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The diffusion model is a commonly used tool to infer latent psychological processes

underlying decision-making, and to link them to neural mechanisms based on response
times. Although efficient open source software has been made available to quantitatively

fit the model to data, current estimation methods require an abundance of response

time measurements to recover meaningful parameters, and only provide point estimates
of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are

useful for enhancing statistical power, allowing for simultaneous estimation of individual
subject parameters and the group distribution that they are drawn from, while also

providing measures of uncertainty in these parameters in the posterior distribution. Here,

we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model),
which allows fast and flexible estimation of the the drift-diffusion model and the related

linear ballistic accumulator model. HDDM requires fewer data per subject/condition than

non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in
the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g.,

fMRI) influence decision-making parameters. This paper will first describe the theoretical
background of the drift diffusion model and Bayesian inference. We then illustrate usage

of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies

show that HDDM beats alternative fitting methods like the 2χ -quantile method as well as
maximum likelihood estimation. The software and documentation can be downloaded at:

http://ski.clps.brown.edu/hddm_docs/
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INTRODUCTION

Sequential sampling models (SSMs) (Townsend and Ashby, 1983)

have established themselves as the de-facto standard for model-

ing response-time data from simple two-alternative forced choice

decision making tasks (Smith and Ratcliff, 2004). Each decision

is modeled as an accumulation of noisy information indicative of

one choice or the other, with sequential evaluation of the accu-

mulated evidence at each time step. Once this evidence crosses

a threshold, the corresponding response is executed. This sim-

ple assumption about the underlying psychological process has

the appealing property of reproducing not only choice proba-

bilities, but the full distribution of response times for each of

the two choices. Models of this class have been used success-

fully in mathematical psychology since the 60’s and more recently

adopted in cognitive neuroscience investigations. These studies

are typically interested in neural mechanisms associated with

the accumulation process or for regulating the decision thresh-

old (e.g., Forstmann et al., 2008; Ratcliff et al., 2009; Cavanagh

et al., 2011). One issue in such model-based cognitive neuro-

science approaches is that the trial numbers in each condition are

often low, making it difficult to estimate model parameters. For

example, studies with patient populations, especially if combined

with intra-operative recordings, typically have substantial con-

straints on the duration of the task. Similarly, model-based fMRI

or EEG studies are often interested not in static model parameters,

but how these dynamically vary with trial-by-trial variations in

recorded brain activity. Efficient and reliable estimation methods

that take advantage of the full statistical structure available in the

data across subjects and conditions are critical to the success of

these endeavors.

Bayesian data analytic methods are quickly gaining popu-

larity in the cognitive sciences because of their many desir-

able properties (Kruschke, 2010; Lee and Wagenmakers, 2013).

First, Bayesian methods allow inference of the full posterior

distribution of each parameter, thus quantifying uncertainty in

their estimation, rather than simply provide their most likely

value. Second, hierarchical modeling is naturally formulated in

a Bayesian framework. Traditionally, psychological models either

assume subjects are completely independent of each other, fit-

ting models separately to each individual, or that all subjects are

the same, fitting models to the group as if they are all copies of

some “average subject.” Both approaches are sub-optimal in that

the former fails to capitalize on statistical strength offered by the

degree to which subjects are similar with respect to one or more

model parameters, whereas the latter approach fails to account for

the differences among subjects, and hence could lead to a situa-

tion where the estimated model cannot fit any individual subject.

The same limitations apply to current DDM software pack-

ages such as DMAT (Vandekerckhove and Tuerlinckx, 2008) and

fast-dm (Voss and Voss, 2007). Hierarchical Bayesian methods
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provide a remedy for this problem by allowing group and subject

parameters to be estimated simultaneously at different hierar-

chical levels (Kruschke, 2010; Vandekerckhove et al., 2011; Lee

and Wagenmakers, 2013). Subject parameters are assumed to be

drawn from a group distribution, and to the degree that subjects

are similar to each other, the variance in the group distribution

will be estimated to be small, which reciprocally has a greater

influence on constraining parameter estimates of any individual.

Even in this scenario, the method still allows the posterior for any

given individual subject to differ substantially from that of the rest

of the group given sufficient data to overwhelm the group prior.

Thus the method capitalizes on statistical strength shared across

the individuals, and can do so to different degrees even within the

same sample and model, depending on the extent to which sub-

jects are similar to each other in one parameter vs. another. In

the DDM for example, it may be the case that there is relatively

little variability across subjects in the perceptual time for stim-

ulus encoding, quantified by the “non-decision time” but more

variability in their degree of response caution, quantified by the

“decision threshold.” The estimation should be able to capital-

ize on this structure so that the non-decision time in any given

subject is anchored by that of the group, potentially allowing for

more efficient estimation of that subject’s decision threshold. This

approach may be particularly helpful when relatively few trials

per condition are available for each subject, and when incorpo-

rating noisy trial-by-trial neural data into the estimation of DDM

parameters.

