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Abstract Workflows have been used to represent a variety
of applications involving high processing and storage de-
mands. As a solution to supply this necessity, the cloud com-
puting paradigm has emerged as an on-demand resources
provider. While public clouds charge users in a per-use ba-
sis, private clouds are owned by users and can be utilized
with no charge. When a public cloud and a private cloud
are merged, we have what we call a hybrid cloud. In a hy-
brid cloud, the user has elasticity provided by public cloud
resources that can be aggregated to the private resources
pool as necessary. One question faced by the users in such
systems is: Which are the best resources to request from a
public cloud based on the current demand and on resources
costs? In this paper we deal with this problem, presenting
HCOC: The Hybrid Cloud Optimized Cost scheduling al-
gorithm. HCOC decides which resources should be leased
from the public cloud and aggregated to the private cloud to
provide sufficient processing power to execute a workflow
within a given execution time. We present extensive exper-
imental and simulation results which show that HCOC can
reduce costs while achieving the established desired execu-
tion time.
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1 Introduction

Cloud computing is nowadays being used to deliver on-
demand storage and processing power. This environment al-
lows the leasing of resources to improve the locally avail-
able computational capacity, supplying new computing re-
sources when necessary. In a cloud, the user accesses com-
puting resources as general utilities that can be leased and
released [36]. The main benefits to the cloud users is the
avoidance of up-front investment, the lowering of their op-
erating cost, the maintenance cost reduction, and the scal-
ability provided on demand. These cloud features provide
elasticity to the user’s computing environment, being able
to adapt the computer system to the user needs.

Virtualization [31] is the process of presenting a logical
grouping or subset of computing resources so that they can
be accessed in abstract ways with benefits over the original
configuration. The virtualization software abstracts the hard-
ware by creating an interface to virtual machines (VMs),
which represents virtualized resources such as CPUs, phys-
ical memory, network connections, and peripherals. Each
virtual machine alone is an isolated execution environment
independent from the others. Each VM can have its own
operating system, applications, and network services. Vir-
tualization allows server consolidation, hardware normal-
ization, and application isolation in the same physical ma-
chine. Virtualization technologies, such as Xen [2], are an
important part of a cloud computing environment, since the
cloud provider can dynamically offer different hardware and
software configurations to the cloud user. With this, the user
can select a machine configuration and manage this machine
with full privileges without interfering in cloud machines
available to the others.

In the cloud computing paradigm, details are abstracted
from the users. They do not need knowledge of, expertise
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in, or control over the technology infrastructure about the
cloud they are using. It typically involves the provision of
dynamically scalable and often virtualized resources as a
service over the Internet [1]. The cloud computing charac-
teristics are on-demand self-service, ubiquitous network ac-
cess, independent resource location (reliability), rapid elas-
ticity (scalability), and pay-per-use. The cloud computing
allows the use of Service Oriented Computing (SOC) stan-
dards, permitting users to establish links between services,
organizing them as workflows instead of building only tra-
ditional applications using programming languages.

Cloud computing delivers three defined models: software
as a service (SaaS), platform as a service (PaaS), and infras-
tructure as a service (IaaS). In SaaS the consumer uses an ap-
plication but does not control the host environment. Google
Apps1 and Salesforce.com2 are examples of this model. In
PaaS, the consumers use a hosting environment for their ap-
plications. The Google App Engine3 and Amazon Web Ser-
vices4 are PaaS examples. In this model the platform is typ-
ically an application framework. In IaaS the consumer uses
computing resources such as processing power and storage.
In this model the consumer can control the environment in-
cluding deployment of applications. Amazon Elastic Com-
pute Cloud,5 Globus Nimbus,6 and Eucalyptus [24] are good
examples of this model.

In terms of resources availability, we can classify IaaS
clouds in three different types:

• Public clouds: Resource providers offer computing re-
sources as services in a pay-per-use basis, leasing the use
of machines to the user during the requested time.

• Private clouds or internal clouds: Clouds with resources
that can be accessed and used by individuals inside an or-
ganization, having similarities with data farms or private
grids.

• Hybrid clouds: Bring together public and private clouds,
resulting in a combination of control over performance
and security with elasticity.

The on-demand computing offered by the cloud allows
the use of private systems (computers, clusters, and grids),
aggregating the cloud resources as users need. However, this
hybrid approach results in a system with new demands, no-
tably in resource management.

Designing a hybrid cloud requires carefully determin-
ing the best split between public and private cloud compo-
nents [36]. One of the problems to face when determining

1http://www.google.com/apps/.
2http://www.salesforce.com/.
3http://code.google.com/intl/en/appengine/.
4http://aws.amazon.com/.
5http://aws.amazon.com/ec2/.
6http://workspace.globus.org/.

that is how to split a workflow, which is composed of de-
pendent tasks, to execute in private resources and in public
resources. This problem involves tasks execution times on
heterogeneous resources, data transmission times over het-
erogeneous links, as well as monetary costs in the use of
charged resources from public clouds. In this paper we in-
troduce HCOC: the Hybrid Cloud Optimized Cost schedul-
ing algorithm. HCOC decides whether a task from a work-
flow is to be executed in a private resource or in a public
charged resource. We assume that the user stipulates a max-
imum desired execution time (or deadline) D for the work-
flow, and our proposed algorithm tries to optimize the mon-
etary execution costs while maintaining the execution time
lower than D. Therefore, the objectives of our algorithm are:
(i) minimize the monetary costs; (ii) minimize the sched-
ule length (makespan); and (iii) reduce, over the time, the
number of schedules with makespan higher than D. With
this, this paper contributes in the aggregation of the schedul-
ing algorithm with free/paid multicore processing resources,
monetary costs, and deadlines, which are characteristics that
can be found in the emerging hybrid cloud systems, leverag-
ing the discussion of the trade-off between local (free and
slow) execution and remote (paid and fast) execution in hy-
brid clouds.

This paper is organized as follows. Section 2 introduces
a hybrid cloud infrastructure deployed to perform experi-
ments. In Sect. 3 we present the scheduling problem, provid-
ing notations, conceptual background, as well as describing
workflow applications used in the simulations. After that we
present the HCOC algorithm, in Sect. 4. Experimental and
simulation results are discussed in Sect. 5. Works related to
the scheduling problem are presented in Sect. 6, while the
final remarks and conclusions are in Sect. 7.

2 The hybrid cloud infrastructure

On-demand computing requires services scalability, flexi-
bility, and availability. To supply these requirements, it is
important to the infrastructure to offer reconfiguration with
the possibility of the deployment of new resources or up-
dating the existing ones without stopping processes in exe-
cution. Our infrastructure combines a service-oriented grid,
implemented using a dynamic service deployer that makes
the underlying grid infrastructure to act as a private cloud,
and public clouds.

