
SPECIAL SECTION ON DATA MINING FOR INTERNET OF THINGS

Received August 10, 2019, accepted September 12, 2019, date of publication September 16, 2019, date of current version October 2, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2941766

HcRPC: Highly Compact Reachability Preserving
Graph Compression With Corrections

RUI BING1, HUIFANG MA 1,2,3, XIANGCHUN HE1, ZHIXIN LI 3, AND LIJUN GUO4
1College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China
2Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin 541004, China
3Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin 541004, China
4College of Information Science and Engineering, Ningbo University, Ningbo 315000, China

Corresponding author: Huifang Ma (mahuifang@yeah.net)

This work was supported in part by the National Natural Science Foundation of China under Grant 61762078, Grant 61363058, Grant

61762079, and Grant 61966004, in part by the Guangxi Key Laboratory of Trusted Software under Grant kx201910, in part by the

Research Fund of Guangxi Key Lab of Multi-Source Information Mining and Security under Grant MIMS18-08, in part by the Ningbo

Municipal Natural Science Foundation of China under Grant 2018A610057, and in part by the Zhejiang Provincial Natural Science

Foundation under Grant LY17F030002.

ABSTRACT Graphs are used in numerous applications to model real-world systems and phenomena.

The ever increasing size of graphs makes them difficult to query and analyze. In this paper, we propose

HcRPC, a Highly compact Reachability Preserving Graph compression algorithm with Corrections, which

is capable of preserving the reachability relations between the nodes in original graph. The highly compressed

representation of a given graph consists of a compressed graph and a set of corrections. The original graph

is compressed on the basis of equivalence class obtained via the reachability relations between nodes in the

original graph. In the compressed graph, each node corresponds to a set of nodes from the original graph with

similar ancestors and descendants, and each edge represents linkage between the original nodes in any two

node sets. The corrections portion specifies the set of corrections, including equivalent class-node corrections

and node-node corrections. MinHash technique is utilized to speed up checking whether equivalence classes

are structure-similar and the pair of equivalence classes with high similarity are thus merged to acquire a

highly compressed graph. Besides, we develop an algorithm for preserving compressed graph with a set of

corrections in response to changes to the original graph. We evaluate our algorithms on real-life graph data

sets and the results indicate that graph data sets can be highly compressed while preserving the reachability

relations between nodes.

INDEX TERMS Graph compression, reachability query, MinHash, dynamic graph.

I. INTRODUCTION

Nowadays, it is increasingly common to find graphs with

millions of nodes in various domains where nodes in the

graph represent entities in the real-world, while edges rep-

resent the relationship between entity and entity, such as

the relationships between users in social networks and web

pages in Web graphs. Due to the increasing scale of graph

data, it is impossible to process and analyze these graph

data directly. In order to save storage space and facilitate the

analysis of graph, it is necessary to compress large graph

into smaller-scale graph. Therefore, graph compression has

recently drawn intense research interest [1] and has been

wildly applied in many scenarios and domains [2]–[10], such

The associate editor coordinating the review of this manuscript and
approving it for publication was Shirui Pan.

as community influence analysis [11]–[15], graph visualiza-

tion [16], [17] and pattern discovery [18]–[20]. After com-

pressing graph, the complexity of the graph is reduced while

certain characteristics of the graph are preserved.

Consider a semantic network that represents people as

nodes in the graph and relationships among people as edges in

the graph. There are needs to understand whether two people

are related for security reasons [21]. On biological networks,

where nodes are either molecules, or reactions, or physi-

cal interactions of living cells, and edges are interactions

among them, an important question is to find all genes whose

expressions are directly or indirectly influenced by a given

molecule [22]. All the above questions can be mapped into

reachability queries, which make graph reachability queries

to be a very basic type of graph queries for many applications.

For reachability queries, it always takes O (|V | + |E|) time

136568 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 7, 2019

https://orcid.org/0000-0002-5104-8982
https://orcid.org/0000-0002-5313-6134

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

FIGURE 1. Compressing a real-life wiki-Vote social network.

via DFS/BFS search to determine whether there is a path

between any two nodes in the graph G = (V ,E). Although

indexes can be constructed to speed up evaluation, they can

still incur additional costs [23]. Therefore, evaluating queries

on graphs with millions of nodes and billions of edges is often

prohibitively expensive, and we are unlikely to reduce the

computational complexity. We may not change the complex-

ity of graph queries algorithms, but we can reduce the size

of the data graphs to obtain faster query speed. The method

proposed in [24] uses equivalence classes to partition nodes

in graphs, which effectively reduces the number of nodes in

graphs. For instance, a real-life wiki-Vote social network can

be highly compressed for reachability queries, as depicted

in Figure 1.What is more, inmany applications such as online

social networks, the graph evolves over time. We therefore

consider the problem of updating the compressed graph given

the graph changes over time.

To this end, in this paper, we introduce HcRPC, a Highly

compact Reachability Preserving graph Compression with

corrections. Figure 2 gives the framework of our methods.

It first divides nodes from the original graph into equivalent

classes via the equivalence relation of reachability. Then each

pair of equivalence classes are further compressed based on

the similarities of their ancestors and descendants. What is

more, a set of corrections is decided tomaintain the reachabil-

ity of the nodes in the original graph.HcRPC is relative to the

reachability queries, generating smaller graphswhile preserv-

ing information only relevant to reachability queries rather

than the entire original graphs, and therefore, achieves a better

compression ratio. In addition, any algorithm available for

evaluating reachability queries can be directly performed to

query the compressed graphs, as is, without decompressing.

In order to handle the dynamic changes of original graph,

we also propose an Incremental Reachability Preserving

Compression algorithm, i.e. IncRPC, to update both the com-

pressed graph and corrections in the dynamic graph, allowing

us to maintain the reachability of original graph without

decompressing after compress the graph once. We verify the

effectiveness and efficiency of our compression techniques

through experiments using real-life data.

The contribution can be summarized as follows:

(1). We propose a reachability query preserving com-

pression method for querying reachability relations on large

real-life graphs. Contrary to general graph data compression

strategies, our method only retains the information needed

for reachability queries, and thus achieves better compression

ratio by merging similar equivalence classes via MinHash.

Any algorithm for calculating the reachability query of the

original graph can be directly performed on the compressed

graph without decompression.

(2). As is known that merging similar sets will inevitably

incur reachability relation errors, a set of corrections is estab-

lished to maintain the same reachability relations on the

compressed graph as in the original graph. For reachability

queries, by calculating similarities and merging equivalence

classes to achieve better compression ratio, the reachability

relations in the compressed graph are kept unchanged through

the set of corrections. This not only achieves preferable com-

pression ratio, but also maintains the reachability relationship

in the original graph.