HDDM is an open-source software package written in Python

which allows (1) the flexible construction of hierarchical Bayesian

drift diffusion models and (2) the estimation of its posterior

parameter distributions via PyMC (Patil et al., 2010). User-

defined models can be created via a simple Python script or be

used interactively via, for example, the IPython interpreter shell

(Pérez and Granger, 2007). All run-time critical functions are

coded in Cython (Behnel et al., 2011) and compiled natively for

speed which allows estimation of complex models in minutes.

HDDM includes many commonly used statistics and plotting

functionality generally used to assess model fit. The code is

released under the permissive BSD 3-clause license, test-covered

to assure correct behavior and well documented. An active mail-

ing list exists to facilitate community interaction and help users.

Finally, HDDM allows flexible estimation of trial-by-trial regres-

sions where an external measurement (e.g., brain activity as mea-

sured by fMRI) is correlated with one or more decision-making

parameters.

This report is intended to familiarize experimentalists with the

usage and benefits of HDDM. The purpose of this report is thus

two-fold; (1) we briefly introduce the toolbox and provide a tuto-

rial on a real-world data set (a more comprehensive description of

all the features can be found online); and (2) characterize its suc-

cess in recovering model parameters by performing a parameter

recovery study using simulated data to compare the hierarchi-

cal model used in HDDM to non-hierarchical or non-Bayesian

methods as a function of the number of subjects and trials. We

show that it outperforms these other methods and has greater

power to detect dependencies of model parameters on other mea-

sures such as brain activity, when such relationships are present

in the data. These simulation results can also inform experimen-

tal design by showing minimum number of trials and subjects to

achieve a desired level of precision.

METHODS

DRIFT DIFFUSION MODEL

SSMs generally fall into one of two classes: (1) diffusion mod-

els which assume that relative evidence is accumulated over time

and (2) race models which assume independent evidence accu-

mulation and response commitment once the first accumulator

crossed a boundary (LaBerge, 1962; Vickers, 1970). Currently,

HDDM includes two of the most commonly used SSMs: the drift

diffusion model (DDM) (Ratcliff and Rouder, 1998; Ratcliff and

McKoon, 2008) belonging to the class of diffusion models and the

linear ballistic accumulator (LBA) (Brown and Heathcote, 2008)

belonging to the class of race models. In the remainder of this

paper we focus on the more commonly used DDM.

As input these methods require trial-by-trial RT and choice

data (HDDM currently only supports binary decisions) as illus-

trated in the below example table:

RT Response Condition Brain measure

0.8 1 hard 0.01

1.2 0 easy 0.23

0.25 1 hard −0.3

The DDM models decision-making in two-choice tasks. Each

choice is represented as an upper and lower boundary. A drift-

process accumulates evidence over time until it crosses one of the

two boundaries and initiates the corresponding response (Ratcliff

and Rouder, 1998; Smith and Ratcliff, 2004) (see Figure 1 for

an illustration). The speed with which the accumulation pro-

cess approaches one of the two boundaries is called drift-rate v.

FIGURE 1 | Trajectories of multiple drift-processes (blue and red lines,

middle panel). Evidence is noisily accumulated over time (x-axis) with

average drift-rate v until one of two boundaries (separated by threshold a) is

crossed and a response is initiated. Upper (blue) and lower (red) panels

contain density plots over boundary-crossing-times for two possible

responses. The flat line in the beginning of the drift-processes denotes the

non-decision time t where no accumulation happens. The histogram

shapes match closely to those observed in response time measurements

of research participants. Note that HDDM uses a closed-form likelihood

function and not actual simulation as depicted here.
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Because there is noise in the drift process, the time of the bound-

ary crossing and the selected response will vary between trials.

The distance between the two boundaries (i.e., threshold a) influ-

ences how much evidence must be accumulated until a response

is executed. A lower threshold makes responding faster in general

but increases the influence of noise on decision-making and can

hence lead to errors or impulsive choice, whereas a higher thresh-

old leads to more cautious responding (slower, more skewed RT

distributions, but more accurate). Response time, however, is not

solely comprised of the decision-making process—perception,

movement initiation and execution all take time and are lumped

in the DDM by a single non-decision time parameter t. The model

also allows for a prepotent bias z affecting the starting point of

the drift process relative to the two boundaries. The termination

times of this generative process gives rise to the response time

distributions of both choices.

An analytic solution to the resulting probability distribution of

the termination times was provided by Wald (1947); Feller (1968):

f (x|v, a, z) =
π

a2
exp

(

−vaz −
v2 x

2

)

×

∞
∑

k = 1

k exp

(

−
k2π2x

2a2

)

sin (kπz)

Since the formula contains an infinite sum, HDDM uses an

approximation provided by Navarro and Fuss (2009).

