The approach then attempts to learn a recurrent classifier that given an input
x is iteratively applied in order to generate the series of decisions for producing the target
output y. Simple training methods (e.g. Dietterich, Hild, & Bakiri, 1995) have shown
good success and there are some positive theoretical guarantees (Syed & Schapire, 2010;
Ross & Bagnell, 2010). However, recurrent classifiers can be prone to error propagation
(Kääriäinen, 2006; Ross & Bagnell, 2010). Recent work, e.g. SEARN (Hal Daumé III
et al., 2009), SMiLe (Ross & Bagnell, 2010), and DAgger (Ross et al., 2011), attempts to
address this issue using more sophisticated training techniques and have shown state-of-the-
art structured-prediction results. However, all these approaches use classifiers to produce
structured outputs through a single sequence of greedy decisions. Unfortunately, in many
problems, some decisions are difficult to predict by a greedy classifier, but are crucial for
good performance. In contrast, our approach leverages recurrent classifiers to define good

394

HC-Search: A Learning Framework for Search-based Structured Prediction

quality search spaces over complete outputs, which allows decision making by comparing
multiple complete outputs and choosing the best.

There are also non-greedy methods that learn a scoring function to search in the space of
partial structured outputs (DauméIII & Marcu, 2005; Daumé III, 2006; Xu, Fern, & Yoon,
2009b; Huang, Fayong, & Guo, 2012; Yu, Huang, Mi, & Zhao, 2013). All these methods
perform online training, and differ only in the way search errors are defined and how the
weights are updated when errors occur. Unfortunately, training the scoring function can
be difficult because it is hard to evaluate states with partial outputs and the theoretical
guarantees for the learned scoring function (e.g., convergence and generalization results)
rely on strong assumptions (Xu et al., 2009b).

Our work is most closely related to the output space search approaches (Doppa et al.,
2012; Wick et al., 2011), which use a single cost function to serve as both search heuristic
and also to score the candidate outputs. Serving these dual roles often means that the cost
function needs to make unclear tradeoffs, increasing the difficulty of learning. Our HC-
Search approach overcomes this deficiency by learning two different functions, a heuristic
function to guide the search to generate high-quality candidate outputs, and a cost function
to rank the candidate outputs. Additionally, the error decomposition of HC-Search in terms
of heuristic error and cost function error allows the human designers of the learning system
to diagnose failures and take corrective measures.

Our approach is also related to Re-Ranking (Collins, 2002), which uses a generative
model to propose a k-best list of outputs, which are then ranked by a separate ranking
function. In contrast, rather than restricting to a generative model for producing potential
outputs, our approach leverages generic search over efficient search spaces guided by a
learned heuristic function that has minimal representational restrictions, and employs a
learned cost function to rank the candidate outputs. Recent work on generating multiple
diverse solutions in a probabilistic framework can be considered as another way of producing
candidate outputs. A representative set of approaches in this line of work are diverse M-
best (Batra, Yadollahpour, Guzmán-Rivera, & Shakhnarovich, 2012), M-best modes (Park
& Ramanan, 2011; Chen, Kolmogorov, Zhu, Metaxas, & Lampert, 2013) and Determinantal
Point Processes (Kulesza & Taskar, 2012).

The general area of speedup learning studied in the planning and search community is
also related to our work (Fern, 2010). In these problems, the cost function is typically known
and the objective is to learn control knowledge (i.e., heuristic function) for directing a search
algorithm to a low-cost terminal node in the search space. For example, STAGE (Boyan &
Moore, 2000) learns an evaluation function over the states to improve the performance of
search, where value of a state corresponds to the performance of a local search algorithm
starting from that state, (Zhang & Dietterich, 1995) use Reinforcement Learning (RL)
methods to learn heuristics for job shop scheduling with the goal of minimizing the duration
of the schedule. Unlike the problems in planning and combinatorial optimization, such a
cost function is not given for the structured prediction problems. Therefore, our HC-Search
approach learns a cost function to score the structured outputs along with a heuristic
function to guide the search towards low cost outputs.