(3). In order to cope with the dynamic changes of real-life

graphs, we propose an incremental reachability preserving

compression algorithm. Given a graphG, its compressionGs,

and updates 1G to G, the aim is to utilize similarity calcu-

lation and corrections to make the reachability relations on

the updated compressed graphGs consistent with the original

graph G. This allows us to compute the compressed Gs once

and maintain it incrementally according to the changes in G.

II. RELATED WORKS

Graph compression methods can be roughly categorized into

two groups: general graph compression and query-friendly

graph compression.

A. GENERAL GRAPH COMPRESSION

General methods preserve the information of the entire

graph, and highly depend on extrinsic information, coding

mechanisms and application domains [25], However, these

methods need decompression before querying the graph.

Existing general graph compression algorithms can be sum-

marized into the following four categories: (a). Attribute-

based graph compression algorithms: On-Line Analytical

Processing (OLAP) technology is developed to form the

graph OLAP method, collecting graph data from both infor-

mation OLAP and topology OLAP [26], and probability

is considered to compress graphs [27]. (b). Structure-based

graph compression algorithms: There are currently two

strategies, one is probability-based graph compression

method [28], which takes zero reconstruction error as the

benchmark, and constructs reconstruction error according to

the differences between the expected adjacency matrix calcu-

lated by the super-graph and the adjacency matrix of the orig-

inal graph. The smaller the reconstruction error is, the better

the accuracy is. The other is the graph compression method

based onmaximum compression, aiming to minimize the size

of the super-graph. The most notable algorithm is the Mini-

mumDescription Length (MDL) representation method [29].

These methods are compressed only according to the struc-

ture of the nodes, ignoring the edge weights corresponding to

the attribute information on the nodes and the compactness

between the nodes. (c). Structure and attribute-based graph

compression algorithm: At present, there are two different

VOLUME 7, 2019 136569

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

FIGURE 2. Framework for reachability preserving graph compression.

strategies of graph compression algorithm based on structure

and attributes. One is to utilize attribute similarity to partition

nodes set, and then utilize structural similarity to partition

attribute similarity groups. The other is to transform attribute

information into structural information and measure both

of them into the same measure function, to directly obtain

the final compressed graph [30]. The representative graph

compression algorithms are: graph compression technology

based on entropy model in information theory [31], SNAP/

k-SNAP compression algorithms [32], [33], generating com-

pression graphs according to the attributes of nodes and edges

selected by users. (d). Graph compression algorithm based on

weighted graph:Weighted graph compression algorithms aim

at calculating the weights of the superedges between node

sets formed by node compression [34].

Our method is different from the general graph compres-

sion methods from the following aspects: the compression

method only depends on the reachability relationship in the

graph, and the compressed graph is only used for a specific

class of queries, i.e., the reachability queries. The compressed

graph obtained by HcRPC can be directly used to perform

reachability queries without decompressing the compressed

graph.

B. QUERY-FRIENDLY GRAPH COMPRESSION

Closer to our work, query-friendly graph compression

approaches target specific classes of queries. Queries can be

summarized in the following categories:

Neighborhood queries. The purpose of neighborhood

queries is to find nodes connected to the specified node in

the graph [29], [35], [36]. The idea of query-able compres-

sion (no decompression query) for such queries is proposed

in [35], which adopts the compressed data structures by

exploiting Eulerian paths and multi-position linearization.

In [36], an S-node representation is introduced to solve

neighborhood query on network graph. The aim of graph

summarization [29] is to sketch graphs with small subgraphs

and construct super-graph abstraction. These methods con-

struct compact data structures that should be decompressed

to answer queries [25]. In addition, the query evaluation algo-

rithms on the original graph should be modified to answer the

query in the compact data structures.

Distance-based queries. The distance-based queries are

usually executed on the weight graphs. The purpose of

distance-based query is to obtain the shortest path between

any two nodes in the graph [37]–[39]. [37] propose a novel

strategy to simplify weighted graphs by pruning least impor-

tant edges from them by defining a graph connectivity func-

tion based on the best paths between all pairs of nodes. Given

the number of edges to be pruned, the problem is then to

select a subset of edges that best maintains the overall graph

connectivity. Reference [38] introduces a new approach ‘gate

graph’ from a large graph so that for any ‘non-local’ node pair

(distance greater than some threshold) in the original graph,

the shortest-path distance can be recovered by consecutive

‘local’ walks through the gate vertices in the gate graph,

to perform graph simplification. Reference [39] introduces a

novel distance preserving compression method called Shrink,

which can be used to query and store both weighted and

unweighted graphs. Compressing with Shrink has the least

effect on the distances between nodes because a system of

equations is introduced to minimize the distance variations

caused by nodes merge.

Reachability queries. The aim of the reachability queries

is to determine whether any two nodes in the original graph

are reachable [24], [40]–[43]. To answer these queries, [40]

computes the minimal subgraph using the same transitive

closure as the original graph, and [41] reduces the graph by

replacing a simple cycle for each strongly connected compo-

nent. These methods allow reachability queries to be evalu-

ated on a compressed graph without decompression. Bipartite

compression [42] reduces the graphs by introducing virtual

136570 VOLUME 7, 2019

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

nodes and compressing bicliques. However, its compression

method is to establish the bijection between the original graph

and its compression graph, so that they can be converted to

each other. In contrast, our method does not need to restore

the original graph; and the algorithms for reachable queries

must be modified before they are applied to the compressed

graphs [42], [43] calculates a compresses bit vector to encode

the transitive closure of a graph. In contrast, the reachable

algorithm and the compression scheme in [43] can be directly

applied to the compressed graph. Incremental maintenance of

bit vectors is not mentioned in [43]. Comparedwith the reach-

ability query methods discussed above, our method achieves

a better compression ratio, since our compressed graph do

not necessarily be a subgraph of the original graph and some

of the compression methods only reduce the number of the

edges [40], [42], [43] while our method reduces the number

of nodes and edges by merging nodes into super-nodes.

Unlike previous graph compression methods,

CompressR [24] preserves information needed for answering

reachability queries which divides the nodes in the original

graph into several equivalence classes by equivalence rela-

tion of reachability to reduce the graph and achieves better

compression effect.

It is worth noting that our work is a significant exten-

sion of compressR. CompressR obtains equivalence classes

through equivalence relation of reachability while the aim of

our proposed HcRPC is to obtain highly compressed graph

via merging sets with high similarities, and corrections are

introduced to maintain the reachability of the original graph,

which makes HcRPC substantially different from compressR
in terms of both key ideas and techniques. Meanwhile,

IncRPC is to utilize similarity calculation and corrections to

make the reachability relations on the updated compressed

graph Gs consistent with the original graph G instead of sep-

arating nodes each step in the incremental algorithm as that in

compressR [24]. Furthermore, our method is able to achieve

higher compression rate through merging similar equivalent

classes.

