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Abstract. With the emergence of High Dynamic Range (HDR) imaging, the existing visual signal processing
systems will need to deal with both HDR and standard dynamic range (SDR) signals. In such systems, computing
the objective quality is an important aspect in various optimization processes (eg. video encoding). To that end,
this letter presents a newly calibrated objective method that can tackle both HDR and SDR signals. As it is based
on the previously proposed HDR-VDP-2 method, we refer to the newly calibrated metric as HDR-VDP-2.2. Our
main contribution is towards improving the frequency based pooling in HDR-VDP-2 to enhance its objective quality
prediction accuracy. We achieve this by formulating and solving a constrained optimization problem and thereby
finding the optimal pooling weights. We also carried out extensive cross-validation as well as verified the performance
of the new method on independent databases. These indicate clear improvement in prediction accuracy as compared
to the default pooling weights. The source codes for HDR-VDP-2.2 are publicly available at http://hdrvdp.sf.net/, for
free download and use.
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1 Introduction

Human eyes have a remarkable ability to adapt and adjust to varying luminance conditions. As a

result, humans can clearly visualize and see in lighting conditions ranging from moonlit night to

bright sunshine. In terms of physical luminance values, the former is in the range of about 10-2

cd/m2 while the latter more than of 107 cd/m2, a dynamic range in excess of 9 orders of magnitude.

However, when it comes to scene capture and display, such large luminance ranges are beyond the

capabilities of current SDR imaging systems. Nevertheless, with the emergence of HDR imaging,

it is now possible to capture and display scenes that can encapsulate much higher dynamic range

than the traditional or SDR imaging techniques [1]. Particularly, typical SDR systems deal with

signals up to 3 orders of magnitude. In contrast, with HDR imaging scenes up to 5 orders of
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magnitude can be processed and displayed and it can also include SDR signals (eg. tone mapped

signals). Therefore, it is logical to assume that future video processing systems will have to deal

with both SDR and HDR signals.

2 Background and Motivation

While human judgments of perceptual visual quality remain the most accurate, they cannot be

employed in all situations. For instance, in a real-time video streaming application, it may be

infeasible to get human judgments of visual quality to continuously monitor the traffic from quality

aspect. In the light such scenarios, objective quality measurement via the use of a computational

model is more desirable. To that end, many objective methods have been proposed in the past.

However, most of them have been designed for and tested only on SDR visual signals [2]. As

mentioned before, with the emergence of HDR imaging, video processing systems may have to

deal with both HDR and SDR signals. Thus, an objective quality measurement method that could

potentially be applicable over a larger dynamic range (i.e. both SDR and HDR domain) is desirable.

In that context the HDR-VDP-2 algorithm [3] can be an attractive solution.

HDR-VDP-2 is a visibility prediction metric. It provides a 2D map with probabilities of de-

tection at each pixel point which is obviously related to the perceived quality because a higher

detection probability implies a higher distortion level at the specific point. However, in case of

supra-threshold distortions (i.e. distortions clearly visible to the eye), error visibility will mostly

be 1, and in such cases a single number denoting the visual quality is more desirable. This can be

accomplished via pooling of errors in frequency bands. In the original implementation, the pool-

ing weights were determined by optimizing on an existing SDR dataset. There are, however, three

limitations of that approach, especially in the context of dealing with SDR and HDR conditions.

2



Firstly, the original paper [3] used only SDR image quality dataset which did not include any HDR

images. Secondly, the optimization was done on a relatively small number of images. Finally,

since the optimization was unconstrained it lead to negative pooling weights that may not be easily

interpretable.

This letter seeks to address the specific issues raised with regards to pooling in HDR-VDP-

2. To that end, we re-optimized the pooling weights on a combined dataset of subjectively rated

HDR and SDR images. As a result, the newly calibrated model is expected to be more effective

across both HDR and SDR test conditions. Secondly, we also re-formulated the said optimization

as being constrained, due to which the resultant weights can be computed in a bounded manner,

leading to better interpretability. Finally, we verified the prediction performance of the new weights

via extensive cross-validation studies on a collection of nearly 3000 images (including HDR and

SDR content, and their corresponding subjective quality ratings).

