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During infections or acute conditions high-density lipoproteins cholesterol (HDL-C) levels decrease very rapidly and HDL particles undergo pro-
found changes in their compositionand function. These changes are associatedwith poor prognosis following endotoxemia or sepsis and data from
genetically modified animal models support a protective role for HDL. The same is true for some parasitic infections, where the key player appears
to be a specific and minor component of HDL, namely apoL-1. The ability of HDL to influence cholesterol availability in lipid rafts in immune cells
results in themodulationof toll-like receptors,MHC-II complex, aswell asB- andT-cell receptors,while specificmolecules shuttledbyHDLsuch as
sphingosine-1-phosphate (S1P) contribute to immune cells trafficking. Animal models with defects associated with HDL metabolism and/or influ-
encing cell cholesterol efflux present features related to immune disorders. All these functions point to HDL as a platform integrating innate and
adaptive immunity. The aim of this review is to provide an overview of the connection between HDL and immunity in atherosclerosis and beyond.
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This article is part of the Spotlight Issue on HDL biology: new insights in metabolism, function, and translation.

1. Introduction
Premature atherosclerosis represents one of the major causes of morbid-
ity and mortality in patients with chronic autoimmune-mediated inflamma-
tory diseases such as systemic lupus erythematosus (SLE), rheumatoid
arthritis (RA), and other rheumatic autoimmune disorders,1,2 which
oftenpresentwith an increased frequencyof traditional risk factors forcar-
diovascular disease (CVD) including hypertension, obesity, diabetes melli-
tus, andalteredplasma lipidprofile.3–5 Inadditiontodecreased lipoprotein
levels, low-density lipoprotein cholesterol (LDL-C) and/or high-density
lipoprotein cholesterol (HDL-C) plasma levels are frequently observed
in pathological conditions associated with immune activation.6 In the last
30 years, clinical and experimental evidence accumulated, indicating
that HDL possesses a general host defence activity which relies on the
ability to scavenge and limit endotoxin toxicity as well as to influence
immune cell response by affecting cholesterol content in plasma mem-
brane lipid rafts. These activities are coupled with the well-known ability
of HDL to limit inflammatory responses during atherogenesis.7

In this review, we will discuss the link between HDL and the immune
system focusing on the effects of this class of lipoproteins on humoral
and cellular immunity.

2. HDL levels and function impact
immune responses
Modifications of HDL metabolism and/or plasma levels in animal models
and in humans have been associated with altered immune responses,

including a worsened acute response following infections, but also
bone marrow leucocytosis as well as autoimmune features.

2.1 HDL and infections
HDL are endowed with an innate host defence activity after bacterial
infection, which includes limiting the pro-inflammatory activities
of lipid components of the bacterial outer membrane such as lipo-
polysaccharide (LPS), the toxic component of endotoxin in the mem-
brane of Gram-negative bacteria, or lipoteichoic acid (LTA), a
component of the cell membrane, and wall of most Gram-positive
bacteria8 (Figure 1).

During sepsis, serum LPS neutralizing activity was lower in apolipo-
protein A-I (apoA-I) knockout mice, a model of very low HDL-C
levels, compared with control mice, resulting in an exaggerated in-
flammatory cytokine production.9 On the contrary, apoA-I transgenic
mice (with high HDL levels) had an increased survival rate compared
with controls during sepsis,9 suggesting a role for HDL in protecting
against septic death. The ability of HDL to promote the interaction of
LPS with LPS-binding protein (LBP) favours LPS clearance,10,11 a
process involving the HDL receptor scavenger receptor class B type I
(SR-BI) which binds the HDL–LPS complex and mediates its clear-
ance.12 Additionally, HDL/SR-BI interaction has been proposed as a crit-
ical step in providing cholesterol to the adrenal glands for glucocorticoid
synthesis; this process is most relevant under stress conditions such as
sepsis. In SR-BI2/2 mice a reduced ability to induce glucocorticoid-
mediated thymocyte apoptosis13 was also observed.
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In humans, low HDL-C levels inversely correlate with the severity
of sepsis and an amplified systemic inflammatory response,14 a rela-
tionship observed also in healthy subjects.15 On the other hand, sub-
jects with severe sepsis exhibit a rapid decline in HDL-C levels and
function,16 suggesting a key role for HDL in the protection against
sepsis.

HDL protect also from infections by intracellular bacteria such as
mycobacteria17 (Figure 1). Both mycobacteria and host-derived oxidized
phospholipids inhibit innate immune responses; HDL from healthy sub-
jects, which act as scavenger of oxidized phospholipids, can revert this
effect, while HDL from patients with leprosy, which are dysfunctional,
do not,17 suggesting a link between host lipid metabolism and immune
function during infections.

Increasing plasma HDL-C levels by overexpressing human apoA-I
resulted in lower cytokine levels and improved survival rates in
transgenic mice challenged with LPS compared with mice with low
HDL-C levels.18 Similarly, administration of reconstituted HDL reduced
LPS-induced inflammation in animals and humans,19–21 suggesting that
raising HDL might be a useful therapeutic approach for sepsis.

