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roles in cholesterol metabolism as well as many other bio-

logical functions of HDL particles are dependent on the 

number as well as protein and lipid composition of HDL 

particles. They are poorly reflected by the HDL-C concen-

tration. HDL can even exert negative vascular effects, if its 

composition is pathologically altered. High serum HDL-C 

is therefore no longer regarded protective. In line with this, 

recent pharmacological approaches to raise HDL-C con-

centration have not been able to show reductions of cardio-

vascular outcomes.

Conclusion In contrast to LDL cholesterol (LDL-C), 

HDL-C correlates with cardiovascular risk only in healthy 

individuals. The calculation of the ratio of LDL-C to 

HDL-C is not useful for all patients. Low HDL-C should 

prompt examination of additional metabolic and inflamma-

tory pathologies. An increase in HDL-C through lifestyle 

change (smoking cessation, physical exercise) has positive 

effects and is recommended. However, HDL-C is currently 

not a valid target for drug therapy.

Abstract 

Background While several lines of evidence prove that 

elevated concentrations of low-density lipoproteins (LDL) 

causally contribute to the development of atherosclerosis 

and its clinical consequences, high-density lipoproteins 

are still widely believed to exert atheroprotective effects. 

Hence, HDL cholesterol (HDL-C) is in general still con-

sidered as “good cholesterol”. Recent research, however, 

suggests that this might not always be the case and that a 

fundamental reassessment of the clinical significance of 

HDL-C is warranted.

Method This review article is based on a selective litera-

ture review.

Results In individuals without a history of cardiovascular 

events, low concentrations of HDL-C are inversely associ-

ated with the risk of future cardiovascular events. This rela-

tionship may, however, not apply to patients with metabolic 

disorders or manifest cardiovascular disease. The classical 

function of HDL is to mobilise cholesterol from extrahe-

patic tissues for delivery to the liver for excretion. These 
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Epidemiology

The concept that high-density lipoproteins (HDL) could 

protect against coronary heart disease (CHD) primarily 

originated from epidemiological studies of the healthy pop-

ulation, in particular the Framingham study [1]. Patients 

with manifest CHD frequently exhibit low HDL choles-

terol (HDL-C) [2]. The relationship between HDL-C and 

cardiovascular risk is not linear; for instance, no further 

improvement in prognosis is seen with HDL-C levels 

above ~60  mg/dl (1.5  mmol/l) (Fig.  1) [3]. Retrospec-

tive investigations of the EPIC Norfolk and of the IDEAL 

study show that very high concentrations of HDL-C 

may be associated with increased risk [4]. A recent reg-

ister study of more than 1  million US veterans found a 

U-shaped relationship between HDL-C and total mortal-

ity with 50  mg/dL (1.25  mmol/L) as the nadir associated 

with the lowest mortality [5]. A very recent analysis of 

the Framingham study reports that the predictive value of 

HDL-C is modified by LDL cholesterol (LDL-C) and tri-

glycerides (TG): Compared to low HDL-C (defined as 

<50 mg/dl in women and <40 mg/dl in men) in isolation, 

risk increases when low HDL-C occurs together with high 

LDL-C and/or TG. Cardiovascular (CV) risk increases 

by 30% for LDL-C ≥ 100  mg/dl and TG < 100  mg/dl or 

LDL-C < 100  mg/dl and TG ≥ 100  mg/dl. When both TG 

and LDL-C are ≥100 mg/dl, CV risk increases by 60% [6].

In summary Low HDL-C is an indicator of increased 

cardiovascular risk, especially in persons without a history 

of cardiovascular events; however, the epidemiological 

relationship between HDL-C and risk is complex. Reduced 

HDL-C concentrations are frequently confounded with 

other pro-atherogenic conditions, notably the presence of 

inflammation and pro-atherogenic triglyceride-rich lipopro-

teins and their remnants as well as small dense LDL. The 

continued widespread practice of calculating the ratio of 

LDL-C to HDL-C is not useful, because high HDL-C is not 

associated with reduced risk, so that a combination of high 

LDL-C and HDL-C may lead to the wrong conclusion that 

risk is not elevated.

Role of HDL in lipoprotein metabolism

HDL are the smallest (5–17  nm) and densest 

(1.063–1.210 kg/l) lipoproteins in the plasma. Apolipopro-

tein (Apo) A1, the major protein in HDL, is synthesised 

in the liver and the small intestine. The liver is the most 

important organ through which cholesterol is excreted, 

either directly or after being converted into bile acids. 