III. PRELIMINARIES

In this section, we introduce some necessary notations to

describe the essential basic concepts and the MinHash tech-

nique used in similarity computing.

A. GRAPH AND REACHABILITY QUERY

Given a directed graph consisting of nodes and edges denoted

by G = (V ,E) where V is a set of nodes, E ⊂ V × V

is a set of edges, 〈u, v〉 ∈ E denotes a directed edge from

node u to v.

A path p from node u to v in G is a sequence of nodes (u =

uo, u1, u2. . .un = v), for each i ∈ [1,n], 〈vi−1, vi〉 ∈ E . The

length of path p denoted by len (p), is the number of edges in

path p. A node u can reach v (or v is reachable from u) if and

only if (iff) there exists a path from u to v in G.

A graph Gs = (Vs,Es) is a compressed graph of G, where

Vs is a set of supernodes and each supernode is composed

FIGURE 3. MinHash computing process.

of a set of nodes in G, while Es is a set of superedges

between supernodes and each superedge represents the edges

between the original nodes in the supernodes. In the following

section, we will detail how to create supernodes based on the

similarity between sets, and how to establish superedges via

the connection of the original nodes in the supernodes.

A reachability query on a graph G is QR (u, v), which is

a boolean query asking whether node u can reach node v

in G.

B. MINHASH

MinHash is a technique for quickly estimating how similar

two sets are [44]. Initially used in AltaVista search engine

to detect duplicate web pages and delete them from search

results. The goal of MinHash is to quickly estimate Jaccard

similarity between sets, without explicitly computing the

intersection and union.

Specifically, an index matrix I size of n× k is constructed,

where n is the total number of distinct elements in the union

of all the sets to be compared and k is the number of sets.

The entry I ij in the index matrix represents whether the jth set

contain the element i in the union of all the sets. Different hash

functions h1, h2, . . . ,hl are defined and each hash function

is a random permutation on n elements. That is to say, each

hash function is a random row order exchange of the index

matrix I . According to the row order exchange of the index

matrix I based on hash function hi, the row number of the first

non-zero value of each column in the exchanged index matrix

is the MinHash value of the set represented by this column.

Therefore, after exchanges l times, each set is attached with

l MinHash values. In terms of the l different hash functions

and k sets, a MinHash signature matrix M (l × k) is created

whereM ij represents MinHash value on hash function hi for

the jth set.

The similarity between columns in the MinHash signature

matrix is considered as the similarity of the set represented by

this column. Clearly, the similarity values between two sets

are real numbers within the interval [0,1].

VOLUME 7, 2019 136571

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

Example 1: Take four sets, S1, S2, S3 and S4 as

an example, where S1 = {a, d, e}, S2 = {c}, S3 = {b, d, e},

S4 = {a, c, d, e}, the union set U = {a, b, c, d, e}. Next

we show the calculation of the similarity between the sets.

We create an index matrix shown in Figure. 3(a) and five

different hash functions, h1, h2, h3, h4, h5 are generated

randomly as shown in Figure. 3(b) to exchange row order in

index matrix. Figure. 3(c) indicates h1 functional exchange

on index matrix and the MinHash values of S1, S2, S3 and

S4 are 2, 1, 3, 1, respectively. The exchange process if the

rest hash functions are similar with h1, based on which the

MinHash values of these sets are obtained. Finally, we create

the MinHash signature matrix shown in Figure. 3(d). The

calculation of similarity between two sets is conversed as

the similarity between the two corresponding columns in

the MinHash signature matrix. For instance, the similarity

between S1 and S4, S3 and S4 are 0.8 and 0.4, respectively.

IV. COMPRESSION FOR REACHABILITY

In this section, we propose the highly compact two-part

representation of a given graph G consisting of a graph

summary and a set of corrections. In contrast to reachability

preserving algorithm proposed by Fan et al. [24], our highly

compact reachability preserving compression algorithm can

effectively reduce the number of equivalent classes and save

storage costs.

A. REACHABILITY RELATION GRAPH

The reachability relation on graphG = (V ,E) is defined as a

binary relationRe ⊆ V×V , for each (u, v) ∈ Re and any node

x ∈ V such that x can reach u if and only if x can reach v; and

u can reach x if and only if v can reach x. Put it another way,

(u, v) ∈ Re if and only if they have the same set of ancestors

and the same set of descendants.

We use [u]Re to denote equivalence class containing node u

and other nodes in the same equivalence class with the same

set of ancestors and the same set of descendants, indicating

each equivalence class owns a set of ancestors and set of

descendants.

The reachability relation graph of graph G = (V ,E) is

defined as Gr = (Vr ,Er) where Vr =
{

[v]Re

∣

∣ v ∈ V
}

is a

set of equivalence classes partitioned via reachability relation

and Er is a set of edges. There is an edge
〈

[u]Re , [v]Re
〉

in

Er if there exist nodes u
′

∈ [u]Re and v
′

∈ [v]Re such that
〈

u
′
, v

′
〉

∈ E . Therefore, the reachability relation graph can

be regarded as the initial compressed graph for the original

graph.

B. SIMILARITY CALCULATION AND CORRECTIONS

Suppose there are k equivalence classes in Vr for the reach-

ability relation graph for graph G = (V ,E), denote as

(S1, S2, . . . , Sk). Two equivalent class-node matrices based

on the reachability relation,A andD, are created respectively,

with both sizes of n× k , where n is the total number of nodes

in graph G = (V ,E). Entries in Matrix A denote which

nodes are ancestors of the nodes in each equivalent class in the

reachability relation graph. Thereafter, each row of matrix A

indicates the node in graph G, and each column indicates

the equivalent class in the reachability relation graph. Aij is

a binary value indicating whether node i is an ancestor of the

nodes in the equivalent class Sj. Similar to matrix A, matrixD

denotes which nodes are descendants of the nodes in each

equivalent class. Dij in matrix D represents whether node i is

the descendant of nodes in the equivalent class Sj.

MinHash is adopted to calculate the similarities of ances-

tors and descendants between each pair of equivalent classes

Si, Sj denoted by siman
(

Si, Sj
)

and simdes
(

Si, Sj
)

, respec-

tively. Next, we propose a joint similarity to measure the

similarity between Si, Sj.

sim
(

Si, Sj
)

=
1

2

(

siman
(

Si, Sj
)

+ simdes
(

Si, Sj
))

(1)

A pair of equivalent classes Si, Sj is merged to create a

supernode if sim
(

Si, Sj
)

≥ θ , where θ is the similarity

threshold to determine the similarity between two equivalent

classes. Otherwise we create two supernodes to represent two

equivalence classes Si, Sj. In the experiments, we will detail

the setting of threshold θ .