Subsequently, the DDM was extended to include additional

noise parameters capturing inter-trial variability in the drift-

rate, the non-decision time and the starting point in order to

account for two phenomena observed in decision-making tasks,

most notably cases where errors are faster or slower than correct

responses. Models that take this into account are referred to as the

full DDM (Ratcliff and Rouder, 1998). HDDM uses analytic inte-

gration of the likelihood function for variability in drift-rate and

numerical integration for variability in non-decision time and

bias (Ratcliff and Tuerlinckx, 2002).

HIERARCHICAL BAYESIAN ESTIMATION OF THE DRIFT-DIFFUSION

MODEL

Statistics and machine learning have developed efficient and

versatile Bayesian methods to solve various inference problems

(Poirier, 2006). More recently, they have seen wider adoption in

applied fields such as genetics (Stephens and Balding, 2009) and

psychology (Clemens et al., 2011). One reason for this Bayesian

revolution is the ability to quantify the certainty one has in a par-

ticular estimation of a model parameter. Moreover, hierarchical

Bayesian models provide an elegant solution to the problem of

estimating parameters of individual subjects and groups of sub-

jects, as outlined above. Under the assumption that participants

within each group are similar to each other, but not identi-

cal, a hierarchical model can be constructed where individual

parameter estimates are constrained by group-level distributions

(Shiffrin et al., 2008; Nilsson et al., 2011).

HDDM includes several hierarchical Bayesian model formula-

tions for the DDM and LBA. For illustrative purposes we present

FIGURE 2 | Basic graphical hierarchical model implemented by HDDM

for estimation of the drift-diffusion model. Round nodes represent

random variables. Shaded nodes represent observed data. Directed arrows

from parents to children visualize that parameters of the child random

variable are distributed according to its parents. Plates denote that multiple

random variables with the same parents and children exist. The outer plate

is over subjects while the inner plate is over trials.

the graphical model depiction of a hierarchical DDM with infor-

mative priors and group-only inter-trial variability parameters in

Figure 2. Note, however, that there is also a model with non-

informative priors which the user can opt to use. Nevertheless, we

recommend using informative priors as they constrain parameter

estimates to be in the range of plausible values based on past lit-

erature (Matzke and Wagenmakers, 2009) (see the supplement),

which can aid in reducing issues with parameter collinearity,

and leads to better recovery of true parameters in simulation

studies—especially with few trials as shown below.

Graphical nodes are distributed as follows:

µa ∼ G(1.5, 0.75) σa ∼ HN(0.1) aj ∼ G(µa, σ
2
a )

µv ∼ N(2, 3) σv ∼ HN (2) vj ∼ N(µv , σ2
v )

µz ∼ N(0.5, 0.5) σz ∼ HN (0.05) zj ∼ invlogit(N(µz , σ
2
z ))

µt ∼ G(0.4, 0.2) σt ∼ HN (1) tj ∼ N(µt , σ
2
t )

sv ∼ HN(2) st ∼ HN(0.3) sz ∼ B(1, 3)

and xi, j ∼ F(ai, zi, vi, ti, sv, st, sz) where xi, j represents the

observed data consisting of response time and choice of sub-

ject i on trial j and F represents the DDM likelihood function

as formulated by Navarro and Fuss (2009). N represents a nor-

mal distribution parameterized by mean and standard deviation,

HN represents a positive-only, half-normal parameterized by

standard-deviation, G represents a Gamma distribution param-

eterized by mean and rate, B represents a Beta distribution

parameterized by α and β. Note that in this model we do not

attempt to estimate individual parameters for inter-trial variabil-

ities. The reason is that the influence of these parameters onto

the likelihood is often so small that very large amounts of data

would be required to make meaningful inference at the individual

level.

HDDM then uses Markov chain Monte Carlo (MCMC)

(Gamerman and Lopes, 2006) to estimate the joint posterior

distribution of all model parameters (for more information on

hierarchical Bayesian estimation we refer to the supplement).

Note that the exact form of the model will be user-dependent;

consider as an example a model where separate drift-rates v are

estimated for two conditions in an experiment: easy and hard.

In this case, HDDM will create a hierarchical model with group
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parameters µveasy , σveasy , µvhard
, σvhard

, and individual subject

parameters vjeasy , and vjhard
.

RESULTS

In the following we will demonstrate how HDDM can be used

to infer different components of the decision-making process in

a reward-based learning task. While demonstrating core features

this is by no means a complete overview of all the functionality in

HDDM. For more information, an online tutorial and a reference

manual see http://ski.clps.brown.edu/hddm_docs.