In a hybrid system composed of a private cloud with
the possibility of accessing a public cloud computing in-
frastructure, the workflow management must supply the re-
quirements in some levels. First, it must provide facilities
to the user to make submissions without the need of choos-
ing or indicating the localization of the computational re-
sources to be used. Inside the private cloud boundary, the

http://Salesforce.com
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Fig. 1 The hybrid architecture

workflow manager must find the best resources available
and, when necessary, it must make the dynamic deployment
of services in these resources. On the other hand, inside
the public cloud boundary, the infrastructure must be able
to interact with the public cloud interfaces to obtain com-
putational resources. After that, it must be able to prepare
these resources according to workflow necessities, making
the dynamic deployment of services in the resources inside
the public cloud. This deployment can be made when lo-
cal resources are not sufficient to the workflow necessities.
This configuration increases the computational power of the
private cloud without new infrastructure investment, using
the on-demand computing advantages provided by the pub-
lic cloud. By fulfilling these requirements, a hybrid cloud
infrastructure can provide support to the decision making
performed by the scheduling algorithm.

In this work we firstly present a small set of experiments
using a real testbed, which was used to corroborate the re-
sults obtained through simulations shown in Sect. 5.

2.1 The testbed architecture

Similarities between private clouds and grids allow us to use
a grid manager called Grid Process Orchestration inside our
private cloud. To execute service workflows in hybrid sys-
tems we use our hybrid infrastructure [8], which provides
dynamic instantiation of services. Thus, the private cloud
deployed is capable of executing workflows of tasks as well
as workflows of services.

The software infrastructure is composed of a set of ser-
vices and the Grid Process and Orchestration Language
(GPOL) [30], a simple workflow description language. The
infrastructure provides dynamic service instantiation and de-
ployment, automatic reference coordination (endpoint refer-
ence service). The set of services that compose our hybrid

cloud infrastructure architecture is shown in Fig. 1. Its main
components are a Workflow Manager (GPO), a Scheduler
Service (SS), a service for publication of services (Dynamic
Deployment Service—DDS), a service for dynamic publi-
cation of virtual resources in the cloud (Dynamic Deploy-
ment of Virtual Resources—DDVR), and repositories used
by these components.

In a typical execution in our private cloud, the user sub-
mits a task workflow or a service workflow to the Grid Pro-
cess Orchestration (GPO) [30], the workflow manager in the
system. The GPO allows the creation and management of
application flows, tasks, and services in grids. Its architec-
ture is based on concepts presented in the OGSA (Globus
Toolkit 4 implementation—GT4). GPO analyzes the work-
flow, consulting the scheduling service (SS), which identi-
fies the best resource available for each service involved. If
a new service needs to be published, the GPO makes the
new service deployment through the Dynamic Deployment
Service (DDS), which publishes the new service and returns
its localization (endpoint reference) to GPO. Using the end-
point reference, the GPO creates the necessary instances for
executing the workflow. When the execution is terminated,
the GPO can automatically eliminate the instances created
and added to the DDS, or it can leave the services for fur-
ther use when necessary. If the workflow execution needs
more resources, the GPO starts the Dynamic Deployment
Virtual Resource (DDVR), which searches for resources in
public clouds. The DDVR requests resources to the cloud
informing its localization to the GPO. Through the DDVR,
the GPO uses the public cloud resources in a similar manner
to the use of local resources in the private cloud. It dynam-
ically publishes and instantiates services if necessary, and it
monitors the resources through the infrastructure services.

The resource monitor (RM) gathers information regard-
ing computational resources in the hybrid system. It operates
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in a distributed manner, maintaining one instance in each
computational resource. The workflow manager uses the
RM to gather knowledge about which resources are avail-
able at a given time, and the scheduler uses it to obtain in-
formation about the current state of the resources. Besides
that, the services repository has information about services
currently available in the resources, and it stores the neces-
sary files to the dynamic publication made by the DDS.

2.2 Clouds interconnection

The DDVR is used by the infrastructure when resources
from public clouds are needed. It is composed of two groups
of services. The first group is the DDVR itself, which com-
municates with the infrastructure, taking care of the func-
tionalities. The second group, called Cloud Interface Service
(CIS), makes the interface with public clouds. The CIS en-
capsulates particularities of each cloud type (Nimbus, Ama-
zon, Eucalyptus, etc.), allowing transparent access to the
public cloud resources in the same way that private cloud re-
sources are accessed. For each resource, one instance of the
couple DDVR/CIS is responsible for the binding between
the workflow manager and the cloud resource. To use cloud
resources, GPO communicates with the DDVR, which com-
municates with the cloud through CIS, and requests a re-
source. The cloud returns the localization of the VM ob-
tained and the DDVR can start using it by initiating the GT4
and creating a DDVR instance in the cloud resource.

The DDVR/CIS layout gives flexibility and scalability to
the infrastructure, allowing the access to different clouds
in an independent and simultaneous manner. Besides that,
the transparent access to public cloud resources provided by
DDVR/CIS allows, if necessary, the dynamic instantiation
of services that are not available in the public cloud.

2.3 The hybrid cloud testbed configuration

Our infrastructure was deployed in a small system as a proof
of concept, and it was used to execute a set of experiments.
The hybrid cloud deployed was composed of a private cloud
(resources shown in Table 1) and a public cloud (resources
shown in Table 2). These tables show the available resource
on each cloud along with their processing capacities (pr )
and cost of use per time unit. We assume that a private
cloud already exists and is currently being used to process
users jobs, thus the private cloud upkeep costs already ex-
ist. With this, the private cloud is free of charge and opera-
tion costs are not taken into consideration, thus the cost for
using its resources is considered to be non-significative. In
addition, with the number of resources in the private cloud
being smaller than the ones available from the public cloud,
it is possible to evaluate the algorithm when the private re-
sources are not sufficient to execute the application within
the desired deadline.

Table 1 Resources in the private cloud and their capacities

Name Cores RAM pr per core

Apolo 2 2.5 Gb 1

Cronos 2 4 Gb 2

Table 2 Resources in the public cloud, their capacities, and costs per
time unit

Type Cores RAM pr per core Price

Y 1 1 Gb 1.5 $0.25

Y 2 1 Gb 1.5 $0.36

Z 1 2 Gb 2 $0.3

Z 2 4 Gb 2 $0.4

Z 3 6 Gb 2 $0.5

Z 4 8 Gb 2 $0.6

Z 8 16 Gb 2 $0.9

3 Workflow scheduling

The Hybrid Cloud Optimized Cost (HCOC) scheduling al-
gorithm has the objective of reducing the makespan to fit a
desired execution time or deadline (D) maintaining a rea-
sonable cost. As a consequence, a reduction of the number
of D violations is to be observed over the time. While exe-
cuting every task of the workflow locally may delay the ex-
ecution, on the other hand, executing all tasks in the public
cloud may result in prohibitive costs. Therefore, the algo-
rithm tries to balance the use of private resources with the
ones available from the public cloud in a pay-per-use basis.

