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ABSTRACT
Acknowledging an interruption with a nod of the head is a
natural and intuitive communication gesture which can be
performed without significantly disturbing a primary inter-
face activity. In this paper we describe vision-based head
gesture recognition techniques and their use for common
user interface commands. We explore two prototype per-
ceptual interface components which use detected head ges-
tures for dialog box confirmation and document browsing,
respectively. Tracking is performed using stereo-based align-
ment, and recognition proceeds using a trained discrimina-
tive classifier. An additional context learning component
is described, which exploits interface context to obtain ro-
bust performance. User studies with prototype recognition
components indicate quantitative and qualitative benefits of
gesture-based confirmation over conventional alternatives.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—Motion; H.5.2 [Information systems]: User In-
terfaces

General Terms
Design, Experimentation, Algorithms, Human Factors, Per-
formance

Keywords
Head gesture, Context-based recognition, nodding, nod recog-
nition, multi-modal input, user study, IUI design

1. INTRODUCTION
When people interact naturally with each other, it is com-

mon to see indications of acknowledgment, agreement, or
disinterest given with a simple head gesture. We conjecture
that a human-computer interface that could perceive such
gestures would enable less disruptive notification, as well as
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make other interface actions more efficient or easy to per-
form.

Modern computer interfaces often interrupt a user’s pri-
mary activity with a notification about an event or condi-
tion, which may or may not be relevant to the main activity.
Currently, a user must shift keyboard or mouse focus to at-
tend to the notification, and use keyboard and mouse events
to page through the displayed information and dismiss the
notification before returning to the main activity. Requir-
ing keyboard or mouse events to respond to notifications can
clearly cause disruption to users during certain activities or
tasks.

Recent advances in computer vision have led to efficient
and robust head pose tracking systems, which can return
the position and orientation of a user’s head through auto-
matic passive observation. Efficient methods for recognition
of head gestures using discriminatively trained statistical
classifiers have been proposed. In this work we use a ro-
bust real-time head tracking and gesture recognition system
which was originally developed for interacting with conversa-
tional robots or animated characters [15]. We show here how
detected head gestures can be used for interface commands
under a traditional windows-based graphical user interface.

We explore two types of head gesture-based controls: dia-
log box acknowledgment/agreement, and document brows-
ing. These components were chosen as they support the
aspects of the notification scenario described above. The
first allows a user to effectively accept or reject a dialog box
or other notification window by nodding or shaking their
head. The second component allows a user to page through
a document using head nods.

Head gestures have been used in conversational speech in-
terfaces [15] and context was shown to be a critical factor to
obtain reliable recognition. Recognition based only on vi-
sion can be inaccurate or erratic; by learning a predictor of
gesture likelihood from the current dialog state, robust per-
formance was obtained. We develop an analogous context
predictor here, but exploit cues from the window manager
rather than a dialog model. Figure 1 presents our frame-
work for context-based gesture recognition. We show that
learning simple cues about interface state, including features
from mouse activity and windows manager state, can simi-
larly reduce erroneous detections by the gesture recognition
system.

We conduct user studies with gesture-based recognition
components. Results indicate that users feel acknowledg-
ment and agreement are preferred modes of use, and quan-
titative evaluation of task performance are significantly im-
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Figure 1: Framework for context-based gesture
recognition. The contextual predictor translates
contextual features into a likelihood measure, simi-
lar to the visual recognizer output. The multi-modal
integrator fuses these visual and contextual likeli-
hood measures.

proved under the gesture-based component. Users do not
significantly prefer the gesture-based scrolling component,
however, and task performance is equivalent. We conclude
with a discussion of the applicability of head-gesture com-
ponents for acknowledgment/agreement, and possible modi-
fications to the scrolling component based on user feedback.

2. BACKGROUND

Several authors have proposed face tracking for pointer or
scrolling control and have reported successful user studies
[20, 11]. In contrast to eye gaze [22], users seem to be able
to maintain fine motor control of head gaze at or below
the level needed to make fine pointing gestures1. However,
many systems required users to manually initialize or reset
tracking. These systems supported a direct manipulation
style of interaction, and did not recognize distinct gestures.