Excess cholesterol is transported from the periphery (e.g. 

from macrophages in blood vessel walls) to the liver. HDL 

play a key role in this pathway, known as reverse choles-

terol transport (RCT) (Fig. 2) [8–11]. In addition to HDL, 

LDL also significantly contribute to RCT. The overwhelm-

ing majority of HDL-C measured in the blood originates 

from the liver and the intestine. Therefore, the concentra-

tion of HDL-C in the plasma cannot be used as a measure 

of cholesterol efflux from vessel walls, or of the efficiency 

of RCT.

The RCT begins with the transfer of cholesterol from 

cell membranes to HDL. To date, four biochemical path-

ways have been described that are involved in this transfer 

[8]. As long as the cholesterol content of the cell is normal, 

more than two-thirds of the (poorly water-soluble, non-

esterified) cholesterol leave the cells by passive diffusion 

along a concentration gradient between the cell membrane 

and preferably large, globular HDL. This concentration 

gradient is maintained by extracellular esterification of free 

cholesterol mediated by the lecithin cholesterol acyltrans-

ferase (LCAT).

Secondly, the passive, aqueous efflux of non-esterified 

cholesterol can be further enhanced by up-regulation of 

ATP-binding cassette transporter G1 (ABCG1). ABCG1 

mobilises cholesterol from subcellular compartments.

Thirdly, passive, but non-aqueous transfer of free choles-

terol from cells to larger HDL can be mediated by the scav-

enger receptor class B type I (SR-B1). SR-B1 promotes not 

only the cellular cholesterol efflux, but also the “selective” 

(i.e. non-endocytotic) delivery of cholesterol from HDL to 

liver cells [12].

Fig. 1  Epidemiological association of low HDL-C serum concentra-

tions with CHD risk. Data from the Emerging Risk Factors Collabo-

ration [3]. With permission of Springer [7]
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Fourthly, cholesterol and phospholipids from mac-

rophages and foam cells are actively transferred to ATP-

binding cassette transporter A1 (ABCA1) to lipid-free 

apo A1 (pre-ß-HDL). This process is important for the 

formation of “nascent” HDL particles, (i.e. HDL discs), 

which contain Apo A1, phosphatidylcholine and non-

esterified cholesterol. The importance of ABCA1 for the 

metabolic maturation of HDL was identified by the eluci-

dation of the genetic cause of Tangier’s disease [13, 14]. 

The expression of ABCA1 is regulated by the intracel-

lular cholesterol content, and efflux mediated by ABCA1 

is therefore important in situations of cellular cholesterol 

excess.

The directed flux of cholesterol between cells and HDL 

is dependent on a concentration gradient between the cell 

membrane and acceptor lipoproteins. This gradient is main-

tained at the cellular level by the hydrolysis of cholesteryl 

esters and translocation of cholesterol, extracellularly by 

lecithin cholesterol acyltransferase (LCAT) and the cho-

lesterol ester transfer protein (CETP). The LCAT esterifies 

free cholesterol (for example, cholesterol associated with 

pre-ß-HDL) with a fatty acid from the lecithin. Cholesteryl 

Fig. 2  Role of HDL in lipoprotein metabolism. Apo A1, the main 

protein in HDL, is formed in the liver and the small intestine and 

secreted as lipid-free pre-ß-HDL. Pre-b-HDL can also come from 

chylomicron metabolism, or from the interconversion of HDL itself. 

Their interaction with ATP-binding cassette transporter A1 (ABCA1) 

leads to the efflux of phosphatidylcholine (PC) and free cholesterol 

(FC), and thus to the formation of disc-shaped HDL. Esterification 

of the free cholesterol by lecithin–cholesterol acyltransferase (LCAT) 

leads to the formation of mature spherical HDL. The lipid-rich dis-

coidal and spherical HDL enable passive diffusion out of cells, which 

is facilitated by ATP-binding cassette transporter G1 (ABCG1), scav-

enger receptor class B type I (SR-B1) and by cholesterol esterification 

mediated by LCAT. Cholesteryl ester transfer protein (CETP) trans-

fers cholesteryl esters (CE), triglycerides and phospholipids (PL) 

between HDL, LDL and VLDL. It thereby contributes to the for-

mation of LDL, which is taken up through LDL receptors (LDLR) 

in hepatocytes. Phospholipid transfer protein (PLTP) belongs to the 

same protein family as CETP. Its function is to transport phospholip-

ids between HDL and VLDL, and between various HDL. Mediated 

by SR-BI, HDL can deliver cholesteryl ester (and free cholesterol) to 

hepatocytes, steroid-producing cells and adipocytes. With permission 

of Springer [7]
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esters are more hydrophobic than free cholesterol and are 

located inside the HDL. This transforms HDL from dis-

coidal into spherical, pseudomicellular particles (α-HDL). 