Python requires modules to be imported before they can be

used. The following code imports the hddm module into the

Python name-space:

import hddm

LOADING DATA

It is recommended to store your trial-by-trial response time and

choice data in a csv (comma-separated-value, see below for exact

specifications) file. In this example we will be using data col-

lected in a reward-based decision-making experiment in our lab

(Cavanagh et al., 2011). In brief, at each trial subjects choose

between two symbols. The trials were divided into win-win tri-

als (WW), in which the two symbols were associated with high

winning chances; lose-lose trials (LL), in which the symbols were

associated with low winning chances, and win-lose trials (WL),

which are the easiest because only one symbol was associated with

high winning chances. Thus WW and LL decisions together com-

prise high conflict (HC) trials (although there are other differ-

ences between them, we do not focus on those here), whereas WL

decisions are low conflict (LC). The main hypothesis of the study

was that high conflict trials induce an increase in the decision

threshold, and that the mechanism for this threshold modulation

depends on communication between mediofrontal cortex (which

exhibits increased activity under conditions of choice uncertainty

or conflict) and the subthalamic nucleus (STN) of the basal gan-

glia (which provides a temporary brake on response selection by

increasing the decision threshold). The details of this mechanism

are described in other modeling papers (e.g., Ratcliff and Frank,

2012). Cavanagh et al. (2011) tested this theory by measuring

EEG activity over mid-frontal cortex, focusing on the theta band,

given prior associations with conflict, and testing whether trial-

to-trial variations in frontal theta were related to adjustments in

decision threshold during HC trials. They tested the STN com-

ponent of the theory by administering the same experiment to

patients who had deep brain stimulation (DBS) of the STN, which

interferes with normal processing and was tested in the on and off

condition.

The first ten lines of the data file look as follows.

subj_idx,stim,rt,response,theta,dbs,conf

0,LL,1.21,1.0,0.65,1,HC

0,WL,1.62,1.0,-0.327,1,LC

0,WW,1.03,1.0,-0.480,1,HC

0,WL,2.77,1.0,1.927,1,LC

0,WW,1.13,0.0,-0.2132,1,HC

0,WL,1.14,1.0,-0.4362,1,LC

0,LL,2.0,1.0,-0.27447,1,HC

0,WL,1.04,0.0,0.666,1,LC

0,WW,0.856,1.0,0.1186,1,HC

The first row represents the column names; each following row

corresponds to values associated with a column on an individual

trial. While subj_idx (unique subject identifier), rt (response

time) and response (binary choice) are required, additional

columns can represent experiment specific data. Here, theta

represents theta power as measured by EEG, dbs whether DBS

was turned on or off, stim which stimulus type was presented

and conf the conflict level of the stimulus (see above).

The hddm.load_csv() function can then be used to load

this file.

data = hddm.load_csv(’hddm_demo.csv’)

FITTING A HIERARCHICAL MODEL

The HDDM class constructs a hierarchical DDM that can later

be fit to subjects’ RT and choice data, as loaded above. By sup-

plying no extra arguments other than data, HDDM constructs

a simple model that does not take our different conditions

into account. To speed up convergence, the starting point is

set to the maximum a-posterior value (MAP) by calling the

HDDM.find_starting_values method which uses gradi-

ent ascent optimization. The HDDM.sample() method then

performs Bayesian inference by drawing posterior samples using

the MCMC algorithm.

# Instantiate model object passing

it our data.

# This will tailor an individual

hierarchical DDM around the dataset.

m = hddm.HDDM(data)

# find a good starting point which helps

with the convergence.

m.find_starting_values()

# start drawing 2000 samples and discarding

20 as burn-in

m.sample(2000, burn=20)

We recommend drawing between 2000 and 10,000 posterior sam-

ples, depending on the convergence. Discarding the first 20–1000

samples as burn-in is often enough in our experience. Auto-

correlation of the samples can be reduced by adding the thin=n

keyword to sample() which only keeps every n-th sample, but

unless memory is an issue we recommend keeping all samples and

instead drawing more samples if auto-correlation is high.

Note that it is also possible to fit a non-hierarchical model

to an individual subject by setting is_group_model=False

in the instantiation of HDDM or by passing in data which lacks

a subj_idx column. In this case, HDDM will use the group-

mean priors from above for the DDM parameters.