There has been substantial research in hand/body gesture
in for human-computer interaction. Lenman et al. explored
the use of pie- and marking menus in hand gesture-based
interaction[12]. Cohen et al. studied the issues involved in
controlling computer applications via hand gestures com-
posed of both static and dynamic symbols[5].

Several authors have considered head gesture in interac-
tive dialog with a conversational agent. Cassell [2, 3] and
Sidner [18, 19, 17], have developed rich models of multi-
modal output in the context of embodied natural language
conversation, including multimodal representations of agree-
ment and grounding gestures, but used mostly simple visual-
based inputs like face detection. Nakano et al. analyzed eye
gaze and head nods in computer–human conversation and
found that their subjects were aware of the lack of conver-
sational feedback from the Embodied Conversational Agent
(ECA) [16]. They incorporated their results in an ECA that
updated its dialogue state. Breazeal’s work [1] on infantoid
robots explored how the robot gazed at a person and re-
sponded to the person’s gaze and prosodic contours in what
might be called pre-conversational interactions. Davis and
Vaks modeled head nods and head shakes using a timed
finite state machine and suggested an application with on-
screen embodied agent [6].

1Involuntary microsaccades are known to limit the accuracy
of eye-gaze based tracking[8].

Recognition of head gestures has been demonstrated by
tracking eye position over time. Kapoor and Picard pre-
sented a technique to recognize head nods and head shakes
based on two Hidden Markov Models (HMMs) trained and
tested using 2D coordinate results from an eye gaze tracker [9].
Kawato and Ohya suggested a technique for head gesture
recognition using between eye templates [10]. When com-
pared with eye gaze, head gaze can be more accurate when
dealing with low resolution images and can be estimated
over a larger range than eye gaze [13]. Fugie et al. also used
HMMs to perform head nod recognition [7]. In their paper,
they combined head gesture detection with prosodic recog-
nition of Japanese spoken utterances to determine strongly
positive, weak positive and negative responses to yes/no
type utterances.

In this paper, we use a head gesture recognition approach
based on head velocities and classified using a support vec-
tor machine (SVM). Our stereo-based head pose tracker is
robust to strong illumination changes, automatically initial-
izes without user intervention, and can re-initialize auto-
matically if tracking is lost (which is rare) [14]. The SVM
approach for head gesture recognition was shown to out-
perform previous techniques based on HMMs [15]. To our
knowledge no previous work has investigated recognition-
based head-gesture controls in the context of a conventional
windows-based interface.

3. GESTURE-BASED INTERACTIONS
Head nods and head shakes are natural gestures com-

monly used during face-to-face interaction. Inspired by re-
search with human-ECA interactions [19, 16], we propose
using head gesture-based controls for two conventional win-
dows interfaces: dialog boxes and document browsing.

Dialog boxes are special windows that are used by com-
puter programs or by the operating system to display in-
formation to the user, or to get a response if needed [21].
We will focus our attention to two types of dialog boxes:
notification dialog boxes and question dialog boxes.

Notification dialog boxes are one-button windows that
show information from an application and wait for the user
to acknowledge the information and click a confirmation
button. During human-to-human interactions, the process
of ensuring common understanding is called grounding [4].
Grounding is also present during interactions with embod-
ied conversational agents, and human participants naturally
head nod as a non-verbal feedback for grounding [16]. From
these observations, we can expect human participants to
naturally accept head nodding as a way to answer notifica-
tion dialog boxes.

Question dialog boxes are two-button windows that dis-
play a question from the application and wait for positive
or negative feedback from the user. This type of dialog box
includes both confirmation and rejection buttons. If we look
again at interactions that humans have with other humans
or with embodied agents, head nods and head shakes are a
natural way in many cultures to signify positive and nega-
tive feedback, so untrained users should be able to use these
kinds of interfaces quite efficiently.

An interesting characteristic of notification and question
dialog boxes is that quite often they appear while the user is
performing a different task. For example, some email clients
will notify the user of new email arrivals using a dialog box
saying “You’ve got mail!”. Another example is operating



systems and applications that question the user about in-
stalling software updates. In both cases, the user may al-
ready be working on another task such as reading emails or
browsing a document, and want to answer the dialog box
without changing focus. Answering a dialog box using a
head gesture makes it possible for users to keep keyboard
and mouse focus undisturbed.