Maturation of HDL is incomplete in genetic or secondary 

deficiency of LCAT. In patients with familial LCAT defi-

ciency, spherical HDL are absent.

CETP is a hydrophobic glycoprotein which is mainly 

secreted by the liver and is mostly bound to HDL in the 

blood [15]. It facilitates the transfer of cholesteryl esters, 

triglycerides and, to a smaller extent, phospholipids 

between HDL, LDL and VLDL. Thus, cholesteryl esters 

are channelled into the metabolism of LDL and delivered 

to the liver.

In summary HDL-particles play a crucial role in the 

reverse transport and excretion of cholesterol. However, 

HDL-cholesterol measurements do not reflect HDL func-

tion in RCT.

Determination of HDL cholesterol in the clinical 

laboratory

The standard method for the determination of cholesterol in 

LDL and HDL is the combined method of precipitation and 

ultracentrifugation (beta quantification) [16]. In the first 

step, VLDL is recovered by means of ultracentrifugation, 

then LDL is precipitated and finally HDL-C is determined 

enzymatically in the supernatant. This method is not suit-

able for use in the clinical laboratory because of high costs 

and complexity. In the late 1990s, “homogeneous” methods 

were introduced which allow the measurement of HDL-C 

in a single reaction vessel with no prior separation steps 

[17]. In these methods, the cholesterol in non-HDL parti-

cles is “masked” with antibodies, polymers or detergents, 

and in a second reaction step HDL-C is determined enzy-

matically. The commercially available homogeneous assays 

show a good agreement with the reference method in nor-

molipidemic samples and in many cases of hypercholester-

olemia. The determination of HDL-C is hardly affected by 

prior consumption of food and the results can usually well 

be interpreted in post-prandial samples [18]. Differences to 

the reference method and between the assays are, however, 

observed in hypertriglyceridemia (elevated concentrations 

of chylomicrons and/or VLDL), at low HDL-C (<20 mg/

dl), and if atypical lipoproteins are present (type III hyper-

lipoproteinemia, liver disease, chronic kidney disease) 

[19–21]. In these cases, HDL-C can be accurately meas-

ured by lipoprotein electrophoresis, however by staining 

lipoproteins using enzymatic cholesterol oxidation rather 

than unspecific lipophilic chemicals.

Due to the limitations of conventional lipoprotein analy-

sis, researchers are considering the replacement of HDL-C 

and LDL-C determinations with the determination of 

Apo A1 and ApoB, respectively. Measurement of apoli-

poproteins can be readily standardised [22] and is not sig-

nificantly distorted by high triglycerides. Apo B not only 

reflects the concentration of LDL, but all atherogenic lipo-

proteins taken together [VLDL, remnants, LDL, Lp(a)].

In recent years, assays have been introduced which 

reflect the functionality of HDL better than HDL-C. Of 

importance are the determination of HDL particle con-

centrations (and sizes) with nuclear magnetic resonance 

(NMR) spectroscopy [23], the measurement of HDL pro-

teins (Apo A1, serum amyloid A) and the in  vitro meas-

urement of the cholesterol uptake capacity of HDL in cell 

culture models (cholesterol efflux) [24–27]. While the latter 

will most likely remain a research method, NMR and apoli-

poproteins are in principle suitable for routine use, once 

their standardisation has been accomplished.

In summary Current clinically available methods are 

able to determine the cholesterol content of HDL particles, 

but not their biological function. Standardised determi-

nations of HDL-C, and even less so of assays for choles-

terol efflux capacity, HDL particle number determination 

by NMR spectroscopy and HDL proteins, are still not 

satisfactory.

Lesions from genetic abnormality of HDL 

metabolism

Table  1 provides an overview of rare monogenic disor-

ders in the HDL metabolism. According to the results 

from Danish and American population studies, approxi-

mately 10% of individuals with HDL-C levels below the 

5th percentile are heterozygous for mutations in the genes 

of APOA1, ABCA1 or LCAT [28, 29]. Data on the risk of 

atherosclerosis in these individuals are contradictory [30]. 

Some mutations of APOA1 have been associated with 

increased risk of myocardial infarction [31], and another 

one, Apo A1-Milano, may reduce the risk. Some mutations 

of the APOA1 gene also cause familial amyloidosis. In 

large Danish population studies, heterozygosity for HDL-

C-lowering mutations of the ABCA1 or APOA1 gene was 

not associated with an increased risk of myocardial infarc-

tion. Interestingly, ABCA1 mutations increase the risk for 

Alzheimer’s disease. Data from large Dutch family studies 

suggest an increased cardiovascular risk of HDL-C-lower-

ing mutations in the genes of APOA1, ABCA1 or LCAT. 