395

Doppa, Fern, & Tadepalli

7. Summary and Future Work

We introduced the HC-Search framework for structured prediction whose principal feature
is the separation of the cost function from search heuristic. We showed that our framework
yields significantly superior performance to state-of-the-art results, and allows an informa-
tive error analysis and diagnostics.

Our investigation showed that the main source of error of existing output-space ap-
proaches including our own approach (HC-Search) is the inability of cost function to cor-
rectly rank the candidate outputs produced by the output generation process. This analysis
suggests that learning more powerful cost functions, e.g., Regression trees (Mohan, Chen,
& Weinberger, 2011), with an eye towards anytime performance (Grubb & Bagnell, 2012;
Xu, Weinberger, & Chapelle, 2012) would be productive. Our results also suggested that
there is room to improve overall performance with better heuristic learning. Thus, another
direction to pursue is heuristic function learning to speed up the process of generating
high-quality outputs (Fern, 2010).

Future work includes applying this framework to more challenging problems in natu-
ral language processing (e.g., co-reference resolution, dependency parsing, and semantic
parsing) and computer vision (e.g., object detection in biological images Lam, Doppa, Hu,
Todorovic, Dietterich, Reft, & Daly, 2013, and multi-object tracking in complex sports
videos Chen, Fern, & Todorovic, 2014). The effectiveness of HC-Search approach depends
on the quality of the search space, and therefore, more work needs to be done in learning
to optimize search spaces by leveraging the problem structure. Similarly, studying pruning
techniques to further improve the efficiency of both learning and inference is another useful
direction.

Acknowledgements

The authors would like to thank the anonymous reviewers and Jason Eisner, the associate
editor, for their comments and feedback. The first author would also like to thank Tom
Dietterich for his encouragement and support throughout this work. This work was sup-
ported in part by NSF grants IIS 1219258, IIS 1018490 and in part by the Defense Advanced
Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL) under
Contract No. FA8750-13-2-0033. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily reflect
the views of the NSF, the DARPA, the Air Force Research Laboratory (AFRL), or the
US government. A preliminary version of this article was published at AAAI-2013 (Doppa
et al., 2013)

Appendix A. Limited Discrepancy Search (LDS) Space

The Limited Discrepancy Search (LDS) space (Doppa et al., 2012, 2014a) is defined in terms
of a learned recurrent classifier h. Thus, we start by describing recurrent classifier and then
explain the key idea behind LDS space. For simplicity, we explain the main ideas using
a sequence labeling problem (handwriting recognition task) noting that they generalize to
non-sequence labeling problems (for full details see Doppa et al., 2012, 2014a).

396

HC-Search: A Learning Framework for Search-based Structured Prediction

Figure 6: Illustration of recurrent classifier for handwriting recognition problem. The clas-
sifier predicts the labels in a left-to-right order. It makes the labeling decision
at each position greedily based on the character image and the predicted label
at previous position (shown by the dotted box). In this particular example, the
classifier makes a mistake at the first position and this error propagates to other
positions leading to a very bad output.

A.1 Recurrent Classifier

In a sequence labeling problem, the recurrent classifier produces a label at each position in
sequence, based on an input in that position and the predicted labels at previous positions
(Dietterich et al., 1995). If the learned classifier is accurate, then the number of incorrect
labeling decisions will be relatively small. However, even a small number of errors can
propagate and cause poor outputs.

Figure 6 illustrates recurrent classifier for a handwriting recognition example. The
classifier predicts the labels in a left-to-right order. It makes the labeling decision at each
position greedily based on the character image and the predicted label at the previous
position (shown by the dotted box). In this particular example, the classifier makes a
mistake at the first position and this error propagates leading to a very bad output (5
errors).