Changes in other specific apolipoproteins present in HDL such as
apoL-1 are associated with susceptibility to parasite infections
(Figure 1); apoL-1 is associated with a serum complex named trypano-
some lytic factor-1 (TLF-1) that also contains apoA-I and haptoglobin-
related protein.22 TLF-1 has lytic activity towards African Trypanosome
brucei brucei and confers resistance to this parasite in humans and
most other primates.23 After parasite infection, the apoL-1-containing
complex is taken up by T. B. brucei; apoL-1 is then transferred to the try-
panosomal lysosome, where it induces pore formation and lysosomal
swelling, resulting in the lysis of the parasite.24

2.2 HDL deficiency and leucocytosis
HDL and its main apolipoprotein apoA-I promote cholesterol efflux
from cells through different pathways, including the active cholesterol
efflux via the ATP-binding cassette transporters ABCG1 and ABCA1,
respectively.25 Mice with combined deficiency of ABCA1 and ABCG1
exhibit very lowHDL-C levels, a massive myocardial and spleen accumu-
lation of inflammatory macrophage foam cells and, to a lesser extent,
neutrophils in various tissues, including myocardium, lung, liver, spleen
or thymus26– 29 similar to a classical myeloproliferative disorder.30,31

Of note, part of these effects were rescued when the impact of
ABCA1 and ABCG1 deficiency was studied in apoA-I transgenic mice,
characterized by increased apoA-I and HDL-C levels. These findings
suggest a role for ABCA1, ABCG1, and HDL in the control of haemato-
poietic stem and multipotential progenitor cell proliferation.31

2.3 HDL deficiency and autoimmune
phenotype
A direct link between low HDL-C levels and autoimmune disorders has
been clearly established in animal models. LDLR2/2apoA-I2/2 mice
showed enlarged peripheral lymph nodes (LNs) and spleens, compared
with LDLR2/2 mice, with a high expansion of all classes of LN immune
cells [(T and B cells, macrophages, dendritic cells (DCs)].32,33 All these
cells, but not macrophages, accumulated cholesteryl esters and devel-
opedanautoimmunephenotype.32,33 Thesemicepresentalso increased
HDL particle diameter compared with LDLR2/2 mice.32,33 Subcutane-
ous injections of lipid-free apoA-I prevented LN enlargement and chol-
esterol accumulation, as well as activation and proliferation of
lymphocytes.32,33

Figure 1 HDL and infections. HDL play a key role in dampening bacteria and parasite infection via several mechanisms.
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In mice with deficiency of SR-BI an increased proliferation of T and B
lymphocytes and an imbalanced cytokine production in lymphocytes
and macrophages were observed.34 The accumulation of lymphocytes
in SR-BI-deficient mice induced the development of a systemic auto-
immune disorder, characterized by the presence of circulating
auto-antibodies, deposition of immune complexes in glomeruli and infil-
tration of leucocytes in kidneys,34 suggesting a role of SR-BI in auto-
immunity. Furthermore, SR-BI-null mice exhibit abnormal, larger HDL
particles with increased cholesterol content and alteration of associated
proteins, thus resulting in a reduced inhibitory effect on lymphocyte
proliferation.35,36

All together, these observations indicate a key role of HDL in infec-
tions and immune disorders; understanding how HDL-C levels and/or
HDL functions may be altered and the molecular mechanisms by
which HDL exert their effects will help to further clarify their role in
these conditions.

3. Acute phase conditions and
immune disorders promote HDL-C
reduction and modify HDL
composition and size

3.1 Acute phase conditions
During acute conditions, including infections and sepsis, apoA-I plasma
half-life is reduced, therefore decreased HDL-C and apoA-I are
observed.16,37–41 Low HDL-C plasma levels represent a poor prognostic
factor associated with increased mortality and adverseclinical outcomes
in the case of endotoxemia and sepsis.42

Also HDL composition is affected under these conditions.43,44 The
profile of HDL remodelling enzymes changes with increased endothelial
lipase45 and secretory phospholipase A2 (sPLA2),46 and decreased of
cholesteryl ester transfer protein (CETP) and lecithin–cholesterol
acyltransferase (LCAT).14,46

ApoA-I is displaced fromHDLbyacute phaseproteins, including serum
amyloid A (SAA) and sPLA2,47,48 and this promotes apoA-I catabolism in
the liver and kidney.49 The decreased content of paraoxonase 1 (PON1)
and the increased levels of platelet-activating factor acetylhydrolase
(PAF-AH)50–52 dampen the antioxidant capacity of HDL.