The inference algorithm, MCMC, requires the chains of the

model to have properly converged. While there is no way to guar-

antee convergence for a finite set of samples in MCMC, there are
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many heuristics that allow identification of problems of conver-

gence. One analysis to perform is to visually investigate the trace,

the autocorrelation, and the marginal posterior. These can be

plotted using the HDDM.plot_posteriors() method (see

Figure 3). For the sake of brevity we only plot two here (group

mean and standard deviation of threshold). In practice, however,

one should examine all of them.

m.plot_posteriors([’a’,’a_var’])

Problematic patterns in the trace would be drifts or large

jumps which are absent here. The autocorrelation should also

drop to zero rather quickly (i.e., well smaller than 50) when

considering the influence of past samples , as is the case here.

m.print_stats()

mean std 2.5q 25q 50q 75q 97.5q

a 2.058015 0.102570 1.862412 1.988854 2.055198 2.123046 2.261410

a_var 0.379303 0.089571 0.244837 0.316507 0.367191 0.426531 0.591643

a_subj.0 2.384066 0.059244 2.274352 2.340795 2.384700 2.423012 2.500647

The Gelman-Rubin R̂ statistic (Gelman and Rubin, 1992) pro-

vides a more formal test for convergence that compares within-

chain and between-chain variance of different runs of the same

model. This statistic will be close to 1 if the samples of the differ-

ent chains are indistinguishable. The following code demonstrates

how five models can be run in a for-loop and stored in a list (here

called models).

models = list()

for i in range(5):

m = hddm.HDDM(data)

m.find_starting_values()

m.sample(5000, burn=20)

models.append(m)

hddm.analyze.gelman_rubin(models)

Which produces the following output (abridged to preserve

space):

{’a’: 1.000,

’a_std’: 1.001,

’t’: 1.000}

Values should be close to 1 and not larger than 1.02 which

would indicate convergence problems.

Once convinced that the chains have properly converged we

can analyze the posterior values. The HDDM.print_stats()

method outputs a table of summary statistics for each parameters’

posterior).

The output contains various summary statistics describing the

posterior of each parameter: group mean parameter for thresh-

old a, group variability a_var and individual subject parameters

a_subj.0. Other parameters are not shown here for brevity but

would be outputted normally.

As noted above, this model did not take the different con-

ditions into account. To test whether the different reward con-

ditions affect drift-rate we create a new model which estimates

separate drift-rate v for the three conflict conditions. HDDM

supports splitting by condition in a between-subject manner via

the depends_on keyword argument supplied to the HDDM class.

This argument expects a Python dict which maps the parameter

to be split to the column name containing the conditions we want

to split by. This way of defining parameters to be split by condi-

tion is directly inspired by the fast-dm toolbox (Voss and Voss,

2007).

FIGURE 3 | Posterior plots for the group mean (left half) and

group standard-deviation (right half) of the threshold

parameter a. Posterior trace (upper left inlay), auto-correlation (lower

left inlay), and marginal posterior histogram (right inlay; solid black

line denotes posterior mean and dotted black line denotes 2.5 and

97.5% percentiles).
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m_stim = hddm.HDDM(data,

depends_on={’v’: ’stim’})

m_stim.find_starting_values()

m_stim.sample(2000, burn=20)

Note that while every subject was tested on each condition in

this case, this is not a requirement. The depends_on keyword

can also be used to test between-group differences. For exam-

ple, if we collected data where one group received a drug and

the other one a placebo we would include a column in the data

labeled ’drug’ that contained ’drug’ or ’placebo’ for each sub-

ject. In our model specification we could test the hypothesis that

the drug affects threshold by specifying depends_on={’a’:

’drug’}. In this case HDDM would create and estimate separate

group distributions for the two groups/conditions. After selecting

an appropriate model (e.g., via model selection) we could com-

pare the two group mean posteriors to test whether the drug is

effective or not.

We next turn to comparing the posterior for the different

drift-rate conditions. To plot the different traces we need to

access the underlying node object. These are stored inside the

nodes_db attribute which is a table (specifically, aDataFrame

object as provided by the Pandas Python module) contain-

ing a row for each model parameter [e.g., v(WW)] and multiple

columns containing various information about that parameter

(e.g., the mean, or the node object). The node column used

here represents the PyMC node object. Multiple assignment is

then used to assign the 3 drift-rate nodes to separate vari-

ables. The hddm.analyze.plot_posterior_nodes()

function takes a list of PyMC nodes and plots the density by

interpolating the posterior histogram (see Figure 4).

v_WW, v_LL, v_WL = m_stim.nodes_db.node [[’v(WW)’, ’v(LL)’, ’v(WL)’]]

hddm.analyze.plot_posterior_nodes ([v_WW, v_LL, v_WL])

FIGURE 4 | Posterior density plot of the group means of

the 3 different drift-rates v as produced by the

hddm.analyze.plot_posterior_nodes() function. Regions of

high probability are more credible than those of low

probability.

Based on Figure 4 we might reason that the WL condition drift-

rate is substantially greater than that for the other two conditions,

which are fairly similar to each other.