A.2 Limited Discrepancy Search (LDS)

LDS was originally introduced in the context of problem solving using heuristic search
(Harvey & Ginsberg, 1995). The key idea behind LDS is to realize that if the classifier
prediction was corrected at a small number of critical errors, then a much better output

397

Doppa, Fern, & Tadepalli

(a) (b)

Figure 7: Illustration of Limited Discrepancy Search (LDS) for handwriting recognition
problem. For any given discrepancy set D, we can generate a unique output
by running the recurrent classifier with the changes from D. (a) LDS with one
discrepancy. If introduce a discrepancy at the first position with label s (shown
in red) and run the classifier, it is able to correct the two subsequent labels. (b)
LDS with two discrepancies. If we introduce an additional discrepancy at fifth
position with label c (shown in red) and run the classifier, we recover the target
output struct.

would be produced. LDS conducts a (shallow) search in the space of possible corrections in
the hope of finding an output better than the original.

Given a classifier h and a sequence of length T , a discrepancy is a pair (i, l) where
i ∈ {1, . . . , T} is the index of sequence position and l is a label, which generally is different
from the prediction of the classifier at position i. For any set of discrepancies D, we
can generate a unique output h[D](x) by running the classifier with changes in D. The
discrepancies in D can be viewed as overriding the prediction of h at particular positions,
possibly correcting for errors, or introducing new errors. At one extreme, when D is empty,
we get the original output produced by the greedy classifier (see Figure 6). At the other
extreme, when D specifies a label at each position, the output is not influenced by h at
all and is completely specified by the discrepancy set. Figure 7 illustrates LDS for the
same handwriting example. If we introduce a discrepancy at the first position with label
s (shown in red) and run the classifier, it is able to correct the two subsequent labels (see
Figure 7(a)). If we introduce an additional discrepancy at fifth position with label c (shown
in red) and run the classifier, we recover the target output struct (see Figure 7(b)).

398

HC-Search: A Learning Framework for Search-based Structured Prediction

Figure 8: An example Limited Discrepancy Search (LDS) space for handwriting recognition
problem. The highlighted state corresponds to the one with true output y∗ at
the smallest depth.

In practice, when h is reasonably accurate, we will be primarily interested in small
discrepancy sets relative to the length of the sequence. The problem is that we do not know
where the corrections should be made and thus LDS conducts a search over the discrepancy
sets, usually from small to large sets.

A.3 LDS Space

Given a recurrent classifier h, we define the corresponding limited-discrepancy search space
over complete outputs as follows. Each state in this search space is represented as (x,D)
where x is a input sequence and D is a discrepancy set. We view a state (x,D) as equivalent
to the input-output state (x, h[D](x)). The initial state function I simply returns (x, ∅)
which corresponds to the original output of the recurrent classifier. The successor function
S for a state (x,D) returns the set of states of the form (x,D′), where D′ is the same as D,
but with an additional discrepancy. In this way, a path through the LDS search space starts
at the output generated by the recurrent classifier and traverses a sequence of outputs that
differ from the original by some number of discrepancies. Given a reasonably accurate h,
we expect that high-quality outputs will be generated at relatively shallow depths of this
search space and hence will be generated quickly.

399

Doppa, Fern, & Tadepalli

Figure 8 illustrates3 the limited-discrepancy search space. Each state consists of the
input x, a discrepancy set D and the output produced by running the classifier with the
specified discrepancy set, i.e., h[D](x). The root node has an empty discrepancy set. Nodes
at level one contain discrepancy sets of size one. The highlighted state corresponds to the
smallest depth state containing the target output.

Appendix B. Hardness Proof for HC-Search Consistency Problem

Theorem 2. The HC-Search Consistency Problem for greedy search and linear heuristic
and cost functions is NP-Hard even when we restrict to problems for which all possible
heuristic functions uncover a zero loss output.

Proof. We reduce from the Minimum Disagreement problem for linear binary classifiers,
which was proven to be NP-complete in the work of Hoffgen, Simon, and Horn (1995).
In one statement of this problem we are given as input a set of N , p-dimensional vectors
T = {x1, . . . , xN} and a positive integer k. The problem is to decide whether or not there
is a p-dimensional real-valued weight vector w such that w · xi < 0 for at most k of the
vectors.