Altogether, these changes result not only in the reduction of plasma
HDL-C and apoA-I levels16,37,38 but also in the loss of HDL functional
properties.46,53,54

Another key protein present in HDL which related to acute phase
conditions is apolipoprotein M (apoM). Patients with severe sepsis
and systemic inflammatory response syndrome (SIRS) exhibit sig-
nificantly lower apoM plasma levels, which negatively correlated
with acute phase markers.55 ApoM levels are reduced also during
infection and inflammation.56 ApoM deficiency results in an altered
distribution of HDL subclasses and function.57 Of note, apoM can
bind sphingosine-1-phosphate (S1P), an important bioactive lipid
mediator present in HDL58 and responsible for several HDL-mediated
effects.59– 61 It is now becoming evident that changes in the axis apoM-
S1P during acute phase response result in a further reduction of HDL
protective properties.

3.2 Autoimmune disorders
Although it is well known that HDL-C levels are inversely related to
CVD risk, the research is shifting towards the assessment of functional

status of HDL rather than evaluating their plasma levels.62 Decreased
levels of HDL-C and PON1 activity have been described in SLE and
RA patients, suggesting that chronic (auto) immune-mediated inflamma-
tion could induce specific alterations in lipoprotein metabolism.63– 65

Particularly, in SLE patients, this condition is known as ‘lupus pattern’
of dyslipidaemia and is characterized by increased VLDL and TG and
decreased HDL-C levels.66– 69 Abnormal HDL, which are enriched in
TG and depleted in cholesteryl esters (CE), result in attenuated anti-
oxidative activity,70 reduced anti-inflammatory effects,71 and lower cap-
acity to promote cholesterol efflux.69,72 In a study of premenopausal
women with SLE, changes in HDL subfractions have been reported in-
cluding lower proportion of large HDL2b and significantly higher pro-
portions of small HDL3b and HDL3c,73 which have also been
observed in dyslipidaemia.74 Other studies failed to demonstrate
changes in HDL-C levels, but observed an impairment of HDL functions
associated with a pro-inflammatory phenotype in SLE and, to a lesser
extent, in RA patients.64 The possibility that these changes in compos-
ition and function towards a pro-inflammatory lipoprotein profile con-
tribute to the accelerated atherosclerosis in SLE and RA patients is a
hypothesis that deserves further attention.64,65

Also patients with type 2 diabetes mellitus, a clinical condition recently
redefined as an autoimmune disease rather than just a metabolic
disorder,75,76 exhibit an impaired HDL metabolism and the presence
of dysfunctional HDL.77– 79 Whether the immune-related activities of
HDL have a role also in this context beyond the known metabolic func-
tions is an intriguing hypothesis, which is so far supported by circumstan-
tial observations.

Dyslipidaemia has also been observed in inflammatory bowel disease
(IBD), a disorder characterized by mucosal immune system dysregula-
tion, which leads to an inappropriate and sustained activation of intes-
tinal mucosal inflammation; IBD includes both Crohn’s disease and
ulcerative colitis.80,81 An enhanced atherosclerosis has been reported
in patients with Crohn’s disease and was associated with changes in
HDL-C levels and HDL composition and function.80

Despite the extensive observation of altered HDL-C levels and lipo-
protein composition in immune disorders,82 whether HDL represent a
bystander of the altered immune-inflammatory status or a key player is
unknown. Defects in the handling of cellular cholesterol critically affect
the function of immune cells, including lymphocytes.83 Since auto-
immune diseases are sustained by an impaired adaptive immune re-
sponse, which is mainly related to a hyper-activation of T and B cells
and impaired lipid metabolism, modulation of lipid content in membrane
lipid rafts by HDL might impact immune cell activation,84,85 as described
in Section 5.

4. HDL proteins and lipids elicit
immunomodulatory activities
HDL act as a reservoir for a series of proteins and lipids endowed with
immunomodulatory activities, including lipid transfer proteins involved
in the scavenging of LPS (LBP, phospholipid transfer protein [PLTP],
CETP), apoproteins (apoA-I, apoE, apoL-1, apoM), and immunoactive
lipids (S1P).

LBP is a plasma component (mainly associated with HDL) that binds
LPS and, in the absence of lipoproteins, favours its transfer to CD14
receptors, resulting in immune cell activation. In the presence of lipopro-
teins, LBP facilitates the binding of LPS toHDL, resulting in its inactivation
and transfer to the liver.86
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PLTP is a member of LBP family87 able to bind and neutralize LPS,
resulting in the inhibition of LPS-induced cellular responses.88,89 After
LPS injection in mice, PLTP mass and activity are significantly
reduced.90 PLTP deficiency in mice is associated with the partitioning
of LPS in non-lipoprotein fraction, increased LPS residence time, and
increased inflammatory response.91 PLTP activity is increased in post-
surgery patients with systemic inflammation or severe sepsis compared
with patients without signs of infection.92 Finally, PLTP is a key factor in
the maintenance of S1P content in HDL, as PLTP deficiency significantly
reduced S1P content in HDL.93 Like PLTP, also CETP shares structural
similarities with LBP.87 During systemic inflammation, a reduction in
CETP activity has been reported;94,95 on the other hand, CETP
transgenic mice showed a reduced mortality following sepsis.96 CETP
activity decreased in post-surgery patients with systemic inflammatory
response or severe sepsis compared with patients with no signs of
local or systemic infection;92 furthermore, in patients with severe
sepsis, mean CETP levels decreased between hospital admission and
day 3 of sepsis, with the higher variations in non-survivors than in survi-
vors,97 supporting the concept that CETP may play a protective role
against sepsis.