To eliminate reachability errors caused by merging equiv-

alence classes, we introduce a set of corrections C to

preserve the reachability relations in the original graph

G = (V ,E).There are two types of equivalent class-node

corrections, −r() and +r(), where +r() represents that the

equivalent class are reachable to a node while −r() repre-

sents that the equivalent class are unreachable to a node. For

instance, the equivalence class Sj has the descendant u and

the ancestor v while Si does not have the descendant u and

the ancestor v. We create corrections to preserve reachability

by merging equivalence classes Si, Sj, where each equivalent

class-node correction is a tuple denoted by −r (Si, u) or

−r (v, Si). The −r (Si, u) represents the equivalence class

cannot reach the descendant u because node u is the descen-

dant of Sj, and the −r (v, Si) represents the ancestor v cannot

reach equivalence class Si since node v is the ancestor of Sj.

C. REACHABILITY PRESERVING COMPRESSION

We next present the highly compact reachability pre-

serving compression algorithm, HcRPC. Given a graph

G = (V ,E), the objective is to calculate the compressed

graph Gs = (Vs,Es) and corrections C . The algorithm is

shown in Figure. 4.

Given a graph G = (V ,E), HcRPC firstly computes its

reachability relation Re and obtain the partition Par = V/Re
of G consisting of equivalent classes (lines 2-3). After this,

equivalent classes are used to form the reachability relation

graph Gr (lines 4-10). According to (1), HcRPC computes

the joint similarity between each pair of equivalent classes

Si, Sj in graph Gr (lines 11-14). At this point, the algorithm

selects the pair of equivalence classes whose joint similarity

exceeds the threshold θ to merge. For the equivalence classes

whose joint similarity does not exceed the threshold, they

136572 VOLUME 7, 2019

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

FIGURE 4. Algorithm HcRPC.

become supernodes independently. Meanwhile, supernodes

are created to represent the merged equivalence classes and

single equivalence classes, and they are then added to set

Vs (lines 15-20). The strategy of adding superedge for each

pair Si, Sj is that if there is an edge between elements in

the equivalence classes Si, Sj, the superedge between Si, Sj is

created. After this, a set of equivalent class-node corrections

is generated to preserve the reachability relations on com-

pressed graphGs (lines 21-24). Finally, the compressed graph

Gs and corrections C are constructed and returned (line 25).

Example 2: Consider the graph G given in Figure. 5(a),

in terms of reachability relations on the graph G, nodes D,

E are in the same equivalence class, F , G are in the same

equivalence class and I , J are in the same equivalence class

FIGURE 5. Reachability preserving compression.

as shown in Figure. 5(b) since they own same ancestors and

descendants. Let the threshold θ equals to 0.75, after cal-

culating the joint similarity between each equivalent classes

in the reachability relation graph Gr , the joint similarity

between [D]Re and [I]Re exceeds the threshold θ . Therefore,

we merge [D]Re and [I]Re together and create a supernode for

Vs. In addition, node A cannot reach [I]Re in the graph Gr ,

we thus add an equivalent class-node correction to preserve

the reachability of graph G shown in Figure. 5(c).

V. INCREMENTAL REACHABILITY

PRESERVING COMPRESSION

In order to deal with the dynamic changes of graphs, in this

section we propose an incremental reachability preserving

compression algorithm for compressed graph. The updates

1G is defined as a list of edge deletions and insertions to the

original graph G. The algorithm we proposed can preserve

the reachability of the updated original graph directly through

the compressed graph Gs by using node corrections without

decompressing the compressed graph Gs and separating each

affected node in each step.

A. PREPROCESSING

Before we deal with edge operations in updates 1G, we need

to preprocess the updates to remove edge operations that have

no affect to reachability on compressed graph Gs. The strat-

egy of removing edges is similar with [24]: According to the

compressed graph Gs and corrections C , the preprocessing

removes (a) edge insertions 〈u, v〉 where [u]Re 6= [v]Re , and

[u]Re can reach [v]Re in graphGs; and (b) edge deletions 〈u, v〉

VOLUME 7, 2019 136573

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

if either [u]Re can reach [v]Re through a path with length no

less than two in Gs.

Two types of node-node corrections are adopted denoted

by −() and +(), respectively, where +() represents that the

pair of nodes have an edge between each other and −()

represents that there is no edge between this pair of nodes.

B. INCREMENTAL REACHABILITY PRESERVING

COMPRESSION

Here, we present the incremental reachability preserving

compression algorithm that given a graph G = (V ,E),

compressed graph Gs = (Vs,Es) of G and updates 1G,

calculate its updated compressed graph Gs = (Vs,Es) and

corrections C . The algorithm is shown in Figure. 6.

Given a graph G = (V ,E), compressed graph Gs =

(Vs,Es) of G and updates 1G, the algorithm first removes

redundant edges in 1G (line 1). Next, for each edge in the

updates 1G, the similarity between the affected node and

its equivalent class (lines 2-3) is calculated. The algorithm

adds node-node corrections if the joint similarity between the

affected node and its equivalent class exceeds the threshold

θ , and separates the affected node from its equivalent class if

the joint similarity between the affected node and its equiva-

lent class below the threshold θ (lines 4-31). Then, for the

separated affected node, the algorithm calculates the joint

similarities between the node and its equivalent class’ brother

equivalent classes in set B (lines 9,18,26). The separated

affected node is merged into equivalent class in set B if

the joint similarity exceeds the threshold θ (lines 10-11,

19-20, 27) and a supernode is created to represent this sepa-

rated affected node if the joint similarity is below the thresh-

old θ (lines 12-14, 21-23, 29-31). N (u), N (v) represent the

neighbor node set of nodes v, respectively. Thus, the updated

compressed graph Gs and corrections C are established and

returned (line 32).

Example 3: Recall the graph G proposed in Figure 5. Now

we update graph G with 1G, where 1G is composed of two

edge insertions 〈D,H〉, 〈A, I 〉 and one edge deletion 〈E,G〉 as

shown in Figure. 7(a). According to the reachability relation

of graph Gs, we can see that the edge insertion 〈D,H〉 can

be removed in preprocessing phase since [D]Re can reach H .

Next, we perform the edge insertion 〈A, I 〉. After inserting

〈A,E〉, we compute the similarities between node A and its

equivalent class [A]Re , node E and its equivalent class [I]Re .

Let the threshold θ equals to 0.75, it is clear that both the

similarities between node A and its equivalent class [A]Re
node I and its equivalent class [I]Re exceed the threshold θ .