One benefit of estimating the model in a Bayesian framework

is that we can do significance testing directly on the posterior

rather than relying on frequentist statistics (Lindley, 1965) (see

also Kruschke (2010) for many examples of the advantages of this

approach). For example, we might be interested in whether the

drift-rate for WW is larger than that for LL, or whether drift-rate

for LL is larger than WL. The below code computes the propor-

tion of the posteriors in which the drift rate for one condition is

greater than the other. It can be seen that the posteriors for LL

do not overlap at all for WL, and thus the probability that LL is

greater than WL should be near zero.

print "P(WW > LL) = ",

(v_WW.trace() > v_LL.trace()).mean()

print "P(LL > WL) = ",

(v_LL.trace() > v_WL.trace()).mean()

Which produces the following output.

P(WW > LL) = 0.34696969697

P(LL > WL) = 0.0

In addition to computing the overlap of the posterior distri-

butions we can compare whether the added complexity of models

with additional degrees of freedom is justified to account for the

data using model selection. The deviance information criterion

(Spiegelhalter et al., 2002) (DIC; lower is better) is a common

method for assessing model fit in hierarchical models. The DIC is

known to be somewhat biased in selecting the model with greater

complexity, although alternative forms exist which improve this

issue (see Plummer, 2008). Nevertheless, DIC can be a useful

metric with this caveat in mind. One suggested approach is to

generate simulated data from alternative models and use DIC to

determine whether it properly selects the correct model given

the same task contingencies. This exercise can help determine

whether to rely on DIC, and also to provide an expected quan-

titative difference in DIC scores between models if one of them

was correct, as a benchmark to compare DIC differences for fits

to real data. We recommend interpreting significant differences in

parameter estimates only within the models that fit the data the

best penalized for complexity. By accessing the dic attribute of

the model objects we can print the model comparison measure:

print "Lumped model DIC: %f" % m.dic

print "Stimulus model DIC: %f" % m_stim.dic

Which produces the following output:

Lumped model DIC: 10960.570932

Stimulus model DIC: 10775.615192

Based on the lower DIC score for the model allowing drift-rate

to vary by stimulus condition we might conclude that it provides
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better fit than the model which forces the drift-rates to be equal,

despite the increased complexity.

Note that Bayesian hypothesis testing and model compari-

son are areas of active research. One alternative to analyzing the

posterior directly and the DIC score is the Bayes Factor (e.g.,

Wagenmakers et al., 2010).

FITTING REGRESSION MODELS

As mentioned above, cognitive neuroscience has embraced the

DDM as it enables to link psychological processes to cognitive

brain measures. The Cavanagh et al. (2011) study provides a

useful illustration of the functionality. EEG recordings provided

a trial-ty-trial measure of brain activity (frontal theta), and it

was found that this activity correlated with increases in decision

threshold in high conflict HF trials. Note that the data set and

results exhibit more features than we consider here for the time

being (specifically the manipulation of deep brain stimulation),

but for illustrative purposes, we show only the code here to repro-

duce the main theta-threshold relationship in a model restricted

to participants without brain stimulation. For more information,

see Cavanagh et al. (2011).

The HDDMRegressor class allows individual parameters

to be described by a linear model specification. In addition to

the data argument, HDDMRegressor expects a linear model

descriptor string to be provided. This descriptor contains the

outcome variable that should be replaced with the output of the

linear model—in this case a. The expression theta:C(stim)

specifies an interaction between theta power and stimulus. The

C() specifies that the stim column contains categorical data

and will result in WL, LL, and WW being dummy coded. The

Treatment argument encodes which condition should be used

as the intercept. The two other conditions—LL and WW—will

then be expressed relative to WL. For more information about

the linear model specification syntax we refer to the Patsy docu-

mentation (patsy.readthedocs.org). In summary, by selecting data

from the dbs off condition and specifying a linear model that uses

categorical dummy-coding we can estimate a within-subject effect

of theta power on threshold in different conditions.

m_reg = hddm.HDDMRegressor(data[data.dbs == 0], "a ~ theta:C(conf, Treatment(’LC’))",

depends_on={’v’: ’stim’})

Which produces the following output:

Adding these covariates:

[’a_Intercept’, "a_theta:C(conf, Treatment(’LC’))[HC]",

"a_theta:C(conf, Treatment(’LC’))[LC]"]

Instead of estimating one static threshold per subject across

trials, this model assumes the threshold to vary on each trial

according to the linear model specified above (as a function of

their measured theta activity). Cavanagh et al. (2011) illustrates

that this brain/behavior relationship differs as a function of

whether patients are on or off STN deep brain stimulation, as

hypothesized by the model that STN is responsible for increasing

the decision threshold when cortical theta rises).

FIGURE 5 | Posterior density of the group theta regression coefficients

on threshold a when DBS is turned on (blue) and off (green).