ApoA-I is the main structural and functional apoprotein of HDL and
plays a key role in the induction of cholesterol efflux from cells. The
interaction of HDL or apoA-I with cells results in cholesterol depletion
and disruption of intracellular signalling in specific membrane microdo-
mains enriched in cholesterol and sphingolipids, named lipid rafts.98,99

Their main role is the compartmentalization of molecules to form func-
tional platforms for biological processes.100,101 Several receptors with
key immunological functions are localized within the lipid rafts, including
toll-like receptors (TLRs)102 and T- and B-cell receptors (TCR and
BCR).103,104 The lipid composition of rafts determines their function;
modification of lipid raft composition can modulate raft-dependent sig-
nalling due to protein delocalization and alter immune cell biological
functions. ApoA-I and HDL significantly decreased lipid raft abundance
in monocyte plasma membranes due to a rapid cholesterol efflux;98 the
axis apoA-I/ABCA1105 seems to be the major pathway involved in this
effect, while the axis HDL/SR-BI or HDL/ABCG1106 play a contributing
role. For instance, apoA-I prevents CD40-mediated pro-inflammatory
signalling by modulating the cholesterol content of lipid rafts via ABCA1-
dependent cholesterol efflux.107 Also apoE, a major apolipoprotein in
HDL, regulates haematopoietic stem cell proliferation, monocytosis,
and monocyte accumulation during atherogenesis in animal models.108

ApoE was found to be present on the surface of haematopoietic stem
and multipotential progenitor cells (HSPCs), in a proteoglycan-bound
pool, where it acted in ABCA1- and ABCG1-dependent fashion to de-
crease cell proliferation.108 Despite robust evidence in mice, no data
are available on the impact of apoE on immunity in humans.

ApoL-1 is a protein associated with HDL particles which possess a
pore-forming microbicidal activity, resulting in the lysis anddeathof tryp-
anosome,24 and thus represents the factor responsible for the trypano-
lytic activity of human serum. As described in Section 2, the presence of
this apoprotein in HDL confers an anti-parasitic activity to HDL.

ApoM is a negative acute phase protein associated mainly with HDL
and represents the carrier of S1P in HDL.58 ApoM levels drastically de-
crease during the acute phase response55 thus resulting in decreased
concentrations of S1P, a bioactive lipid that impacts angiogenesis,
lymphocyte trafficking, endothelial barrier function, and inflammation.58

S1P is generated from plasma membrane sphingolipids and its expres-
sion is increased under inflammatory conditions.109 Several observa-
tions have suggested that S1P mediates many of the athero-protective

functions of HDL.110 Extracellular S1P signals via 5 G protein-coupled
receptors (S1PRs) that are differentially expressed in various subset of
immune cells and their activation is involved in the control of immune
cell trafficking.109 The effects of S1P/S1P receptors activation on
immune cells will be discussed in more detail in the subsequent section.

5. HDL and cellular immunity
Cell-mediated immunity involves the activation of several cell types;
available data indicate that HDL can influence the activity of mono-
cyte/macrophages, DCs, and lymphocytes mainly by modulating choles-
terol content in lipid rafts and receptor activity, as well as by influencing
immune cell activation (Figure 2).

5.1 Monocyte/macrophages
Monocytes play a major role in innate immunity as they can provide non-
specific protection against foreign pathogens mainly through phagocyt-
osis and production of cytokines. Two main subsets of monocytes exist,
based on the relative expression of surface CD14 and CD16;111 in add-
ition, also chemokine receptors are differentially expressed by mono-
cyte subsets.111 A different prevalence of classical CD14++/CD162

but not of intermediate CD14++/CD16+ monocytes was reported in
patients with hypoalphalipoproteinemia.112

In vitro, incubation of monocytes with HDL reduces both CD11b
expression and monocyte adhesion to endothelial cells;98 a similar
effect was observed with apoA-I,98 suggesting that HDL and apoA-I
may prevent monocyte activation and recruitment. Similarly, in neuthro-
phils, HDL and apoA-I significantly reduced CD11b expression, migra-
tion, and adhesion,113 thus modulating neutrophil recruitment to
inflamed tissues and further supporting the anti-inflammatory activity
of HDL114 (Figure 3).