We first sketch the high-level idea of the proof. Given an instance of Minimum Dis-
agreement, we construct an HC-Search consistency problem with only a single structured
training example. The search space corresponding to the training example is designed such
that there is a single node n∗ that has a loss of zero and all other nodes have a loss of
1. Further for all linear heuristic functions all greedy search paths terminate at n∗, while
generating some other set of nodes/outputs on the path there. The search space is designed
such that each possible path from the initial node to n∗ corresponds to selecting k or fewer
vectors from T , which we will denote by T−. By traversing the path, the set of nodes
generated (and hence must be scored by C), say N , includes feature vectors corresponding
to those in T − T− along with the negation of the feature vectors in T−. We further define
n∗ to be assigned the zero vector, so that the cost of that node is 0 for any weight vector.

In order to achieve zero loss given the path in consideration, there must be a weight
vector wC such that wC · x ≥ 0 for all x ∈ N . By our construction this is equivalent to
wC · x < 0 for x ∈ T−. If this is possible then we have found a solution to the Minimum
Disagreement problem since |T−| ≤ k. The remaining details show how to construct this
space so that there is a setting of the heuristic weights that can generate paths corresponding
to all possible T− in a way that all paths end at n∗. For completeness we describe this
construction below.

Each search node in the space other than n∗ is a tuple (i,m, t) where 1 ≤ i ≤ N ,
0 ≤ m ≤ k, and t is one of 5 node types from the set {d, s+, s−, x+, x−}. Here i should
be viewed as indexing an example xi ∈ T and m effectively codes how many instances in
T have been selected to be mistakes and hence put in T−. Finally, t encodes the type
of the search node with the following meanings which will become more clear during the
construction: d (decision), s+ (positive selection), s− (negative selection), x+ (positive
instance), x− (negative instance). The search space is constructed so that each example xi

3. It may not be clear from this example, but we allow over-riding the discrepancies to provide the oppor-
tunity to recover from the search errors.

400

HC-Search: A Learning Framework for Search-based Structured Prediction

Figure 9: An example search space for T = {x1, x2, x3} and k = 1. All greedy paths
terminate at the zero loss node n∗ and no path selects more than one instance to
include in the mistake set T−.

is considered in order and a choice is made about whether to count it as a mistake (put
it in T−) or not. This choice is made at decision nodes, which all have the form (i,m, d),
indicating that a decision is to be made about example i and that there have already been m
examples selected for T−. Each such decision node with m < k has two children (i,m, s−)
and (i,m, s+), which respectively correspond to selecting xi to be in the mistake set or not.
Later we will show how features are assigned to nodes so as to allow the heuristic to make
any selection desired.

Each selection node has a single node as a child. In particular, a positive selection node
(i,m, s+) has the positive instance node (i,m, x+) as a child, while negative selection nodes
(i,m, s−) has the negative instance node (i,m, x−) as a child. Each such instance node
effectively implements the process of putting xi into T− or not as will become clear when
feature vectors are described below. After arriving at either a positive or negative instance
node, the consideration of xi is complete and we must move on to the decision for the next
example xi+1. Thus, a positive instance node (i,m, x+) has the single child decision node

401

Doppa, Fern, & Tadepalli

(i+1,m, d), while a negative instance node has a single child decision node (i+1,m+1, d),
noting that the number of mistakes is incremented for negative nodes.

The final details of the search space structure ensure that no more than k mistakes
are allowed and force all search paths to terminate at n∗. In particular, for any decision
node (i,m, d) with m = k, we know that no more mistakes are allowed and hence no more
decisions should be allowed. Thus, from any such node we form a path from it to n∗ that
goes through positive instance nodes (i,m, x+), . . . , (N,m, x+), which reflects that none of
{xi, . . . , xN} will be in T−. Figure 9 shows an example search space for our construction.

Given the above search space, which has polynomial size (since k ≤ N), one can verify
that for any set of k or fewer instances T− there is a path from the root to n∗ that goes
through the negative instance nodes for instances in T− and positive instance nodes for
instances in T − T−. Further, each possible path goes through either a positive or negative
instance node for each instance and no more than k negative nodes. Thus there is a direct
correspondence between paths and mistake sets T−.