3.1 Background and definitions

A workflow is commonly represented by a directed acyclic
graph (DAG) G = (V , E ) with n nodes (or tasks), where
ta ∈ V is a workflow task with an associated computation
cost wta ∈ R

+, and ea,b ∈ E , a �= b, is a dependency between
ta and tb with an associated communication cost ca,b ∈ R

+.
An example of workflow represented by a DAG is shown in
Fig. 2. It shows a 14-node DAG, where node 1 is the first
task to be executed, nodes 2 to 13 can only start their exe-
cution after task 1 finishes and sends the data, and node 14
is the last task and can only start its execution after all tasks
before it finish and send their data. Nodes in the DAG are
labeled with their computation cost (number of instructions,
for instance), while edges are labeled with their communi-
cation cost (bytes to transmit, for instance).

A private cloud is a set of heterogeneous resources R =

{r1, r2, . . . , rk}, with associated processing capacities pri ∈

R
+, connected by network links. Each resource ri ∈ R has

a set of links Lri = {li,r1, li,r2, . . . , li,rm}, 1 ≤ m ≤ k, where
li,j ∈ R

+ is the available bandwidth in the link between
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Fig. 2 Example of fork-join DAG with 14 nodes

resources ri and rj , with li,i = ∞. A public cloud is a
set of charged virtualized resources U = {u1, u2, . . . , uw},
available on demand, with associated processing capacities
puj

∈ R
+, connected by network links. Each resource uj ∈

U has a set of links Luj
= {lj,u1 , lj,u2 , . . . , lj,uq }, 1 ≤ q ≤ w,

where lj,k ∈ R
+ is the available bandwidth in the link be-

tween resources uj and uk , with lj,j = ∞. Additionally,
each resource uj ∈ U has a price per time unit priceuj

. A

set S t
u ⊆ U is a set of resources leased from the public cloud

U at a given time t .
A hybrid cloud is a set of resources

H =

(

b
⋃

a=1

Ra

)

∪

(

t
⋃

s=1

Ss

)

,

with b ≥ 1 and t ≥ 1. Each cloud Cz ∈ H has a set of links
LCz = {lz,1, lz,2, . . . , lz,y}, 1 ≤ y ≤ |H|, where lz,x ∈ R

+ is
the minimum available bandwidth in the path between Cz

and Cx . Therefore, the bandwidth between two resources
hi ∈ H and hj ∈ H, i �= j , is the minimum bandwidth in
the path between hi and hj . Note that a public cloud has an
unbounded number of resources. Consequently, the size of
H (and S ), as a result of the elasticity, is bounded by the
number of resources requested by the scheduling algorithm.

Task scheduling is a function scheduleDAG : V 	→ H,
where each task t ∈ V is mapped to a resource r ∈ H.

3.2 Workflow applications

Nowadays many applications are represented by DAGs.
Montage [13] is an example of workflow application that can
have different sizes. It is an image application that makes
mosaics from the sky for astronomy research. Its workflow
size depends on the square degree size of the sky to be gener-
ated. For example, for a 1 square degree of the sky, a work-
flow with 232 jobs is executed. For 10 square degrees of
the sky a 20,652 jobs workflow is executed, dealing with
an amount of data near to 100GB. The full sky is around
400,000 square degrees [12]. Our infrastructure along with
the proposed algorithm can handle this kind of application

by requesting resources to public clouds when the private
resources are not sufficient to execute the workflow.

Our evaluation comprises experiments and simulations
with eight DAGs of real world applications (Fig. 3), namely
Montage [13], AIRSN [38], CSTEM [14], LIGO-1 [28] and
LIGO-2 [23], Chimera-1 and Chimera-2 [4], and the median
filter image processing application, represented by the DAG
in Fig. 2.

3.3 Initial schedule

When submitting a DAG to be executed, the user may want
to have it finished before a certain time. Let DG be the dead-
line (or a desired finish time) of a DAG G. The proposed al-
gorithm makes an initial schedule using the Path Clustering
Heuristic (PCH) algorithm [6]. This initial schedule consid-
ers only the private resources ri ∈ R to check if they already
satisfy the deadline. If the deadline is not satisfied, the algo-
rithm starts the process of deciding which resources it will
request to the public cloud. This decision is based on per-
formance, cost, and the number of tasks to be scheduled in
the public cloud. To make the initial schedule, the PCH al-
gorithm uses some attributes computed for each DAG node:

• Computation cost:

wi,r =
instructions

pr

wi,r represents the computation cost (execution time) of the
node i in the resource r , and pr is the processing capacity
of resource r in instructions per second.

• Communication cost:

ci,j =
datai,j

lr,p

ci,j represents the communication cost (time to transfer
data) between nodes ni and nj using the link l between re-
sources r and p. If r = p, then ci,j = 0.

• suc(ni) is the set of immediate successors of node ni in
the DAG.

• pred(ni) is the set of immediate predecessors of ni in
the DAG.

• Priority:

Pi =

{

wi,r , suc(ni) = ∅

wi,r + max∀ nj ∈ suc(ni )(ci,j + Pj ), otherwise

Pi is the priority level of node i at a given time instant during
the scheduling process.

• Earliest start time:

EST(ni, rk) =

{

Time(rk), if i = 1
max{Time(rk),ST i}, otherwise
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Fig. 3 Workflow applications used in the evaluation
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where ST i = max∀ nh∈ pred(ni )(EST(nh, rk) + wh,k + ch,i).
EST(ni, rk) represents the earliest start time possible for
node i in resource k at a given scheduling instant. Time(rk)

is the time when resource k is available to execute node i.
• Estimated finish time:

EFT(ni, rk) = EST(ni, rk) + wi,k

EFT(ni, rk) represents the estimated finish time of node i in
resource k.

After computing these attributes, the initial scheduling
takes place by creating groups of nodes (clusters of tasks)
that are in the same path in the DAG. Tasks in the same clus-
ter are scheduled in the same resource. To create such clus-
ters, the algorithm uses the priority attribute to select the first
task to be added to the first cluster (clustering phase). The
first task ti selected to compose a cluster clsk is the unsched-
uled node with the highest priority. It is added to clsk , then
the algorithm starts a depth-first search on the DAG start-
ing on ti , selecting ts ∈ succ(ti) with the highest Ps + ESTs

and adding it to clsk , until ts has a non-scheduled predeces-
sor. The resource selected for a given cluster of tasks is the
one that minimizes the EFT of the cluster. For more details
about PCH, please refer to [6].

4 The HCOC scheduling algorithm

The HCOC algorithm is based on the following general
steps:

1. Initial schedule: schedule the workflow in the private
cloud R;

2. While the makespan is larger than the deadline:

– Select tasks to reschedule;
– Select resources from the public clouds to compose the

hybrid cloud H;
– Reschedule the selected tasks in H.

The two main steps of the algorithm are the selection of
tasks to reschedule and the selection of resources from the
public cloud to compose the hybrid cloud. While the former
decides which tasks can have their execution time reduced
by using more powerful resources from the public cloud, the
latter determines the performance and costs involved in the
new schedule.