Based on the different cytokines produced in the microenvironment,
monocytes can differentiate into two different macrophage types,
known as M1 macrophages, which represent the classically activated
macrophages promoting inflammation, and M2 macrophages which
are involved in the resolution of inflammation.115 M1 macrophages,
which are induced by Th1 cytokines, express most TLRs, and secrete
several pro-inflammatory cytokines including IL-12, IL-6, IL-1b, TNFa,
M2 macrophages are induced by Th2 cytokines, secrete IL-10 and
TGFb.115 Several humoral factors may modify the balance between
M1 and M2 phenotype; among them, in mice, HDL increased the expres-
sion of markers of M2 macrophages resulting in significant changes in the
content and characteristics of monocyte-derived macrophages and in
atherosclerotic plaque regression.116 However, this result has not
been confirmed in humans: HDL did not influence M2 alternative differ-
entiation of primary human macrophages; furthermore, monocytes iso-
lated from subjects with genetically determined low levels of HDL
differentiated into M2 phenotype similarly to healthy subjects.117

These discrepancies may result from inter-species differences, as HDL
was shown to induce M2 markers in polarized murine macrophages
which are not expressed by human macrophages. M2 polarization is
also promoted by apoA-I and the apoA-I mimetic peptide 4F; this
effect was mainly related to the up-regulation of the production of the
anti-inflammatory cytokine IL-10118 (Figure 3).

Differentiated macrophages express a number of recognition recep-
tors involved in innate immunity, which allow macrophages to maintain
surveillance mechanisms. Among them, TLRs play a key role in the
macrophage-mediated mechanisms of immunity.119 TLRs recognize
several conserved pathogen-associated molecular patterns, including
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lipids, carbohydrates, peptides, and nucleic acids, and their association as
heterodimers or the co-operation with other receptors allows the rec-
ognition of additional molecules.119 After interaction with the ligand,

either extracellular pathogens or endogenous ligand from damaged
tissues, TLRs induce a signal transduction cascade that results in the
modulation of a number of genes leading to the inflammatory

Figure 3 HDL- and apoA-I-mediated effects on immune cells. HDL modulate immune cells functions at different levels.

Figure2 HDL modulate lipid rafts structure in immune cells. HDL and its main apolipoprotein (apoA-I) reducecholesterol content in lipid rafts of several
cell types, this results in the modulation of the function of key receptors involved in the innate and adaptive immune response.
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response.120 Thus, when macrophages are challenged with the TLR4
ligand LPS, several hundred genes are upregulated; preincubation of
cells with HDL prevented the activation of type I IFN response genes
induced by LPS-mediated TLR4 activation, while no effect of HDL was
observed in cells challenged with ligands of other TLRs.121 Recently,
the role of HDL in inhibiting TLR-induced pro-inflammatory cytokine
expression at transcriptional level in macrophages has been eluci-
dated.122 The transcriptional regulator ATF3, which is induced following
the stimulation of several TLRs, acts as negative regulatory transcription
factor that limits TLR-induced inflammatory response, thus preventing
the negative effects of an exaggerated innate immune response.123 Incu-
bation of macrophages with HDL increased the expression of ATF3,
resulting in the reduction of TLR-induced pro-inflammatory cyto-
kines.123 In ATF3-deficient macrophages, this HDL-mediated effect
was not observed.122 These findings suggest that HDL may reduce the
inflammatory response mediated by TLRs and that ATF3 might play a
relevant role in this HDL-protective effect124 (Figure 3).

TLR signalling is strictly dependent oncholesterol trafficking in rafts. In
fact, macrophages lacking ABCA1 exhibit enlarged cholesterol-rich lipid
rafts, with a higher content of TLR4 and an increased response to LPS
stimulation;125 –127 similarly, an enhanced responsiveness to ligand of
TLR2, TLR7, and TLR9, but not TLR3127 is present in ABCA1 deficiency.
Furthermore, ABCG1 or ABCG1/ABCA1 deficiency results in an
enhanced response of macrophages to LPS, due to an increased cell
surface expression of TLR4, despite no changes in the total amount of
cellular TLR4;28 also the response to ligands of other TLRs was
increased.28 Thesefindings suggest thatABCA1and ABCG1playananti-
inflammatory role by suppressing the activation of TLRs and down-
modulating the innate immune response. HDL andapoA-I, by promoting
cholesterol efflux through ABCG1 and ABCA1, respectively, may con-
tribute to control the innate immune response. In fact, apoA-I reduces
the migration of TLR4 into lipid rafts, by depleting cholesterol from
lipid rafts and thus preventing the TLR4-mediated NF-kB activation in
endothelial cells.128 Similarly, the apoA-I mimetic peptide 4F depletes
cholesterol from lipid rafts and down-regulates cell surface expression
of several TLRs in LPS-treated monocyte-derived macrophages, thus
resulting in the down-regulation of genes modulated by the TLR signal-
ling pathway118,129 (Figure 3).