We now describe how to assign features to each node in a way that allows for the
heuristic function to select each path and effectively construct the set T−. For any node
u the feature vector φ(u) = (x, s, b). The component x is an p-dimensional feature vector
and will correspond to one of the xi. The component s is an N -dimensional vector where
si ∈ {−1, 1} will implement the selection of instances. Finally b is a binary value that is
equal to 1 for all non-instance nodes and is 0 for both positive and negative instance nodes.
The mapping from nodes to feature vectors is as follows. Each decision node (i,m, d), is all
zeros, except for b = 1. Each positive selection node (i,m, s+) is all zeros except for si = 1
and b = 1. Negative selection nodes are similar except that si = −1. For a positive instance
node (i,m, x+) the feature vector is (xi, 0, 0) and for negative instance nodes (i,m, x−) the
feature vector is (−xi, 0, 0). Finally the feature vector for n∗ is all zeros.

The key idea to note is that the heuristic function can effectively select a positive or
negative selection node by setting the weight for si to be positive or negative respectively.
In particular, the set of negative selection nodes visited (and hence negative instance nodes)
correspond to the first k or fewer negative weight values for the s component of the feature
vector. Thus, the heuristic can select any set of negative nodes that it wants to go through,
but no more than k. On such a path there will be three types of nodes encountered that the
cost function must rank. First, there will be control nodes (decision and selection nodes)
that all have b = 1. Next there will be positive instance nodes that will have a feature
vector (xi, 0, 0) and no more than k negative instance nodes with feature vectors (−xi, 0, 0).
The cost function can easily rank n∗ higher than the control nodes by setting the weight for
b to be negative. Further if it can find heuristic weights for the x component that allows n∗

to be ranked highest then that is a solution to the original minimum disagreement problem.
Further if there is a solution to the disagreement problem it is easy to see that there will
also be a solution to the HC-Search consistency problem by selecting a heuristic that spans
the proper set T−.

References

Agarwal, S., & Roth, D. (2005). Learnability of Bipartite Ranking Functions. In Proceedings
of International Conference on Learning Theory (COLT), pp. 16–31.

402

HC-Search: A Learning Framework for Search-based Structured Prediction

Batra, D., Yadollahpour, P., Guzmán-Rivera, A., & Shakhnarovich, G. (2012). Diverse M-
Best Solutions in Markov Random Fields. In Proceedings of European Conference on
Computer Vision (ECCV), pp. 1–16.

Boyan, J. A., & Moore, A. W. (2000). Learning Evaluation Functions to Improve Optimiza-
tion by Local Search. Journal of Machine Learning Research (JMLR), 1, 77–112.

Brill, E. (1995). Transformation-Based Error-Driven Learning and Natural Language Pro-
cessing: A Case Study in Part-of-Speech Tagging. Computational Linguistics, 21 (4),
543–565.

Chang, K.-W., Samdani, R., & Roth, D. (2013). A Constrained Latent Variable Model
for Coreference Resolution. In Proceedings of Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 601–612.

Chang, M.-W., Ratinov, L.-A., & Roth, D. (2012). Structured Learning with Constrained
Conditional Models. Machine Learning Journal (MLJ), 88 (3), 399–431.

Chen, C., Kolmogorov, V., Zhu, Y., Metaxas, D., & Lampert, C. H. (2013). Computing
the M Most Probable Modes of a Graphical Model. In Proceedings of International
Conference on Artificial Intelligence and Statistics (AISTATS).

Chen, S., Fern, A., & Todorovic, S. (2014). Multi-Object Tracking via Constrained Sequen-
tial Labeling. In To appear in Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Collins, M. (2000). Discriminative Reranking for Natural Language Parsing. In Proceedings
of International Conference on Machine Learning (ICML), pp. 175–182.

Collins, M. (2002). Ranking Algorithms for Named Entity Extraction: Boosting and the
Voted Perceptron. In ACL.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer, Y. (2006). Online Passive-
Aggressive Algorithms. Journal of Machine Learning Research (JMLR), 7, 551–585.

Daumé III, H. (2006). Practical Structured Learning Techniques for Natural Language
Processing. Ph.D. thesis, University of Southern California, Los Angeles, CA.

