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The code to replicate the analyses performed in this paper can be downloaded as an IPython notebook from this
address:

http://nbviewer.ipython.org/urls/raw.github.com/hddm-devs/hddm/develop/hddm/examples/hddm_demo.ipynb

Hierarchical Bayesian Estimation

Bayesian methods require specification of a generative process in form of a likelihood function that produced the
observed data x given some parameters θ. By specifying our prior beliefs (which can be informed or non-informed)
we can use Bayes formula to invert the generative model and make inference on the probability of parameters θ:

P (θ|x) = P (x|θ)× P (θ)
P (x)

,

where P (x|θ) is the likelihood of observing the data (in this case choices and RTs) given each parameter value and
P (θ) is the prior probability of the parameters. In most cases the computation of the denominator is quite complicated
and requires to compute an analytically intractable integral. Sampling methods like Markov-Chain Monte Carlo
(MCMC) (Gamerman and Lopes, 2006) circumvent this problem by providing a way to produce samples from the
posterior distribution. These methods have been used with great success in many different scenarios (Gelman et al.,
2003) and will be discussed in more detail below.

As noted above, the Bayesian method lends itself naturally to a hierarchical design. In such a design, parameters
of a distribution can themselves be expressed as random variables with their own priors. This hierarchical property
has a particular benefit to cognitive modeling where data is often scarce: We can construct a hierarchical model that
explicitly captures the similarity between individual’s parameter values. As above, observed data points of each subject
xi,j (where i = 1, . . . , Sj data points per subject and j = 1, . . . , N for N subjects) are distributed according to some
likelihood function f(θ). We now assume that individual subject parameters θj are normally distributed around a
group mean µ with a specific group standard deviation σ, resulting in the following generative description:

θj ∼ N (µ, σ2)

xi,j ∼ f(θj)

Priors

The informative group mean priors are created to roughly match parameter values reported in the literature and col-
lected by (Matzke and Wagenmakers, 2009). Figure 1 shows the the prior probability densities used for each group
mean parameter on top of the empirical values reported in the literature.
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Figure 1: Green: Probability densities of prior distributions for group means of each DDM parameter of the informative
HDDM model. Blue: Histogram over DDM parameters reported in the literature (Matzke and Wagenmakers, 2009).

Reaction Time distributions

To provide the reader with a sense of how RT data is distributed we plot histograms of each individual’s RTs in
figure 2. Because there are two possible responses (here we are using accuracy coding where 1 means the more
rewarding symbol was chosen, and 0 the less rewarding) we flip error RTs to be negative. The following code was
used to generate the RT histogram plot and uses Pandas’ groupby functionality which splits the data set into parts
containing individual subject data.

data = hddm.utils.flip_errors(data)

fig = plt.figure()
ax = fig.add_subplot(111, xlabel=’RT’, ylabel=’count’, title=’RT distributions’)
for i, subj_data in data.groupby(’subj_idx’):

ax.hist(subj_data.rt, bins=20, histtype=’step’)

Within-subject effects

In the main manuscript we estimated a between-subject difference in drift-rate for the three different conditions – LL,
WW and WL. Note that this model implicitly assumes that the different conditions are completely independent: each drift
rate was sampled from a separate group prior. However, there may be individual differences in overall performance,
and if so it is reasonable to assume that someone who would be better at WL would also be better at LL. To model
this intuition we can use a within-subject model where an intercept is used to capture overall performance in the WL
condition as a baseline, and then the other LL and WW conditions are expressed relative to WL. (Perhaps every subject
has a higher drift in WL than LL but there is huge variance in their overall drift rates. In this scenario, the earlier model
would not have the power to detect the effect of condition on this within subject effect, because there would be large
posterior variance in all of the drift rates, which would then overlap with each other. In contrast, the within-subject
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Figure 2: Reaction time histograms of individual subjects. Reaction time is distributed along the x-axis. Error re-
sponses are mirrored on the y-axis and thus appear negative. Bin-count is distributed along the y-axis.

model would estimate large variance in the intercept but still allow the model to infer a non-zero effect of condition
with high precision).