In this paper we compare three policies to select which
tasks will be rescheduled if the desired execution time is
violated in the initial schedule:

– Highest Pi : select the node ni which has the highest pri-
ority Pi in the scheduled workflow. This selects tasks to
reschedule from the beginning of the DAG to the end, and
it is the main policy evaluated throughout the paper;

– Highest EFT i : select the node ni which has the highest
estimated finish time EFT i in the scheduled workflow.
This policy selects tasks from the end to the beginning
of the DAG;

– Highest Pi +EST i : select the node ni which has the high-
est priority plus its estimated start time, Pi + EST i , in the
scheduled workflow. This is the same policy used by PCH
to create clusters of tasks [9].

With the definition of which tasks will be rescheduled,
the algorithm decides how many resources to request from
the public cloud considering their prices and performance.
Such resources will be used to compose the hybrid cloud.
Our algorithm takes into account the number of clusters of
tasks being rescheduled to select these resources, as well as
their cost, number of cores, and performance. The benefits
of considering the number of resource cores are twofold:
(i) task dependencies costs are suppressed, since commu-
nication time between two tasks in the same processor is
considered to be null; and (ii) in general, higher number of
cores means lower cost per core. Note that this last benefit
is only interesting when there are enough tasks to be exe-
cuted in parallel, making use of most cores rented. This is
why our algorithm considers the number of clusters of tasks
being rescheduled.

After the initial schedule generated by PCH, the algo-
rithm checks if resources from the public cloud are needed
based on the deadline D. If the makespan given by PCH is
larger than D, the algorithm selects the node i that is cur-
rently scheduled in the private cloud and has the largest Pi

to be scheduled considering the public cloud as well. The al-
gorithm repeats these steps until the deadline is met or a cer-
tain number of iterations is reached. This strategy is shown
in Algorithm 1.

The second line of Algorithm 1 makes the initial schedule
using the PCH and considering only resources in the private
cloud. After that, while D is violated, the algorithm iterates
until the deadline is met or the number of iterations is equal
to the number of nodes in the DAG (line 3). Inside this it-
eration, the algorithm selects the node ni such that Pi is
maximum and ni is not in the current rescheduling group T

(line 5). Then, in line 7, node ni is added to the set T , which
is composed of all nodes being rescheduled from the private
cloud to the public cloud. In line 8, the algorithm computes
the number of clusters of nodes in T , which will determine
how many resources (or cores) will be requested to the pub-
lic cloud. After that, an iteration is repeated until the num-
ber of selected cores reaches the number of clusters in T ,
always selecting the public cloud resource i which gives the
smallest pricei

num_coresi×pi
with num_coresi <= num_clusters.

The selected resource is added to the public cloud resources
pool H in line 11. With the resources selected, the algorithm
schedules each node ni ∈ T in the resource rn ∈ H that re-
sults in the smallest EFT i .
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Algorithm 1 HCOC: the Hybrid Cloud Optimized Cost
scheduling

1: R = all resources in the private cloud
2: Schedule G in the private cloud using PCH
3: while makespan(G) > D AND iteration < size(G) do

4: iteration = iteration + 1
5: select node ni such that Pi is maximum and ni ∋ T

6: H = R

7: T = T ∪ t

8: num_clusters = number of clusters of nodes in T

9: while num_clusters > 0 do

10: Select resource ri from the public clouds such that
pricei

num_coresi×pi
is minimum and num_coresi <=

num_clusters

11: H = H ∪ {ri}

12: num_clusters = num_clusters − num_coresi

13: end while

14: for all ni ∈ T do

15: Schedule ni in hj ∈ H such that EFT i is minimum
16: Recalculate ESTs and EFTs

17: end for

18: end while

Figure 4 shows an example considering the DAG of Fig. 2
and resources in Tables 1 and 2, with D = 45. The ini-
tial schedule considering only the private cloud resources
is on the left-hand side of Fig. 4. It allocates nodes in two
cores of Cronos (C1 and C2) and two cores of Apolo

(A1 and A2), resulting in makespan = 80 and cost = 0.
The schedule in the hybrid system using HCOC is shown
on the right-hand side. It uses two cores of Cronos and 8
cores of the public cloud (Z1 to Z8), with makespan = 40
and cost = 25 × 0.9 = 22.5, since the lease time is 25
time units and the leasing of 8 cores in Zeus costs $0.9
per time unit. This schedule is achieved starting with the
schedule on the left-hand side, and then rescheduling nodes
1,2,3,4,5,6,7,8,9,10 and 11, in this order.

Besides the private-only and HCOC scheduling, we
consider another approach as comparison. We call greedy

scheduling the approach where both resources from private
and public clouds are considered, but resources from the
public cloud are selected based solely on their performance
no matter their costs. This approach follows the same algo-
rithm as the scheduling in the private cloud only, but con-
sidering that any resource in any cloud can be used. For the
example of Figure 4, the greedy approach would result in a
schedule with makespan = 35 and cost = (25 × 0.3)× 10 =

75, using 10 leased resources with 1 core each during
25 time units.

Note that HCOC can be easily adapted to deal with bud-
gets instead of D. In this case, the user just has to stipu-
late a budget B to be obeyed, and the outer iteration can be
adapted to be executed while the current execution cost is

Fig. 4 Example of scheduling in the private and hybrid clouds

smaller than B. This would also be useful in prepaid sys-
tems, where the user pay for resources. Additionally, other
heuristics might be used instead of PCH. In fact, in order
to evaluate the robustness of the proposed strategies, we
also executed simulations of the proposed algorithm with
the Heterogeneous Earliest Finish Time algorithm [32].

5 Evaluation

The evaluation is separated in two parts: first, we present
results for experiments conducted in our testbed [9], as de-
scribed in Sect. 2. After that, we show simulations covering
more types of workflows and different resource configura-
tions. The metrics used are the average makespan and aver-
age cost of the schedules given by the algorithms, the per-
centage of times the algorithm did not reach the deadline,
and the number of rescheduled tasks. Results show 95%
confidence intervals.

5.1 Experimental results

We have set up a testbed, as described in Sect. 2, to start
the evaluation of HCOC. In this evaluation scenario we de-
ployed services on each resource to execute an image pro-
cessing filter (median filter [22]). Applying filters on high
resolution images can be expensive and may demand some
computational power. On the other hand, it can be done par-
allelizing the filter application by segmenting the image into
smaller blocks. Then, the filter is applied in a distributed
way, and the resulting blocks are merged into the final re-
sulting image.
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Fig. 5 The segmentation and merge operations

The median filter substitutes the value of a pixel by the
median value from its neighborhood. It sorts the pixels in
the neighborhood and picks the median pixel value as the
new value for the pixel of interest. Thus, for a neighborhood
of size 1 (3 × 3 filter), 9 elements of the matrix are sorted
and the median value is selected. For a neighborhood of size
2 (5 × 5 filter), 25 elements are sorted, and so on. In our
experiments we show results for 3 × 3 and 5 × 5 filters.