DauméIII, H., & Marcu, D. (2005). Learning as Search Optimization: Approximate Large
margin methods for Structured Prediction. In ICML.

Dietterich, T. G., Hild, H., & Bakiri, G. (1995). A Comparison of ID3 and Backpropagation
for English Text-to-Speech Mapping. Machine Learning Journal (MLJ), 18 (1), 51–80.

Domke, J. (2013). Structured Learning via Logistic Regression. In Proceedings of Advances
in Neural Information Processing Systems (NIPS), pp. 647–655.

Doppa, J. R., Fern, A., & Tadepalli, P. (2012). Output Space Search for Structured Pre-
diction. In Proceedings of International Conference on Machine Learning (ICML).

Doppa, J. R., Fern, A., & Tadepalli, P. (2013). HC-Search: Learning Heuristics and Cost
Functions for Structured Prediction. In Proceedings of AAAI Conference on Artificial
Intelligence (AAAI).

Doppa, J. R., Fern, A., & Tadepalli, P. (2014a). Structured Prediction via Output Space
Search. Journal of Machine Learning Research (JMLR), 15, 1317–1350.

403

Doppa, Fern, & Tadepalli

Doppa, J. R., Yu, J., Ma, C., Fern, A., & Tadepalli, P. (2014b). HC-Search for Multi-Label
Prediction: An Empirical Study. In To appear in Proceedings of AAAI Conference on
Artificial Intelligence (AAAI).

Doppa, J. R., Yu, J., Tadepalli, P., & Getoor, L. (2009). Chance-Constrained Programs
for Link Prediction. In Proceedings of NIPS Workshop on Analyzing Networks and
Learning with Graphs.

Doppa, J. R., Yu, J., Tadepalli, P., & Getoor, L. (2010). Learning Algorithms for Link
Prediction based on Chance Constraints. In Proceedings of European Conference on
Machine Learning (ECML), pp. 344–360.

Felzenszwalb, P. F., & McAllester, D. A. (2007). The Generalized A* Architecture. Journal
of Artificial Intelligence Research (JAIR), 29, 153–190.

Fern, A. (2010). Speedup Learning. In Encyclopedia of Machine Learning, pp. 907–911.

Fern, A., Yoon, S. W., & Givan, R. (2006). Approximate Policy Iteration with a Policy
Language Bias: Solving Relational Markov Decision Processes. Journal of Artificial
Intelligence Research (JAIR), 25, 75–118.

Goldberg, Y., & Elhadad, M. (2010). An Efficient Algorithm for Easy-First Non-Directional
Dependency Parsing. In Proceedings of Human Language Technologies: Conference of
the North American Chapter of the Association of Computational Linguistic (HLT-
NAACL), pp. 742–750.

Grubb, A., & Bagnell, D. (2012). SpeedBoost: Anytime Prediction with Uniform Near-
Optimality. Journal of Machine Learning Research - Proceedings Track, 22, 458–466.

Hal Daumé III, Langford, J., & Marcu, D. (2009). Search-based Structured Prediction.
Machine Learning Journal (MLJ), 75 (3), 297–325.

Harvey, W. D., & Ginsberg, M. L. (1995). Limited Discrepancy Search. In Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI), pp. 607–615.

Hazan, T., & Urtasun, R. (2012). Efficient Learning of Structured Predictors in General
Graphical Models. CoRR, abs/1210.2346.

Hoffgen, K.-U., Simon, H.-U., & Horn, K. S. V. (1995). Robust Trainability of Single
Neurons. Journal of Computer and System Sciences, 50 (1), 114–125.

Huang, L., Fayong, S., & Guo, Y. (2012). Structured Perceptron with Inexact Search.
In Proceedings of Human Language Technology Conference of the North American
Chapter of the Association of Computational Linguistics (HLT-NAACL), pp. 142–
151.

Jiang, J., Teichert, A., Daumé III, H., & Eisner, J. (2012). Learned Prioritization for
Trading Off Accuracy and Speed. In Proceedings of Advances in Neural Information
Processing (NIPS).

Kääriäinen, M. (2006). Lower Bounds for Reductions. In Atomic Learning Workshop.