Abca12/2Abcg12/2 macrophages also present a reduced ability to
protect against oxidized phospholipid-induced apoptosis and this effect
is dependent on an excessive oxidative burst secondary to enhanced
assembly of NADPH oxidase (NOX)2 complexes, which results in
sustained Jnk activation and initiation of the apoptotic cell death pro-
gramme.130 Increased NOX2 assembly was dependent on an increased
signalling via TLR4 (and to a lesser extent TLR2)/MyD88.130 Of note,
cholesterol efflux is critical for an efficient efferocytosis.

Also SR-BI is critical in the protection against nitric oxide
(NO)-induced oxidative damage131 and suppression of inflammatory
cytokine generation in macrophages.132 This suggests that part of the
immunomodulatory effects of HDL might also be the consequence of
the ability to limit the oxidative burst in immune cells.

S1P selectively attenuates TLR2 activation, resulting in the inhibition
of TLR2-induced cytokine expression in macrophages.133 Macrophages
expressmainly S1P1andS1P2 receptors; S1P, through the actionof S1P1
receptor, inhibited the LPS-induced production of pro-inflammatory
cytokines in macrophages and resulted in the switch from a classical
M1 pro-inflammatory to the M2 anti-inflammatory phenotype.134 Of
note, S1P, through the activity of S1P2 receptor, inhibits macrophage
migration and recruitment to sites of inflammation.135

5.2 Dendritic cells
DCs are a heterogeneous family of bone marrow-derived immune cells
specialized in the processing and presentation of antigens to T lympho-
cytes. After internalization of the antigen either by phagocytosis or by
receptor-mediated endocytosis, DCs expose on their surface a frag-
ment of the antigen bound to the major histocompatibility complex
class II (MHCII), and simultaneously produce a co-stimulatory signal,
resulting in the activation of T-cells and initiation of T-cell-mediated
response.136

HDL and some of its components interfere with several steps of DC
maturation and activity. ApoA-I impairs DC differentiation and matur-
ation137 by inducing prostaglandin E2 and IL-10, two known inhibitors
of DC differentiation and function. HDL also significantly reduce the
production of IL-12 (which favours T-cell differentiation towards Th1
subtype) in stimulated mature DCs, thus decreasing their ability to
stimulate T-cells.137 HDL may also interfere with DC maturation
induced by TLR ligands; in fact, following TLR4 stimulation by LPS,
HDL significantly inhibited the ability of DCs to induce a Th1 response
of T-cells (characterized by the secretion of high levels of IFNg), owing
the reduced amount of IFNg secreted compared with LPS alone138

(Figure 3). Moreover, HDL reduced IL-12 production from
LPS-stimulated DCs.138 This effect of HDL is not restricted to TLR4,
but extends also to other TLRs.138 Among HDL components, the
phospholipid fraction is the most active in inhibiting the functional DC
maturation.138

Lipid rafts present in DCs are involved in the antigen presentation ac-
tivity and in T-lymphocyte activation. In fact, MHCII molecules are loca-
lized within lipid rafts, thus resulting in the concentration of specific
proteins in these highly specialized microdomains; this allows DCs to
activate T-cells with very low amount of antigen.139 As a consequence,
disruption of DC lipid rafts results in the inhibition of antigen presenta-
tion and T-cell activation.139 Both HDL and apoA-I inhibited the abilityof
DCs to activate T-cells and decreased IL-2 production; this effect was
related to reduced membrane lipid raft content and reduced density
of MHCII.140 Cholesterol repletion restored IL-2 secretion and T-cell
activation,140 confirming the crucial role of cholesterol in the activity
of antigen presenting cells.

Alterations in lipid raft composition may also influence the activity of
‘lipid sensing’ immune cells.141 Among these cells, a key role is played by
CD1-expressing antigen presenting cells as well as by natural killer T
(NKT) cells which are CD1d-restricted lymphocyte T cells. Most of
the available data suggest a pro-inflammatory and pro-atherogenic
role for NKT cells in animal models;142 however, the presence of differ-
ent NKT subsets and the observation in humans that NKT cell levels are
reduced in several immune disorders suggest a more complex
picture.141 Understanding CD1d-NKT cell biology in the context of
immuno-metabolic disorders represents one of the challenges for the
next years.