Italian studies found no evidence for an increased risk of 

atherosclerosis in heterozygous carriers of LCAT mutations 

[32–34].

Homozygous and heterozygous carriers of mutations 

in these three genes are very rare and present themselves 

with pronounced or even complete HDL deficiency and 

characteristic clinical syndromes: patients with complete 
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LCAT deficiency develop corneal opacities, anaemia and 

progressive renal failure, which ultimately requires renal 

replacement therapy. Patients with partial LCAT deficiency 

(“fish eye disease”) develop corneal opacities, but neither 

renal disease nor anaemia. In both cases, the remaining 

HDL are discoidal in shape. In classical LCAT deficiency, 

LDL include particles which are similar to Lipoprotein X 

and may be the cause of the characteristic nephropathy. The 

risk of atherosclerosis of mutation carriers is not increased 

or at most slightly increased [35], possibly because HDL 

can also transport free cholesterol directly to the liver [36].

Homozygosity for mutations in the ABCA1 gene leads 

to Tangier disease [13, 14]. As a result of the strongly 

reduced cellular cholesterol efflux, cholesterol accumulates 

in macrophages in various organs (enlarged tonsils, hepato-

splenomegaly and peripheral neuropathy). Patients with 

Tangier disease often also have low LDL-C, which could 

attenuate the atherogenic effect of the low HDL concentra-

tion [Schaefer, 2010 # 21]. Homozygous nonsense muta-

tions in the APOA1 gene were found to [28] be the cause of 

HDL deficiency in patients with severe xanthomatosis and 

early atherosclerosis.

Most patients with a deficiency of cholesteryl ester trans-

fer protein (CETP) have been observed in Japan. Affected 

persons have very high concentrations of HDL-C. Phar-

macological inhibition of CETP has therefore been tested 

as an approach to increase HDL. It is unclear whether the 

HDL produced through CETP inhibition have a normal 

function. We observed a slightly increased cardiovascu-

lar mortality at low concentrations of CETP in the blood 

despite high HDL-C [37].

Only recently, mutations of scavenger receptor (SR-BI) 

(P279S, P376L) have been described which are associated 

with both significant increases in HDL-C and increased 

cardiovascular risk [38–40]. These mutations impair the 

selective uptake of cholesteryl esters by hepatocytes. In 

mice, the overexpression of SR-B1 leads to an increase in 

RCT, despite a drop in HDL-C [41]. On the other hand, 

lack of SR-BI increases HDL-C, but is atherogenic [42]. 

High HDL-C therefore does not provide protection from 

atherosclerosis in all cases.

This stands in contrast to genetic factors which increase 

LDL cholesterol, because monogenetic (familial hypercho-

lesterolemia) and polygenetic factors increasing LDL cho-

lesterol consistently lead to concordant changes in the CV 

risk (positive Mendelian randomisation) [43, 44].

In summary Current genetic data do not support the con-

cept of a general protective role for HDL-C with regard to 

coronary heart disease.

Disorders with reduced HDL concentration

Compared to genetically determined abnormalities in HDL 

metabolism, low HDL-C much more frequently occur in 

patients with metabolic syndrome or diabetes mellitus. Low 

HDL-C levels are also associated with systemic inflamma-

tion, e.g. with cigarette smoking, chronic inflammatory dis-

eases or chronic kidney disease (Fig. 3) [45, 46]. In cases of 

extremely low HDL-C, rare diagnosis may be considered, 

e.g. neoplasia or an increased risk for sepsis [47, 48].

In summary Low HDL-C is an indicator that the affected 

individual should be examined for metabolic and inflam-

matory pathology.

Vascular protective function of HDL

Evidence has long been available from animal experi-

ments for anti-atherosclerotic effects of HDL. Adminis-

tration of homologous HDL in addition to an atherogenic 

diet inhibits the formation of fatty streaks in rabbits [49]. 

Table 1  Monogenic forms of 

HDL deficiency
Mutatedgene Clinical signs with 2 mutated alleles (homozy-

gosity, comp. heterozygosity)

Clinical signs with 1 mutated 

allele (heterozygosity)

APOA1 ApoA-I deficiency (OMIM 107680)

Plane xanthoma

Corneal opacity

Early-onset atherosclerosis

Familial amyloidosis

in some variants (OMIM 105200)

(early CHD possible)

ABCA1 Tangier disease (OMIM 205400)

Orange tonsils

Peripheral neuropathy

Hepatosplenomegaly

Early-onset atherosclerosis

None

(Early CHD possible)

LCAT LCAT deficiency (OMIM 245900)

Corneal opacity

Nephropathy (proteinuria, GFR↓)

None

(Early CHD possible)

Fish-eye disease (OMIM126120)

Corneal opacity
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Infusion of Apo A1 Milano (R173C, complexed with 

phospholipids) inhibits atherogenesis in cholesterol-fed 

rabbits [50] and apo E-deficient mice [51].