As noted above, this experiment also tested patients on deep

brain stimulation (DBS). Figure 5 shows the regression coeffi-

cient of theta on threshold when the above model is estimated

in the DBS off condition (in blue) and the DBS on condition (in

green; code to estimate not shown). As can be seen, the influ-

ence of theta on threshold reverses. This exercise thus shows that

HDDM can be used both to assess the influence of trial-by-trial

brain measures on DDM parameters, but also how parameters

vary when brain state is manipulated.

Finally, HDDM also supports modeling of within-subject effects

as well as robustness to outliers. Descriptions and usage instruc-

tions of which can be found in the supplement.

SIMULATIONS

To quantify the quality of the fit of our hierarchical Bayesian

method we ran three simulation experiments. All code to

replicate the simulation experiments can be found online at

https://github.com/hddm-devs/HDDM-paper.

EXPERIMENT 1 AND 2 SETUP

For the first and second experiments, we simulated an experiment

with two drift-rates (v1 and v2), and asked what the likelihood

of detecting a drift rate difference is using each method. For the

first experiment, we fixed the number of subjects at 12 (arbitrarily

chosen), while manipulating the number of trials (20, 30, 40, 50,

75, 100, 150). For the second experiment, we fixed the number of
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trials at 75 (arbitrary chosen), while manipulating the number of

subjects (8, 12, 16, 20, 24, 28).

For each experiment and each manipulated factor (sub-

jects, trials), we generated 30 multi-subject data-sets by

randomly sampling group parameters. For the first and

second experiment, the group parameters were sampled from

a uniform distribution [v1 ∼ U(0.1, 0.5), a ∼ U(0.5, 0.2), t ∼

U(0.2, 0.5), sv ∼ U(0, 2.5)], sz and st were set to zero, and v2 was

set to 2 ∗ v1. To generate individual subject parameters, zero cen-

tered normally distributed noise was added to v1, a, t, and sv, with

standard deviation of 0.2, 0.2, 0.1, and 0.1 respectively. The noise

of v2 was identical to that of v1.

We compared four methods: (i) the hierarchical Bayesian

model presented above with a within subject effect (HB); (ii) a

non-hierarchical Bayesian model, which estimates each subject

individually (nHB); (iii) the χ2-Quantile method on individ-

ual subjects (Ratcliff and Tuerlinckx, 2002); and (iv) maximum

likelihood (ML) estimation using the Navarro and Fuss (2009)

likelihood on individual subjects.

To investigate the difference in parameter recovery between the

methods, we computed the mean absolute error of the recovery

for each parameter and method in the trials experiment (we also

computed this for the subjects experiment but results are quali-

tatively similar and omitted for brevity). We excluded the largest

errors (5%) from our calculation for each method to avoid cases

where unrealistic parameters were recovered (this happened only

for ML and the quantiles method).

For each dataset and estimation method in the subject

experiment we computed whether the drift-rate difference was

detected (we also computed this for the trials experiment but

results are qualitatively similar and omitted for brevity). For the

non-hierarchical methods (ML, quantiles, nHB), a difference is

detected if a paired t-test found a significant difference between

the two drift-rates of the individuals (p < 0.05). For HB, we

used Bayesian parameter estimation (Lindley, 1965; Kruschke,

2010). Specifically, we computed the 2.5 and 97.5 quantiles of

the posterior of the group variable that models the difference

between the two drift rates. An effect is detected if zero fell

outside the quantiles. The detection likelihood for a given factor

manipulation and estimation method was defined as the num-

ber of times an effect was detected divided by the total number of

experiments.

EXPERIMENT 3 SETUP

In the third experiment, we investigated the detection likelihood

of trial-by-trial effects of a given covariate (e.g., a brain measure)

on the drift-rate. We fixed the number of subjects at 12, and

manipulated both the covariate effect-size (0.1, 0.3, 0.5) and the

number of trials (20, 30, 40, 50, 75, 100, 150). To generate data,

we first sample an auxiliary variable, αi from N (1, 0.1) for each

subject i. We then sampled a drift-rate for each subject and each

trial from N (αi, 1). The drift rate of each subject was set to

be correlated to a standard normally distributed covariate (i.e.,

we generated correlated covariate data) according to the tested

effect size. The rest of the variables were sampled as in the first

experiments.

We compared all previous methods except the quantiles

method, which cannot be used to estimate trial-by-trial effects.

For the non-hierarchical methods (ML, quantiles, nHB), an effect

is detected if a one sample t-test finds the covariate to be signifi-

cantly different than zero (p < 0.05). For the HB estimation, we

computed the 2.5 and 97.5 quantiles of the posterior of the group

covariate variable. If zero fell outside the quantiles, then an effect

was detected.