The activation of S1P receptors in DCs can influence their trafficking.
S1P is a chemotactic factor for immature DCs as it stimulates cell migra-
tion, but this effect is lost in LPS-differentiated DCs.143 Exposure of DCs
to S1P reduces IL-12 and TNFa production and increases IL-10 secre-
tion, thus resulting in an impaired ability to induce Th1 response while
promoting Th2 response.143 In addition, S1P differently regulates the
production of some cytokines, reducing pro-inflammatory cytokines
IL-12 and IL-23 secretion and increasing IL-27 production in LPS-
stimulated DCs;144 this effect was due to the activation of S1P1 recep-
tor144 and confirmed the anti-inflammatory properties of S1P in DCs.
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5.3 Lymphocytes
Lymphocytes play a crucial role in immunity and lipid rafts are involved in
lymphocyte activation.103 In fact, T-cell receptor (TCR) and B-cell re-
ceptor (BCR) are integral membrane proteins localized within lipid
rafts and their activity is strictly modulated by alterations in the lipid
raft composition and structure.6,103,104 Lipid rafts can regulate immune
cell function by promoting proteins clustering; this may result either in
the activation of the immune synapses or in a limited availability of mem-
brane proteins involved in downstream signalling.145 In addition, lyso-
sphingolipids, components of lipid rafts, are involved in the lymph
node/circulation trafficking of lymphocytes as well as in the differenti-
ation of T-cell subsets.146,147 Lipid rafts play an important role in
BCR-mediated signal transduction; in the absence of stimuli, BCR is loca-
lized outside lipid rafts, but after receptor engagement by an antigen,
BCR rapidly translocates into lipid rafts and initiates a signal transduction
cascade.104 The complex BCR-antigen is then internalized and the
antigen processed to produce antigenic peptide that, in turn, are
loaded onto MHCII and brought to membrane lipid rafts for antigen
presentation to T cells.104 The relevant role of lipid raft in B-cell activity
is also supported by the observation that the Epstein–Barr virus (EBV), a
virus with a tropism for B lymphocytes, targets B-cell rafts resulting in the
disruption of BCR-mediated signalling and antigen transport func-
tions;148 the viral latent membrane protein 2A (LMP2A), in fact, is loca-
lized within lipid rafts and blocks the entryof BCR.148 On the other hand,
B-cells from patients with SLE have reduced levels of Lyn, a negative
regulator of BCR-mediated signalling, and exhibit a decreased transloca-
tion to lipid rafts.149 It appears reasonable that HDL may also interfere
with B-cell function, although clear data are still lacking.

Alterations in cellular cholesterol metabolism were reported to crit-
ically influence LXR signalling which couples sterol metabolism to T-cell
proliferation in the acquired immune response.150 Mice lacking LXR
beta show splenomegaly and lymphadenopathy and the activation of
LXR beta signalling was reported to favour ABCG1 expression in
T-cells thus limiting proliferation.150 ABCA1 and ABCG1, two proteins
involved in apoA-I- and HDL-mediated cholesterol efflux respectively,
regulate haematopoietic stem cell proliferation and their deficiency
result in leucocytosis and expansion of progenitor cell population in
mice.31 Furthermore, apoA-I prevents T-cell activation and proliferation
in peripheral lymph nodes in mice fed an atherogenic diet by modulating
cholesterol accumulation in lymph nodes.32 Altogether, these observa-
tions further support the role of lipid rafts in the control of immune cell
function. Also in patients with SLE, cholesterol availability in lipid raft
play a key role in modulating T-cell function.83 Further studies are
required to understand whether a cross talk between SREBP and LXR
pathways in T cells exist or whether the LXR pathway is activated to
compensate for the dysregulation of other aspects of cholesterol me-
tabolism in autoimmune cells. Of note, alterations in T-cell immuno-
logical synapse and increased expression of memory T-cell subsets
occur in patients with coronary artery disease (CAD).69,151,152 More-
over, T cells from synovial fluid of inflamed joints of patient with RA
have an activated phenotype compared with peripheral T cells,153,154

probably related to an ROS-mediated perturbation of proteins from
lipid rafts.155

Lipid rafts are enriched in sphingolipids, a lipid class metabolized to
ceramide which in turn generate sphingosine; the latter may be phos-
phorylated by sphingosine kinase (SPHK) to form S1P,156 a bioactive
lipid mainly associated with HDL.58 Both S1P and SPHK play a relevant
role in several inflammatory disease, including atherosclerosis, RA and

asthma, most likely by modulating macrophage biology and function.157

The activation of the lysosphingolipids receptors-PI3K/Akt axis by S1P
or other S1P mimetics are responsible for the induction of several
genes involved in the immune response including the long pentraxin
PTX3 or the transforming growth factor beta 2 by HDL.60,61 S1P plays
a relevant role also in lymphocyte function. In fact, S1PR activation and
the resulting signalling cascade facilitate the egress of T-lymphocytes
from lymphoid organs,146,158 and also control T-cell lineage determin-
ation.147 In fact, S1P is a switch factor that inhibits the differentiation of
regulatory T cells (Tregs) but drives differentiation of T helper type 1
cells (Th1).147 On the other hand, administration of apoA-I to LDLR2/2-

apoA-I2/2 mice reduces inflammation by inducing a significant increase
of the Treg population and reducing the ratio effector/effector memory
T cells.33

Also changes in the level of membrane ganglioside M1 (GM1),
together with cholesterol, have been reported in activated and
autoimmune lymphocytes;84 CD4+ lymphocytes from SLE patients
are characterized by increased levels of raft-associated glycosphin-
golipids (GSL) and cholesterol, defects in lipid raft location and
function of key TCR signalling molecules, accelerated recycling of
TCR-associated proteins, increased cell death and defects in mitochon-
drial function and autophagy.84,85,159 Similarly, B-lymphocytes from
SLE patients have a higher expression of GM1 which was accompanied
by reduced expression of kinases involved in TCR signalling.84,149 In line
with these observations, the inhibitor N-butyldeoxynojirimycin
(NB-DNJ), a successful, clinically approved therapy for patients with
lysosomal storage disease (LSDs), normalized GSL expression and rec-
tified some of the signalling and functional abnormal characteristic of T
cells from SLE patients.83

Taken together, these observations suggest that molecules such as
HDLwhichcan influence lipid rafts composition might affect lymphocyte
functions.