Based on our observations, we hypothesize that head ges-
tures are a natural and efficient way to respond to dialog
boxes, especially when the user is already performing a dif-
ferent task. We suggest a gesture-based interface design
where notification dialog boxes can be acknowledged by head
nodding and question dialog boxes can be answered by head
nods or head shakes.

Similarly, people use head nods as a grounding cue when
listening to information from another person. We conjecture
that reading may be similar to listening to information, and
that people may find it natural to use head nod gestures
to turn pages. We design a prototype gesture-based page-
forward control to browse a document, and evaluate it in a
user study as described below.

4. CONTEXTUAL FEAUTURES
There are several sources of potential errors with a gesture

based recognition system. For example when people search
for their cursor on the screen, they perform fast short move-
ments similar to head nods or head shakes, and when people
switch attention between the screen and keyboard to place
their fingers on the right keys, the resulting motion can ap-
pear like a head nod. These types of false positives can
cause trouble, especially for users who are not aware of the
tracking system.

In research on interactions with ECAs, it has been shown
that contextual information about dialog state is a produc-
tive way to reduce false positives [15]. A context-based
recognition framework can exploit several cues to determine
whether a particular gesture is more or less likely in a given
situation. To apply the idea of context-based recognition to
non-embodied interfaces, i.e. windows-based interfaces, here
we define a new set of contextual features based on window
manager state.

We want to find contextual features that will reduce false
positives that happen during interaction with conventional
input devices, and contextual features that can be easily
computed using pre-existing information. For our initial
prototype we selected two contextual features: fd and fm,
defined as the time since a dialog box appeared and time
since the last mouse event and respectively. These features
can be easily computed by listening to the input and display
events sent inside the message dispatching loop of the appli-
cation or operating system (see Figure 1). We compute the
dialog box feature fd as

fd(t) =

�
Cd if no dialog box was shown

t − td otherwise

where td is the time-stamp of the last dialog box appear-
ance and Cd is default value if no dialog box was previously
shown. The same way, we compute the mouse feature fm as

fm(t) =

�
Cm if no mouse event happened

t − tm otherwise

where tm is the time-stamp of the last mouse event and Cm

is default value if no mouse event happened recently. In our
experiments, Cd and Cm were set to 20.

The contextual features are evaluated at the same rate as
the vision-based gesture recognizer (about 18Hz).

5. CONTEXTUAL PREDICTION
We wish to learn a measure of likelihood for a gesture

given only the contextual features described in the previous
section. This measure will later be integrated with the mea-
sure from our vision-based head gesture recognizer to pro-
duce the final decision of our context-based gesture recog-
nizer (see Figure 1).

The measure of likelihood is taken to be the distance to
a separating surface of a multi-class Support Vector Ma-
chine (SVM) classifier that predicts the gesture based on
contextual features only. The SVM classifier learns a sep-
arating function whose distance m(x) to training labels is
maximized. The margin m(x) of the feature vector x, cre-
ated from the concatenation of the contextual features, can
easily be computed given the learned set of support vectors
xi, the associated set of labels yi and weights wi, and the
bias b:

m(x) =

l�
i=1

yiwiK(xi, x) + b (1)

where l is the number of support vectors and K(xi, x) is the
kernel function. In our experiments, we used a radial basis
function (RBF) kernel:

K(xi, x) = e−γ‖xi−x‖2
(2)

where γ is the kernel smoothing parameter learned auto-
matically using cross-validation on our training set. After
training the multi-class SVM, we can easily compute a mar-
gin for each class and use this scalar value as a prediction
for each visual gesture.

We trained the contextual predictor using a subset of
twelve participants from our user study described in Sec-
tion 7. Positive and negative samples were selected from
this data set based on manual transcription of head nods
and head shakes.

6. MULTI-MODAL INTEGRATION AND
RECOGNITION

Having described how we anticipate a listener’s visual
feedback based on contextual information, we now integrate
these predictions with observations from a vision-based head
gesture recognizer. We will first describe the visual recog-
nizer used during our experiments and then describe inte-
gration of contextual predictions.