Alongside its prominent role in RCT, anti-oxidative 

and anti-inflammatory effects are also attributed to HDL, 

as well as improvement of endothelial function [9, 52, 

53]. They inhibit the pathological attachment of mono-

cytes to the endothelium and support endothelial repair 

mechanisms. Many of the endothelial effects of HDL are 

mediated by the endothelial SR-B1 receptor and by the 

bioactive lipid sphingosine-1-phosphate that can act via 

the S1P3 receptor on endothelial cells [54]. Investigations 

of the composition of HDL [55, 56] have found enzymes, 

acute-phase proteins, components of the complement sys-

tem and protease inhibitors in addition to the character-

istic apolipoproteins associated with HDL. The lipidome 

of HDL is even more heterogeneous, and HDL can also 

function as the vehicle for microRNA in the blood [57]. 

Paraoxonase 1 (PON1) is an esterase associated with 

HDL, which inhibits the formation of lipid peroxides in 

LDL [58, 59] and HDL. Compared to healthy people, the 

activity of HDL-associated PON1 is reduced in patients 

with CHD [60]. An anti-oxidative effect is also attributed 

to Apo A1 itself [61]. HDL are anti-inflammatory in sev-

eral ways: they inhibit the expression of adhesion mol-

ecules (VCAM-I and ICAM-I) in the endothelium, inhibit 

the terminal complement complex, inhibit the synthesis 

of chemokines (MCP-1) and induce the expression of the 

anti-inflammatory cytokine transforming growth factor 

beta 2.

In addition, HDL can have antithrombotic and profi-

brinolytic effects [62]. HDL protect from cell damage, 

necrosis and apoptosis. These protective effects have also 

been demonstrated in pancreatic beta cells, implying that 

HDL might be able to improve insulin secretion and protect 

from the development of diabetes mellitus [63–68].

In summary The anti-inflammatory, cytoprotective and 

wound-healing effects of HDL make them a part of the 

innate host defense system [69]. From an evolutionary 

point of view, the potential anti-atherogenic effects, if any 

of them exist, would likely be secondary.

HDL dysfunction

Interestingly, several studies have provided evidence that 

the vascular effects of HDL are variable and hardly corre-

late with HDL-C concentrations in the plasma. In patients 

with diabetes mellitus, coronary disease, chronic renal 

insufficiency, cardiovascular risk factors and disorders, the 

function of HDL is impaired [9, 61, 70–74]. In patients who 

underwent coronary angiography, we have observed that 

HDL-C correlates inversely with cardiovascular mortality 

in the absence of CHD, that the relationship of HDL-C to 

long-term prognosis was weakened in stable coronary heart 

disease, whereas in clinically unstable patients the relation-

ship was completely abolished [74].

The protein composition of HDL changes significantly 

in the course of an acute-phase reaction. The “acute-phase 

HDL” are characterised, for example, by increased concen-

trations of serum amyloid A (SAA), secretory phospholi-

pase A2 (sPLA2-IIa) and ceruloplasmin, and a lower pro-

portion of Apo A1 [73]. Unlike HDL from healthy subjects, 

HDL from patients with CHD, kidney disease or diabetes 

mellitus have no protective vascular effects or may even 

cause paradoxical harmful effects [55, 56, 61, 70, 71, 75, 

76]. The characterisation of the HDL’s “milieu” may offer 

an opportunity for determining the function of HDL. For 

example, HDL-C corrected by the SAA concentration cor-

relates with risk better than HDL-C alone in several inde-

pendent cohorts [77].

Another way to determine the functionality of HDL in 

the laboratory, although one that requires more efforts, is 

measuring cellular cholesterol efflux. In this method, cul-

tivated cells are enriched with labelled cholesterol and 

incubated with Apo B-free serum from the patient, and 

the rate of transfer of labelled cholesterol into the patient 

serum is determined. The rate of cholesterol efflux has been 

associated with the prevalence of CHD, independent of the 

HDL-C concentration [24], with cardiovascular events and 

deaths (Fig.  4) [25, 26]. In another study, cellular efflux 

was inversely correlated with prevalent atherosclerosis, but 

not with the long-term risk of cardiovascular events [78].

low 

HDL 

Genetics 

Hyper- 

triglyceridemia  

Diabetes & 

Obesity 

Inflammatory & 

hemato-oncologic 

diseases 

Liver & intestinal 

diseases, storage 

diseases 

Medication & 

Hormones  

Fig. 3  Aetiologies of low HDL cholesterol. With permission of 

Springer [7]
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In summary The biological function of HDL is in part 

dependent on their protein composition. The properties of 

HDL are poorly reflected by their cholesterol content. In 

disease states, HDL may turn dysfunctional and can even 

have negative vascular effects.