To estimate a within-subject effect we can use the HDDMRegressor class we already used to estimate the trial-by-
trial correlations. Internally, HDDMRegressor uses the Patsy module to construct a design matrix from the linear
model descriptor, see https://patsy.readthedocs.org/en/latest/ for more details.

m_within_subj = hddm.HDDMRegressor(data, "v ~ C(stim, Treatment(’WL’))")

Which outputs the newly created covariates which will be used in the regression:

Adding these covariates:
[’v_Intercept’, "v_C(stim, Treatment(’WL’))[T.LL]", "v_C(stim, Treatment(’WL’))[T.WW]"]

As alluded to above, WL will be used as the intercept. v_C(stim, Treatment(’WL’))[T.LL] and
v_C(stim, Treatment(’WL’))[T.WW] are new parameters that will be estimated relative to the intercept.

To estimate the model we again draw samples from the posterior. Note that regression models are often slower to
converge so we use more burn-in and draw more samples to accommodate this fact.

m_within_subj.sample(10000, burn=1000)

To examine the marginal posteriors of our individual regressors we can again plot them using the following code (see
figure 3 for the output):

v_WL, v_LL, v_WW = m_within_subj.nodes_db.node[["v_Intercept",
"v_C(stim, Treatment(’WL’))[T.LL]",
"v_C(stim, Treatment(’WL’))[T.WW]"]]

hddm.analyze.plot_posterior_nodes([v_WL, v_LL, v_WW])
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Group mean posteriors of within-subject drift-rate effects.
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Figure 3: Posterior density plot of the group means of the 3 different within-subject drift-rates v as produced by the
hddm.analyze.plot_posterior_nodes() function. Note that while v (blue line) represents the drift-rate of
the WL condition, the other two posteriors (green and red lines) are expressed relative to this condition.

Note that in the above plot LL and WW are expressed relative to the WL condition (i.e. v_Intercept). Thus, while
the overall drift rate intercept, here applying to the WL condition, is positive (mode value roughly 0.7), the relative
within subject effects of condition (WW and LL) are negative and do not overlap with zero – suggesting a significant
effect of this condition on drift-rate.

Dealing with outliers

It is common to have outliers in any data set and RT data are no exception. Outliers present a serious challenge to
likelihood-based approaches, as used in HDDM. Consider the possibility that 5% of trials are not generated by the
DDM process, but by some other process (e.g. due to an attentional lapse). The observed data in those trials may be
very unlikely given the best DDM parameters that fit 95% of the data. In the extreme case, the likelihood of a single
trial may be zero (e.g. if subjects respond very quickly, faster than the non-decision time t parameter that would fit
the rest of the data). Thus this single outlier would force the DDM parameters to adjust substantially. To illustrate the
effect of this we will generate data with outliers, but fit a standard DDM model without taking outliers into account.

outlier_data, params = hddm.generate.gen_rand_data(params={’a’: 2, ’t’: .4, ’v’: .5},
size=200, n_fast_outliers=10)

m_no_outlier = hddm.HDDM(outlier_data)
m_no_outlier.sample(2000, burn=50)

m_no_outlier.plot_posterior_predictive()

As the left plot of figure 4 shows, the predictive likelihood does not fit the RT data very well. The model predicts far
more fast RTs than are actually observed. This is because non-decision time t is forced to be estimated small enough
to account for a few fast RTs.

To solve this issue, HDDM includes a mixture model which assumes that outliers come from a uniform distribution.
Here, we specify that we expect roughly 5% outliers in our data.
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Figure 4: Posterior predictive likelihood of the model which does not allow for outliers (left) and the model which
does allow for outliers (right). Error responses are mirrored along the y-axis. Histogram of reaction times in red and
posterior predictive likelihood in blue. Time increases along the x-axis while probability density is plotted against the
y-axis.

m_outlier = hddm.HDDM(outlier_data, p_outlier=.05)
m_outlier.sample(2000, burn=20)

m_outlier.plot_posterior_predictive()

The mixture model provides a much better fit (see the right plot in figure 4) because outlier RTs are having less of
an effect because they get assigned to the uniform outlier distribution. Note that it is also possible to estimate the
probability of obtaining outliers from the data by setting include=[’p_outlier’] instead of p_outlier=x
when HDDM in instantiated.
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