Therefore, there is no need to separate nodeA and I from their

equivalent classes, and a node correction +(A, I) is added

to denote that there is an edge from A to I . Same as the

edge insertion, we perform the edge deletion 〈E,G〉 and then

compute the similarities between node E and its equivalent

class [D]Re , node G and its equivalent class [F]Re . The result

in Figure. 7(b) indicates that there is no need to separate

node E and G from their equivalent classes, and a node

FIGURE 6. Algorithm IncRPC.

correction −(E,G) is supplemented to denote the deletion of

edge from E to G.

136574 VOLUME 7, 2019

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

TABLE 1. Datasets.

FIGURE 7. Incremental reachability preserving compression.

VI. EXPERIMENTS

In this section, we present the experimental evaluation on

real-life data sets using algorithms introduced in the previous

section. Furthermore, we investigate the impact of the graph

size and graph type.

A. EXPERIMENT SETTING

We run our algorithms on the following real-life data sets

with different graph type to evaluate the proposed techniques.

We adopt six real-world networks collected by SNAP1 with

four graph types shown in Table 1.

Three social networks. (a). soc-Epinions1 is a who-trust-

whom online social network of a general consumer review

site Epinions.com. Members of the site can decide whether

to ‘trust’ each other. All the trust relationships interact and

form the Web of Trust which is then combined with review

ratings to determine which reviews are shown to the user.

(b). soc-Pokec: Pokec is the most popular online social net-

work in Slovakia. In the soc-Pokec, a node represents a

user and edges represent friendships between users. Datasets

contains anonymized data of the whole network and friend-

ships in Pokec are oriented. (c). wiki-Vote: This network

contains all the Wikipedia voting data from the inception of

Wikipedia. Nodes in the network represent Wikipedia users

and a directed edge from node i to node j represents that user

i votes on user j.

1http://snap.stanford.edu/data/

Communication network. wiki-Talk: The network con-

tains all the users and discussion from the inception of

Wikipedia. Nodes in the network represent Wikipedia users

and a directed edge from node i to node j represents that user

i at least once edited a talk page of user j.

Product co-purchasing network. amazon: In this net-

work, a node represents a product and edges represent co-

purchasing relations. If a product i is frequently co-purchased

with product j, the graph contains a directed edge from i to j.

Internet peer-to-peer network. p2p-Gnutella: In this net-

work, nodes represent hosts in the Gnutella network topology

and edges represent connections between the Gnutella hosts.

B. EVALUATION METRICS

We utilize the compression ratio widely used in numerous

graph compression methods to measure the performance of

the reachability preserving compression algorithm. The com-

pression ratio of Gs is defined as follow:

cr (Gs) =
|Gs|

|G|
(2)

In (2), |Gs| denotes the sum of the number of supernodes and

superedges in the compressed graph Gs of the original graph

G and |G| denotes the sum of the number of nodes and edges

in the original graph G.

In addition, we define storage cost to measure the mem-

ory cost of the compressed graph, where the storage cost is

defined as follow:

c (Gs) = |Gs| + |C| (3)

Same as in (2), |Gs| in (3) denotes the sum of the number of

supernodes and superedges in the compressed graph Gs and

|C| denotes the number of two type corrections in graph Gs.

We conduct a series of experiments to verify our algo-

rithm: the effectiveness of the reachability preserving com-

pression algorithm and incremental reachability preserving

compression algorithm, the performances are measured by

compression ratio; the effectiveness of the query process-

ing measured by query evaluation time over original and

compressed graphs; the efficiency of the incremental reach-

ability preserving compression algorithm measured through

update execution time and the performance of storage cost

VOLUME 7, 2019 136575

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

FIGURE 8. Hash function setting.

FIGURE 9. Threshold setting.

with corrections. Besides, we conduct experiment to select

reasonable parameter θ and number of hash functions.

We compare our method performance with one of the state-

of-the-art graph compression method introduced in [24],

where the reachability preserving compression in [24] is

named after compressR and the incremental compression is

named after incRCM.

C. EXPERIMENTAL RESULTS

1) HASH FUNCTION SETTING

Firstly, we introduce how to choose the optimal number of

hash functions on four datasets. The result is shown in Figure.

8, where the X-axis represents different numbers of hash

functions and 1S in the Y-axis represents the difference of

similarities between the same sets measured by the previous

number of hash functions and the current number of hash

functions. From Figure 8, we can see that when the num-

ber of hash functions reaches 30, 1S tends to be stable.

Therefore, we set the number of hash functions to 30 for

calculating similarities.

2) THRESHOLD SETTING

In this set of experiments, we introduce how to choose the

optimal threshold θ according to the storage cost. Figure 9

shows how the compression performance of theHcRPC algo-

rithm changes as we change the values. Three different col-

ors indicate three different datasets, P2P, soc-Epinions1 and

wiki-Vote, respectively. In Figure. 9, The X-axis repre-

sents different threshold values ranging from 0.1 to 1 with

0.1 increments and the Y-axis represents the storage cost of

compressed graph. For each θ , we run the algorithm five

times and pick the result which is associated with the best

storage cost. The result reveals that when the threshold θ is

0.75 on average, the storage cost c (Gs) of the compressed

graph is the smallest since exorbitant setting of similarity

threshold θ brings about few or even no equivalent classes

to be merged. Similarly, excessively low setting of similarity

threshold θ allows any two equivalent classes to be merged,

toomuch corrections, evenmore than the edges in the original

graph, and thus the compressed graph is with a highly expen-

sive storage cost. Hence, we set the threshold θ to 0.75 when

wemerge equivalent classes. From Figure 9, it is clear that the

P2P data set with smaller size than soc-Epinions1 achieves

a slightly higher storage cost than that of soc-Epinions1 in

the case of choosing the optimum threshold θ , while the

compression effectiveness of P2P data sets is slightly lower

than that of the other two data sets, because soc-Epinions1

and wiki-Vote have higher connectivity than P2P networks.

3) EFFECTIVENESS OF REACHABILITY COMPRESSION

We then evaluate the effectiveness of HcRPC using com-

pression ratio on real-life datasets. We treat the compression

ratio as a measurement for representation of compression

effectiveness, which differs from the ratio measuring the

memory cost reduction. The smaller the compression ratio

is, the more effective the compressing method is. The com-

pression ratios of reachability preserving compression are

reported in Table 2. The table shows that: (a) HcRPC can

highly compress real-life graphs. Indeed, cr (Gs) obtained

by HcRPC is in average 2.2% over the six datasets. For

wiki-Vote data set, it is up to 99.8% reduction in original

graph size. (b) Comparing with compressR, the compression

ratios produced by the HcRPC are about 40% lower than

compressR because of merging the similar pair of equivalence

classes. (c) The HcRPC perform best on social networks and

product co-purchasing networks since social networks and

product co-purchasing networks are with higher connectivity

than other graph types. The denser edges of the network,

the more nodes can be merged. Compared with other net-

works, the compression ratio cr (Gs) obtained by HcRPC on

P2P network is about 60% higher than others.