Should HDL‑C be increased by therapeutic 

measures?

The positive vascular effects of HDL have been an attrac-

tive target for the treatment of chronic or acute vascular dis-

ease. Approaches to increase HDL include lifestyle modi-

fications, conventional pharmacological therapy and novel 

therapeutic modalities which are still under scrutiny.

Lifestyle

HDL-C can be increased through a number of lifestyle 

changes [79] (Table  2). The most important among these 

are increased physical activity and dietary changes. Life-

style changes that increase HDL-C are also associated with 

reduced risk of cardiovascular disease [80]. The actual con-

tributions made by increases in HDL-C are however not 

clear, because these interventions do not increase HDL-C 

in isolation, but influence metabolism in a variety of ways. 

Physical activity not only leads to an increase in HDL-C, 

but also to changes in HDL functionality [69]. At the same 

time, the metabolism of triglyceride-rich lipoproteins (fast-

ing and postprandial) is improved [81, 82]. Yet, a number 

of other pathologies are also subject to positive changes 

(e.g. insulin sensitivity). We therefore conclude that the 

Fig. 4  Cellular cholesterol 

efflux and cardiovascular 

mortality. Kaplan–Meier curves 

and hazard ratios by quartiles 

of cholesterol efflux capacity. 

Model 1: adjusted for age and 

gender; Model 2: also adjusted 

for use of lipid-lowering drugs, 

CHD (none, stable, unstable 

CHD, NSTEMI, STEMI), 

body mass index, hyperten-

sion, smoking, LDL-C/HDL-C 

ratio, triglycerides, metabolic 

syndrome/type 2 diabetes mel-

litus [26]. With permission of 

Springer [7]

Table 2  Influence of lifestyle 

modifications on HDL-C

ABCA1 ATP-binding cassette transporter A1, ABCG1 ATP-binding cassette transporter G1, CETP choles-

teryl ester transfer protein, LCAT lecithin–cholesterol acyltransferase, LPL lipoprotein lipase

Intervention HDL-C increa-

sein %

Effect

Physical activity 5–10 Increased LPL, pre-β-HDL, reverse cholesterol transport, 

protective lipoproteins

Smoking cessation 5–10 Increased LCAT, reverse cholesterol transport, inhibits CETP

Weight loss 5–20 Increased LCAT, LPL and reverse cholesterol transport

Alcohol consumption 5–15 Increased ABCA1, apo-A-I and paraoxonase, reduced CETP

Mediterranean diet 

(unsaturated fatty acids)

0–5 Increase in atheroprotective lipoproteins
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increase in HDL-C observed with lifestyle changes repre-

sents a marker of reduced cardiovascular risk.

Statins

Statins competitively inhibit HMG-CoA reductase, the 

rate-limiting enzyme for cholesterol biosynthesis, and they 

reduce LDL-C. Statins also lower triglycerides and slightly 

raise HDL-C. It is unlikely that this increase in HDL-C 

makes a substantial contribution to the reduction of events 

mediated by statins [83–85].

Fibrates

Fibrates are agonists of the nuclear receptor PPAR-α (per-

oxisome proliferator-activated receptor alpha). Fibrates 

stimulated the expression of Apo A1 and via LXR the 

expression of ABCA1. Fibrates also up-regulate SR B1, 

which mitigates their HDL-raising effect, but is synergistic 

in activating RCT. Fibrates also activate lipolytic enzymes, 

lipoprotein lipase (LPL) in particular, which leads to 

increased catabolism of triglyceride-rich lipoproteins and 

an indirect increase in HDL-C.

A meta-analysis of 18 prospective, randomised outcome 

studies concluded that fibrates reduce the rate of severe car-

diovascular events by 10% and the progression of albumi-

nuria by 14% [86]. It is unclear whether the clinical effects 

of fibrates are due primarily to the increase in HDL-C, the 

decrease in triglycerides or the slight reduction in LDL. For 

patients with diabetes mellitus and statin therapy, fibrates 

have not been shown to provide any further reduction of 

risk [87–89]. Retrospective analyses of fibrate trials raise 

the possibility that reductions in risk can be achieved in 

subgroups with atherogenic dyslipidemia (high triglyc-

erides and low HDL-C) [88, 90, 91]. In Phase 3 studies 

with new fibrates, this hypothesis is being tested prospec-

tively. If these studies were successful, the use of fibrates in 

patients with high triglycerides and/or low HDL-C would 

be warranted.