6.1 Vision-based Head Gesture Recognition
We use a two-step process to recognize head gestures: we

first track head position and rotation, and then use a com-
puted head velocity feature vector to recognize head ges-
tures. We use a head tracking framework that merges differ-
ential tracking with view-based tracking based on the system
described in [14]. We found this tracker was able to track
subtle movements of the head for extended periods of time.
While the tracker recovers the full 3-D position and velocity
of the head, we found features based on angular velocities
were sufficient for gesture recognition.



For vision-based gesture recognition (without dialog con-
text), we trained a multi-class SVM with two different classes:
head nods and head shakes. The head pose tracker outputs
a head rotation velocity vector at each time step (sampled
at approximately 18Hz). We transform the velocity signal
into a frequency-based feature by applying a windowed FFT
to each dimension of the velocity independently. We resam-
ple the velocity vector to have 32 samples per second. This
transforms the time-based signal into an instantaneous fre-
quency feature vector more appropriate for discriminative
training. The multi-class SVM was trained using the RBF
kernel described in Equation 2.

We decided to adopt this discriminative approach for our
visual head gesture recognition based on our previous exper-
iments [15]. However, other classification schemes could also
fit into our context-based recognition framework; all that we
require for the multi-modal context fusion described below
is that the vision-based head gesture recognizer return a sin-
gle detection per head gesture. These detections are margins
computed directly from the output of the multi-class SVM
using Equation 1.

6.2 Multi-modal Integrator
To recognize visual gestures in the context of the current

interaction state, we fuse the output of the context predic-
tor with the output of visual head gesture recognizer (see
Figure 1).

Our integration component takes as input the margins
from the contextual predictor (see Section 5) and the visual
observations from the vision-based head gesture recognizer
(Section 6.1), and recognizes if a head gesture has been ex-
pressed by the human participant. The output from the
integrator is further sent to the application so it can be in-
terpreted by one of the two new user interfaces described in
Section 3.

We use a multi-class SVM for the integrator since previous
experiences show better performance than a linear classifier
or simple thresholding [15]. One advantage of our context-
based recognition framework is that the integrator can be
trained on a smaller data set than the contextual predictor.
In our experiment, we trained the integrator on a subset of
five participants since the results from the head pose tracker
were logged only for these participants.

7. EXPERIMENTAL STUDY
The physical setup consists of a desk with a 21” screen,

a keyboard and a mouse. A stereo camera was installed on
top of the screen to track the head gaze and recognize head
gestures (see Figure 2). This camera was connected to a
laptop that ran the recognition system described in Section
6. The recognition system sends recognition results to the
main application, which is displayed on the desktop screen in
a normal fashion. No feedback about the recognition results
is shown on this screen.

We designed our experimental system to evaluate the two
gesture-based widgets described in Section 3: dialog box an-
swering and document browsing. The main experiment con-
sisted of two tasks: (1) reading a short text and (2) answer-
ing three related questions. Both tasks were performed un-
der three different experimental interaction phases: conven-
tional input only, head gesture input only and user-selected
input method. For each interaction, the text and questions
were different. During both tasks, dialog boxes would ap-

Figure 2: Experimental setup. A stereo camera is
placed on top of the screen to track the head position
and orientation.

pear at different times asking a question or stating new in-
formation.

The reading task was designed to replicate a situation
where a person reads an informal text ( 3 pages) using a doc-
ument viewer like Adobe Acrobat Reader. At startup, our
main application connects to Acrobat Reader, using Compo-
nent Object Model (COM) technology, displays the Portable
Document File (PDF) and waits for the user input. When
the participant reached the end of the document, he/she
was instructed to close Acrobat Reader and automatically
the window for the second task would start. The document
browsing widget was tested during this task.

The writing task was designed to emulate an email writing
process. The interface was similar to most email clients and
included the conventional fields: “To:”, “CC:”, “Subject:”
and the email body. A “Send” button was placed in the
top left corner. The questions were already typed inside the
email as if the participant was replying to a previous email.

The dialog boxes appearing during both tasks were de-
signed to replicate reminders sent by a calendar applica-
tion (i.e. Microsoft Outlook), alerts sent by an email client,
and questions asked during impromptu moments about soft-
ware updates or assistant help. Between 4 to 8 dialog boxes
would appear during each experiment. The position and
text displayed on the dialog box changed between appear-
ances. Participants were asked to answer each dialog box
that appeared on the screen. Two types of dialog boxes were
displayed: one “OK” button and two “Yes/No” buttons.