To apply the filter in a distributed way, we first split the
image into smaller blocks, then applied the median filter on
each block separately, and merged the blocks to generate
the final image. Because the filter uses a median value of
a neighborhood, there is data redundancy in the generated
blocks. For instance, in the 3 × 3 filter the first and last lines
on each block are duplicated, thus the first and last lines of
the block can have the filter applied using their full neighbor-
hood. Figure 5 illustrates the segmentation and merge oper-
ations. Note that application is essentially a fork-join DAG,
as the one shown in Fig. 2. The execution and communica-
tion costs for the DAG were estimated from historical data
from other executions of the filter.

We developed a service to execute the application which
applies the filter on the matrix file. This service is used by
the workflows and it provides several operations, such as
splitting the file into blocks according to the desired number
of blocks, applying the median filter on a file, generating
another file with the resulting block/matrix, and merging the
blocks to generate the resulting image. A set of workflows
was created in GPOL (introduced in Sect. 2) to evaluate the
scheduling performance.

We evaluated HCOC in the resources shown in Tables 1
and 2 with the median filter workflow using a matrix of size
7500 × 7500 with different number of slices and filter sizes.
We measured the execution time (makespan) and cost for
executing the workflows, computing the average over 3 ex-
ecutions. Note that the cost for executing workflows in the
private cloud is 0, thus it is not shown in the graphs.

We considered D = 35 for 3 × 3 filter and D = 50 for
5 × 5 filter. Figure 6 shows the average makespan and aver-

age cost for the median filter with 4, 8, and 12 slices. Us-
ing only locally available resources from the private cloud
cannot meet the deadline, resulting in the highest makespan
among the three scenarios. The greedy scheduling can meet
the deadline with a very low makespan; however, the cost for
the execution is high. The execution in the hybrid system
with HCOC can meet the deadline with costs 2 to 5 times
lower than greedy average, as we can observe in Fig. 6(b).

From this initial evaluation we observe that the proposed
algorithm can reduce the makespan when compared to the
private cloud execution, as well as the cost when compared
to the execution in the public cloud. The HCOC algorithm is
capable of decreasing the makespan achieved in a local exe-
cution without prohibitively increasing the execution cost, as
well measures by which extent such variations occur. We can
note that in the private cloud, the higher the number of slices,
the higher the execution time. This is because the slice and
merge operations take more time to split the files, but there
are no parallel processors available to execute all the slices.
On the other hand, executing most tasks of the workflow in
the public cloud can reduce the execution time, since there
are more processors available and more slices can be exe-
cuted in parallel. In the hybrid execution, the algorithm stops
requesting public cloud resources when the deadline is met,
thus there are fewer slices executing in parallel than in the
public cloud execution, but more than in the private cloud
execution.

5.2 Simulation results

In the simulations we evaluate the algorithms using differ-
ent cloud sizes, workflows, and deadlines. The evaluation of
the proposed algorithm, the Hybrid Cloud Optimized Cost
(labeled as HCOC in the graphs), is done using the three
different task selection policies for rescheduling described
in Sect. 4 (highest P , highest P + EST , and highest EFT).
The proposed algorithm is compared with two different ap-
proaches: Private Cloud and Greedy. The Private Cloud

approach considers only resources available in the private
cloud when scheduling, which actually is the initial sched-
ule. The Greedy approach considers both resources from pri-
vate and public clouds, but resources from the public cloud
are selected based solely on their performance no matter
their costs. In addition, we present results that compare the
communication costs involved when using each scheduling
algorithm.

5.2.1 Simulation scenarios and configurations

The simulation environment was set up with one private
cloud and public cloud resources that could be requested by
the scheduler to be part of the hybrid infrastructure. Each
simulation was repeated 1000 times.
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Fig. 6 Results for median filter DAGs

In each simulation we generated a private cloud R with
2 to 10 resources. Each resource had its processing power
randomly taken from the interval (10,100): ∀ri ∈ R, pri =

random(10,100). Links between resources in the private
cloud had their bandwidth randomly taken from the set
{40,50,60,70,80}. The external link of the private cloud
(i.e., the link that connects the private cloud to the pub-
lic clouds) had its bandwidth randomly taken from the set
{20,30,40,50}. These resource and link configurations aim
to cover a wide range of processor capacities and bandwidth,
combining high processing power with low bandwidth and
vice versa. Additionally, the external bandwidth is usually
lower than the internal bandwidth, which is a common con-
figuration in real environments.

On the other hand, public cloud resources could be re-
quested by the scheduler as it needed, without a limit in
the number of resources that could be leased. The num-
ber of cores and costs per time unit for using public cloud
resources followed what is shown in Table 2. Processing
power from public cloud’s virtualized resources were ran-
domly taken from the interval (50,150): ∀ui ∈ U , pui

=

random(50,150), while bandwidth between any two re-
sources in the same public cloud was set to 100.

The main metrics evaluated are the average makespan
and average cost of the schedules given throughout the sim-
ulations, as well as the percentage of times each algorithm
did not achieve a makespan lower than D. To compute the
cost of a given schedule, we considered all time intervals
that each resource was being used for processing a task or
transmitting data. Therefore, gaps in the schedule were not
computed as resource usage time. In addition, for each sce-
nario and each DAG, we present two graphs for each met-
ric: one that averages over all simulations and another one
that averages only over simulations where the private cloud
scheduling did not achieve a makespan lower than D.

We used the DAGs shown in Sect. 3.2 to run our sim-
ulations. In particular, the Montage application was gener-
alized, generating DAGs with size from 5 to 100. Besides
that, random DAGs with size from 5 to 100 were gener-
ated using the procedure described in [29]. Each task of
the generated DAGs had its computing cost generated from
the interval (500,4000). For each type of DAG, we per-
formed simulations using different communication to com-
putation ratios (CCRs): low communication (CCR = 0.5);
medium communication (CCR = 1.0); high communica-
tion (CCR = 2.0). CCR is defined as the ratio between the
amount of communication and the amount of computation
in the workflow.

This first set of simulations used the Highest P policy
for selecting tasks to reschedule and medium communica-
tion. Thus, this set represents results for Algorithm 1 without
any modification. Each result graph shows six sets of bars.
Each set presents results for different D values, varying from
1.5 × CP to 4.0 × CP, where CP is the execution time in the
best resource available of all tasks in critical path of the cur-
rently scheduled DAG. For makespan results, there are four
bars in each set: average D, average makespan for private

cloud scheduling, average makespan for greedy scheduling,
and average makespan for HCOC scheduling.