Niacin

Niacin and derivatives reduce triglycerides, VLDL choles-

terol, LDL-C and lipoprotein (a), and they increase HDL-

C. Among other factors, the effects are based on the inhi-

bition of hepatic diacylglycerol acyltransferase 2, a key 

enzyme in the synthesis of triglycerides. Meta-analyses of 

studies with niacin (mostly without simultaneous admin-

istration of statins) indicate a decrease in cardiovascular 

events [92–94]. A subsequent meta-analysis of 11 outcome 

studies, which were mainly conducted in secondary preven-

tion and included the AIM-HIGH-study [92], indicated that 

niacin reduced cardiovascular events and adverse coronary 

endpoints by 34 and 25%, respectively [94].

A combination of niacin with laropiprant was tested 

on 25,673 patients in the HPS2-THRIVE study [95]. No 

reduction in vascular events was observed, but the rates of 

severe side effects such as bleeding, myopathy, infections 

and diabetes mellitus increased. Since then, niacin prepara-

tions are no longer available in Europe. Based on the AIM-

HIGH, ACCORD and HPS2-THRIVE studies, the Federal 

Drug Administration has come to the conclusion that there 

is no sufficient evidence for the reduction of cardiovascular 

events through the use of fibrates and niacin [96, 97], espe-

cially in conjunction with statin therapy.

CETP inhibition

Cholesteryl ester transfer protein (CETP) mediates the 

exchange of cholesterol and triglycerides between vari-

ous lipoproteins and thus plays an important role in RCT 

(Fig. 2) [98, 99]. The concept of CETP inhibition is based 

on the following observations: rodents are naturally CETP 

deficient, display high HDL-C and are resistant to diet-

induced atherosclerosis. Patients with genetically reduced 

or absent CETP activity have high HDL-C. Inhibition of 

CETP has a positive influence on the lipoprotein profile in 

humans and could therefore show atheroprotective effects.

However, animal experiments have yielded contradic-

tory results. In rabbits, CETP inhibition led to a reduc-

tion in atherosclerosis. In mice, both atheroprotective and 

atherogenic effects have been reported. Studies in humans 

have also been contradictory. On the one hand, patients 

with genetically reduced CETP serum concentrations 

appear to have a slightly reduced risk of coronary heart dis-

ease [99–102]. On the other hand, many studies in which 

CETP was tested in the plasma showed an inverse corre-

lation between CETP and cardiovascular risk [37, 103]. 

Drug-based inhibition of CETP in humans leads to a signif-

icant increase in HDL-C and a drop in LDL-C [104, 105]. 

However, three out of four prospective studies with CETP 

inhibitors had to be terminated due to increased mortality 

in the treatment group or due to futility (Table 3). (https://

investor.lilly.com/releasedetail.cfm?ReleaseID=936130) 

[106, 107]. The results of the large HPS-3/TIMI55 study, 

including over 30,000 patients, are pending.

One reason for the disappointing performance of CETP 

inhibitors thus far could be the fact that the transfer of cho-

lesteryl esters from HDL to LDL, and thus a pivotal step 

in RCT, is being inhibited. CETP inhibition probably also 

extends the lifespan of dysfunctional HDL. This may not 

only eliminate the postulated atheroprotective effect but 

even be harmful if HDL gained adverse properties [9, 

74, 108]. Future strategies may include the identification 

of patients who benefit from CETP inhibition. Another 

https://investor.lilly.com/releasedetail.cfm?ReleaseID=936130
https://investor.lilly.com/releasedetail.cfm?ReleaseID=936130
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alternative approach would be the development of new 

inhibitors that reduce CETP production or modification of 

CETP function [109].

Other HDL‑boosting drugs in development

Recent approaches primarily aim to optimise the func-

tion of HDL in RCT [110, 111]. Although HDL likely 

influences atherogenesis in a variety of ways, the focus 

is on the HDL-dependent aspects of RCT (Table 4). For 

instance, some such approaches use artificial discoi-

dal HDL which, in addition to phospholipids, contain 

Apo A1 (CSL112) isolated from plasma, recombinant 

Apo A1 (CER001) or variant Apo A1 (Apo A1 Milano). 

Others generate pre-beta HDL via delipidation of the 

patient’s own plasma [111]. Both in  vitro and in  vivo, 

these approaches can achieve a transient acceleration of 

RCT, sometimes without causing any significant change 

in HDL-C. One problem is at present, however, that there 

is still no simple biomarker available for HDL function-

ality. The further development of Apo A1 Milano has 

been stopped in 2016 due to lack of efficacy [112]. How-

ever, the search for other possible ways to intensify RCT 

remains the subject of ongoing research.