4) EFFECTIVENESS OF INCREMENTAL

REACHABILITY COMPRESSION

We evaluate the effectiveness of the IncRPC, in terms of

compression ratio cr (Gs). The result is shown in Figure. 10,

where 1 |E| in X-axis represents the percentage of the total

edge updates performed in 5% increments and Y-axis rep-

resents the compression ratio cr (Gs). To facilitate compar-

ison with the incRCM, we only select edge insertions and

execute them for edge updates. Figure. 10(a) shows the

compression effectiveness of IncRPC and incRCM on wiki-

Vote dataset. We can see that the more edges inserted into

136576 VOLUME 7, 2019

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

TABLE 2. Reachability preserving: compression ratio.

FIGURE 10. Effectiveness of incremental reachability compression.

original graph, the better the graph can be compressed for

reachability queries as with the increase of edges, more nodes

may belong with the same reachability equivalent classes.

As can be seen from Figure. 10(a), the IncRPC achieves better

FIGURE 11. Effectiveness of query processing.

compression ratio than incRCM on account of merging the

pair of equivalence classes, which exceeds the joint similarity

threshold θ . Figure. 10(b) and Figure. 10(c) show the result of

the execution of IncRPC and incRCM on P2P and wiki-Talk

datasets, respectively. Similar to the result with Figure. 10(a),

IncRPC shows better compression performance than incRCM

as shown in Figure. 10(b) and Figure. 10(c). Meanwhile,

the compression effectiveness of the two algorithms on the

P2P dataset is inferior to compression effectiveness on the

other two datasets.

5) EFFECTIVENESS OF QUERY PROCESSING

In this set of experiments, we evaluate the performance of

HcRPC for reachability queries on the original and com-

pressed graphs. Meanwhile, compressR is selected as the

compared algorithm. Figure. 11 shows the experimental

result run on five different datasets, where Y-axis represents

the percentage of reachability query time on compressed

graphs obtained by the two algorithms to reachability query

time on the original graphs. From Figure. 11, we can see that

the reachability query time on compressed graphs is signif-

icantly less than the reachability query time on the original

graphs. Indeed, the running time of reachability query on

the compressed graph is only 6% of the cost on original

graphs in average, and the optimal result of the running time

of reachability query on compressed graph is 2% on soc-

Epinions1 dataset. In addition, the time spent for reachability

queries on the compressed graph generated by HcRPC is

30% faster than that on the compressed graph generated

by compressR in average, as HcRPC can generate smaller

compressed graphs than compressR, the smaller the size of

VOLUME 7, 2019 136577

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

FIGURE 12. Efficiency of reachability compression.

the query graph, the shorter the reachability query time will

be.

6) EFFICIENCY OF REACHABILITY COMPRESSION

In this set of experiments, we evaluate the efficiency of

HcRPC via compressing execution time on three datasets,

P2P, wiki-Vote and soc-Epinions1. It is not surprising that

the compressing execution time of HcRPC will be slower

than compressR since HcRPC needs to calculate similarities

based on the equivalent class obtained by compressR. Fortu-

nately, MinHash adopted inHcRPC is a technique for quickly

estimating how similar two sets are. As is shown in Figure.

12, the execution time of HcRPC is comparable with than of

compressR. Although the execution time ofHcRPC is slightly

slower than that of compressR, HcRPC can achieve better

compression result.

7) EFFICIENCY OF INCREMENTAL

REACHABILITY COMPRESSION

We next evaluate the efficiency of IncRPC by execution time

of edge updates. Fixing the number of nodes in the social

network soc-Epinions1, we vary the number of edges from

519K to 607K by inserting edges in 10K increments and

the number of edges from 519K to 429K by deleting edges

in 10K decrements. As is shown in Figure. 13(a) and Figure.

13(b), IncRPC outperforms incRCM in execution time when

performing edge insertion updates and edge deletion updates.

Intuitively, IncRPC runs 17% faster than incRCM in the

execution time of edge updates in average. The reason is that

IncRPC does not need to separate each node involved in edge

updates to compute the topological ranking values and merge

them. It is replaced by computing the joint similarity between

the node affected by edge update and its equivalent classes,

and the nodes whose joint similarity does not satisfied the

threshold θ are separated, thus greatly saving the execution

time of edge updates.

8) STORAGE COST ANALYSIS

We then evaluate the storage cost of HcRPC on five datasets

with three graph types. As is shown in Figure. 14, the storage

cost of compressed graphs generated by the two algorithms

is significantly lower than that of original graphs. What is

FIGURE 13. Efficiency of incremental reachability compression.

FIGURE 14. Storage cost analysis.

more, HcRPC has better storage cost on social networks and

product co-purchasing networks than compressR since social

networks and product co-purchasing networks arewith higher

connectivity than P2P and wiki-Talk. That is to say, the edges

on social networks and product co-purchasing networks are

denser than others. The denser edges of the network, the fewer

the corrections are needed. Meanwhile, the storage cost of the

compressed graph generated by HcRPC is almost the same

as that generated by compressR on the P2P and wiki-Talk

networks since few corrections are introduced.

VII. CONCLUSION

In this paper, we introduce a highly compact reachability pre-

serving graph compression algorithm that is able to preserve

136578 VOLUME 7, 2019

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

the reachability relations between nodes in original graph. For

reachability queries, the compressed graphs can be directly

queried without decompression, using any available eval-

uation algorithms for the queries. The highly compressed

representation of a given graph G consisting of a compressed

graph and a set of corrections, where the set of corrections

is introduced to preserve the reachability relations between

nodes in graphG. In our reachability preserving compression

algorithm, a highly compact compressed graph is obtained

via merging a similar pair of equivalent classes when the joint

similarity of the pair of equivalent classes exceeds threshold.

Meanwhile, we propose an incremental reachability preserv-

ing compression algorithm for compressed graphs in order

to deal with the dynamic changes of graphs without decom-

pression. Instead of separating each node involved in edge

updates, we only compute the joint similarity between the

node affected by edge updates and its equivalent classes, and

separate the nodes whose joint similarity does not satisfied.

The experimental results on real world datasets show that our

algorithms are effective and efficient.

REFERENCES

[1] Y. Liu, T. Safavi, A. Dighe, andD. Koutra, ‘‘Graph summarizationmethods

and applications: A survey,’’ ACM Comput. Surv., vol. 51, no. 3, 2018,

Art. no. 62.

[2] B. Dolgorsuren, K. U. Khan, M. K. Rasel, and Y.-K. Lee, ‘‘StarZIP:

Streaming graph compression technique for data archiving,’’ IEEE Access,

vol. 7, pp. 38020–38034, 2019.