5.2.2 Highest priority

Figure 7 shows average cost and makespan for the Mon-
tage DAG (Fig. 3(a)) with CCR = 1.0 and number of nodes
from 5 to 100. We can observe that the hybrid cloud op-
timized cost approach is very efficient for D = 1.5 × CP,
resulting in an average makespan close to both the aver-
age D and the average makespan given by the greedy al-
gorithm. As we increase D, the HCOC algorithm presents
an increase in the makespan, following the increase in D,
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Fig. 7 Results for Montage DAGs with size from 5 to 100 with medium communication (CCR = 1.0)

while the greedy and private cloud averages present negligi-
ble changes. This is the desired behavior, and the efficiency
of HCOC is corroborated by the average costs. Even pre-
senting an average makespan really close to the greedy ap-
proach when D = 1.5 × CP, HCOC generated makespans
with an average cost 34% lower. The higher the D, the lower
the cost from HCOC schedules. This cost efficiency when
D = 1.5 × CP can be explained by the multicore and cost
aware scheduling. While HCOC leases resources from the
public cloud according to the number of clusters of tasks
to be scheduled, the greedy approach tends to lease single
core resources for each cluster, since it considers only one
cluster of tasks at a time. Additionally, using multicore re-
sources can minimize communication costs, contributing to
the minimization of the makespan.

Observing the results for Montage considering only ex-
ecutions where the private cloud approach did not achieve
the desired makespan D, we can note that HCOC makespans
closely follow the average D. This means that the proposed

algorithm can efficiently reduce a makespan larger than D

to a makespan lower but close to D. As a consequence, av-

erage costs for those executions are lower than the average

given by the greedy algorithm. Note that the average costs in

this case have a different behavior when D increases: while

HCOC maintains a nearly constant average cost, the greedy

worsens it with higher Ds. This is expected when we av-

erage only over initial schedules higher than D, since the

higher is D, also higher is the makespan that did not meet it.

However, this also means that HCOC is efficient in avoid-

ing high costs when the initial schedule makespan is high.

Complementing these results, Table 3 shows the percentage

of schedules that did not meet the desired execution time for

each algorithm. We can observe that HCOC, besides effi-

ciently achieving the objective of reducing costs, can also

produce schedules that obey D in more simulations than

both greedy and private cloud approaches. HCOC’s multi-

core awareness contributes to this, since selecting multicore
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Table 3 Percentage of schedules that did not meet the deadline for Montage DAGs

Algorithm Deadline

D = 1.5 × CP D = 2.0 × CP D = 2.5 × CP D = 3.0 × CP D = 3.5 × CP D = 4.0 × CP

Private cloud 92.7 71.2 45.1 22.6 11.1 8.5

Greedy 47.5 22.7 14.7 6.1 3.6 1.5

HCOC 31 12.9 4.8 1.5 0.3 0

Fig. 8 Results for random DAGs with size from 5 to 100 generated using the procedure described in [29] and medium communication (CCR = 1.0)

resources can minimize communication costs, reducing the
makespan.

Results for random DAGs with size from 5 to 100 and
CCR = 1.0 are shown in Fig. 8 and Table 4. We can ob-
serve a quite similar behavior to the Montage results. This
behavior indicates that HCOC can maintain a good perfor-
mance with DAGs with different topologies.

After Montage and random DAGs results, which repre-
sent simulations using DAGs of varying sizes, hereon we
present results for DAGs with fixed number of nodes. In the

case of LIGO, results show that HCOC remains efficiently
generating schedules. Figure 9 shows that, when averaging
over all simulations, makespans generated by HCOC tend
to follow D. On the other hand, the private cloud average
makespan is as much as 350% higher than HCOC’s aver-
age. Because of that, and in consequence of LIGO having
much more tasks than the number of resources available in
the private cloud, HCOC needs to reschedule most tasks
from the initial schedule to the public cloud, even when
D = 4.0 × CP. However, for all D values, HCOC gener-
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Table 4 Percentage of schedules that did not meet the deadline for random DAGs

Algorithm Deadline

D = 1.5 × CP D = 2.0 × CP D = 2.5 × CP D = 3.0 × CP D = 3.5 × CP D = 4.0 × CP

Private cloud 95.2 80.1 66.8 52.1 36.1 26.1

Greedy 50.5 28.4 15.7 11.3 4.7 3.3

HCOC 33 24.5 10.5 5.3 2.3 1

Table 5 Percentage of schedules that did not meet the deadline for LIGO-1 DAGs

Algorithm Deadline

D = 1.5 × CP D = 2.0 × CP D = 2.5 × CP D = 3.0 × CP D = 3.5 × CP D = 4.0 × CP

Private cloud 100 100 100 100 99.7 97.8

Greedy 75.9 44.7 28.9 16.8 12.4 6.7

HCOC 33.4 28.1 19 11.8 8.2 4.9

Fig. 9 Results for LIGO-1 DAGs (Fig. 3(d)) and medium communication (CCR = 1.0)

ates schedules with costs around 45% less than the greedy
algorithm.

Considering only executions where the private cloud ap-
proach did not achieve the desired makespan, LIGO results
are very close to the ones achieved for the average over
all simulations, therefore we omit such graphs. This hap-
pens because nearly 100% of the simulations resulted in
the private cloud scheduling do not achieving the desired
makespan D, as shown in Table 5. From this table we can
also observe that HCOC can meet the deadline more often
than greedy.

Figure 10 and Table 6 present results for the AIRSN
workflow. These graphs are similar to Montage and ran-
dom DAGs results. It is worth noting, however, that for
D = 1.5 × CP the proposed algorithm can reach an average
makespan lower than the one given by the greedy algorithm.
This happens because the greedy algorithm did not reach the

desired makespan on average, and HCOC takes advantage of
its multicore policy to reduce the makespan to as low as D.
Such policy, along with HCOC’s cost-awareness, is also re-
sponsible for this achievement being possible even with a
lower average cost than the one presented by the greedy.

For Chimera-1 simulations (Fig. 11 and Table 7), results
show an intermediate behavior between Montage and LIGO:
while the makespan increases with D, the cost stills showing
slight changes (as LIGO does) up to D = 2.5 × CP. Above
this value, the average cost starts to get lower (as in Montage
graphs). We observed that this change of behavior happens
when the desired makespan reaches a value where an entire
DAG level may be left in the private cloud, lowering the
public cloud leasing costs.

Chimera-2 DAG results are similar to the ones observed
for LIGO-1 DAGs. Therefore, we also omit additional
graphs for Chimera-2. Simulations using CSTEM DAGs
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Fig. 10 Results for AIRSN DAGs (Fig. 3(b)) and medium communication (CCR = 1.0)

Table 6 Percentage of schedules that did not meet the deadline for AIRSN DAGs

Algorithm Deadline

D = 1.5 × CP D = 2.0 × CP D = 2.5 × CP D = 3.0 × CP D = 3.5 × CP D = 4.0 × CP

Private cloud 100 92.6 54.3 27.2 17.8 12.5

Greedy 60.4 35.4 17.6 10.7 5 2.3

HCOC 29.4 14.2 3.2 1.2 0.3 0

showed that the initial schedule was capable of satisfying
D in nearly all simulations. LIGO-2 results are omitted,
since they showed similar behavior to Montage and random
DAGs, corroborating the results.