6. HDL as a therapeutic target for
endotoxemia and immune disorders
In vitro, the administration of reconstituted HDL (rHDL) significantly
lowered LPS-induced cytokine production,160 and the intravenous infu-
sion of rHDL before LPS administration in healthy volunteers resulted in
a significant reduced inflammatory response.20 HDL inactivate also LTA,
the cell wall components of Gram-positive bacteria, which is structurally
similar to LPS and induces cytokine cascades similar to those of LPS
(Figure 1).8

In PG-polysaccharide (PG-PS)-induced arthritis in female Lewis rats,
an experimental animal model of arthritis that has many features in
common with human RA, intravenous infusions of lipid-free apoA-I or
rHDL effectively reduce joint inflammation in this animal model by redu-
cing inflammatory cell infiltration and inhibiting TLR2 expression and
activation.161 ApoA-I and rHDL mediate these effects by decreasing
NF-kB activation in an ABCA1- and ABCG1-dependent manner in
macrophages.161 In the rat collagen-induced arthritis model, therapy
with the apoA-I mimetic peptide D-4F combined with pravastatin signifi-
cantly improved clinical disease, due to a reduction of inflammatory
cytokines and chemokines.162 Pravastatin or D-4F alone were not
effective in controlling clinical arthritis activity.162

Treatment with the apoA-I mimetic peptide L-4F, in the absence
or presence of pravastatin, effectively reduced manifestations
of upus-like autoantibody production, glomerulonephritis, and
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osteopenia in apoE2/2Fas2/2 B6 murine model of accelerated
atherosclerosis in SLE.163 In addition, despite enlarged aortic atheromas
present in all treatment groups, analyses of plaque composition suggest a
potential remodelling.163 Indeed atherosclerosis and its clinical conse-
quences are major contributors to morbidity and mortality in women
with SLE.163

Therefore, targeting membrane lipids might be a novel approach to
control or alter immune cell activation and may be an important thera-
peutic approach forautoimmunediseases. Statins arecurrently under in-
vestigation as potential immune-modulatory drugs: atorvastatin in vitro
normalizes membrane GM1 expression, phosphorylation of intracellu-
lar kinases (LCK and ERK) and the production of IL-10 and IL-6 in T
cells from SLE patients,159 while in RA patients high dose of statin can
modestly improve HDL functions.164

A study performed in patients with SLE treated with atorvastatin
showed an improvement of T-cell signalling defects observed in these
patients.159 This observation suggested that atorvastatin might
correct the function of auto-reactive T cells towards a tolerant pheno-
type probably by inducing changes in membrane lipids;159 this hypoth-
esis is supported by the association between persistence with statin
therapy and reduced risk of developing RA reported in a large observa-
tional study.165

Although statins exhibit pleiotropic immunomodulatory effects in
vitro166 and in chronic and relapsing experimental autoimmune enceph-
alomyelitis (an animal model of MS),167 beneficial effects in MS patients
are controversial showing both positive effects168,169 and no advantages
with statin treatment.170,171 However, rHDL has been recently pointed
as a target for the treatment of chronic inflammatory diseases:172 rHDL
has demonstrated to exert a direct immune-modulatory function on
T-lymphocytes in vitro by suppressing their proliferation, decreasing
the levels of IFNg and IL-17 and modulating the induction of Th1 and
Th17. Furthermore, studies in animal models indicate that increasing
Treg levels induces a significant attenuation of atherosclerosis.173,174

In humans, however, a significant inverse correlation between levels of
HDL and Treg has been observed,175 and circulating Treg levels do
not correlate with severity of atherosclerosis.175 The possible role of
HDL in the polarization of T-lymphocyte subpopulations remains to
be addressed as is the role of HDL therapies in the context of immune
disorders.

7. Conclusions
HDL is emerging as a relevant player in both innate and adaptive immun-
ity,6,7,176 an effect mainly dependent on the ability to finely modulated
cholesterol bioavailability in immune cell. However, additional beneficial
immune-inflammatoryeffects of HDL could depend on the cargo of pro-
teins and lipids carried by HDL which confer additional functions, such as
the protection from endotoxemia or parasitic infections. The coming
years will be critical to establish the role of HDL as a platform integrating
humoral and cellular immunity and future studies should investigate the
role of HDL in modulating innate and adaptive immune responses
beyond atherosclerosis.
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