3 Method Calibration

In HDR-VDP-2, the following expression is used to predict the quality score Qhdrvdp for a distorted

image with respect to its reference:

Qhdrvdp =
1

F.O

F∑
f=1

O∑
o=1

wf log(
1

I

I∑
i=1

D2
p[f, o](i) + ε) (1)

where i is the pixel index, Dp denotes the noise-normalized difference between the f -th spatial

frequency (f = 1 to F ) band and o-th orientation (o = 1 to O) of the steerable pyramid for the

reference and test images, ε = 10−5 is a constant to avoid singularities when Dp is close to

0, and I is the total number of pixels. In the above expression, wf is the vector of per-band
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pooling weights, which can be determined by maximizing correlations with subjective opinion

scores. However, unconstrained optimization in this case may lead to some negative wf . Since wf

determines the weight (importance) of each frequency band, a negative wf is implausible and may

indicate over-fitting. Therefore, in this letter, we introduce a constraint on wf during optimization.

Let Qhdrvdp and S respectively denote the vector of objective quality scores from HDR-VDP-2

and subjective scores for a given set of N images. Then the aim is to maximize the Spearman

rank order correlation between the two vectors with wf being the optimized variables. To that

end, we first rank the values in Qhdrvdp and S from 1 to N and obtain new vectors Rhdrvdp and

Rsubjective, which consist of the respective ranks. Further, define E = Rhdrvdp −Rsubjective as the

rank difference vector. Then, the optimization problem can be formulated as

maximize
wf

1−
6

N∑
i=1

E2
i

N(N2 − 1)

 , subject to wf ≥ 0 (2)

Also note that in our case, the said optimization is solved using Nelder-Mead method, which

does not require computing gradients. This is because our objective function is not continuous and

differentiable as we use Spearman rank-order correlation. Our aim was to calibrate the metric so

that it can handle both HDR and SDR conditions. Thus, we computed the optimized wf based

on a set of subjectively rated SDR and HDR images. In particular, our study used two recent

HDR datasets [4], [5] in which there is a total 366 subjectively rated compressed HDR images.

In contrast to the HDR case, there are several SDR datasets that are publicly available, and we

selected the two biggest ones in terms of number of images (TID2008 [6] and CSIQ [7]). Note

that these datasets use different rating methodologies. Therefore, for the HDR (scale of 1 to 5) and
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TID2008 (scale of 1 to 9) datasets which report mean opinion scores (MOSs), we first converted

the MOSs to difference MOS. On the other hand CSIQ dataset reports DMOS. Finally, we rescaled

the all the DMOSs between 0 and 100. This enabled a more consistent scale of rating scores during

optimization.

4 Cross-validation results

In this section, we outline the method used to verify the performance of new weights. Recall,

that we used 4 datasets: 2 each for HDR and SDR cases. The former has a total of 10 source

(reference) content while the latter has a total of 55 (30 in CSIQ and 25 in TID2008) source

content. So there were 65 source content in total and 2932 distorted content (obtained by applying

different distortion types and levels to source content). For the cross-validation studies, we selected

all the distorted images from 45 (this corresponds to about 70%) source content as the training set

to find the optimal wf vector, and the remaining images from 20 source content were used as test

set. To enable a more robust estimate of the prediction performance, we randomly repeated the

said division into training and test sets over 1000 iterations, and it was ensured that the two sets

were different in terms of the source content. Hence, in each of the 1000 iterations, the prediction

performance was assessed only for untrained content, thus providing a reasonably robust approach

towards content-independent verification. The reader may also be informed that with said data

partition (45 source content as training set and remaining as test set), there were an average of

2032 and 900 images respectively in the training and test sets, during each iteration.

The experimental results for this case (exp 1) are shown in Fig. 1 (a), where the performance

is measured in terms of mean (over 1000 iterations) values of Pearson and Spearman correlation

values (a higher value implies better for these measures). Recall that existing LDR methods can-
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Fig 1 Comparative prediction performance, (a) cross-validation tests (exp1), 900 test images (b) New HDR dataset
(exp2), 50 test images, (c) plot of re-trained and default weights. Error bars indicate 95% confidence intervals. The
same colors of the bars are used for (a) and (b).

not be directly used for HDR. Nevertheless, we also employed PSNR and SSIM (both are LDR

methods) on perceptually uniformly (PU) [9] transformed HDR signal to compute objective qual-

ity and provide a base line for comparison. One can notice that the prediction performance using

the weights obtained from training set is better than the default weights as well as the two modified