Table 8 presents how many tasks were rescheduled
on average by HCOC, showing averages for simulations
with CCR = 1 and highest P rescheduling policy. Re-
sults from this table also support the conclusions presented
in Sect. 5.2.2. For example, we observe in Table 8 that
Chimera-1 DAG has a sudden lowering in the number of

rescheduled tasks when D is increased from 3.0 × CP to
3.5 × CP. This behavior is one of the explanations for the
pattern shown in Fig. 11(b), where the average cost starts
dropping when D = 3.0 × CP.

In addition, we can see from the results that, depending
on the relation among deadline and critical path, private re-
sources can meet the deadline in most executions (Tables 3
to 5, for instance). However, the HCOC is still useful in such
cases, since it can produce schedules that only use public re-
sources when needed, thus reducing costs.
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Fig. 11 Results for Chimera-1 DAGs (Fig. 3(f)) and medium communication (CCR = 1.0)

Table 7 Percentage of schedules that did not meet the deadline for Chimera-1 DAGs

Algorithm Deadline

D = 1.5 × CP D = 2.0 × CP D = 2.5 × CP D = 3.0 × CP D = 3.5 × CP D = 4.0 × CP

Private cloud 100 99.8 97.4 86.4 63.8 49

Greedy 63.4 38.5 31.2 21.7 16.7 14.4

HCOC 40.2 35.3 30.4 19.7 12 8.2

Communication overhead In order to measure the impact
of distributing tasks among the hybrid cloud resources, we
evaluate the communication costs in the schedules. Given a
DAG G = (V , E ), we define

C =
∑

ea,b∈E

ca,b

as the total communication costs at the end of the scheduling
process. Table 9 shows the quotient of CHCOC with CPrivate

and CGreedy. We can note that, when compared to the pri-

vate cloud scheduling, HCOC is able to reduce the total
communication with lower deadlines. For example, when
D = 1.5 × CP , the communication costs for HCOC sched-
ules of Montage DAGs were around half of the communi-
cation given by the private cloud scheduling (quotient of
0.5498). As D increases, this difference becomes smaller.
This occurs because smaller deadlines force HCOC to con-
centrate tasks on the public cloud, which has higher link
bandwidth as well as multicore resources. On the other hand,
when the deadline is higher, most of the tasks are sched-
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Table 8 Average number of
tasks rescheduled by HCOC Deadline DAG (DAG size)

Montage Random LIGO-1 LIGO-2 AIRSN Chimera-1 Chimera-2

(5–100) (5–100) (168) (77) (53) (44) (124)

D = 1.5 × CP 43.72 52.45 164.7 73.66 45.23 43.47 122.88

D = 2.0 × CP 31.18 44.09 158.89 55.74 33.36 41.9 119.97

D = 2.5 × CP 17.28 35.9 150.17 35.45 15.59 37.5 114.72

D = 3.0 × CP 7.29 25.45 139.21 22.1 8 28.38 107.19

D = 3.5 × CP 3.15 15.28 128.96 13.5 5.21 18.73 96.13

D = 4.0 × CP 1.66 9.96 114.46 9.11 3.28 12.43 82.78

Table 9 Relation of total communication in schedules given by HCOC algorithm against private and greedy approaches

DAG CHCOC

CPrivate

CHCOC

CGreedy

1.5XCP 2.0XCP 2.5XCP 3.0XCP 3.5XCP 4.0XCP 1.5XCP 2.0XCP 2.5XCP 3.0XCP 3.5XCP 4.0XCP

Montage 0.5498 0.6638 0.7764 0.9158 0.9445 0.9857 1.1598 1.4100 1.748 2.2210 2.2370 2.2100

Random 0.6030 0.8135 0.9387 1.0623 1.0397 1.0395 1.0084 1.2937 1.5473 1.7020 1.6673 1.7902

LIGO-1 0.3761 0.5054 0.6215 0.7090 0.8171 0.9386 1.0645 1.4387 1.7479 2.0202 2.3538 2.5385

LIGO-2 0.9225 0.9491 0.9777 1.0495 1.0474 1.0574 1.7700 1.7433 1.9067 2.0093 2.1221 2.1239

AIRSN 0.6653 0.8855 0.9748 0.9622 0.9888 0.9857 1.1833 1.6695 1.6068 1.8493 1.8968 1.7894

Chimera-1 0.6058 0.6828 0.8115 0.9559 1.0635 1.0761 0.8409 0.9601 1.2003 1.3634 1.5159 1.5300

Chimera-2 0.5644 0.6404 0.6257 0.7164 0.8073 0.9382 0.9908 1.0913 1.1354 1.2089 1.4780 1.6188

uled in the private cloud, approximating the relation to 1.
Thus, we conclude that HCOC does not incur in commu-
nication overheads when compared to the execution in the
private cloud only, actually reducing the overall communi-
cation costs in most cases.

In general terms, the same reasoning is valid for the re-
lation with the greedy approach. However, since the greedy
approach tends to send most tasks to the public cloud, con-
centrating tasks on fewer resources, the relation becomes
larger as higher is the deadline. For example, HCOC sched-
ules for Montage DAGs can generate around twice commu-
nication (quotient of 2.2370 for D = 3.5) when compared
to the greedy approach. Therefore, the greedy approach re-
duces the overall communication costs, but it increases the
execution costs.

5.2.3 Additional results

Hereon, in this second set of simulation results, we present
additional graphs for Montage DAGs with number of nodes
from 5 to 100 to corroborate the conclusions outlined hith-
erto. We have chosen to present Montage results because
many other DAGs results showed the same pattern.

HEFT To evaluate the robustness of the proposed algo-
rithm, we have run simulations using another heuristic to
make the initial schedule. The Heterogeneous Earliest Fin-
ish Time (HEFT) [32] is a well-known heuristic to schedule

DAGs in heterogeneous systems. We observe no significant
changes in the general behavior of the results for Montage
DAGs, as shown in Figure 12.

Different CCRs We also conducted simulations to evaluate
the HCOC algorithm using PCH in DAGs with CCR = 0.5
(Fig. 13) and CCR = 2.0 (Fig. 14). These results show sim-
ilar patterns to the ones found in simulations with CCR =

1.0.

Amazon EC2 Configuration We conducted simulations us-
ing different resources configuration. This new configura-
tion mimics some resources processing power and prices of-
fered by Amazon Elastic Compute Cloud (Amazon EC2)
for its on-demand instances, shown in Table 10. Note that
we generated a random processing capacity in the inter-
val (10,70) to represent the small instance power, and the
other instance types have their processing power derived
from that. This follows the Amazon EC2 instance types,7

which are based in EC2 Compute Units and varying number
of virtual cores. According to Amazon, “one EC2 Compute
Unit provides the equivalent CPU capacity of a 1.0–1.2 GHz
2007 Opteron or 2007 Xeon processor”.8

7http://aws.amazon.com/ec2/instance-types/.
8http://aws.amazon.com/ec2/faqs/.