[3] S. Anirban, J. Wang, and M. S. Islam, ‘‘Multi-level graph compression for

fast reachability detection,’’ in Proc. Int. Conf. Database Syst. Adv. Appl.

Cham, Switzerland: Springer, 2019, pp. 229–246.

[4] N. Kahl, ‘‘Graph vulnerability parameters, compression, and quasi-

threshold graphs,’’Discrete Appl. Math., vol. 259, pp. 119–126, Apr. 2019.

[5] S. Maneth and F. Peternek, ‘‘Grammar-based graph compression,’’ Inf.

Syst., vol. 76, pp. 19–45, Jul. 2018.

[6] D. Zhao, Y. Zhang, J. Lin, W. Song, A. Liotta, and D. Huang, ‘‘Query of

marine big data based on graph compression and views,’’ in Proc. IEEE

Int. Conf. Data Mining Workshops (ICDMW), Nov. 2018, pp. 252–257.

[7] M. Nelson, S. Radhakrishnan, and C. N. Sekharan, ‘‘Queryable compres-

sion on time-evolving social networks with streaming,’’ in Proc. IEEE Int.

Conf. Big Data (Big Data), Dec. 2018, pp. 146–151.

[8] M. Nelson, S. Radhakrishnan, A. Chatterjee, and C. N. Sekharan,

‘‘Queryable compression on streaming social networks,’’ in Proc. IEEE

Int. Conf. Big Data (Big Data), Dec. 2017, pp. 988–993.

[9] A. Chatterjee, M. Levan, C. Lanham, M. Zerrudo, M. Nelson, and

S. Radhakrishnan, ‘‘Exploiting topological structures for graph compres-

sion based on quadtrees,’’ in Proc. 2nd Int. Conf. Res. Comput. Intell.

Commun. Netw. (ICRCICN), Sep. 2016, pp. 192–197.

[10] M. Nelson, S. Radhakrishnan, A. Chatterjee, and C. N. Sekharan,

‘‘On compressing massive streaming graphs with quadtrees,’’ in Proc.

IEEE Int. Conf. Big Data (Big Data), Oct./Nov. 2015, pp. 2409–2417.

[11] M. Purohit, B. A. Prakash, C. Kang, Y. Zhang, and V. S. Subrahmanian,

‘‘Fast influence-based coarsening for large networks,’’ in Proc. 20th ACM

SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2014, pp. 1296–1305.

[12] Y. Mehmood, N. Barbieri, F. Bonchi, and A. Ukkonen, ‘‘CSI: Community-

level social influence analysis,’’ in Proc. Joint Eur. Conf. Mach.

Learn. Knowl. Discovery Databases. Berlin, Germany: Springer, 2013,

pp. 48–63.

[13] L. Shi, H. Tong, J. Tang, and C. Lin, ‘‘VEGAS: Visual influEnce GrAph

summarization on citation networks,’’ IEEE Trans. Knowl. Data Eng.,

vol. 27, no. 12, pp. 3417–3431, Dec. 2015.

[14] Q. Qu, S. Liu, F. Zhu, and C. S. Jensen, ‘‘Efficient online summarization

of large-scale dynamic networks,’’ IEEE Trans. Knowl. Data Eng., vol. 28,

no. 12, pp. 3231–3245, Dec. 2016.

[15] M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis, and A. Ukkonen,

‘‘Sparsification of influence networks,’’ in Proc. 17th ACM SIGKDD Int.

Conf. Knowl. Discovery Data Mining, 2011, pp. 529–537.

[16] C. Dunne and B. Shneiderman, ‘‘Motif simplification: Improving network

visualization readability with fan, connector, and clique glyphs,’’ in Proc.

SIGCHI Conf. Hum. Factors Comput. Syst., 2013, pp. 3247–3256.

[17] N. Shah, D. Koutra, T. Zou, B. Gallagher, and C. Faloutsos, ‘‘TimeCrunch:

Interpretable dynamic graph summarization,’’ in Proc. 21st ACM SIGKDD

Int. Conf. Knowl. Discovery Data Mining, 2015, pp. 1055–1064.

[18] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos, ‘‘VoG: Summarizing

and understanding large graphs,’’ in Proc. SIAM Int. Conf. Data Mining.

Philadelphia, PA, USA: SIAM, 2014, pp. 91–99.

[19] G. Buehrer and K. Chellapilla, ‘‘A scalable pattern mining approach to

Web graph compressionwith communities,’’ inProc. Int. Conf. Web Search

Data Mining, 2008, pp. 95–106.

[20] C. Chen, C. X. Lin, M. Fredrikson, M. Christodorescu, X. Yan, and J. Han,

‘‘Mining graph patterns efficiently via randomized summaries,’’ in Proc.

VLDB Endowment, 2009, vol. 2, no. 1, pp. 742–753.

[21] K. Anyanwu andA. Sheth, ‘‘The ρ-operator: Enabling querying for seman-

tic associations on the semantic Web,’’ in Proc. 12th WWW Conf., 2003.

[22] J. van Helden, A. Naim, R. Mancuso, M. Eldridge, L. Wernisch,

D. Gilbert, and S. J. Wodak, ‘‘Representing and analysing molecular and

cellular function using the computer,’’ Biol. Chem., vol. 381, nos. 9–10,

pp. 921–935, 2000.

[23] J. X. Yu and J. Cheng, ‘‘Graph reachability queries: A survey,’’ in

Managing and Mining Graph Data. Boston, MA, USA: Springer, 2010,

pp. 181–215.

[24] W. Fan, J. Li, X.Wang, andY.Wu, ‘‘Query preserving graph compression,’’

in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2012, pp. 157–168.

[25] P. Boldi, M. Rosa, M. Santini, and S. Vigna, ‘‘Layered label propaga-

tion: A multiresolution coordinate-free ordering for compressing social

networks,’’ in Proc. 20th Int. Conf. World Wide Web, 2011, pp. 587–596.

[26] C. Chen, X. Yan, F. Zhu, J. Han, and P. S. Yu, ‘‘Graph OLAP: Towards

online analytical processing on graphs,’’ in Proc. 8th IEEE Int. Conf. Data

Mining, Dec. 2008, pp. 103–112.

[27] N. Hassanlou, M. Shoaran, and A. Thomo, ‘‘Probabilistic graph sum-

marization,’’ in Proc. Int. Conf. Web-Age Inf. Manage. Berlin, Germany:

Springer, 2013, pp. 545–556.

[28] K. LeFevre and E. Terzi, ‘‘GraSS: Graph structure summarization,’’ in

Proc. SIAM Int. Conf. Data Mining. Philadelphia, PA, USA: SIAM, 2010,

pp. 454–465.