Both tasks were repeated three times with three different
experimental interaction phases. During the first interac-
tion, the participants were asked to use the mouse or the
keyboard to browse the PDF document, answer all dialog
boxes and reply to the email. This interaction phase was
used as a baseline where participants were introduced to
both tasks and they could remember how it feels to interact
with conventional input devices.

Between the first and second interaction, a short tutorial
about head gestures for user interface was performed where
participants practiced the new techniques for dialog box an-



swering and document browsing as described in Section 3.
Participants were free to practice it as long as they wanted
but most participants were ready to start the second phase
after one minute.

During the second phase, participants were asked to browse
the PDF document and answer dialog boxes using head nods
and head shakes. During the email task, participants had
to use the keyboard for typing and could use the mouse for
navigating in the email but they were asked to answer any
dialog box with a head gesture. This interaction phase was
designed to introduce participants to gesture-based widgets.

During the third phase of the experiment, participants
were told that they could use any input technique to per-
form the browsing and email tasks. This interaction was
designed so that participants could freely choose between
keyboard, mouse or head gestures. In contrast to the pre-
vious two phases, this phase should give us an indication of
which interaction technique or combination of technique is
preferred.

This phase was also designed to compare the accuracy of
the head recognizer with the judgement of human observer.
For this reason, during this third phase of the experiment a
human observer was recognizing intentional head nods from
each participant, in a ”Wizard of Oz” manner. The vision-
based head gesture recognizer was still running during this
phase and its results were logged for later comparison.

The study was a within-subject design, where each partic-
ipant performed more then one interaction phase. A total of
19 people participated in our experiment. All participants
were accustomed to use the keyboard and mouse as their
main input devices and none of them had used head gesture
in a user interface before. Twelve participants completed
the first two conditions and only seven participants com-
pleted all three conditions. Each condition took 2-3 minutes
to complete on average. All participants completed a short
questionnaire about their experience and preference at the
end of the experiment.

The short questionnaire contained two sets of questions
where participants were asked to compare keyboard, mouse
and head gestures. The first set of questions was about
document browsing while the second set was about dialog
box answering. Both sets had the same structure: 2 ques-
tions about efficiency and natural interaction followed by a
section for general comments. Each question asked the par-
ticipant to grade all three types of user interfaces (keyboard,
mouse and head gesture) from 1 to 5 where 5 is the highest
score. The first question asked participants to grade input
techniques on how efficient the technique was. The second
question asked participants to grade input techniques on
how natural the technique was.

8. RESULTS AND DISCUSSION
In this section, we first present the results of the user

study, then discuss its implication and finally present results
about context-based recognition.

We analyzed the choices each participants made during
the third phase of the experiment. During this part of the
experiment, the participant was free to decide which input
device to use. Figure 3 shows how participants decided to
answer dialog boxes and browse documents. For the dialog
boxes, 60.4% of the time they used a head gesture to answer
the dialog box while using mouse and keyboard only 20.9%
and 18.6% respectively. For document browsing, 31.2% of
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Figure 3: Preferred choices for input technique dur-
ing third phase of the experiment.

the time they used a head gesture to answer the dialog box
while using mouse and keyboard only 22.9% and 45.8% re-
spectively.

Using a standard analysis of variance (ANOVA) on all 7
subjects who participated to the third phase, results on the
dialog box answering widget showed a significant difference
among the means of the 3 input techniques: p = 0.060.
Pairwise comparisons show a significant difference for pairs
gesture-mouse and gesture-keyboard, with respectively p =
0.050 and p = 0.083, while the pair mouse-keyboard shown
no significant difference: p = .45. Pairwise comparisons
for the document browsing show no significant difference
between all pair, with p = 0.362, p = 0.244, and p < 0.243
for gesture-mouse, gesture-keyboard, and mouse-keyboard
respectively.

We compared the results from vision-based head gesture
recognizer with the ”Wizard of Oz” results on three partici-
pants. The vision-based system recognized 91% of the head
nods with a false positive rate of 0.1. This result shows that
a vision-only approach can recognize intentional head ges-
tures but suggests the use of contextual information to reach
a lower false positive rate.