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/faqs/
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Fig. 12 Results using HEFT for Montage DAGs (Fig. 3(a)) with medium communication (CCR = 1.0)

Fig. 13 Results for Montage DAGs with size from 5 to 100 with low communication (CCR = 0.5)

Table 10 Resources configurations from the Amazon EC2 on-demand
instances

Type Cores pr per core Price

Small 1 random(10,70) $0.085

Large 2 2 × pSmall $0.34

Extra Large 4 2 × pSmall $0.68

Extra Large 8 2.5 × pSmall $0.68

High CPU

Average makespan and average costs for Montage DAGs
using the Amazon resources configuration shown in Ta-
ble 10 are presented in Fig. 15. We observe no significant
differences in the graph behavior, which indicates that the
algorithm is robust enough to deal with changes in the re-
sources capacities and pricing.

Highest P + EST Figure 16 shows graphs for results with
the Montage DAGs but using the highest P +EST reschedu-
ling policy. No significant changes are observed when com-
pared to the highest P policy (Fig. 7).

Highest EFT Figure 17 shows graphs for results with the
Montage DAGs but using the highest EFT rescheduling pol-
icy. Again, no significant changes to the highest P policy are
observed.

The Highest P policy selects the non-scheduled task t

which has the largest path from the beginning of t to the
end of the workflow. Therefore, when rescheduling tasks, it
starts on the first task of the workflow. On the other hand,
highest EFT selects the non-scheduled task t which has the
largest path from the beginning of the workflow to the end
of t . Highest P+EST combines both, trying to select non-
scheduled tasks from longest path of the DAG. The iterative
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Fig. 14 Results for Montage DAGs with size from 5 to 100 with high communication (CCR = 2.0)

Fig. 15 Results using Amazon EC2 Cloud configurations for Montage DAGs (Fig. 3(a)) with medium communication (CCR = 1.0)
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Fig. 16 Results for Montage DAGs with size from 5 to 100, medium communication (CCR = 1.0) and highest P + EST rescheduling policy

Fig. 17 Results for Montage DAGs with size from 5 to 100, medium communication (CCR = 1.0) and highest EFT rescheduling policy

rescheduling provided by HCOC handles these differences
by scheduling tasks on the public cloud until the deadline D

is met. With this, regardless which tasks are scheduled on
the public cloud, the average makespan is close to D.

6 Related works

Due to its importance in reducing application execution
times, the scheduling problem is well studied for a variety
of problems. In particular, DAG scheduling studies comprise
both homogeneous [3, 20, 21, 33] and heterogeneous [7, 27,
29, 32] systems. Task scheduling is an NP-Complete prob-
lem [26], thus its optimization version is NP-Hard. There-
fore, most efforts in scheduling algorithms are concentrated
on heuristics and meta-heuristics [11, 17, 18, 29, 32]. There
are some works which use approximation algorithms [25,

16] and combinatoric approaches [5]. Extensive descriptions
about scheduling in computational grids are presented in
[15] and [19].

In distributed systems scheduling, the most common ob-
jective found in the literature is the makespan minimization.
However, works that consider costs and deadlines also ex-
ist. Yu and Buyya present in [34] a study showing how to
schedule scientific workflow applications with budget and
deadline constraints onto computational grids using basic
genetic algorithms. The proposed approach obtains a vari-
able performance depending on the structure of the DAG
being scheduled. Moreover, the algorithm does not con-
sider multicore resources during the resource selection, what
could make the genetic algorithm convergence time higher
in hybrid clouds. In another work [35], Yu et al. focus on
tasks deadline to try to meet the whole workflow deadline.
Additionally, a rescheduling policy is presented to try to
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avoid resource load peaks that could affect the achievement
of a deadline. These works do not consider multicore nor
the dynamic provision/leasing of resources, available in a
hybrid cloud. However, the rescheduling policy proposed
could complement our work if used in the private cloud to
manage unexpected loads on shared resources.

In [10], Van den Bossche et al. deal with the scheduling of
independent tasks on hybrid clouds. They propose a binary
integer program to decide which cloud provider to choose
when outsourcing a task that cannot be currently executed in
the private cloud. Workflow scheduling in conjunction with
service composition in grids is discussed by Zhang et al.
in [37]. An algorithm to schedule composed services is pro-
posed. The composed services are modeled as a workflow,
and then this workflow is scheduled using a technique called
list scheduling. Fujimoto and Hagihara present an approxi-
mation algorithm for task scheduling in [16]. The algorithm
uses the resource utilization as the performance criterion,
not focusing on makespan minimization, costs, or deadlines.
Since approximation algorithms are hard to be developed,
the authors make some assumptions to make the problem
more specific, like considering that all tasks of the workflow
have the same weight.

The scheduling of DAGs in hybrid clouds is a challenge
that has been becoming important. As hybrid clouds become
popular, aggregating public clouds and private clouds or
grids, deciding where to execute tasks aiming performance
and cost reduction turns highly relevant. This problem stills
in its infancy and in this paper we investigate it proposing
the HCOC algorithm.

7 Conclusion

Hybrid clouds are being used to execute different kinds of
applications. Among them, workflows have an important
role in processes of many fundamental science fields, such
as physics, chemistry, biology, and computer science. To
speed up science advancements, it is important to provide
efficient resource utilization as well as to make application
executions affordable.

In this paper we present HCOC: The Hybrid Cloud Op-
timized Cost scheduling algorithm. HCOC is an algorithm
to speed up the execution of workflows obeying a desired
execution time, but also reducing costs when compared to
the greedy approach. The extensive evaluation carried out in
this work provides sufficient data to support the conclusion
that the HCOC algorithm can provide efficient scheduling
in a hybrid cloud scenario. Its multicore awareness, along
with the cost knowledge, can provide makespans as low as
the user needs. As a consequence, the user is able to con-
trol costs by adjusting the desired workflow execution time
D according to his willingness. In general, the proposed al-
gorithm has the ability of reducing the execution costs in

the public cloud with the increase of the workflow desired
execution time. Besides that, in some cases where the de-
sired execution time is too low, HCOC finds better sched-
ules than the greedy approach by taking advantage of mul-
ticore resources, reducing the number of violations of D.
HCOC had its robustness attested by simulations using dif-
ferent rescheduling criteria and heuristics to produce the ini-
tial schedule.

Furthermore, HCOC can be easily adapted to handle bud-
gets instead of deadlines, what makes it flexible to the use
with different requirements. As future work, to deal with
multiple workflows is an important issue. Besides that, con-
sidering the potential presence of external load in private
resources could improve the scheduling decisions. Another
important point to be approached is how to estimate the
available bandwidth between two public clouds. Such es-
timation is essential for the scheduling algorithm to de-
cide when dependent tasks could be put in different public
clouds.
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