[29] S. Navlakha, R. Rastogi, and N. Shrivastava, ‘‘Graph summarization with

bounded error,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2008,

pp. 419–432.

[30] K. U. Khan, W. Nawaz, and Y.-K. Lee, ‘‘Set-based unified approach for

summarization of amulti-attributed graph,’’WorldWideWeb, vol. 20, no. 3,

pp. 543–570, 2017.

[31] Z. Liu, J. X. Yu, and H. Cheng, ‘‘Approximate homogeneous graph sum-

marization,’’ Inf. Media Technol., vol. 7, no. 1, pp. 32–43, 2012.

[32] Y. Tian, R. A. Hankins, and J. M. Patel, ‘‘Efficient aggregation for graph

summarization,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2008,

pp. 567–580.

[33] N. Zhang, Y. Tian, and J. M. Patel, ‘‘Discovery-driven graph summa-

rization,’’ in Proc. IEEE 26th Int. Conf. Data Eng. (ICDE), Mar. 2010,

pp. 880–891.

[34] H. Toivonen, F. Zhou, A. Hartikainen, and A. Hinkka, ‘‘Compression

of weighted graphs,’’ in Proc. 17th ACM SIGKDD Int. Conf. Knowl.

Discovery Data Mining, 2011, pp. 965–973.

[35] H. Maserrat and J. Pei, ‘‘Neighbor query friendly compression of social

networks,’’ in Proc. 16th ACM SIGKDD Int. Conf. Knowl. Discovery Data

Mining, 2010, pp. 533–542.

[36] S. Raghavan and H. Garcia-Molina, ‘‘Representing Web graphs,’’ in Proc.

19th Int. Conf. Data Eng., Mar. 2003, pp. 405–416.

[37] F. Zhou, S. Malher, and H. Toivonen, ‘‘Network simplification with mini-

mal loss of connectivity,’’ inProc. IEEE Int. Conf. DataMining, Dec. 2010,

pp. 659–668.

[38] N. Ruan, R. Jin, andY.Huang, ‘‘Distance preserving graph simplification,’’

in Proc. IEEE 11th Int. Conf. Data Mining, Dec. 2011, pp. 1200–1205.

[39] A. Sadri, F. D. Salim, Y. Ren, M. Zameni, J. Chan, and T. Sellis, ‘‘Shrink:

Distance preserving graph compression,’’ Inf. Syst., vol. 69, pp. 180–193,

Sep. 2017.

[40] D. M. Moyles and G. L. Thompson, ‘‘An algorithm for finding a minimum

equivalent graph of a digraph,’’ Manage. Sci. Res. Group, Pittsburgh, PA,

USA, Tech. Rep., 1967.

[41] A. V. Aho, M. R. Garey, and J. D. Ullman, ‘‘The transitive reduction of a

directed graph,’’ SIAM J. Comput., vol. 1, no. 2, pp. 131–137, 1972.

VOLUME 7, 2019 136579

R. Bing et al.: HcRPC: Highly Compact Reachability Preserving Graph Compression With Corrections

[42] T. Feder and R. Motwani, ‘‘Clique partitions, graph compression and

speeding-up algorithms,’’ J. Comput. Syst. Sci., vol. 51, no. 2, pp. 261–272,

Oct. 1995.

[43] S. J. van Schaik and O. de Moor, ‘‘A memory efficient reachability data

structure through bit vector compression,’’ in Proc. ACM SIGMOD Int.

Conf. Manage. Data, 2011, pp. 913–924.

[44] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, ‘‘Syntactic

clustering of the Web,’’ Comput. Netw. ISDN Syst., vol. 29, nos. 8–13,

pp. 1157–1166, Sep. 1997.

RUI BING received the B.E. degree from North-

west Normal University, China, in 2017, where

he is currently pursuing the master’s degree with

the College of Computer Science and Engineering.

His general research interest includes graph data

mining.

HUIFANG MA received the B.E. degree from

Northwest Normal University, China, in 2003,

the M.S. degree from Beijing Normal Univer-

sity, China, in 2006, and the Ph.D. degree from

the Institute of Computing Technology, Chinese

Academy of Sciences, in 2010. She is currently a

Professor with the College of Computer Science

and Engineering, Northwest Normal University.

Her research interests include data mining and

machine learning.

XIANGCHUN HE received the B.E., M.S., and

D.Ed. degrees from Northwest Normal Univer-

sity, China, in 2003, 2010, and 2019, respec-

tively, where he is currently an Associate Professor

with the College of Education Technology. His

research interests include data mining and learning

analysis.

ZHIXIN LI received the B.S. and M.S. degrees

from the Huazhong University of Science and

Technology, in 1992 and 2004, respectively, and

the Ph.D. degree in computer software and the-

ory from the Institute of Computing Technology,

Chinese Academy of Sciences, in 2010. He is cur-

rently a Professor with the College of Computer

Science and Information Technology, Guangxi

Normal University. His research interests include

image understanding, machine learning, and mul-

timedia information retrieval. His doctoral dissertation haswon the Best Doc-

toral DissertationAward of the ChineseAssociation ofArtificial Intelligence,

in 2011.

LIJUN GUO received the Ph.D. degree in com-

puter science from the Institute of Comput-

ing Technology, Chinese Academy of Sciences,

Beijing, China, in 2011. He is currently a Full

Professor with Ningbo University, Ningbo, China.

His current research interests include computer

vision, intelligence science, and machine learning.

136580 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORKS
	GENERAL GRAPH COMPRESSION
	QUERY-FRIENDLY GRAPH COMPRESSION

	PRELIMINARIES
	GRAPH AND REACHABILITY QUERY
	MINHASH

	COMPRESSION FOR REACHABILITY
	REACHABILITY RELATION GRAPH
	SIMILARITY CALCULATION AND CORRECTIONS
	REACHABILITY PRESERVING COMPRESSION

	INCREMENTAL REACHABILITY PRESERVING COMPRESSION
	PREPROCESSING
	INCREMENTAL REACHABILITY PRESERVING COMPRESSION

	EXPERIMENTS
	EXPERIMENT SETTING
	EVALUATION METRICS
	EXPERIMENTAL RESULTS
	HASH FUNCTION SETTING
	THRESHOLD SETTING
	EFFECTIVENESS OF REACHABILITY COMPRESSION
	EFFECTIVENESS OF INCREMENTAL REACHABILITY COMPRESSION
	EFFECTIVENESS OF QUERY PROCESSING
	EFFICIENCY OF REACHABILITY COMPRESSION
	EFFICIENCY OF INCREMENTAL REACHABILITY COMPRESSION
	STORAGE COST ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	RUI BING
	HUIFANG MA
	XIANGCHUN HE
	ZHIXIN LI
	LIJUN GUO