In summary An increase in HDL-C through lifestyle 

changes has positive effects and is recommended. This is 

especially true for smoking cessation and physical activ-

ity. Outcome studies with fibrates and with niacin have 

been conducted to evaluate the potential of HDL-C as a 

therapeutic target. However, since these drugs also cause 

drops in triglycerides and (to a moderate extent) LDL-C, 

neither fibrates nor niacin can conclusively value HDL-C 

as a drug target. There is no evidence for a reduction in 

clinical events through niacin or fibrates in combination 

with statins. In the studies available to date, increasing 

HDL-C with CETP inhibitors has not led to a reduction 

in clinical events. We conclude that HDL-C is not a target 

for drug-based therapy at the present time.

Table 3  Prospective clinical 

intervention studies with CETP 

inhibitors

CETP cholesteryl ester transfer protein

CETP inhibitor Study Patients Started Result

Torcetrapib ILLUMINATE ca. 15,000 2004 Cut short in 2006 due to increased 

mortality in the treatment group

Dalcetrapib Dal-OUTCOMES ca. 15,000 2008 Cut short in 2012 due to lack of effect

Anacetrapib REVEAL ca. 30,000 2011 Results expected in early 2017

Evacetrapib ACCELERATE ca. 11,000 2012 Cut short in 2015 due to lack of effect

Table 4  HDL-modifying substances in clinical trials

APOAI apolipoprotein 1, CETP cholesteryl ester transfer protein, LCAT lecithin–cholesterol acyltransferase. Modified as per B.A. Kingwell et al. 

[110]

Drug (Manufacturer) Properties Development status

RVX-208 (Resverlogix) Substance stimulates APOA1 transcription Phase IIb IVUS study neutral [113]

CER-001 (Cerenis) HDL mimetic produced from recombinant APOA1 

complexed with phospholipids

IVUS-Study neutral, additional 

studies ongoing [114]

CSL111 (CSL Behring) HDL mimetic produced from human APOA1 recon-

stituted with phospholipids

Further development cancelled

CSL112 (CSL Behring) HDL mimetic produced from human APOA1 recon-

stituted with phospholipids

Replaces CSL 111

Recombinant APOA1 Milano; ETC-216, now 

MDCO-216

(The Medicines Company)

Natural mutation variant of APOA1, associated with 

a low rate of cardiovascular disease

Development stopped late 2016 111

APP018 (Bruin Pharma, licenced to Novartis in 

2005)

Oral APOA1 mimetic (peptide), also known as 

D-4F

Current development status unclear

Delipidated HDL Low-lipid HDL, produced by selective delipidation 

of HDL; can be used by autologous reinfusion 

(aphaeresis)

Current development status unclear

ACP-501 (AlphaCore Pharma, recently taken over 

by MedImmune)

Recombinant, human LCAT Tested in Phase I study
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Practical consequences

HDL play a central role in RCT. Large epidemiological 

studies have found an inverse relationship between the con-

centration of HDL-C in plasma and CHD. Mendelian ran-

domisation studies show no protective effects of a geneti-

cally high HDL-C concentration. Cholesterol transported 

with HDL neither has any protective function nor reflects 

the functionality of HDL. HDL particles as such, as well 

as specific proteins and lipids in HDL, contribute to the 

classical functions of HDL in RCT, or mediate their anti-

oxidative and anti-inflammatory properties. HDL composi-

tion is modified in complex ways in acute and chronic dis-

eases. In this sense, it is misleading to interpret HDL-C as 

being equivalent to HDL or “good cholesterol”. The deter-

mination of pathophysiologically relevant lipids or proteins 

associated with HDL may come to replace HDL-C in the 

future, but at present such assays are not yet available for 

routine clinical use [9, 115]. The following clinical conse-

quences result from these new findings:

•	 Low HDL-C is often a clinical indicator of disturbed 

metabolism of triglyceride-rich lipoproteins (e.g. in dia-

betes mellitus) or a chronic inflammation.

•	 The prognosis with regard to cardiovascular disease 

cannot be determined via HDL-C; the ratio of HDL-C 

to LDL-C may be misleading if HDL-C is high and if 

comorbidities like CHD, diabetes mellitus or chronic 

kidney disease exist.

•	 Increasing HDL-C through lifestyle factors such as 

physical activity and smoking cessation is associated 

with vascular protective effects.

•	 At present, HDL-C is not a target for drug-based treat-

ment. The primary goal of lipid therapy is currently the 

reduction of LDL cholesterol.

Clearly, the “HDL-Cholesterol story” is not over but the 

recent findings set the stage for future research on this com-

plex lipopoprotein.
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