LDR methods. We have also plotted in the same figure, the 95% confidence intervals (using error

bars) to provide an indication of uncertainty in the measured values. As can be seen, the confidence

intervals do not overlap indicating a better performance with the trained weights from statistical

considerations. It was also found that the re-trained weights lead to larger improvement in case of

HDR images but did not jeopardize prediction accuracy for the LDR case, and this improved the

overall prediction performance. Lastly, to verify the consistency in prediction we computed the

number of outliers over 1000 iterations based on box plots (which are convenient tools to visualize

data variability and detect points outside the quartiles). We found that for all the cases, the number

of outliers was less than 1% of the total points indicating good consistency.
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5 Validation on Independent dataset

The results in the previous section revealed that indeed the trained weights lead to better prediction

accuracies with content-independent training and test sets. This section provides further evidence

of that by using another independent HDR dataset reported in [8]. Note that this dataset includes

source content and set of distortions that did not appear in any of the other datasets we used for

calibration. To perform the experiment (exp 2), we first obtained the optimal wf by using all the

datasets used in the previous section. The resultant wf (referred to as the new weights) was then

used to predict the quality of HDR images in the new dataset. The comparative results along with

those from PU-PSNR, PU-SSIM are shown in Fig. 1 (b), from which we can see that the new

weights improved the prediction accuracies over default weights as well as the two modified LDR

methods. Note that the statistical differences are not apparent because of much smaller size of the

data set: 50 images vs. 900 used in Section 4.

Finally, we compare the re-trained and default weights via the frequency vs weight plot shown

in Fig. 1 (c). We notice that the re-trained weights reduce the importance of low frequency bands.

However, we note that they need not be related to the contrast sensitivity function (CSF) because

the goal of pooling is to quantify quality (or annoyance level) which may not always be at the level

of visibility thresholds. Also note that the negative weights found in the original HDR-VDP-2

could cause an increase of quality with higher amount of distortion. This situation is valid only

in very specific cases such as denoising and contrast enhancement (where visual quality may be

enhanced). However, since this condition is not included in any of the datasets that we used, the

re-trained weights lend to better physical interpretability (since all of them are positive, quality

will decrease with increased level of distortion).
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6 Concluding remarks

Visual quality assessment is a useful tool in many image and video processing applications. In

addition, the recent interests of the multimedia signal processing community in HDR imaging has

lead to activities towards development and standardization of HDR image and video processing

tools (eg. extension of the JPEG standard to support HDR image compression). In such scenarios,

an objective quality prediction tool is needed to validate such tools from the view point of visual

quality benchmarking with both SDR and HDR signals. In that context, the contribution of this

letter can be summarized as follows:

(1) We identified and addressed the specific issue of feature pooling in HDR-VDP-2, and thus pro-

posed the extension HDR-VDP-2.2. Specifically, we computed the pooling weights via constrained

optimization on a set of subjectively rated SDR and HDR images, in order that the resultant metric

is effective across a large luminance range of the visual signal. This represents a clear advantage

over existing SDR metrics that may not be directly applicable in case of HDR signals.

(2) We verified the performance of the new weights by way of extensive cross-validation and also

on an independent HDR dataset. In this way, the prediction performance of HDR-VDP-2 (both

with new and default pooling weights) has also been verified and benchmarked on a test bed with

nearly 3000 HDR and SDR images.

(3) With regards to the practical implications of the work reported in this letter, we note that the

new version HDR-VDP-2.2 is more accurate objective visual quality estimator for both HDR and

SDR conditions. Hence, it is expected to be useful in standardizing HDR and SDR visual sig-

nal processing tools with regards to their impact on visual quality, and can also be employed as

a standalone quality predictor. While no objective quality method can entirely replace subjective
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opinion, nevertheless the proposed improved version HDR-VDP-2.2 can still be useful in certain

scenarios and applications. A software implementation of HDR-VDP-2.2 is freely available for

download at http://hdrvdp.sf.net/.

(4) It should also be stressed that the re-trained pooling weights are related to the characteristics of

perceptual noise introduced in different frequency bands as a result of the processing considered in

the datasets used. Thus, in the current work we considered standard processing method (including

compression, tone mapping and inverse tone mapping). Hence, HDR-VDP-2.2 is expected to be

more accurate with the current use cases of HDR deployment in the HDR delivery chain. For other

applications, the pooling weights may need to be revisited and possible profiles may be added to

HDR-VDP-2.2.
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