We also measured the qualitative results from the ques-
tionnaire. Figure 4 shows how 19 participants scored each
input device for efficiency and natural feeling when interact-
ing with dialog boxes. The average scores for efficiency were
3.6, 3.5 and 4.2, for keyboard, mouse and head gestures re-
spectively. In the case of natural feeling, the average scores
were 3.4, 3.7 and 4.2.

Figure 5 shows how 19 participants scored each input de-
vice for efficiency and natural feeling for document browsing.
The average scores for efficiency were 4.3, 3.8 and 2.6, for
keyboard, mouse and head gestures respectively. In the case
of natural feeling, the average scores were 4.1, 3.9 and 2.7.

One important fact when analyzing this data is that our
participants were already trained to use mouse and key-
board. This previous training affected their choices. The
results from Figures 3 and 4 suggest that head gestures are
perceived as a natural and efficient way to answer and ac-
knowledge dialog boxes. Participants didn’t seem to ap-
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Figure 5: Survey results for document browsing
task. All 19 participants graded the naturalness and
efficiency of interaction on a scale of 1 to 5, 5 mean-
ing best.

preciate as much the head gesture for document browsing.
Some participants stated in their questionnaire that they
wanted to have a more precise control over the scrolling of
PDF documents. Since the head gesture paradigm only of-
fered control at the page level, we think that this paradigm
would apply better to a slide-show application like Power-
Point.

An interesting fact that came from our post-analysis of
the user study is that some participants performed head
shakes at the notification dialog box (the dialog box with
only ”OK”). This probably means that they didn’t want
to be disturbed at that specific moment and expressed their
disapproval by a head shake.

To analyze the performance of the context-based head ges-
ture recognizer described in Section 6, we manually anno-
tated 12 interaction sequences for head gestures so that we
have a ground truth. From this dataset of 79 minutes of in-
teraction, 269 head nods and 121 head shakes were labeled
as ground truth.
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Figure 6: Average ROC curves for head nods recog-
nition. For a fixed false positive rate of 0.058 (opera-
tional point), the context-based approach improves
head nod recognition from 85.3% (vision only) to
91.0%.

Figure 6 shows head nod detection results for the vision-
only technique and the context-based recognizer. The ROC
curves present the detection performance of each recogni-
tion algorithm when varying the detection threshold. We
computed the true positive rate using the following ratio:

True positive rate =
Number of detected gestures

Total number of ground truth gestures

A head gesture is tagged as detected if the detector trig-
gered at least once during a time window around the gesture.
The time window starts when the gesture starts and ends k
seconds after the gesture. The parameter k was empirically
set to the maximum delay of the vision-based head gesture
recognizer (1.0 second). The false positive rate is computed
at a frame level:

False positive rate =
Number of falsely detected frames

Total number of non-gesture frames

A frame is tagged as falsely detected if the head gesture
recognizer triggers and if this frame is outside any time win-
dow of a ground truth head gesture. The denominator is
the total of frames outside any time window.

During our experiments, the detection threshold for head
nod recognition was set to 0 which represents for the vision-
based system an average false positive rate of 0.058 and
a recognition performance of 85.3%. For the same false
positive, the context-based approach recognized on average
91.0% of the head nods. A paired t-test analysis over all
tested subject returns a one-tail p-value of 0.070. Figure 6
shows that adding contextual information to the recogni-
tion framework does reduce significantly the number of false
positives.



9. CONCLUSION AND FUTURE WORK
We developed vision-based head gesture interface com-

ponents to allow simple user interface interactions without
disrupting keyboard and mouse focus for a primary activ-
ity. We explored two prototype perceptual interface com-
ponents which use detected head gestures for dialog box
confirmation and document browsing, respectively. Track-
ing was performed using stereo-based alignment, with ges-
ture recognition performed using a SVM-based classifier. A
context learning component exploited interface state to im-
prove performance. User studies with prototype recognition
components indicated quantitative and qualitative benefits
of gesture-based confirmation over conventional alternatives,
but did not show support for the prototype document brows-
ing interface. As future work, we plan to experiment with
a richer set of contextual cues including those based on eye
gaze, and to study new gesture-based interactions like slide
show navigation.
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