Keshet, J., Shalev-Shwartz, S., Singer, Y., & Chazan, D. (2005). Phoneme Alignment based
on Discriminative Learning. In Proceedings of Annual Conference of the International
Speech Communication Association (Interspeech), pp. 2961–2964.

404

HC-Search: A Learning Framework for Search-based Structured Prediction

Khardon, R. (1999). Learning to Take Actions. Machine Learning Journal (MLJ), 35 (1),
57–90.

Kulesza, A., & Taskar, B. (2012). Determinantal Point Processes for Machine Learning.
Foundations and Trends in Machine Learning, 5 (2-3), 123–286.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional Random Fields: Probabilistic
Models for Segmenting and Labeling Sequence Data. In Proceedings of International
Conference on Machine Learning (ICML), pp. 282–289.

Lam, M., Doppa, J. R., Hu, X., Todorovic, S., Dietterich, T., Reft, A., & Daly, M. (2013).
Learning to Detect Basal Tubules of Nematocysts in SEM Images. In ICCV Workshop
on Computer Vision for Accelerated Biosciences (CVAB). IEEE.

Li, Q., Ji, H., & Huang, L. (2013). Joint Event Extraction via Structured Prediction with
Global Features. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 73–82.

McAllester, D. A., Hazan, T., & Keshet, J. (2010). Direct Loss Minimization for Structured
Prediction. In Proceedings of Advances in Neural Information Processing Systems
(NIPS), pp. 1594–1602.

Meshi, O., Sontag, D., Jaakkola, T., & Globerson, A. (2010). Learning Efficiently with
Approximate Inference via Dual Losses. In Proceedings of International Conference
on Machine Learning (ICML), pp. 783–790.

Mohan, A., Chen, Z., & Weinberger, K. Q. (2011). Web-Search Ranking with Initialized
Gradient Boosted Regression trees. Journal of Machine Learning Research - Proceed-
ings Track, 14, 77–89.

Nivre, J. (2008). Algorithms for Deterministic Incremental Dependency Parsing. Compu-
tational Linguistics, 34 (4), 513–553.

Park, D., & Ramanan, D. (2011). N-Best Maximal Decoders for Part Models. In Proccedings
of IEEE International Conference on Computer Vision (ICCV), pp. 2627–2634.

Payet, N., & Todorovic, S. (2013). SLEDGE: Sequential Labeling of Image Edges for
Boundary Detection. International Journal of Computer Vision (IJCV), 104 (1), 15–
37.

Qian, X., Jiang, X., Zhang, Q., Huang, X., & Wu, L. (2009). Sparse Higher Order Condi-
tional Random Fields for Improved Sequence Labeling. In Proceedings of International
Conference on Machine Learning (ICML).

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2011). Classifier Chains for Multi-Label
Classification. Machine Learning, 85 (3), 333–359.

Ross, S., & Bagnell, D. (2010). Efficient Reductions for Imitation Learning. Journal of
Machine Learning Research - Proceedings Track, 9, 661–668.

Ross, S., Gordon, G. J., & Bagnell, D. (2011). A Reduction of Imitation Learning and
Structured Prediction to No-Regret Online Learning. Journal of Machine Learning
Research - Proceedings Track, 15, 627–635.

405

Doppa, Fern, & Tadepalli

Roth, D., & tau Yih, W. (2005). Integer Linear Programming Inference for Conditional
Random Fields. In Proceedings of International Conference on Machine Learning
(ICML), pp. 736–743.

Samdani, R., & Roth, D. (2012). Efficient Decomposed Learning for Structured Prediction.
In Proceedings of International Conference on Machine Learning (ICML).

Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., & Eliassi-Rad, T. (2008). Col-
lective Classification in Network Data. AI Magazine, 29 (3), 93–106.

Sontag, D., Meshi, O., Jaakkola, T., & Globerson, A. (2010). More data means less inference:
A pseudo-max approach to structured learning. In Proceedings of Advances in Neural
Information Processing Systems (NIPS), pp. 2181–2189.