RESULTS

The detection likelihood results for the first experiment are

very similar to the results of the second experiment, and were

omitted for the sake of brevity. The HB method had the low-

est recovery error and highest likelihood of detection in all

experiments (Figures 6–8). The results clearly demonstrate the

increased power the hierarchical model has over non-hierarchical

FIGURE 6 | Trials experiment. Trimmed mean absolute error (MAE, after

removing the 2.5 and 9.75 percentiles) as a function of trial number for each

DDM parameter. Colors code for the different estimation methods

(HB, Hierarchical Bayes; nHB, non-hierarchical Bayes; ML, maximum

likelihood; and Quantiles, χ2 -Quantile method). The inlay in the upper right

corner of each subplot plots the difference of the MAEs between HB and

ML, and the error-bars represent 95% confidence interval. HB provides a

statistically significantly better parameter recovery than ML when the lower

end of the error bar is above zero (as it is in each case, with largest effects on

drift rate with few trials).
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FIGURE 7 | Subjects experiment. Probability of detecting a drift-rate

difference (y-axis) for different numbers of subjects (x-axis) and different

estimation methods (color coded; HB, Hierarchical Bayes; nHB,

non-hierarchical Bayes; ML, maximum likelihood; and Quantiles,

χ2-Quantile method). HB together with Bayesian hypothesis testing on

the group posterior results in a consistently higher probability of

detecting an effect.

FIGURE 8 | Trial-by-trial covariate experiment. Probability of detecting

a trial-by-trial effect on drift-rate (y-axis) with effect-sizes 0.1 (top left

plot), 0.3 (bottom left plot) and 0.5 (bottom right plot) for different

estimation methods (color coded; HB, Hierarchical Bayes; nHB,

non-hierarchical Bayes; ML, maximum likelihood). While there is only a

modest increase in detection rate with the smallest effect size, HB

provides an increase in detection rate of up to 20% with larger effect

sizes and fewer trials.

ones. To validate that the increase in detection rate is not due to

the different statistical test (Bayesian hypothesis testing compared

to t-testing), but rather due to the hierarchical model itself, we

also applied a t-test to the HB method. The likelihood of detection

increased dramatically, which shows that the Bayesian hypothesis

testing is not the source of the increase. However, the t-test results

were omitted since the independence assumption of the test does

not hold for parameters that are estimated using a hierarchical

model.

The differences between the hierarchical and non-hierarchical

methods in parameter recovery are mainly noticeable for the

decision threshold and the two drift rates for every number

of trials we tested, and it is most profound when the num-

ber of trials is very small (Figure 6). To verify that the HB

method is significantly better than the other methods we chose

to directly compare the recovery error achieved by the method

in each single recovery to the recovery error achieved by the

other methods for the same set dataset (inlay). For clarity pur-

poses, we show only the comparison of HB with ML. The results

clearly show that under all conditions HB outperforms the other

methods.

DISCUSSION

Using data from our lab on a reward-based learning and decision-

making task (Cavanagh et al., 2011) we demonstrate how HDDM

can successfully be used to estimate differences in information

processing based solely on RT and choice data. By using the

HDDMRegression model we are able to not only quantify

latent decision-making processes in individuals but also how

these latent processes relate to brain measures (here theta power

as measured by EEG had a positive effect on threshold) on

a trial-by-trial basis. Critically, changing brain state via DBS

revealed that the effect of theta power on threshold was reversed.

As these trial-by-trial effects are often quite noisy, our hierar-

chical Bayesian approach facilitated the detection of this effect

as demonstrated by our simulation studies (Figure 8), due to

shared statistical structure among subjects in determining model

parameters. This analysis is more informative than a straight

behavioral relationship between brain activity and RT or accu-

racy alone. While we used EEG to measure brain activity this

method should be easily extendable towards other techniques

like fMRI (e.g., van Maanen et al., 2011). While trial-by-trial

BOLD responses from an event-related study design are often

very noisy, initial results in our lab were promising with this

approach.

In a set of simulation studies we demonstrate that the hier-

archical model estimation used in HDDM can recover param-

eters better than the commonly used alternatives (i.e. maxi-

mum likelihood and χ2-Quantile estimation). This benefit is

largest with few number of trials (Figure 6) where the hier-

archical model structure provides most constraint on individ-

ual subject parameter estimation. To provide a more applica-

ble measure we also compared the probability of detecting a

drift-rate and trial-by-trial effect and show favorable detection

probability.

In conclusion, HDDM is a novel tool that allows researchers

to study the neurocognitive implementations of psychological

decision making processes. The hierarchical modeling provides

power to detect even small correlations between brain activity

and decision-making processes. Bayesian estimation supports the

recent paradigm shift away from frequentist statistics for hypothe-

sis testing (Lindley, 1965; Kruschke, 2010; Lee and Wagenmakers,

2013).
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