Stoyanov, V., & Eisner, J. (2012). Easy-first Coreference Resolution. In Proceedings of
International Conference on Computational Linguistics (COLING), pp. 2519–2534.

Stoyanov, V., Ropson, A., & Eisner, J. (2011). Empirical Risk Minimization of Graphical
Model Parameters Given Approximate Inference, Decoding, and Model Structure.
In Proceedings of International Conference on Artificial Intelligence and Statistics
(AISTATS), pp. 725–733.

Sutton, C. A., & McCallum, A. (2009). Piecewise Training for Structured Prediction.
Machine Learning Journal (MLJ), 77 (2-3), 165–194.

Syed, U., & Schapire, R. (2010). A Reduction from Apprenticeship Learning to Classifica-
tion. In Proceedings of Advances in Neural Information Processing Systems (NIPS),
pp. 2253–2261.

Taskar, B., Guestrin, C., & Koller, D. (2003). Max-Margin Markov Networks. In Proceedings
of Advances in Neural Information Processing Systems (NIPS).

Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun, Y. (2004). Support Vector Ma-
chine Learning for Interdependent and Structured Output Spaces. In Proceedings of
International Conference on Machine Learning (ICML).

Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. (2005). Large Margin Methods
for Structured and Interdependent Output Variables. Journal of Machine Learning
Research (JMLR), 6, 1453–1484.

Vogel, J., & Schiele, B. (2007). Semantic Modeling of Natural Scenes for Content-Based
Image Retrieval. International Journal of Computer Vision (IJCV), 72 (2), 133–157.

Weiss, D. (2014). Structured Prediction Cascades code. http://code.google.com/p/

structured-cascades/.

Weiss, D., Sapp, B., & Taskar, B. (2010). Sidestepping Intractable Inference with Structured
Ensemble Cascades. In Proceedings of Advances in Neural Information Processing
Systems (NIPS), pp. 2415–2423.

Weiss, D., & Taskar, B. (2010). Structured Prediction Cascades. Journal of Machine
Learning Research - Proceedings Track, 9, 916–923.

Wick, M. L., Rohanimanesh, K., Bellare, K., Culotta, A., & McCallum, A. (2011). SampleR-
ank: Training Factor Graphs with Atomic Gradients. In Proceedings of International
Conference on Machine Learning (ICML).

406

HC-Search: A Learning Framework for Search-based Structured Prediction

Wick, M. L., Rohanimanesh, K., Singh, S., & McCallum, A. (2009). Training Factor Graphs
with Reinforcement Learning for Efficient MAP Inference. In Proceedings of Advances
in Neural Information Processing Systems (NIPS), pp. 2044–2052.

Xu, Y., Fern, A., & Yoon, S. (2009a). Learning Linear Ranking Functions for Beam Search
with Application to planning. The Journal of Machine Learning Research, 10, 1571–
1610.

Xu, Y., Fern, A., & Yoon, S. W. (2009b). Learning Linear Ranking Functions for Beam
Search with Application to Planning. Journal of Machine Learning Research (JMLR),
10, 1571–1610.

Xu, Y., Fern, A., & Yoon, S. W. (2010). Iterative Learning of Weighted Rule Sets for
Greedy Search. In Proceedings of International Conference on Automated Planning
and Systems (ICAPS), pp. 201–208.

Xu, Z., Weinberger, K., & Chapelle, O. (2012). The Greedy Miser: Learning under Test-time
Budgets. In Proceedings of International Conference on Machine Learning (ICML).

Ye, N., Lee, W. S., Chieu, H. L., & Wu, D. (2009). Conditional Random Fields with
High-Order Features for Sequence Labeling. In Proceedings of Advances in Neural
Information Processing Systems (NIPS), pp. 2196–2204.

Yu, H., Huang, L., Mi, H., & Zhao, K. (2013). Max-Violation Perceptron and Forced
Decoding for Scalable MT Training. In Proceedings of Empirical Methods in Natural
Language Processing (EMNLP), pp. 1112–1123.

Zhang, W., & Dietterich, T. G. (1995). A Reinforcement Learning Approach to job-shop
Scheduling. In Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI), pp. 1114–1120.

407

